university of colorado catalog

125 years

boulder 2001–02
In honor of the 125th anniversary of the University of Colorado at Boulder, we are featuring historical photographs on our divider pages. Many of these photographs were taken by Professor J. Raymond Brackett (1854-1922), who took a series of photographs of the university campus in early 1893 that were to be displayed (probably in the Colorado Pavilion) at the World Columbian Exhibition in Chicago in the summer of 1893. These photos served to bring the University of Colorado to the attention of the thousands of people who attended the Exhibition. Later, Professor Albert Bartlett (Physical Astronomy Emeritus) compiled these into archives, which are housed in both the Heritage Center and the University Archives.

The historical information accompanying the photographs came from Glory Colorado by William E. Davis. We would like to thank Bruce Montgomery of the University Archives for his assistance.

Editor: Ellen Peterson
Design and Production: Polly Christensen, Gail Siegel, Amy Wormald
Photography: Ken Abbott, Larry Harwood

University of Colorado at Boulder
Publications and Creative Services
Table of Contents

Academic Calendar 2
A Plan for the 21st Century 3
Honor Code 3

General Information
The University System 5
Academic Affairs 8
Undergraduate Admission 17
Graduate Admission 17
Academic Records 17
Expenses 20
Financial Aid 23
Housing 25
Registration 26
Campus Facilities 28
Campus Programs 30
Campus Services 34
Campus Policies 40

College of Architecture and Planning
General Information 45
Academic Excellence 46
Academic Standards 47
Admission and Enrollment Policies 47
Undergraduate Degree Requirements 49
Course Descriptions 51
Faculty 55

College of Arts and Sciences
General Information 57
Programs of Special Interest 57
Residential Academic Programs 58
Academic Excellence 60
Academic Standards 60
General Credit and Enrollment Policies ... 60
Undergraduate Degree Requirements 62
Graduate Study 72
Actuarial Studies 72
American Studies 72
Anthropology 75
Applied Mathematics 75
Asian Studies 75
Astrophysical and Planetary Sciences 75
Atmospheric and Oceanic Sciences 78
Bibliography 78
British Studies 78
Central and East European Studies 79
Chemistry and Biochemistry 79
Clasics 80
Cognitive Science Studies 81
Communication 81
Comparative Literature and Humanities .. 82
Distributed Studies Program 85
East Asian Languages and Civilizations .. 85
Economics 85
English 90
Environmental, Population, and Organismic Biology 91
Environmental Studies 93
Ethnic Studies 94
Film Studies 95
Fine Arts 97
French and Italian 100
Geography 102
Geological Sciences 103
Germanic and Slavic Languages and Literatures 105
History 107
International Affairs 108
International and National Voluntary Service Training (INVST) 108
Kinesiology and Applied Physiology 110
Latin American Studies 110
Lesbian, Gay, Bisexual, and Transgender Studies 112
Linguistics 112
Mathematics 114
Medieval and Early Modern Studies 115
Molecular, Cellular, and Developmental Biology 116
Museum and Field Studies 117
Neuroscience and Behavior Studies 117
Peace and Conflict Studies 117
Philosophy 118
Physics 119
Political Science 121
Psychology 125
Religious Studies 126
Sociology 127
Spanish and Portuguese 127
Speech, Language, and Hearing Sciences 130
Theatre and Dance 131
University Writing Program 136
Western American Studies 136
Women’s Studies 136
Course Descriptions 137
Faculty 274

College of Business and Administration and Graduate School of Business Administration
General Information 297
Undergraduate Academic Excellence 299
Undergraduate Academic Standards 299
Undergraduate Admission and Enrollment Policies 300
Undergraduate Degree Requirements 302
Areas of Emphasis 303
Areas of Application 305
Graduate Degree Programs 306
Course Descriptions 309
Faculty 320

School of Education
General Information 322
Academic Excellence 322
Academic Standards 322
Teacher Education Program 322
Graduate Study 325
Course Descriptions 327
Faculty 332

College of Engineering and Applied Science
General Information 335
Academic Excellence 338
Academic Standards 338
Admission and Enrollment Policies 339
Undergraduate Degree Requirements 343
Graduate Study in Engineering 346
Aerospace Engineering Sciences 346
Applied Mathematics 349
Architectural Engineering 351
Chemical Engineering 352
Civil and Environmental Engineering 355
Computer Science 357
Electrical and Computer Engineering 359

Engineering Physics 361
Environmental Engineering 362
Mechanical Engineering 363
Telecommunications 364
Course Descriptions 364
Faculty 393

Graduate School
General Information 399
Academic Excellence 400
Academic Standards 400
Admission and Enrollment Policies 400
Financial Aid for Graduate Study 402
Requirements for Advanced Degrees 402
Interdisciplinary Programs 405
Professional Certificate Programs 410
Research Support 410

School of Journalism and Mass Communication
General Information 417
Academic Excellence 417
Academic Standards 418
Admission and Enrollment Policies 418
Undergraduate Degree Requirements 419
Sequences 419
Graduate Degree Programs 420
Course Descriptions 421
Faculty 424

School of Law
General Information 427
Academic Excellence 444
Academic Standards 444
Admission and Enrollment Policies 445
Undergraduate Degree Programs 446
Graduate Certificate Programs 452
Graduate Degree Programs 452
Course Descriptions 456
Faculty 440

College of Music
General Information 443
Academic Excellence 444
Academic Standards 444
Admission and Enrollment Policies 445
Undergraduate Degree Programs 446
Graduate Certificate Programs 452
Graduate Degree Programs 452
Course Descriptions 456
Faculty 462

Other Academic Programs
Chancellor’s Leadership Residential Academic Program 465
Continuing Education 466
Norlin Scholars Program 467
Preprofessional Programs 467
Presidents Leadership Class 470
Reserve Officers Training Corps 471
Technology, Arts, and Media Certificate Program 474
Undergraduate Academy 475

Campus Map 476

Index ... 478
The campus operates year-round on a semester system, with fall and spring semesters of 16 weeks each, a 10-week summer session, and a new 3-week academic period between spring semester and summer session named "Maymester."

Summer Session 2001
May 14 (Mon.)—Maymester begins
June 1 (Fri.)—Final exams for Maymester
June 4 (Mon.)—Classes begin for terms A, C, and D; 7:30 A.M.
July 4 (Weds.)—Independence Day holiday; campus closed
July 6 (Fri.)—Final examinations for term A (first 5-week term)
July 10 (Tues.)—Classes begin for term B (second 5-week term)
July 27 (Fri.)—Final examinations for term C (8-week term)
Aug 10 (Fri.)—Final examinations for terms B and D (second 5-week and 10-week terms)
Aug. 11 (Sat.)—Commencement

Fall Semester 2001
Aug. 27 (Mon.)—Classes begin; 8:00 A.M.
Sept. 3 (Mon.)—Labor Day holiday; campus closed
Oct. 4–5 (Thurs.–Fri.)—Fall break
Nov. 22–23 (Thurs.–Fri.)—Thanksgiving holidays; campus closed
Dec. 13 (Thurs.)—Last day of classes
Dec. 14–20 (Fri.–Thurs.)—Final examinations
Dec. 21 (Fri.)—Commencement

Spring Semester 2002
Jan. 14 (Mon.)—Classes begin; 8:00 A.M.
Jan. 21 (Mon.)—Martin Luther King, Jr. holiday; campus closed
Mar. 25–29 (Mon.–Fri.)—Spring break
May 3 (Fri.)—Last day of classes
May 4–9 (Sat.–Thurs.)—Final examinations
May 10 (Fri.)—Commencement

The university’s calendar committee requests that make-up time be provided to students who may be absent for religious reasons.

The 2001-02 University of Colorado at Boulder Catalog contains a summary of campus facilities, programs, and services; descriptions of colleges, schools, and individual departments; and degree requirements, course descriptions, and faculty listings as of January 2001. Students should refer to the degree, major, and certification requirements listed at the time they formally enter a program. For additional information, students should consult their dean’s office.

Because the catalog is compiled well in advance of the academic year it covers, changes in programs, policies, and the academic calendar may well occur. Up-to-date information may be obtained by consulting departmental advisors, checking departmental bulletin boards, and reading the Registration Handbook and Schedule of Courses, as well as registration materials distributed each semester.

All catalog information is subject to change without notice or obligation.

The University of Colorado at Boulder Catalog is published yearly by University Communications in cooperation with academic departments.

T he University of Colorado at Boulder does not discriminate on the basis of race, color, national origin, sex, age, disability, creed, religion, or veteran status in admission and access to, and treatment and employment in, its educational programs and activities. The university takes affirmative action to increase ethnic, cultural, and gender diversity; to employ qualified disabled individuals; and to provide equal opportunity to all students and employees.

The Office of Equal Opportunity is responsible for educational and employment opportunity, implementation of affirmative action programs, and coordination of Titles VI and VII of the Civil Rights Act of 1964, Title IX of the Education Amendments of 1973, the Vietnam Era Veterans’ Readjustment Act of 1974, Section 504 of the Rehabilitation Act of 1973, and the Americans with Disabilities Act of 1990. For further information about these provisions, or about issues of equity, discrimination, or fairness, write Garnett K. Tatum, Director of the Department of Equal Opportunity, University of Colorado at Boulder, Willard 209, 144 UCB, Boulder, CO 80309-0144, or call 303-492-6706.
A Plan for the 21st Century

Research universities play a special role in advancing the nation’s agenda, and are the source of new knowledge that benefits citizens of the United States, and, often, the world. Advances made in research universities like the University of Colorado at Boulder are key to improving the quality of life in society, in health, and in our democratic culture. CU-Boulder intends to continue developing an environment that supports our faculty’s research enterprise. The campus’ outstanding faculty, second most productive in the nation, has been highly successful in competing for national research dollars, bringing in $214 million this year in grants and contracts.

Among the goals for CU-Boulder are integrating teaching and research for undergraduate students, including interdisciplinary programs, combined bachelor’s/master’s degree programs, and service to our communities; improving administrative services to all students; promoting a diverse student body, faculty, and staff; improving student retention; and ensuring that every student has the opportunity to become proficient in the use of information technology.

Richard L. Byyny, M.D.
Chancellor

Honor Code

An honor code establishes a social contract that community members agree to uphold. This contract relies on the idea that the personal conviction and integrity of each individual member strengthens and improves the quality of life for the entire academic community.

The purpose of an honor code at the University of Colorado at Boulder is to secure for students an environment in which all students have responsibility for, and can achieve, appropriate recognition for their individual academic and personal achievements. Administered by students and supported by faculty and staff, this honor code educates at the same time that it protects. Each student who enters the university community benefits from an honor code. All members of the academic community are encouraged to trust students, thus preserving the relationship between students and faculty or staff. No student has an unfair academic or personal advantage over another.

The honor code works by receiving the support and participation of all members in the university community. Each member of the university community pledges to personally uphold the values of the honor code, though hearings and sanctions will be held for alleged student violations.

As citizens of an academic community of trust, students of the University of Colorado at Boulder pledge not to lie, cheat, or steal, nor tolerate the dishonest acts of others. Honor is about academic integrity, moral and ethical personal conduct, and pride of membership in a community that values academic achievement and individual responsibility.

