Inflatable Space Structures

Matthew Allgeier
Erin Kelly

ASEN 5519
Final Presentation
Presentation Overview

- Introduction
- Background
- Technical issues
- Applications
- Environmental interactions
- Material selection
- Assembly methods
- Deployment Techniques

- Sources of error
- Analysis/Verification
- Piezoelectric Deformation
- Future uses
 - Inflatable Antenna
 - Solar sail booms
 - Inflatable radiator
- Take Home Lessons
Introduction

Interest in inflatable deployable space structures since 1950s.

Potential for:
- Low cost flight hardware
- Exceptionally high mechanical packaging efficiency
- Deployment reliability
- Low weight
Background

- Early Inflatable Structures
- Contraves Inflatable Structures
- Inflatable Antenna Experiment
Early Inflatable Structures

- **Echo 1**
 - Launched Aug. 12, 1960
 - Diameter = 100 ft (30 m)
 - Frequencies = 960 and 2390 MHz
 - Weight 136 lbs
 - Lifetime = 8 years
 - Made of 12µm thick Mylar coated w/ 2000 angstroms of vapor-deposited aluminum

- **Echo 2**
 - Launched Jan. 25, 1964
 - Diameter = 135 ft. (40 m)
 - Orbit altitude = 1000 mi. (1600 km) also Echo 1
 - Lifetime = 5 yrs
 - Made of Mylar coated with Aluminum on the inside
 - Improved inflation system to improve smoothness and sphericity
Early Inflatable Structures cont.

- Goodyear Inflatable Structures

 - From late 1950s to mid 1960s they developed:
 - Search radar antenna, Radar calibration sphere
 - Lenticular parabolic reflector
A 10 x 12 meter offset reflector antenna for land mobile communications at L-band was built and evaluated for surface precision and other mechanical characteristics.
Inflatable Antenna Experiment

- NASA project
- Launched with STS-77 on May 29, 1996
- Experiment objectives:
 - Verify large structures can be built at low cost
 - Show high mechanical packaging efficiency of large inflatable structures
 - Demonstrate high deployment reliability
 - Verify manufacturing with high surface precision
 - Measure the reflector surface precision on orbit
IAE (cont.)

- 2 basic elements
 - Inflatable reflector assembly
 - Torus/strut supporting structure
Applications

- **Current uses**
 - IAE
 - NASA Shuttle Space Suit
 - MK 50 Torpedo Recovery System
 - Collapsible Hyperbaric Chamber
System Requirements

Issues that must be overcome before ISS can be widely used

- Lifetime
- Deployment techniques
- Structure/Environment interactions
- Rigidization techniques
- Membrane Shape Inaccuracies
- Accurate pressure control
- Withstand solar/space radiation
Inflatable structures have the most significant interaction with the space environment of all space structures:

- Resistance to solar radiation environment
 - Low thermal expansion
 - Low long term creep
- Micrometeoroid penetration
 - Requirement to maintain pressure
- Oxygen atoms in LEO
 - Some materials require hydrocarbon coatings
- Thermal issues
 - Temp varies from -200F to 200F
 - Multilayer Insulation required
Material Characteristics

- It is desirable to have large elastic deformations due to pressure compared to fabrication errors
 - This will ensure that the reflector will achieve its desired analytically predicted shape under load.
- It is desirable to have films with a very low modulus of elasticity
 - Current thin polymetric films have modulus on the order of 500,000 to 800,000 psi
 - Ideally, these materials should be an order of magnitude lower
- It is desirable to have thin materials
 - On the order of 0.5 to 1 mm depending on the operating stress level (usually 100 to 3000 psi)
 - Lower the stress level, the lighter the support structure and the lighter the gas weight.
Material Selection

- Polymides such as Kapton have proven very resistant to UV radiation
 - Kaptons are readily available in production quantities and desired thicknesses
- Aerimide and CP2 also exhibit excellent radiation resistance.
- Mylar may become brittle and opaque with extended exposure to UV radiation
- Polyurethanes
 - Can be used for Sub glass transition temperature (T_g) rigidizable structures.
 - Useful way to rigidize structures and increase their ability to bear loads
Material Comparison

