The Impact of Undergraduate Science Course Innovations on Student Learning

Heidi Iverson and Derek Briggs

End of Year Event
Science Education Initiative
University of Colorado at Boulder
May 5th, 2011
Traditional Science Classes
Innovations

What works in undergraduate science education?
What is meta-analysis?
Meta-Analysis

• Systematic approach to the synthesis of research findings
• Pooling existing evidence
• Summing up:
 ▫ Innovations implemented
 ▫ Evidence of success
What is needed?

- Gather empirical evidence
- Metric for computing effects of studies with different outcome measures?

Effect Size: \[ES = \frac{\bar{X}_T - \bar{X}_C}{SD_C} \]
Gathering of Empirical Evidence
What was included?

Four criteria:

1. focus on undergraduate education in biology, chemistry, engineering & physics;
2. include one or more instructional strategies considered to be an innovation;
3. refer to actual classrooms, rather than controlled conditions; and
4. be reported in article published in 1990 or later. (Suter & Narayanan, 2006; Beichner, 2009)
Study Search Methods

Word of Mouth

Journal Search

Validate Keywords

Comparative Studies
- Biology = 82
- Chemistry = 18
- Engineering = 23
- Physics = 74

Classify
- Classify papers as either:
 - Background
 - Synthesis
 - Descriptive
 - Comparative

Expanded Search
All Innovation Papers
n = 868

Comparative Studies
n = 210

Biology
Include 54%
Exclude 46%

Chemistry
Include 77%
Exclude 23%

Engineering
Include 58%
Exclude 42%

Physics
Include 48%
Exclude 52%
Effect Size Distribution

Included Comparative Studies

n = 166

ES from -1.06 to 2.57

Mean = 0.47

SD = 0.54

83% Positive Effect Size
Biology
Mean = 0.54 (0.66)

Chemistry
Mean = 0.27 (0.41)

Engineering
Mean = 0.08 (0.58)

Physics
Mean = 0.59 (0.37)
Factors Explaining Variability?
Innovation Type

<table>
<thead>
<tr>
<th>Innovation Combination</th>
<th>Number of Studies</th>
<th>Mean Effect Size (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>30</td>
<td>0.35 (0.39)</td>
</tr>
<tr>
<td>Conceptually Oriented Tasks + Collaborative Learning</td>
<td>42</td>
<td>0.56 (0.41)</td>
</tr>
<tr>
<td>Conceptually Oriented Tasks + Technology</td>
<td>18</td>
<td>0.41 (0.61)</td>
</tr>
<tr>
<td>Conceptually Oriented Tasks + Collaborative Learning + Technology</td>
<td>38</td>
<td>0.46 (0.50)</td>
</tr>
</tbody>
</table>
Importance of Outcome Measure

- Outcome measure item format
 - Multiple-choice (mean ES=0.56)
 - Open-ended (mean ES=0.35)

- Alignment of the outcome measure to the innovation

In one particular report:
 - Force and Motion Conceptual Evaluation (ES = 1.36)
 - Open-ended traditional problem solving (ES = -0.62)
The Issue of Assignment

- 88% of studies do not have random assignment of individuals to treatment and control
- Pretest scores are essential to evaluate/adjust for group differences
- For those studies that do, when taken into account:
 - Mean effect size is much larger
Conclusions

• Innovations have a positive effect on student learning

• Things to consider:
 ▫ Providing sufficient empirical data
 ▫ Importance of outcome measure
 ▫ Pretest administration

• Next steps – Case studies of effective innovations
Thank You

This research has been funded by NSF grant REC-REESE 0635491

Contact Email: Derek.Briggs@Colorado.edu
 Heidi.L.Iverson@Gmail.com