All students at CU-Boulder are asked to make this pledge on every exam and academic paper: “On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work.”
In 1861, a bill passed by Colorado’s Territorial Legislature established the University of Colorado. The following cities received votes for the location of the new university: Georgia Gulch, Silver City, Golden City, Denver, Mill City, Bradford, Platte City, McNulty, Pueblo, Conejos, and Boulder. Boulder won on the third roll call. Its mountain backdrop today makes CU-Boulder one of the most beautiful campuses in the U.S.
At its first session in 1861, the territorial legislature of Colorado passed an act providing for a university in Boulder. Between 1861 and 1876, Boulder citizens donated land south of town and made gifts from $15 to $1,000 in order to match the $15,000 appropriated by the state legislature for construction of the university. The cornerstone for Old Main, the first university building, was laid in 1875. The university was formally founded in 1876, the same year that Colorado became the Centennial State. The university opened its doors the next year, with 44 students, a president, and one instructor.

THE UNIVERSITY SYSTEM

Today, the University of Colorado system is composed of four campuses—Boulder, Colorado Springs, Denver, and the Health Sciences Center in Denver. The campuses have a combined enrollment of 46,000 students. To meet the needs of its students, the university offers numerous fields of study.

The University of Colorado ranks 12th among public universities and colleges in overall research expenditures and 6th among public universities and colleges in over- numerous fields of study. The University of Colorado ranks 12th among public universities and colleges in overall research expenditures and 6th among public universities in federally funded research. Sponsored research within the university system represents annual awards amounting to approximately $420.3 million. Various agencies of the federal government are the principal sources of these funds for research and training contracts and grants. The university’s research activity is also supported by appropriations from the state of Colorado, private foundations, and private donors.

The University of Colorado is governed by an elected nine-member Board of Regents, which is charged by the state constitution with the general supervision of the university and the exclusive control and direction of all its funds and appropriations, unless otherwise provided by law. The board conducts its business at regular monthly meetings open to the public and through committees. The president is the chief administrative officer of the four-campus system, and is responsible for providing leadership to the university. The Board of Regents of the University of Colorado reserves the right to establish enrollment levels for all academic areas.

The Boulder Campus

Mission Statement

The university’s mission is to advance and impart knowledge across a comprehensive range of academic disciplines to benefit the people of Colorado, the nation, and the world. This is done by educating undergraduate and graduate students in the accumulated knowledge of humankind, discovering new knowledge through research and creative work, and fostering critical thought, artistic creativity, professional competence, and responsible citizenship.

General Information

As a comprehensive university, CU-Boulder is committed to the liberal education of students and to a broad curriculum ranging from the baccalaureate through the postdoctoral levels. The educational experience of CU-Boulder, therefore, is distinguished by the wide scope of its programs and course offerings, the notable reputation of its research facilities, the diversity of its student body, and the professionalism and dedication of its faculty.

With a total enrollment of more than 26,000 students, the University of Colorado at Boulder is the largest campus in the four-campus system. The student population comes from every state in the nation and from more than 85 foreign countries. Many different ethnic, religious, academic, and social backgrounds are represented, fostering the development of a multicultural academic community that enriches each student’s educational experience.

On the Boulder campus, the chancellor is the chief academic and administrative officer and is responsible for conducting campus affairs in accordance with the policies of the Regents. The vice chancellor for academic affairs is responsible for planning and implementing all academic and research activities.

Board of Regents

MAUREEN EDGER
Boulder; term expires 2002

SUSAN G. KIRK
Boulder; term expires 2004

TOM LUCERO
Johnstown; term expires 2004

JAMES A. MARTIN
Boulder; term expires 2004

NORWOOD L. ROBB
Littleton; term expires 2002

JERRY G. RUTLEDGE
Colorado Springs; term expires 2006

GAIL SCHWARTZ
Aspen; term expires 2006

ROBERT E. SIEVERS
Boulder; term expires 2002

PETER STEINHAUER
Boulder; term expires 2006

Administrative Officers

CU System

ELIZABETH HOFFMAN
President. B.A., Smith College; M.A., Ph.D., University of Pennsylvania; Ph.D., California Institute of Technology.

JOHN W. BLISS
Vice President for Budget and Finance. B.S., M.P.A., University of Colorado at Boulder.

JAY A. GERSHEN
Interim Vice President for Academic Affairs and Research. B.A., State University of New York at Buffalo; D.D.S., University of Maryland; Ph.D., University of California, Los Angeles.

CHARLES V. SWEET
Vice President and University Counsel. B.A., Duke University; J.D., University of Virginia School of Law.

Boulder Campus

RICHARD L. BYYNY
Chancellor. B.A., M.D., University of Southern California.

PHILIP DISTEFANO
Vice Chancellor for Academic Affairs and Dean of Faculties; Professor of Education. B.S. and Ph.D., Ohio State University; M.A., West Virginia University.

RIC PORECCA

RONALD J. STUMP
Vice Chancellor for Student Affairs. B.A., M.A., Northern Michigan University; Ph.D., Michigan State University.

PAUL TABOLT
Vice Chancellor for Administration. B.S., Penn State University; M.B.A., University of Colorado.
The vice chancellor for student affairs is responsible for providing direct academic support programs, student administrative support of academic programs, and support of student life on campus. The vice chancellor for administration is responsible for campuswide activities that provide administrative assistance, goods, and services to persons and organizations engaged in instruction, research, and public service on campus.

Faculty participate in campus governance through the Faculty Senate and the Faculty Assembly. Students participate through the University of Colorado Student Union (UCSU) and the United Government of Graduate Students (UGGS).

Full-time instructional faculty members number more than 1,100, with at least 96 percent holding doctorates or appropriate terminal degrees. The faculty includes nationally and internationally recognized scholars with many academic honors and awards, including Tom Cech, winner of the 1989 Nobel Prize in chemistry. Eighteen of the faculty are members of the National Academy of Sciences; fifteen are included in the membership of the American Academy of Arts and Sciences; and nine are members of the National Academy of Engineering. Most faculty members, including full professors, teach both undergraduate and graduate classes. Faculty members incorporate their research and creative activities directly into instructional programs.

Research conducted at CU-Boulder is supplemented by research institutes devoted both to the advancement of knowledge in particular areas and to graduate training. Many of these institutes have developed international reputations. For a detailed description of research institutes and other important research facilities associated with the university, see the Graduate School chapter of this catalog.

To enhance its research capabilities and to provide collaborative opportunities with government and business, CU-Boulder has developed a 200-acre research park east of the main campus. The park provides expanded room for research agencies that work closely with university researchers, including the cornerstone tenant of the park, the Advanced Technologies division of US West Inc., now known as Qwest.

The educational environment of a research university is characterized by a broad range of experiences in many different settings. While the classroom is the location for most instructional activities, laboratories, seminars, and field work are also important features of the undergraduate and graduate experience.

Some programs encourage off-campus internships and training; also, study abroad programs have gained popularity. For students whose interests cross traditional disciplinary lines, a number of interdisciplinary programs are available.

The Campus Setting

CU-Boulder is located at the foot of the Rocky Mountains, at an altitude of 5,400 feet. The Flatirons rock formation is visible from nearly everywhere on campus. The climate is temperate, with generally pleasant days and cool evenings. On the average, the area enjoys about 340 sunny or partly sunny days each year. The main campus covers 600 acres and includes about 150 buildings constructed of rough-cut Colorado sandstone with red tile roofs. The rural Italian (or Tuscan Vernacular) architectural style evolved from a master plan developed by Philadelphia architect Charles Klauder in 1919. The Norlin Quadrangle, including the original Old Main building, is listed in the State and National Register of Historic Places. The campus has been noted as one of the most aesthetically pleasing in the country.

Boulder County encompasses five ecological zones, from 5,000 feet above sea level (plains grassland) to 14,000 feet (alpine tundra). Downtown Boulder is only 20 miles from the Continental Divide and boasts some of the most spectacular scenery in the United States. The city of Boulder, population 96,000, is committed to preserving its beautiful natural environment and is surrounded by 26,000 acres of open space.

Contemporary environmental design and renovated historic buildings combine to give the city a pleasant, well-planned atmosphere. The natural beauty of the locale attracts a variety of individuals to the area: scientists, business people, and professionals, as well as writers, artists, and crafts people. Consequently, the city is a center of high technology enterprise, scientific research, and cultural activity.

Denver, the state’s capital city, is 30 miles from Boulder. Denver offers the attractions and resources of a metropolitan area and is accessible from the Boulder area by traveling on U.S. 36, also known as the Denver-Boulder Turnpike. Denver’s international airport is served by most major carriers and is located approximately 60 minutes southeast of Boulder. Boulder and the Denver International Airport are connected by a public transportation system.

Undergraduate Enrollment and Graduation Rates

CU-Boulder’s fall 2000 entering freshman class numbered 5,095. Of these, 48 percent were females, 55 percent residents of Colorado, and 13 percent members of minority groups (African Americans, Asian Americans, Hispanics, and Native Americans). Seventy-one percent enrolled in the College of Arts and Sciences, 13 percent in the College of Business and Administration, 12 percent in the College of Engineering and Applied Science, and 4 percent, combined, enrolled in the College of Architecture and Planning and the College of Music. About 20 percent of freshmen entering CU-Boulder transfer to another college or school within the university before they graduate.

Of the freshmen entering in summer or fall 1994 who enrolled full time, 36 percent graduated within four years; 59 percent graduated within five years; and 64 percent graduated within six years. Four- and five-year graduation rates for the 1995 and 1996 entering classes are similar. Eighty-three percent of students who entered in fall 1999 returned for their second fall semester, and 75 percent of those who entered in fall 1998 remained enrolled into their third year.

CU-Boulder Academic Programs

The Boulder campus offers more than 3,400 different courses in more than 170 fields of study. These courses represent a full range of disciplines in the humanities, the social sciences, the physical and biological sciences, the fine and performing arts, and the professions.

CU-Boulder is fully accredited by the North Central Association of Colleges and Schools. (See individual college and school chapters for additional accreditation information.)

B—Bachelor’s Degree JD—Juris Doctor C—Certificate D—Doctoral Degree M—Master’s Degree

College of Architecture and Planning

Environmental Design

College of Arts and Sciences

American Studies B
Anthropology B M D
Applied Mathematics M D
Asian Studies B
Astronomy B
Astrophysical, Planetary, and Atmospheric Science M D
Biochemistry B
Chemical Physics D
Chemistry B M D
Chinese B
Classics B M D
Communication B M D
Comparative Literature M D
Dance B M
Distributed Studies B
East Asian Languages and Literature M
Economics B M D
English B M D
Environmental, Population, and Organismic Biology B M D
Environmental Studies B M D
Ethnic Studies B
Film Studies B

...
School of Journalism and Mass Communication

Journalism and Mass Communication B M

School of Law

Law JD

College of Music

Arts in Music B
Music B M D
Music Education B M
Musical Arts D

The bachelor of environmental design degree is offered through the College of Architecture and Planning.

All undergraduate programs in the College of Arts and Sciences lead to either the bachelor of arts or the bachelor of fine arts degree.

The College of Business and Administration offers the bachelor of science degree in business administration. Areas of emphasis within the degree program include accounting, finance, information systems, management, and marketing. Areas of application include entrepreneurship and small business management, international business, tourism management, transportation and logistics, and real estate. Areas of emphasis within the Graduate School of Business Administration for the master of science degree include accounting, finance, management science, marketing, and organization management.