<table>
<thead>
<tr>
<th>Property</th>
<th>Kapton H (Dupont)</th>
<th>Kapton V (Dupont)</th>
<th>Kapton E (Dupont)</th>
<th>Aorimide (Triton)</th>
<th>PBO (Fort. Mfr.)</th>
<th>CP1&2 (SRS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient of Thermal Expansion</td>
<td>PPM/C</td>
<td>20 @-14 to -38C</td>
<td>24 @-50 to -200C</td>
<td>12 @-75 to 200C</td>
<td>(Yellow, 70%) MD -7.6 TD +7.6</td>
<td>47 to 51</td>
</tr>
<tr>
<td>Shrinkage</td>
<td>%</td>
<td>0.17</td>
<td>0.03</td>
<td>0.03</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Coefficient of Hygroscopic Expansion</td>
<td>%HR</td>
<td>1.8 to 2.8</td>
<td>1.8 to 3</td>
<td>2.4</td>
<td>2 to 8</td>
<td>0.8</td>
</tr>
<tr>
<td>HDO Absorption</td>
<td>%</td>
<td>0.0065(100psci)</td>
<td>0.0055(1500psci)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Modulus</td>
<td>KPSI</td>
<td>370</td>
<td>400</td>
<td>750</td>
<td>450</td>
<td>315 to 420</td>
</tr>
<tr>
<td>Yield Strength TD MD</td>
<td>PSI</td>
<td>10000</td>
<td>10000</td>
<td>15000</td>
<td>8800 to 5600</td>
<td>27500</td>
</tr>
<tr>
<td>Creep (Total strain after 76 days)</td>
<td>% (applied stress)</td>
<td>NA</td>
<td>NA</td>
<td>0.0065(100psci)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Solvent Resistance</td>
<td>excellent</td>
<td>excellent</td>
<td>excellent</td>
<td>excellent</td>
<td>sol. in MEK MIBK, CHC13</td>
<td>NA</td>
</tr>
<tr>
<td>Uniformity (thickness), Mils</td>
<td>max.100</td>
<td>NA</td>
<td>NA</td>
<td>2.4 to 2.5</td>
<td>2.7 to 11.7</td>
<td>15.9</td>
</tr>
<tr>
<td>Space Env.: AO VUV/AO W V Ionizing Rad.</td>
<td>Re(AO)x10^-24</td>
<td>3</td>
<td>3</td>
<td>0.14</td>
<td>0.14</td>
<td>0.6</td>
</tr>
<tr>
<td>% Prop. Retained Rad.</td>
<td>3.07</td>
<td>3.07</td>
<td>0.17</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Rad Irradiation, %</td>
<td>5x10^-9</td>
<td>5x10^-9</td>
<td>5x10^-9</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Bonding</td>
<td>%</td>
<td>0.02</td>
<td>0.02</td>
<td><2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Metallizability</td>
<td>%</td>
<td>0.77</td>
<td>0.77</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Inflatable Space Structures
Assembly Methods/ Manufacturing

- Unique manufacturing methods are required since thin, flexible materials are used.
- Currently fabricated using flat gores joined together at the seams.
- Precision cutting of gores required
 - Use of gore templates
 - Expensive for large reflectors
 - Computer cutting gore system developed by L’Garde
Deployment - Inflation Methods

- Combining nitrogen gas and subliming powders
 - Used for the IAE
 - Subliming powder inserted into inflatable after orbit insertion
 - Powders sublime into a gas which increases vapor pressures
 - Temperature is controlled through proper thermal design
 - Provide pressure regulation by allowing excess power to sublimate as make-up gas
 - Low toxicity and low cost

- Hydrazine systems now being evaluated
 - Lower weight and volume
 - Handling, safety and cost issues
Deployment – Rigidization Methods

- Only practical applications of purely inflatable space structures are for reflector and concentrator structures
 - Most reflector and concentrator structures can be operated at low pressures to minimize pressure losses due to micrometeoroids

- Load bearing structures must operate at high pressures
 - Rigidization after deployment is necessary to minimize pressure losses due to micrometeoroids.

- Rigidization Techniques
 - Impregnating a fabric with resin so that it rigidizes when it is cooled below its glass transition temperature
 - Polyurethanes are now being explored as a material option because their unique chemistry allows formulation of desired glass transition for any specific application over a wide range of temperatures.
 - Can be packaged very densely
 - Laminate of Aluminum foil and Kapton foil which rigidizes when aluminum is strained past it’s yield point.
 - Not a reversible process
Reflector Error Sources

- Inflatable Structures require accuracy greater than that of customary tolerances in structural engineering

- Sources of error
 - Material stiffness property variation
 - Material thickness and area variation
 - Creep
 - Moisture effects
 - Material wrinkling and creasing
 - Fabrication
 - Analytical shape prediction and correction
 - Pressure level
 - Thermal distortion
 - Gravitational effects
Analysis – Reflector Shapes