Within the School of Journalism and Mass Communication, sequences are offered at the bachelor's level in advertising, broadcast news, broadcast production management, media studies, and news-editorial. The Ph.D. in journalism and mass communication is awarded as a Ph.D. in communication.

Undergraduate degrees in the College of Music include the bachelor of music, the bachelor of arts in music, and the bachelor of music education. Graduate degrees include the master of music, the master of music education, doctor of musical arts, and doctor of philosophy.

For further information on the content of the programs listed above and the official degree designations, refer to the appropriate catalog sections (references are included in the index). Additional graduate and professional programs are located on other campuses of the university; see the Graduate School chapter of this catalog.

Colorado Springs Campus

The University of Colorado at Colorado Springs is a residential campus providing undergraduate and graduate programs to meet the university-level needs of the Pikes Peak area and southern Colorado.

Academic Programs

College of Business
Graduate School of Business Administration
School of Education
College of Engineering and Applied Science
Graduate School
College of Letters, Arts, and Sciences
Beth-El College of Nursing and Health Sciences
Graduate School of Public Affairs

Denver Campus

Situated near the heart of downtown Denver, the University of Colorado at Denver is the only public university in Colorado's capital city. Its proximity to the commercial and governmental hub of Denver provides students the combined excellence of its faculty and the opportunity afforded by a metropolitan environment. CU-Denver is a nonresidential, 11,000-student campus that offers more than 80 degree programs at the undergraduate, graduate, and professional levels, with classes held days, evenings, and weekends for the convenience of students and employers.

Academic Programs

College of Architecture and Planning
College of Arts & Media
Graduate School of Business Administration
College of Business and Administration
School of Education
College of Engineering and Applied Science
College of Liberal Arts and Sciences
Graduate School of Public Affairs

Health Sciences Center

Currently located on a 46-acre campus in Denver, the Health Sciences Center serves as the hub for a broad network of health care delivery programs. The campus houses five schools: the Schools of Dentistry, Medicine, Nursing, and Pharmacy, as well as the Graduate School. The center also includes two hospitals: the University of Colorado Hospital and Colorado Psychiatric Health. A number of renowned research institutes are affiliated with the center as well. The center plans to move to a 217-acre site at the former Fitzsimons Army Medical Center in Aurora.

Academic Programs

School of Dentistry
Graduate School
School of Medicine
School of Nursing
School of Pharmacy

ACADEMIC AFFAIRS

Academic Advising

Academic advising is an integral part of a college education. Its goal is to assist students in making responsible decisions as they develop educational plans compatible with their potential career and life goals. Advising is more
than offering information about academic courses and programs; it also involves encouraging students to formulate important questions about the nature and direction of their education and working with them to find answers to these questions.

Within the advising system at CU-Boulder, both students and advisors share responsibilities. Students are responsible for:

• attending a special orientation, advising, and registration program on campus before enrolling in their first semester;
• planning their academic program in conjunction with their academic advisors and in accordance with college rules and policies and departmental major requirements;
• selecting courses that meet departmental requirements in an appropriate time frame, and monitoring their progress toward graduation;
• scheduling and keeping academic advising appointments in a timely manner throughout their academic career (several times each term), so as to avoid seeking advising only during busy registration periods; and
• being prepared for advising sessions (for example, by bringing a list of questions or concerns, having a tentative schedule (for example, by bringing a list of questions or concerns, having a tentative schedule)

In turn, academic advisors are responsible for helping students to:

• clarify their interests, values, abilities, and goals and relating these to academic programs and educational opportunities;
• understand the nature and purpose of their college education;
• maintain accurate information about educational options, requirements, policies, procedures, and deadlines;
• identify and integrate into their program university resources as well as educational experiences outside the classroom to enhance their personal, intellectual, and professional development; and
• continually monitor and evaluate their educational progress.

Any questions concerning these expectations are to be directed to the students’ academic advisor or to the Academic Advising Center.

Note: The university cannot assume responsibility for problems resulting from students failing to follow the policies stated in this catalog or from incorrect advice given by someone other than an appropriate staff member of the college.

Academic Advising Center

The Academic Advising Center coordinates academic advising, transfer credit evaluation, and graduation certification for all undergraduate students pursuing a program of study in the College of Arts and Sciences. All students in the college are assigned to a primary academic advisor in their major field of study. Students are expected to meet with their assigned advisor on a regular basis throughout the academic year.

The advising center also oversees the Pre-professional Advising Center, which provides advising to all students on the Boulder campus who are intending to pursue law or one of the health professions (dentistry, medicine, nursing, pharmacy, physical therapy, etc.).

In addition, through the open option advising program, the advising center provides comprehensive advising services to students who are undecided about their major, or who are considering changing their major. Open option primary advisors are familiar with the courses and degree requirements for all majors offered at CU-Boulder, and assist open option students in exploring majors related to their interests, aptitudes, and goals. Open option advisors also assist students in designing programs of study that meet graduation requirements while providing students with the academic flexibility to pursue whichever degree program they ultimately choose.

Open option or preprofessional students with general advising questions may call the Academic Advising Center at 303-492-7885 or visit the office in Woodbury 109.

Orientation

The CU-Boulder orientation programs are designed to create a smooth transition to the university community for students and their parents. New freshman and transfer students are required to attend both steps in the orientation process.

First, students learn about the requirements and resources of their individual colleges through college orientation programs. Parents are encouraged to attend.

Second, all new students are introduced to the expectations, traditions, and resources of the campus community as a whole through our campuswide student life orientation. This takes place for all new fall students in August, immediately before classes begin. Parents do not participate in these activities.

A single orientation program for new spring semester students and their parents occurs during the week before classes begin in January.

All new fall students are expected to attend their college orientation program, the chancellor’s convocation, and the campuswide student life orientation prior to their first day of class. Detailed information regarding both steps of the orientation process is made available through individual colleges once students have confirmed their intent to enroll at the university.

Orientation staff in the Office of Admissions coordinate orientations for the College of Arts and Sciences and consult with the Colleges of Architecture and Planning, Business and Administration, Engineering and Applied Science, and Music. The Office of the Vice Chancellor for Student Affairs coordinates the August campuswide student life orientation.

Summer Session

Summer session at CU-Boulder, an integral part of the university’s year-round program, offers students opportunities for study, individual development, and recreational activity. Summer students can choose from more than 500 courses, allowing progress toward a degree in almost every area of study.

The traditional summer session lasts 10 weeks; courses meeting for shorter terms (1-, 4-, 5, or 8 weeks) are scheduled within the 10-week session. A three-week intensive term, Maymester, is offered immediately after spring semester ends.

Complementing summer session offerings, a rich calendar of summer events includes performances in repertory by members of the Colorado Shakespeare Festival, musical productions presented by the CU Opera in the Summer company, and performances by members of the Colorado Dance Festival and the Colorado Music Festival. Organized recreational activities are offered through the Student Recreation Center.

To request a summer catalog, call 303-492-5148 (toll free 1-800-331-2801), or write to the Summer Session, University of Colorado at Boulder, 178 UCB, Boulder, CO 80309-0178. The summer session web address is www.colorado.edu/sacs/summer. The summer catalog is usually available by mid-February.

UNDERGRADUATE ADMISSION

The Office of Admissions welcomes inquiries regarding undergraduate application procedures. Through the admission process, the university seeks to identify applicants who will successfully complete a collegiate academic program. Admission is based on many criteria, such as graduation from high school or its equivalent through Tests of General Educational Development (GED), evaluation of work taken in high school and at other educational institutions, and results of the SAT or the American College Test (ACT). In addition, a personal essay highlighting academic goals and other background information is required.

Inquiries relating to undergraduate admission to the University of Colorado at Boulder may be addressed to:
Visit Programs
An excellent way to become acquainted with the campus is to participate in one of the campus visit programs specially designed for prospective students.

The Be a CU Student for a Day program offers prospective students and their parents the opportunity to visit the campus on a school day, take a tour, attend classes with current CU students, interact with student and parent panels, attend special information sessions highlighting various academic programs, and have lunch with campus representatives in a residence hall. These programs are held throughout the academic year on selected Fridays.

The CU Sampler program, held on selected Saturdays, also introduces prospective students and their parents to the campus and its academic programs. Highlights include a sample lecture, a campus tour, student/faculty panel discussions, information sessions featuring academic programs, lunch in a residence hall, and a chance to meet with faculty advisors and financial aid, housing, and other campus representatives. Programs are usually planned for April and July.

For the student who aspires to a career in engineering, the Engineering Open House is held once in the fall. Students and their parents have the opportunity to meet the dean, tour engineering facilities, explore engineering career options, and have lunch in a residence hall.

The Minority Visit Program
The Minority Visit Program (MVP) gives prospective students of color and their parents an additional opportunity to visit the Boulder campus for a more in-depth experience. Student and parents attend a sample lecture, visit with representatives from each college and school, and participate in student and parent panels. A resource fair with representatives from campus clubs, organizations, and other offices is also part of the day’s activities. The program is usually held on a Saturday in January.

Reservations
Inquiries regarding these visit programs should be directed to the main office. Reservations are required for each program. Visit information and reservations also may be found on CU-Boulder’s web page at www.colorado.edu/admissions/visit.html.

Statement on Diversity
We are committed to making the University of Colorado at Boulder a community in which diversity is a fundamental value. People are different and the differences among them are what we call diversity. Diversity is a natural and enriching hallmark of life. It includes, but is not necessarily limited to, ethnicity, race, gender, age, class, sexual orientation, religion, and physical abilities. A climate of healthy diversity is one in which people value individual and group differences, respect the perspectives of others, and communicate openly.

—From the Guidelines for Diversity Planning
All Applicants

Application and Admission Notification

Applications for degree candidates may be submitted beginning September 1 for the following spring, summer, and fall terms. Applicants are notified of admissions decisions on a rolling basis after October 1.

Applications that are completed (including all required credentials) and postmarked by the date listed below will be given priority consideration. Applications received after these dates will be reviewed on a space-available basis.

We recognize that some students may be faced with financial constraints in paying the application fee. Therefore, waivers will be granted to those students with documented hardships who submit to the admissions office the College Board ATP Fee-Waiver Service form available in high schools. Contact the Office of Admissions for other documents that may be used to verify financial hardship.

APPLICATION DEADLINES

<table>
<thead>
<tr>
<th>Fall and Summer</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshmen</td>
<td>February 15 October 1</td>
</tr>
<tr>
<td>All Others</td>
<td>April 1 October 1</td>
</tr>
</tbody>
</table>

Submitting applications early with complete credentials is always encouraged in order to be considered for admission before enrollment levels are reached.

The university reserves the right to deny admission to applicants whose total credentials reflect an inability to assume those obligations of performance and behavior deemed essential by the university and relevant to any of its lawful missions, processes, and functions as an educational institution.

Confirmation Procedures

All admitted students are encouraged to confirm their intent to enroll as soon as possible after receiving their admission notification and confirmation form. Admission must be confirmed by returning the completed confirmation form and the required enrollment deposit of $200.

Confirmation forms and deposits postmarked by the dates listed below (or dates established by the Office of Admissions) will be accepted. After these dates, confirmations can be accepted only if space is still available.

CONFIRMATION POSTMARK DEADLINES

<table>
<thead>
<tr>
<th>Fall</th>
<th>Summer</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshmen</td>
<td>May 1</td>
<td>May 1</td>
</tr>
<tr>
<td>All Others</td>
<td>June 1</td>
<td>May 22</td>
</tr>
</tbody>
</table>

Students who have decided to enroll at CU-Boulder, but are unable to pay the deposit by the confirmation deadline due to financial hardship, should call or write the associate director of admissions operations for information about requesting a deposit deferral.

In general, the enrollment deposit is not refundable; however, if there are extenuating circumstances, students may send a written appeal to the director of admissions.

Appeals for deposit deferral or refund should be sent to Office of Admissions, University of Colorado at Boulder, 6 UCB, Boulder, CO 80309-0006.

If students register for classes and then decide not to attend, they may receive a refund or be assessed tuition depending upon the circumstances. Guidelines are given in the Withdrawal Refund or Assessment Schedule in the Registration Handbook and Schedule of Courses for spring and fall and the summer catalog for summer terms. Close attention must be given to statements regarding policies for new, readmitted, and transfer students.

The enrollment deposits are used as registration deposits each semester as long as registration is completed by the published deadline. Once students have attended CU-Boulder, the deposit (minus any fees or other charges owed) will be returned when they graduate or officially withdraw from the university according to established deadlines.

Credentials

To be considered for admission, applicants must submit complete and official credentials as required by their desired program of study. Official transcripts are those that are sent directly to the university from each of the secondary or postsecondary institutions the applicant attended. Official transcripts exhibit the official seal and signature of the registrar or high school official. Transcripts marked “student copy,” “issued to the student,” or “unofficial” are not accepted as official. Prospective students must supply documentation of every part of their previous educational background. Failure to list on the application and submit transcripts from all institutions previously attended is cause for cancelling the admission process or for dismissal. All credentials presented for admission to CU-Boulder become the property of the university and may not be returned to the applicant.

Preprofessional Programs

Admission to a preprofessional area of study, such as prejournalism and mass communication or prenursing, does not guarantee later admission to the professional degree program; a student must submit a separate application to the professional school at the appropriate time.

Students interested in one of the undergraduate health sciences programs offered at the University of Colorado Health Sciences Center (UCHSC) in Denver (child health associate, dental hygiene, nursing, or pharmacy) may complete preprofessional work on the Boulder campus, where special preprofessional advising is available. Admission is competitive, but preference to all UCHSC programs is given to Colorado residents.

Normally, CU-Boulder students who are not Colorado residents can take the preprofessional courses required for entrance to health sciences programs in other states, as well as those for entrance to Colorado programs that are open to nonresidents.

For more information, see Preprofessional Programs in the Other Academic Programs section of this catalog.

Teacher Licensure

Through the School of Education, students interested in elementary or secondary school teaching may take programs approved for Colorado licensure in connection with the liberal arts programs offered at CU-Boulder. Interested students should see an advisor in the School of Education during their first semester at the university.

Elementary teacher education includes kindergarten through middle school. Secondary teacher education includes teaching endorsements for middle school through high school in English, French, German, Japanese, Latin, mathematics, Russian, science, social studies, and Spanish. Teacher education programs are also available in music education for grades kindergarten through 12.

Persons holding a baccalaureate degree who seek initial teacher licensure must submit the required application and credentials to the School of Education. Licensed teachers with a baccalaureate degree who seek only a renewal of the license currently held and who do not require institutional endorsement or recommendation may qualify for the university’s nondegree student classification (see the Nondegree Students section).

Refer to the School of Education section of this catalog for further information about teacher education. Interested students may also write to the Teacher Education Office, University of Colorado at Boulder, 249 UCB, Boulder, CO 80309-0249, for application and deadline information.

Freshman Students

Admission Criteria

Prospective freshmen are considered on an individual basis relative to a prediction of academic success in the college to which they apply. The strongest predictors of success are appropriate course preparation, grades earned
in those courses, class rank, and the results of either the SAT or ACT. Admission officers review these and other factors that have a bearing on academic success. Some of the colleges typically have more qualified freshman applicants than there are places. Therefore, admission is competitive, and students with the highest qualifications are selected. Among qualified applicants, some preference is given to students who will add to the diversity of the community.

Applicants whose records reflect nontraditional grading systems, unusual curricula, no rank-in-class information, or high school equivalency through the GED test will receive careful consideration and are urged to apply.

Minimum Academic Preparation Standards (MAPS)

Effective with students who graduated from high school in 1988 or later, CU expects new freshman and transfer students to have completed courses that meet certain minimum academic preparation standards (MAPS). The MAPS for specific CU-Boulder colleges are listed later in this section. Prospective students who have not completed all the suggested courses may be admitted on an individual basis.

MAPS requirements not met in high school may be met through equivalent college-level course work before or after enrollment at CU-Boulder. A semester course completed at the college level substitutes for a year in high school.

Guaranteed Admission for Colorado Resident Freshmen

The University of Colorado at Boulder guarantees admission to first-time Colorado resident freshmen who meet specific criteria. For a copy of the guaranteed admission guidelines, write to Office of Admissions, University of Colorado at Boulder, 30 UCB, Boulder, CO 80309-0030, or call 303-492-6301. Guarantee information is also available in all Colorado high school guidance offices.

How to Apply

1. Obtain an application for admission from the Office of Admissions, University of Colorado at Boulder, 6 UCB, Boulder, CO 80309-0006, 303-492-2456. You may also obtain an application for admission by using the undergraduate application request form at apply.colorado.edu, or you may use the form on the World Wide Web at www.colorado.edu/admissions.

2. When you are preparing to apply to the university, request that official transcripts be sent to CU-Boulder. Official transcripts are those that are sent directly to the university by each of the secondary or postsecondary institutions the applicant attended. Official transcripts exhibit the official seal and signature of the registrar or high school official. Transcripts marked "student copy," "issued to the student," or "unofficial" are not accepted as official.

3. A complete application must include the following credentials:
 a. the application for admission;
 b. a nonrefundable $40 application fee (check or money order, not cash, made payable to the University of Colorado);
 c. an official transcript (must be sent directly to the Office of Admissions by the high school) of all high school work completed, including rank-in-class information and a list of courses in progress for the entire year;
 d. if the applicant is not a high school graduate, a copy of GED test scores and a certificate of high school equivalency with an official transcript of any high school work completed (grades 9 through 12);
 e. required SAT or ACT test scores (the only applicants who are exempt from submitting test scores are those who have completed 24 semester hours or more of college work at the time of review);
 f. the required audition, if the student is applying to the College of Music; and
 g. official transcripts from each college or school attended while in high school.

Students may also submit a personal essay and letters of recommendation (as described in the application for admission).

The fact that college entrance test scores (SAT I or ACT) are not available does not mean an applicant should delay sending the application and credentials. However, if test scores are available at the time of application, they may be posted on the official high school transcript in place of, or in addition to, being reported directly by the testing service.

Applicants who are currently attending high school should give their completed application to their counselor. Applications must include the nonrefundable $40 fee, transcript, grade point average, and rank-in-class information in a single mailing packet. Processing of an application will be delayed until all required information is received.

College Entrance Tests

Prospective students in high school should take a college entrance test at the end of their junior year or early in their senior year. Results from SAT or ACT tests taken in January or later may be received too late for those who wish to be considered for summer or fall admission of the same year.

The University of Colorado accepts either the SAT or the ACT for admission. Students who are not satisfied with the scores on their first test are urged to retest at the earliest possible date. For admission purposes, the university will consider the highest scores. SAT tests are not required, but scores may be submitted if the tests are taken.

For exact testing dates and further information regarding college entrance tests, consult with a high school counselor, or write or call the following:

- **The College Board (SAT)**
 P. O. Box 6200
 Princeton, NJ 08541-6200
 home page: www.collegeboard.org

- **ACT Registration**
 P. O. Box 414
 Iowa City, IA 52243-0414
 319-337-1270
 home page: www.act.org

Advanced Placement Program

The university participates in the Advanced Placement program of the College Board. Official scores must be sent to the university directly from the College Board. For detailed information regarding applicability of advanced placement credit to CU-Boulder degree programs, refer to the chart in this section. The Advanced Placement credit office can be reached at 609-771-7300.

Applicants Not Granted Admission

An applicant who is not granted admission as an entering freshman may wish to consider transferring to the university after successful study elsewhere. The Office of Admissions urges such students to complete at least one full year (24-30 semester hours) of college-level course work at another college or university, giving special attention to courses that will provide sound academic preparation for future transfer to CU-Boulder. These courses should include any minimum academic preparation standards (MAPS) not met in high school.

Transfer Students

Applicants are considered transfer students if they have attempted or enrolled for any college-level course work (at another college or university, or other campus of the University of Colorado), full time or part time, since graduating from high school. Applicants are not considered transfer students if the only college-level classes they have taken were while enrolled in high school. To be considered for admission, transfer students must report all previous college work and have a high school diploma or its equivalent.

Transfer applicants are considered for admission on the basis of transfer as well as freshman criteria, including minimum academic preparation standards (MAPS). All
transfer applicants who graduated from high school in 1988 or later are expected to have completed MAPS requirements before enrolling at CU-Boulder.

Assured Transfer Opportunities

Colorado community or junior college students may qualify for assured transfer opportunities at CU-Boulder. Prospective students should be aware that academic criteria are established by the faculty of each Boulder college and school and vary according to discipline and year of proposed transfer.

Credit transfer agreements, also known as articulation programs, have been established with Colorado two-year and four-year programs. Students should contact their current Colorado school for more information about how credit will transfer to CU-Boulder.

Transfer guides are available in Colorado community college advising offices. These guides provide information on CU-Boulder admission requirements, graduation requirements, and course equivalences.

The Colorado community college core curriculum agreement, as signed by CU-Boulder, assures that students entering the College of Arts and Sciences who complete the core at their community college and have it certified by the community college will receive credit equivalent to the lower-division degree requirements of the college at CU-Boulder. Students who have not completed the core, they will have courses evaluated on a course-by-course basis. Normally, a maximum of 60 semester credit hours can transfer from community or junior colleges into the College of Arts and Sciences.

Students transferring to a program outside of the College of Arts and Sciences need to work with community college advisors and use the transfer guide to assure that appropriate courses are taken prior to transfer. Students wishing to enter the College of Architecture and Planning or the College of Engineering and Applied Science should be aware that because of the structure of the curriculum, transfer may be encouraged as early as the beginning of the sophomore year. Academic programs vary in terms of the maximum number of hours that may be transferred from the community or junior college.

Admission Criteria

Transfer students are selected for admission on an individual basis. By law, the grade point average required for a student to be considered for transfer into any undergraduate degree program at the University of Colorado at Boulder shall be no higher than what is required for graduation from those undergraduate degree programs. Professional accreditation requirements for student grade point averages, however, shall supersede this policy in degree programs leading to professional accreditation, such as in the School of Journalism and Mass Communication. In admission decisions, past course work taken is as important as the student’s grade point average. Since the University of Colorado at Boulder selects students on a competitive basis, not all students who meet the minimum grade point criteria are admitted. Competitive criteria may vary from term to term depending on the overall quality of the applicant group and the number of transfer spaces available for a given college or school. Courses in progress are not considered in computing the cumulative grade point average. See each specific college or school section for more information.