- **Shape Analysis**
 - Membrane shape deformations can be diagnosed through the use of photogrammetric techniques and FEM analysis

- **Shape Correction**
 - Variation of inflation pressure
 - Enables adjustment of focal length
 - Will not correct asymmetric distortions
 - Shape distortions can be corrected through Piezoelectric deformations
Piezoelectric Deformations

- Surface imperfections limit frequencies of antennas to 100 GHz.
 - Increasing frequency will require increased surface accuracy of reflectors.
- Piezos can be used to induce deformations in order to improve surface accuracy.
 - Applying a static electric charge to certain regions of the membrane to make small local adjustments in the shape of the structure.
- Piezo system allows for on orbit adjustments.
Future of Inflatable Space Structures

- Inflatable Power Antennae
- Solar Sail Booms
- Inflatable Radiator
Inflatable Power Antennae

- Proposed under Gossamer Spacecraft Program / JPL.
- The Power Antennae utilizes an inflatable parabolic reflector.
 - Concentrate solar energy for space electrical power generation
 - Simultaneously acts as a large aperture antennae.
- Parabolic reflector acts as a solar concentrator and focuses energy onto a solar array.
- A beam splitter is mounted in front of the array to deflect RF onto a feed.
- The feed is used to separate optical from RF energy.
- Can be used for deep space power generation and high gain RF communications concurrently.
Solar Sail Boom

- Solar sails are devices that reflect photons from the sun and convert some energy into thrust.
- Inflatable rigidizable booms can be used for support.
- Inflation gas is introduced at the base:
 - Deployment is smooth and predictable.
- Utilizes the concept of glass transition rigidization.
- Since tube is rigidized, it can withstand substantial loads after deployment.
Inflatable Radiator

- High power generation on Space-based defense systems require large amounts of heat rejection
- Conventional radiators impractical
 - Weight
 - Significant Drag at LEO
 - Vulnerability to tracking
- Inflatable radiator can capture heat during short power generation periods and radiate into space over longer periods
 - During power generation phase, radiator is extended out of spacecraft while filled with waste heat
 - Steam is condensed gradually as heat is radiated into space.
 - Radiator is retracted during this period to maintain constant saturation pressure. This also keeps radiator protected from space debris
Technical Issues Revisited

- **Possibility of Meteoroid Puncture**
 - Meteoric flux is lower than originally predicted
 - Low inflation pressure systems can be kept with reserve gas.
 - Reserve gas weight only a fraction of total system weight
 - Self-Rigidized systems in which inflation is used only for deployment

- **Surface Shape Accuracies**
 - Inflatable do not currently have the accuracy required for use as space telescopes
 - Material uniformity
 - Inadequate manufacturing procedures
 - Inadequate material properties
Take Home Lessons

- 2 types of inflatables
 - Purely inflatable
 - Deployed by inflation and rigidized
- Inflatables offer a low cost, low mass alternative to conventional space structures.
 - Possibility for Deep Space Solar power extraction and RF communications.
 - Rigidizable structures offer prospect of lightweight load bearing structures.
- However, significant technical issues must be overcome
 - Further development of assembly methods
 - Improved accuracy of structure shape prediction and correction

References

10) http://www.estec.esa.nl/conferences/02C06/

14) www.roland.lerc.nasa.gov/~dglover/sat/alltext
Questions?
Supplemental Slides
Early Inflatable Structures

- Echo 1 and 2
 - NASA’s first communication satellite project
 - Developed by NASA Langley Space Vehicle group
 - Purpose: test feasibility of using satellites to relay communication signals
 - Passive satellites that reflected radio waves back to ground
 - After Echo series NASA abandoned passive communication systems in favor of the superior performance of active satellites
Contraves Inflatable Structures

- Developed by the European Space Agency
- Focus was for axisymmetric reflector antennas for Very Large Baseline Interferometry (VLBV)
- Construction based on 2 parabolic membranes
 - made from multiple gores (1 RF transparent, 1 metalized w/ Al.)
 - Load carrying fibers made of Kevlar and matrix material was designed to become rigid from solar heating on orbit
IAE (cont.)

- **Inflatable reflector assembly**
 - 14 m off-axis parabolic aperture
 - Reflector film: Aluminized Mylar stressed to 1200 psi

- **Torus/strut supporting structure**
 - 24 and 18 in. in diameter, respectively
 - Made of 12 mil thick neoprene coated Kevlar