GPA will be calculated by the admissions office using transcripts from all institutions attended and will include grades from failed courses, repeated courses, and courses withdrawn from while failing.

All transfer students need to submit SAT I or ACT scores, except those who have completed 24 semester hours or more of college work at the time of review.

All students must submit a high school transcript and an official transcript from each collegiate institution attended. Official transcripts are those that are sent directly to the university from each of the secondary or post-secondary institutions the applicant attended. Official transcripts exhibit the official seal and signature of the registrar or high school official. Transcripts marked “student copy,” “issued to the student,” or “unofficial” are not accepted as official.

Note: Failure to list on the application and submit transcripts from all institutions previously attended before enrolling at CU is considered to be a violation of academic ethics and may result in the cancellation of the admission process or dismissal. Students who are not high school graduates must submit copies of a certificate of high school equivalency and GED scores in addition to the above document test.

College of Architecture and Planning

Admission preference is given to students who have taken college-level courses in architecture, planning, or environmental studies. Completion of courses in related fields of social science, natural science, fine arts, or humanities is also considered in admission review. See the Admission Criteria section above.

College of Arts and Sciences

See the Admission Criteria section above.

College of Business and Administration

Preference is given to those applicants who have completed one semester of linear algebra or finite math, or one semester of calculus. Other preferred courses include macroeconomics, microeconomics, and business computer-related courses. See the Admission Criteria section above.

School of Education

Programs for elementary and secondary teacher education are available through the School of Education. All persons seeking initial elementary or secondary teacher licensure must apply for admission to the teacher education program through the School of Education. All teacher education candidates at the undergraduate level must be working toward a bachelor’s degree in a college or school other than the School of Education. Upon completion of the teacher education program and a bachelor’s degree, a certificate in education is awarded.

To be considered for admission to the teacher education program, an undergraduate must have completed a minimum of 56 semester hours of course work. Prior to or during the first semester of enrollment in the teacher education program, a personal interview, completion of a basic skills assessment, verification of successful recent experience with youth, and competence in oral communication may also be required.

Specific information about admission to the teacher education program can be obtained from the School of Education, University of Colorado at Boulder, 249 UCB, Boulder, Colorado 80309-0249.

See the Admission Criteria section above.

College of Engineering and Applied Science

The College of Engineering and Applied Science expects transfer applicants to have taken course work relevant to an engineering curriculum. Prospective transfer students are required to have completed at least two semesters of college-level calculus and two semesters of calculus-based physics and/or college-level chemistry before they enroll at Boulder. Chemical engineering students should have completed two semesters of general college chemistry before enrolling at CU-Boulder. See the Admission Criteria section above.

School of Journalism and Mass Communication

Applicants must have a minimum of 30 semester hours of appropriate college-level course work passed or in progress. To be considered for admission, applicants must also have an overall grade point average of at least 2.25 and an average of 2.50 in at least 6 semester hours of journalism course prerequisites (CU-Boulder course equivalents are Contemporary Mass Media, and Critical Thinking and Writing). Applicants with
ADVANCED PLACEMENT (AP) CREDIT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>5, 4</td>
<td>EPOB 1210, 1220, 1230 and 1240</td>
<td>8</td>
<td>*</td>
<td>*</td>
<td>a</td>
<td>*</td>
</tr>
<tr>
<td>Chemistry</td>
<td>5, 4</td>
<td>CHEM 1111 and 1131</td>
<td>3</td>
<td>CHEM 1111</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Classics: Latin–Virgil</td>
<td>5, 4</td>
<td>CLAS 2114, 2124, 3024</td>
<td>4</td>
<td>CLAS 2114</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Latín Literature</td>
<td>4, 3</td>
<td>CLAS 2114</td>
<td>3</td>
<td>CLAS 2114</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Computer Science A</td>
<td>5, 4</td>
<td>CSCI 1300</td>
<td>4</td>
<td>*</td>
<td>*</td>
<td>c</td>
<td>*</td>
</tr>
<tr>
<td>Computer Science AB</td>
<td>5, 4</td>
<td>CSCI 1300 and 2270</td>
<td>4</td>
<td>*</td>
<td>*</td>
<td>c</td>
<td>*</td>
</tr>
<tr>
<td>Economics: Micro</td>
<td>5, 4</td>
<td>ECON 2010</td>
<td>4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Economics: Macro</td>
<td>5, 4</td>
<td>ECON 2020</td>
<td>4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>English Literature and Composition</td>
<td>5, 4</td>
<td>ENGL 1500 and 2502</td>
<td>6</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>English Language and Composition</td>
<td>3, 3</td>
<td>ENGL 1500</td>
<td>3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Computer Science AB</td>
<td>5, 4</td>
<td>CSCI 1300</td>
<td>4</td>
<td>*</td>
<td>*</td>
<td>c</td>
<td>*</td>
</tr>
<tr>
<td>Computer Science AB</td>
<td>4, 3</td>
<td>CSCI 1300</td>
<td>3</td>
<td>*</td>
<td>*</td>
<td>c</td>
<td>*</td>
</tr>
<tr>
<td>Ecology</td>
<td>5, 4</td>
<td>ENVS 1000</td>
<td>3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Foreign Language</td>
<td>5, 4</td>
<td>FREN 2120 and 2500</td>
<td>6</td>
<td>*</td>
<td>*</td>
<td>c</td>
<td>*</td>
</tr>
<tr>
<td>French Language</td>
<td>3, 3</td>
<td>FREN 2120</td>
<td>3</td>
<td>*</td>
<td>*</td>
<td>c</td>
<td>*</td>
</tr>
<tr>
<td>German Language</td>
<td>5, 4</td>
<td>GRMN 3010 and 3020</td>
<td>6</td>
<td>*</td>
<td>*</td>
<td>c</td>
<td>*</td>
</tr>
<tr>
<td>German Language</td>
<td>4, 3</td>
<td>GRMN 2020</td>
<td>4</td>
<td>*</td>
<td>*</td>
<td>c</td>
<td>*</td>
</tr>
<tr>
<td>Spanish Language†</td>
<td>5, 4</td>
<td>SPAN 2110, 2120 and 3000</td>
<td>11</td>
<td>*</td>
<td>*</td>
<td>c</td>
<td>*</td>
</tr>
<tr>
<td>Spanish Literature†</td>
<td>4, 3</td>
<td>SPAN 2110 and 2120</td>
<td>6</td>
<td>*</td>
<td>*</td>
<td>c</td>
<td>*</td>
</tr>
<tr>
<td>Geography</td>
<td>5, 4</td>
<td>GEOG 1982 and 1992</td>
<td>6</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Geography</td>
<td>3, 3</td>
<td>GEOG 1992</td>
<td>3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Government</td>
<td>5, 4</td>
<td>PSCI 2012</td>
<td>3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Comparative</td>
<td>5, 4</td>
<td>HIST 1015 and 1025</td>
<td>6</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Government</td>
<td>5, 4</td>
<td>HIST 1010 and 1020</td>
<td>6</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Math–Calculus AB</td>
<td>5, 4</td>
<td>MATH 1300 or APPM 1350 (Engineering)</td>
<td>5</td>
<td>*</td>
<td>*</td>
<td>c</td>
<td>*</td>
</tr>
<tr>
<td>Math–Calculus BC</td>
<td>5, 4</td>
<td>MATH 1300 and 2300 or APPM 1350 and 1360 (Engineering)</td>
<td>10</td>
<td>*</td>
<td>*</td>
<td>c</td>
<td>*</td>
</tr>
<tr>
<td>Math–Calculus BC</td>
<td>3, 3</td>
<td>MATH 1300 or APPM 1350 (Engineering)</td>
<td>8</td>
<td>*</td>
<td>*</td>
<td>c</td>
<td>*</td>
</tr>
<tr>
<td>Statistics</td>
<td>5, 4</td>
<td>MATH 2510</td>
<td>3</td>
<td>*</td>
<td>*</td>
<td>d</td>
<td>*</td>
</tr>
<tr>
<td>Music–Listening and Literature</td>
<td>5, 4</td>
<td>EMUS 1832 and 2752</td>
<td>6</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Music–Theory</td>
<td>4, 3</td>
<td>EMUS 1832</td>
<td>3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Physics–B</td>
<td>5, 4</td>
<td>PHYS 2010</td>
<td>5</td>
<td>*</td>
<td>*</td>
<td>d</td>
<td>*</td>
</tr>
<tr>
<td>Physics C–Mechanics</td>
<td>5, 4, 3</td>
<td>PHYS 1100</td>
<td>4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Physics C–Electricity and Magnetism</td>
<td>5, 4</td>
<td>PHYS 1120</td>
<td>4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Psychology</td>
<td>5, 4</td>
<td>PSYC 1000</td>
<td>4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* Credits may apply to graduation in the specific college or school.
* CHEM 111 fulfills departmental requirements in all areas. CHEM 1131 fulfills chemical engineering and computer science requirements.
* Does not apply. Computer science majors, bioengineering, and premedical option students check with faculty advisor.
* Students who want to continue taking Spanish courses beyond their AP credit level must take the departmental placement test. If the results place them below their AP level, the department strongly recommends that they enroll at the lower of the two levels.
* Does not apply. Check with faculty advisor in major department.
fewer than the required hours or without journalism course work should apply to the College of Arts and Sciences as prejournalism and mass communication majors. See the Admission Criteria section.

College of Music

The College of Music requires an audition of all applicants. More information may be found in the College of Music section of this catalog. See the Admission Criteria section.

Minimum Academic Preparation Standards

Effective with students who graduated from high school in 1988 or later, CU expects all new freshman and transfer students to have completed courses that meet certain minimum academic preparation standards (MAPS). The MAPS requirements for specific CU-Boulder colleges are listed later in this section.

MAPS requirements not met in high school may be met through equivalent college-level course work before or after transfer to CU-Boulder. A semester course completed at the college level substitutes for a year of work in high school.

How to Apply

1. Obtain an application for admission from the Office of Admissions.
2. A complete application must include the following required credentials:
 a. the application for admission;
 b. a nonrefundable $40 application fee (check or money order, not cash, made payable to the University of Colorado);
 c. an official transcript (must be sent directly to the Office of Admissions by the high school) of all high school work completed;
 d. a copy of GED test scores and a certificate of high school equivalency with an official transcript of any high school work completed (grades 9 through 12), if the applicant is not a high school graduate;
 e. required SAT I or ACT test scores (the only applicants who are exempt from submitting test scores are those who have completed 24 semester hours or more of college work at the time of review);
 f. an official transcript from each college or university attended (except the University of Colorado). Official transcripts are those that are sent directly to the university from each college attended. Official transcripts exhibit the official seal and signature of the registrar. Transcripts that are marked “student copy,” “issued to student,” or “unofficial” are not accepted as official.
3. A complete application must include:
 a. the application for admission;
 b. a nonrefundable $40 application fee (check or money order, not cash, made payable to the University of Colorado);
 c. an official transcript (must be sent directly to the Office of Admissions by the high school) of all high school work completed;
 d. a copy of GED test scores and a certificate of high school equivalency with an official transcript of any high school work completed (grades 9 through 12), if the applicant is not a high school graduate;
 e. required SAT I or ACT test scores (the only applicants who are exempt from submitting test scores are those who have completed 24 semester hours or more of college work at the time of review);
 f. an official transcript from each college or university attended (except the University of Colorado). Official transcripts are those that are sent directly to the university from each college attended. Official transcripts exhibit the official seal and signature of the registrar. Transcripts that are marked “student copy,” “issued to student,” or “unofficial” are not accepted as official. All institutions must be included, regardless of the length of attendance, whether or not courses were completed, and whether or not students feel the record will affect admission or transfer credit. This includes any institutions attended during summers, interim terms, and high school.

Students may also submit a personal essay and letters of recommendation (as described in the application for admission).

Note: Former degree students who have attended CU-Boulder within the last two years and have previously submitted their high school transcripts, SAT I or ACT test scores, and all college transcripts to the Boulder campus Office of Admissions need not do so again. However, if they have attended another college or university since last attending CU-Boulder, those additional transcripts must be submitted.

Transfer of College-Level Credit

The Office of Admissions performs an initial evaluation of transfer credit after applicants have been admitted and have confirmed their intent to enroll. A complete evaluation of transfer credit cannot be made until all official credentials have been received.

The evaluation is made using the official transcripts sent directly to the university from each one of the applicant’s previous colleges. Official transcripts exhibit the official seal and signature of the registrar. Transcripts that are marked “student copy,” “issued to student,” or “unofficial” are not accepted as official.

The initial evaluation may list course work in progress at the time of confirmation as “pending.” In order to complete the admission and transfer of credit process, all transcripts of attempted work must be received by the Office of Admissions as soon as possible. Transfer students should arrange to have their final official transcripts sent directly to the Office of Admissions after they complete their last term and before they enroll at CU-Boulder.

After an evaluation of transfer credit has been completed, an evaluation report is mailed to the student by the Office of Admissions.

Note: There is no guarantee that all transfer credit will apply to a specific degree program. The dean’s office of each college and school has ultimate responsibility for supervising the student’s degree program and makes the final determination on applicability of transfer credits toward degree requirements. Since graduation requirements at CU-Boulder vary from college to college, a reevaluation of transfer credit is required if a student changes colleges or schools after enrolling.

Minimum Grades for Transfer

Credit from Two-Year Colleges

Each college and school at CU-Boulder determines the maximum number of semester hours that may transfer from a two-year postsecondary institution. Limits vary in each college and school.

Credit for Correspondence Work

Each college and school determines the maximum number of credits taken through correspondence programs that are accepted toward a baccalaureate degree.

College-Level Work Taken During High School

College-level work taken during high school is evaluated in accordance with general guidelines for transfer credit at CU-Boulder. College-level work taken concurrently with a high school program may be used to satisfy MAPS requirements. Official college transcripts of work taken must be received in order for transfer credit to be awarded.

the University of Colorado at Boulder shall apply to the completion of the student’s graduation requirements, provided that the content of these courses meet the degree program requirements. Any determination of acceptance of credit toward the degree based on the content and the age of the credit is made in the college or school dean’s office or by the student’s major department.

Number of Credit Hours Required for Graduation

Transfer students are not required to complete a greater number of credit hours than are required of students who began in those same undergraduate degree programs on the Boulder campus, provided those credit hours are in courses comparable in level and content to those required for graduation from an undergraduate degree program at the Boulder campus. Residency requirements, meaning the number of hours required to be taken on the Boulder campus, are the same for transferring and nontransferring students.

Minimum Grades for Transfer

Only courses taken at a college or university of recognized standing with grades of C- or better are accepted for transfer. Grades of pass, satisfactory, and honors are accepted for transfer; however, each college and school at CU-Boulder places a limitation on the number of pass hours that may be applied toward a degree.

Credit from Two-Year Colleges

Each college and school at CU-Boulder determines the maximum number of semester hours that may transfer from a two-year postsecondary institution. Limits vary in each college and school.

Credits for Correspondence Work

Each college and school determines the maximum number of credits taken through correspondence programs that are accepted toward a baccalaureate degree.

College-Level Work Taken During High School

College-level work taken during high school is evaluated in accordance with general guidelines for transfer credit at CU-Boulder. College-level work taken concurrently with a high school program may be used to satisfy MAPS requirements. Official college transcripts of work taken must be received in order for transfer credit to be awarded.
Advanced Placement Examinations
Credit for College Board Advanced Placement examinations cannot be evaluated from college or high school transcripts; score reports from the College Board must be submitted directly to the university for evaluation. For further information, refer to the chart in this section.

College-Level Examination Program
Credit for College Board subject examinations of the College-Level Examination Program (CLEP) in general biology, general chemistry, general psychology, introductory macroeconomics, introductory microeconomics, introductory sociology, and calculus with elementary functions may be granted for a score at or above the 67th percentile. This credit is applied toward degree requirements at the discretion of the student’s dean. Not all colleges accept CLEP credit in all subjects. Refer to the appropriate college dean’s office for the policy of that college.

Credit for CLEP subject examinations cannot be evaluated from college or high school transcripts; score reports must be submitted directly from the College Board. CLEP general examinations are not accepted for credit at CU-Boulder.

International Baccalaureate Examinations
In general, credit is granted for approved IB examinations at the higher level with a score of 4 or better. An IB certificate or diploma must be submitted to the Office of Admissions for evaluation. For specific equivalencies, contact the office at 303-492-6665.

Military Credit
Credit for military schooling is evaluated upon receipt of Form DD 214, “Service Separation Certificate.” Only work that has received an upper-division baccalaureate recommendation by the American Council on Education (ACE) can be awarded credit. This work, however, is transferred and recorded at the lower-division level. Foreign language credit taken through the State Department, Department of Defense, or Defense Language Institute is assigned the recommended ACE credit.

Credit by Examination
This option provides limited opportunities for students to take an examination and earn credit for a course without registering for or taking the course. Specific courses must be approved for credit by examination. Students may want to exercise this option if they do not receive transfer credit for a course they have taken at a previous college. Information on participating colleges and schools, requirements, and an application for credit by examination are available at the Office of the Registrar, University of Colorado at Boulder, Regent Administrative Center 105, 7 UCB, Boulder, CO 80309-0007, 303-492-6970. Permission of the instructor, the department chair, the dean of the college or school in which the course is offered, and the student’s dean (if different) is required for approval. An examination fee is charged.

Transfer Course Work Not Accepted by the University
The following course work will not transfer and will not count toward a degree at Boulder:
- courses identified by CU-Boulder as remedial, i.e., necessary to correct academic deficiencies, such as remedial English, mathematics, science, and developmental reading;
- vocational-technical courses that are offered at two-year and proprietary institutions (exceptions may be granted only by the CU-Boulder dean responsible for the student’s curriculum—when exceptions appear to be warranted, appropriate department heads make recommendations to their respective deans regarding credit for such courses);
- courses in religion that constitute specialized religious training or that are doctrinal in nature;
- credits earned for work experience or through a cooperative education program;
- credits earned in physical education activity courses; and
- courses or programs identified as college orientation.

Transfer Credit Conversion
Many campuses operate on the quarter system, with the academic year divided into three terms. Other campuses, including CU-Boulder, operate on a two- or semester system. Course credits from quarter system institutions must be converted from quarter hours to semester hours or credits. One quarter credit is equivalent to two-thirds of a semester credit. To calculate how many semester hours are equivalent to a certain number of transferable quarter hours, multiply the number of quarter hours by two-thirds and round off the total to the nearest tenth. For example, 4 quarter hours x 2/3 = 2.67 or 2.7 semester hours of credit, or 3 quarter hours x 2/3 = 2 semester hours of credit.

Intrauniversity Transfer Students
Students wishing to change colleges or schools within the CU-Boulder campus must obtain an application from the college or school to which they wish to transfer.

For more information on recommended course work in preparation for intrauniversity transfer (IUT) and other criteria, students need to consult college and school sections of this catalog or talk with an academic advisor in the program to which they plan to transfer. Most colleges and schools do not accept intrauniversity transfer students during the summer. It is important to note that admission to a college through the IUT process is competitive, and not all students who apply are admitted. Decisions are based on course preparation, hours completed, grade point average, and other criteria required by the specific college or school.

Other Applicants
International Students
The university invites applications from qualified international students. International applicants are those who will apply for or who already have a temporary non-immigrant United States visa or immigration status.

Over 1,050 international students from more than 88 countries study at CU-Boulder. Applications for admission are processed by the Office of Admissions. Assistance after admission is provided by Foreign Student and Scholar Services, located in the Office of International Education. Boulder offers a full range of services to international students, including a host family program, orientation, special programs and activities for international students, and personal attention to individual needs.

Intensive English instruction is also offered by the International English Center. Applicants who have established permanent resident status in the United States are not considered international. These students should follow application and admission procedures for undergraduates or graduates as described elsewhere in this catalog.

International students who wish to pursue a full-time program of study at the undergraduate or graduate level should write or call the Office of Admissions, University of Colorado at Boulder, 65 UCB, Boulder, CO 80309-0065, 303-492-2456, to obtain an international student application form and instructions. The international student application for admission can also be obtained by using the undergraduate admission application request form on the admissions home page at www.colorado.edu/admissions.

Prospective graduate students should also write to the specific academic department in which they are interested. The letter should be addressed to the specific department, University of Colorado at Boulder, Boulder, CO 80309. Consult the catalog directory for departmental telephone numbers and addresses.
International
Nondegree Students

Students who hold temporary nonimmigrant visas or temporary immigration status may gain admission as nondegree students only with the approval of an advisor in Foreign Student and Scholar Services in the Office of International Education. The University of Colorado at Boulder does not issue Forms I-20 or assume any immigration responsibility for nondegree students. Therefore, international nondegree students must maintain appropriate immigration status independent of the university.

International nondegree applicants should write or call International Student and Scholar Services, University of Colorado at Boulder, 123 UCB, Boulder, CO 80309-0123, 303-492-8057, to obtain the appropriate application and instructions.

Former Boulder Campus Students

CU-Boulder degree students who are not currently enrolled on the Boulder campus must submit the Application for Former CU-Boulder Degree Students. No application fee is required. Students who have attended any college or university since their last attendance at CU-Boulder should refer to the Transfer Students (How to Apply) section.

Degree students who withdraw from CU-Boulder during the fall or spring semester must reapply for admission.

If the student is changing from a previous college or school, the change should be noted on the application. Otherwise, it is assumed that the student is returning to the same field of study. If a college or school change is requested for which the student is not eligible, the student will need to request consideration for his or her previous program.

Degree students who withdraw from CU-Boulder during summer session need not reapply to continue into the fall semester.

Nondegree Students

The nondegree student classification meets the needs of those students who wish to take university courses but who do not currently intend to work toward a degree at the University of Colorado. With the exception of high school students who have completed the approval process, nondegree students must be at least 18 years of age and have a high school diploma or its equivalent to qualify for admission. Students applying as nondegree students must do so through the Division of Continuing Education. Nondegree students may enroll in credit classes through the ACCESS (Available Credit Courses for Eligible Special Students) program, the Boulder evening program, CATECS (Center for Advanced Training in Engineering and Computer Science), or independent study programs.

If students have been denied admission to an undergraduate degree program, they may not enroll as nondegree students in the ACCESS program for the term for which they sought degree program admission. Nondegree student admission does not guarantee future admission to any degree program.

In the fall and spring semesters, permission to register for Boulder campus courses is contingent on availability of space.

Nondegree students may take independent study coursework work through the Colorado Consortium for Independent Study. Students register for this option through the Division of Continuing Education.

Nondegree students may also register for courses on a pass/fail basis. These courses are counted in the hours of pass/fail course work permitted according to the rules of the college or school to which students are admitted if they change to degree status.

Nondegree students who have completed at least 6 semester hours of credit must maintain a 2.00 cumulative grade point average. Failure to maintain the required grade point average will result in suspension.

High school students interested in attending CU-Boulder apply for summer session as nondegree students.

Further information may be obtained by writing or calling the Division of Continuing Education, University of Colorado at Boulder, 178 UCB, Boulder, CO 80309-0178, 303-492-5148.

Foreign students who want to apply to the university as nondegree students should read the Foreign Students section above. Students interested in teacher certification should refer to the School of Education section of this catalog.

Nondegree Students Transferring to a Degree Program

Students who are currently enrolled or have been enrolled at any CU campus as nondegree students may apply for admission to an undergraduate degree program by submitting an undergraduate admission application to the Office of Admissions with complete credentials and the nonrefundable $40 application fee.

Applicants must have earned a high school diploma or its equivalent, and all previous college-level work must be reported on the application. A high school transcript, SAT I or ACT scores, and an official transcript from all colleges and schools attended (outside the University of Colorado system) must be sent directly to the Office of Admissions.

A degree-seeking applicant may transfer an unlimited number of credits taken as a nondegree student on any University of Colorado campus. However, applicability of these hours toward degree requirements is established by the colleges and schools. It is suggested that a student apply to a degree program as soon as admission requirements, including MAPS deficiencies, have been met. It is essential that former nondegree students actively seek academic advising from the appropriate dean’s office once they have been accepted into a degree program. There are opportunities for advising at mandatory degree orientation programs.

Students wishing to transfer to a graduate degree program should refer to the Graduate School section of this catalog.

Second Undergraduate Degree Applicants

Students may apply for a second undergraduate degree at the University of Colorado at Boulder, but should explore the various options in graduate study available at the university before doing so. Students applying for a second undergraduate degree must follow transfer admission guidelines, and those students who are admitted must keep in mind that all college and major requirements must be met in order to complete degree programs satisfactorily. Restrictions mandated by general university policies, as well as specific college and school policies, include the following:

1. Applicants may not apply to the major in which they received their first undergraduate degree.

2. Applicants must apply to a specific major; applications for an open option or undetermined major cannot be considered.

3. Second undergraduate degree applicants in the College of Architecture and Planning are encouraged to investigate graduate programs.

4. Credit hours earned as a nondegree student at the University of Colorado may not be used toward major degree requirements for a second degree in the College of Arts and Sciences.

5. Students who already have an undergraduate degree from the College of Business and Administration or the College of Engineering and Applied Science and who desire a second undergraduate degree in that area are strongly encouraged to investigate graduate study instead.

6. The School of Education offers graduate and teacher education programs only.

Students from Other CU Campuses

Students who wish to transfer to Boulder from another University of Colorado campus (Colorado Springs, Denver, or the Health Sciences
Prospective engineering students are encouraged to complete the 4 units of mathematics courses before attempting calculus or pre-calculus courses.

Music

15 units: 4 of English; 3 of mathematics; 3 of natural science; 2 of social science; 2 of a foreign language; and 1 in the arts.

Note: The college faculties encourage all students to include courses or activities in the fine and performing arts such as music, dance, theatre, and the visual arts.

Policies Concerning MAPS Deficiencies

Students who graduated from high school in the spring of 1988 and later are required to complete in secondary school the minimum academic preparation standards (MAPS) of the CU-Boulder college to which they apply. In some cases, students who are otherwise admissible may be admitted even though they have not met the MAPS. In those instances, students are required to complete the appropriate MAPS courses through courses taken at other institutions of higher education, additional high school credits, or approved credit-by-examination programs.

The policies of the Boulder campus with respect to completing MAPS course work after enrollment are as follows:

1. Appropriate missing MAPS course work is included in the hours for graduation.
2. All course work toward fulfillment of the MAPS must be taken for a letter grade.
3. Students are required to enroll in and complete at least one MAPS course each term, beginning in the first term of enrollment, until such time as all MAPS are completed. This policy applies to new freshmen, transfer students, and to students transferring from other academic units on the Boulder campus and from other campuses of the university. Failure to comply with this requirement may result in suspension at the end of the term in which the student ceases to complete missing MAPS units.
4. All students who first enroll in one academic unit at CU-Boulder and who subsequently transfer to another unit are required to meet the MAPS specified for the new unit, irrespective of their completion of MAPS units in their previous college or school.
5. Students in double-degree programs must meet MAPS requirements of both degree-granting units.
6. Students must consult with a CU-Boulder academic advisor (or read their college’s academic survival guide) to determine which specific courses may be used to meet a MAPS requirement.
7. Students who graduate from a foreign high school are exempt from MAPS.

GRADUATE ADMISSION

Graduate student admission is handled by individual academic departments. See the Graduate School section of this catalog for more information.

ACADEMIC RECORDS

Class Level

Class level is based on the total number of semester hours passed, as follows:

<table>
<thead>
<tr>
<th>Class</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>0-29.9</td>
</tr>
<tr>
<td>Sophomore</td>
<td>30-59.9</td>
</tr>
<tr>
<td>Junior</td>
<td>60-89.9</td>
</tr>
<tr>
<td>Senior</td>
<td>90-123.9</td>
</tr>
<tr>
<td>Fifth-Year Senior</td>
<td>124 and above</td>
</tr>
</tbody>
</table>

The normal course load for most undergraduates is 15 credit hours each semester.

Course Load

The following are the most widely used general definitions of full-time course load. For further information and guidelines, students should see specific college and school sections of this catalog. Students who receive financial aid or veterans benefits or who live in university housing should check with the appropriate office regarding course-load requirements for eligibility purposes.

Undergraduate Course Load

A full-time undergraduate student is one who is enrolled for 12 or more semester hours in the fall or spring semester. In the summer, undergraduate students must be enrolled in 12 or more semester hours for financial aid purposes, including loan deferments. For academic purposes, students only need to carry 6 hours or more to be considered full-time.

Graduate Course Load

A full-time graduate student in the fall or spring semester is one who is enrolled for 5 semester hours of graduate course work, 8 hours combined graduate/undergraduate course work, or any number of thesis hours according to the program. These hours also apply for enrollment verification purposes. Consult the Graduate School dean’s office for requirements. For financial aid or program requirements for full- or part-time status, consult the Office of Financial Aid. Law students must be enrolled for a minimum of 10 credit hours to be considered full-time in the fall or spring (5 credit hours in the summer). A maximum of 15 credit hours may be applied toward a degree during the fall and spring semesters.

A full-time graduate student in the summer term is one who is enrolled for at least 3 semester hours in graduate course work.
hours combined graduate/undergraduate course work, or any number of thesis hours. The maximum number of graduate credits that may be applied toward a degree during the summer session is 6 semester hours per five-week term and 10 semester hours per 10-week summer session, not to exceed 10 semester hours for the total summer session.

Reasonable Academic Progress
Reasonable academic progress in most undergraduate colleges and schools requires a 2.00 grade point average (GPA). Students should consult their dean’s office regarding college or school minimum GPA requirements and special policies on probation and dismissal. Students must maintain reasonable academic progress to receive financial aid.

Grading System
The following grading system is standardized for all colleges and schools of the university. Each instructor is responsible for determining the requirements for a course and for assigning grades on the basis of those requirements.

<table>
<thead>
<tr>
<th>Standard Grade</th>
<th>Credit Points per Each Hour of Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = superior/excellent</td>
<td>4.0</td>
</tr>
<tr>
<td>A-</td>
<td>3.7</td>
</tr>
<tr>
<td>B+</td>
<td>3.3</td>
</tr>
<tr>
<td>B = good/better than average</td>
<td>3.0</td>
</tr>
<tr>
<td>B-</td>
<td>2.7</td>
</tr>
<tr>
<td>C+</td>
<td>2.3</td>
</tr>
<tr>
<td>C = competent/average</td>
<td>2.0</td>
</tr>
<tr>
<td>C-</td>
<td>1.7</td>
</tr>
<tr>
<td>D+</td>
<td>1.3</td>
</tr>
<tr>
<td>D</td>
<td>1.0</td>
</tr>
<tr>
<td>D- = minimum passing</td>
<td>0.7</td>
</tr>
<tr>
<td>F = failing</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Grade Symbols
- **IF** = incomplete; changed to **F** if not completed within one year
- **IW** = incomplete; changed to **W** if not completed within one year
- **IP** = in progress; thesis at the graduate level or specified graduate-level courses
- **P** = passing; under the pass/fail option, grades of **D-** and above convert to a **P**. Other specified courses may also be graded on a pass/fail basis.
- **NC** = no credit
- **W** = withdrawal or drop without discredit
- ******* = class grades were not submitted when final grades were processed, or the student is currently enrolled in the course.

Explanation of IF and IW
An **IF** or **IW** is an incomplete grade. Policies with respect to **IF/IW** grades are available in individual college and school dean’s offices. Use of the **IF** or **IW** is at the discretion of the course instructor and/or the academic dean’s office.

Students must ask for an incomplete grade. An **IF** or **IW** is given only when students, for reasons beyond their control, have been unable to complete course requirements. A substantial amount of work must have been satisfactorily completed before approval for such a grade is given.

If an instructor grants a request for **IF** or **IW**, the instructor sets the conditions under which the course work can be completed and the time limit for its completion. A student does not retake the entire course.

It is the instructor’s and/or the student’s decision whether a course should be retaken. If a course is retaken, it must be completed on the Boulder campus or in Boulder evening classes. The student must reregister for the course and pay the appropriate tuition.

The final grade (earned by completing the course requirements or by retaking the course) does not result in deletion of the **IF** or **IW** from the transcript. A second entry is posted on the transcript to show the final grade for the course, for example, **B+/IF** or **IW**.

At the end of one year, **IF** and **IW** grades for courses that are not completed or repeated are automatically changed to **F** or **W**, respectively.

Grade Point Average
The overall University of Colorado at Boulder grade point average (GPA) is computed as follows: the credit hours and credit points are totaled for all courses; then the total credit points are divided by the total hours attempted. Courses with grade symbols of **P**, **NC**, *** (grade not yet entered), W, IP, IW, and IF** are excluded when totaling the hours, however, grades of **F** earned for courses graded on a pass/fail option are included in the GPA. **IFs** that are not completed within one year are calculated as **F** in the GPA at the end of the one-year grace period.

<table>
<thead>
<tr>
<th>Credit</th>
<th>Points</th>
<th>Credit</th>
<th>Points in Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.0</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>A-</td>
<td>3.7</td>
<td>4</td>
<td>14.8</td>
</tr>
<tr>
<td>B+</td>
<td>3.3</td>
<td>4</td>
<td>13.2</td>
</tr>
<tr>
<td>P</td>
<td>3</td>
<td>(exclude)</td>
<td>--</td>
</tr>
<tr>
<td>F</td>
<td>0.0</td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td>IW</td>
<td>0.0</td>
<td>4</td>
<td>(exclude)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit Hours</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>44</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

If a course is repeated, both grades earned are used in determining the university GPA. Grades received at another institution are not included in the University of Colorado at Boulder GPA, and the undergraduate GPA is calculated separately from the graduate GPA. Students should refer to their academic dean’s office for individual GPA calculations as they relate to academic progress and graduation from their college or school.

Official Transcripts
Official transcripts include the complete undergraduate and graduate academic record of courses taken at all campus locations or divisions of the University of Colorado. Students may request a complete transcript from the registrar of any University of Colorado campus. It contains the signature of the registrar and the official seal of the university. If students attend more than one campus, it is not necessary to request a transcript from each campus. Official transcripts are primarily used to support applications for transfer to other academic institutions and for employment purposes. Transcripts sent to students are labeled “issued to student.”

On the Boulder campus, transcripts may be ordered in person or by phone, fax, or mail from the Office of the Registrar, Transcript Section, Regent Administrative Center 105, University of Colorado at Boulder, 68 UCBL, Boulder, CO 80309-0068, 303-492-8987, fax 303-492-4884. Ordering transcripts by telephone is the most efficient method.

In addition, transcripts may be ordered via a third-party ordering service. The cost to use this service is $1.50 per transcript. Normal processing includes mailing within four business days by first class. This service is available by phone at 1-800-613-3735, or via the Internet at www.gettranscript.com.

If students attend more than one campus, it is not necessary to request a transcript from each campus.

There is no charge for official transcripts, which are prepared at the student’s request. Typically, transcript requests are processed within three to five working days in a first-in, first-out order. However, for a rush-transcript fee, official transcripts and unofficial fax transcripts are processed in one working day. A student having unpaid financial obligations to the university will not be granted a transcript.

Official transcripts that include end-of-term grades are available approximately two weeks after final examinations. Degrees are recorded approximately six weeks after graduation.

Unofficial Transcripts
Unofficial transcripts are also a complete academic record of graduate and undergraduate courses taken at the University of Colorado. They are primarily used for advising and counseling within offices on campus and within offices at other University of Colorado campuses. Unofficial transcripts...
do not carry the embossed seal of the university. Copies are available at the Office of the Registrar in the foyer of Regent Administrative Center 105 at a cost of $1 for next-day service and $5 for rush service.

Credit by Examination

In limited instances, students enrolled in a degree program may earn additional credit without otherwise registering for and taking certain courses if they pass a written examination. Information on participating colleges and schools and an application for credit by examination may be obtained from the Office of the Registrar in Regent Administrative Center 105. The application specifies procedures to be followed. The following signatures are required for approval: the instructor, the department chair, the dean of the college or school in which the course is offered, and the student’s dean, if different. The fee for each examination is not included in the regular tuition, but it is assessed separately at a fixed rate equivalent to the minimum resident tuition rate charged for 0-3 credit hours for the current semester. Fees are payable in advance and are nonrefundable.

Stops

A scholastic, dean’s, financial, health, or miscellaneous stop may be placed on a student’s record for a number of reasons. A stop prevents a student from registering, returning to school, obtaining an official transcript, or receiving a diploma. The student should remove each stop as quickly as possible by contacting the campus office that placed it. General inquiries may be addressed to the Office of the Registrar.

Confidentiality of Student Records

Annual Notice to Students: The University of Colorado complies fully with the provisions of the Family Educational Rights and Privacy Act (FERPA) of 1974. The act was designed to protect the privacy of education records, to establish the right of students to inspect and review their education records in all offices, and to provide guidelines for the correction of inaccurate or misleading data through informal and formal hearings. Students are also entitled to file complaints with the FERPA office concerning alleged failures by the institution to comply with the act.

Local guidelines explain in detail the procedures to be used by the institution for compliance with the provisions of the act. Copies of the guidelines can be found in the government publications office in the Office of the Registrar and on the web at www.registrar.colorado.edu/address/privacy.htm.

The registrar has been designated by the institution to coordinate the inspection and review of student education records located in various university offices. Students wishing to review their education records must come to the Academic Records office of the Office of the Registrar and present proper identification. All other records inquiries must be directed to the proper office, i.e., financial aid, bursar, etc.

Students may not inspect the following, as outlined by the act: financial information submitted by their parents, confidential letters that they have waived their rights to review, or education records containing information about more than one student, in which case the institution will permit access only to that part of the record that pertains to the inquiring student. Records that may be inspected include admissions, academic, and financial aid files, and cooperative education and placement records.

The Family Educational Rights and Privacy Act (FERPA) affords students certain rights with respect to their education records. They are:

1. The right to inspect and review education records within 45 days of the day the university receives their request for access.

Students should submit to the registrar, dean, head of the academic department, or other appropriate official, written requests that identify the educational record(s) they wish to inspect. The university official will make arrangements for access and notify them of the time and place where the records may be inspected. If the records are not maintained by the university official to whom the request was submitted, that official shall advise them of the correct official to whom the request should be addressed.

2. The right to request the amendment of students’ education records that they believe are inaccurate or misleading.

They may ask the university to amend a record that they believe is inaccurate or misleading. They should write the university official responsible for the record, clearly identify the part of the record they want changed, and specify why it is inaccurate or misleading.

If the university decides not to amend the record as requested by the student, the university will notify them of their right to a hearing regarding the request for amendment. Additional information regarding the hearing procedures will be provided to them when notified of the right to a hearing.

3. The right to consent for disclosures of personally identifiable information contained in their education records, except to the extent that FERPA authorizes disclosure without consent.

One exception that permits disclosure without consent is disclosure to school officials with legitimate educational interests. A school official is a person employed by the university in an administrative, supervisory, academic, research, or support staff position (including law enforcement unit personnel and health staff); a person or company with whom the university has contracted (such as an attorney, auditor, or collection agent); a person serving on the Board of Regents; or a student serving on an official committee, or one assisting another school official in performing his or her task.

A school official has a legitimate educational interest if the official needs to review an education record in order to fulfill his or her professional responsibility.

Upon request, the university discloses education records without consent to officials of another school in which a student seeks or intends to enroll.

4. The right to file a complaint with the U.S. Department of Education concerning alleged failures by the university to comply with the requirements of FERPA. The name and address of the office that administers FERPA is:

The Family Compliance Office
U.S. Department of Education
600 Independence Avenue, SW
Washington, DC 20202-4605
202-260-3887

The following items of student information have been designated by the University of Colorado as public or “directory” information: name, addresses, telephone numbers, e-mail address, dates of attendance, registration status, class, major, field of study, awards, honors, degree(s) conferred, past and present participation in officially recognized sports and activities, physical factors (height, weight) of athletes, and date and place of birth. Such information may be disclosed by the institution at its discretion.

Students have the right to withhold directory information from inquirers by selecting a “privacy” or “limited-privacy” option. The privacy option prevents all directory and enrollment information from being released to all who do not have a clear educational interest for access to this information. The limited privacy option prevents the release of directory information to off-campus inquirers and to campus directory services, but is not as restrictive as the privacy option.

In-State and Out-of-State Tuition Classification

Tuition classification is governed by Colorado statutes and by judicial decisions that apply to all state-funded institutions in Colorado and is subject to change without notice.
New students are classified as in-state or out-of-state residents for tuition purposes on the basis of information provided on their application for admission and other relevant information. Applicants may be required to submit evidence substantiating their claim of in-state eligibility.

Applicants and students who feel their classification is incorrect or who have become eligible for a change to in-state status must submit a petition with documentation in order to have their status changed. The necessary forms, deadlines for submission, and an explanation of the Colorado tuition classification statute are available from the Tuition Classification Coordinator, Regent Administrative Center 105, University of Colorado at Boulder, 68 UCB, Boulder, CO 80309-0068, 303-492-6868, fax 303-492-8748, e-mail: tuitclass@registrar.colorado.edu.

Basic Requirements for Establishing Colorado Residency

Colorado in-state tuition classification requires domicile (legal residence) in Colorado for 12 consecutive months. Domicile is defined as a person’s true, fixed, and permanent home and place of habitation. To establish domicile, a person must reside in Colorado and demonstrate that Colorado is his or her permanent home.

In addition to establishing domicile in Colorado, a person must be either 22 years of age or older (21 years of age for students who first matriculated at a Colorado college or university fall semester 1996 or earlier), be married, a graduate student, or be an emancipated minor to begin the 12-month period. Unemancipated minors qualify for in-state status if their parents have been domiciled in Colorado for one year.

Emancipation

To be emancipated, students cannot be supported by their parents in any way. College savings funds and other income-producing assets established by the parents prior to the 12-month period are considered to be parental support.

Evidence of Domicile

Evidence of Colorado domicile includes actions that would normally be expected of any permanent resident. Factors that constitute proof of domicile are:

- Payment of Colorado state income tax
- Colorado driver’s license
- Colorado vehicle registration
- Voter registration in Colorado
- Permanent employment or acceptance of future permanent employment in Colorado (Note: employment offered by the university to students is not considered permanent)
- Ownership and permanent occupancy of residential real property in Colorado
- Graduation from a Colorado high school
- Continued residence in Colorado while not enrolled as a student

No single factor constitutes conclusive proof of domicile. All factors, positive and negative, are considered. All of the listed factors are not necessary, but individuals should take actions on those factors that are appropriate in their circumstances.

Unemancipated Minors

Students as old as 22 (21 for students who first matriculated at a Colorado college or university fall semester 1996 or earlier) may qualify for in-state tuition if either of their parents, regardless of custody, has been domiciled in Colorado for 12 consecutive months preceding the first day of class in a given semester, even if the students reside elsewhere. In certain circumstances, students may qualify through their parents up to age 23.

Students lose eligibility for in-state tuition if they (or their parents, if the students are unemancipated minors) maintain domicile outside Colorado for one year or more, unless the parents have lived in Colorado at least four years and meet other requirements.

In-state classification becomes effective at the beginning of the first term after one year of legal residence in Colorado. Changes of classification never take effect midterm.

Students who give false information to evade payment of out-of-state tuition or who fail to provide timely notice of their loss of in-state eligibility are subject to retroactive assessment of out-of-state tuition, as well as disciplinary and legal action.

In-State Status: Other Circumstances

Residents of participating western states enrolled in graduate programs approved by the Western Regional Graduate Program are entitled to in-state tuition rates. Students should call or write the tuition classification office or their academic department for further information.

Active-duty members of the armed forces of the United States or Canada on permanent duty station in Colorado and their dependents (as defined by military regulations), and Olympic athletes in training at the United States Olympic Training Center in Colorado Springs, are eligible for in-state classification, regardless of domicile or length of residence.

Non-immigrant aliens who have lived in Colorado for one year for purposes other than education qualify for in-state classification after one year of Colorado residence.

EXPENSES

Enrollment Deposit

All new students (both in-state and out-of-state students) must confirm their enrollment at the university by returning a completed confirmation form and an enrollment deposit of $200. The deposit is nontransferable and must be paid by all students, regardless of financial aid awards. Students who have paid the deposit and who decide not to attend CU-Boulder forfeit their deposit. Deposits received after enrollment levels have been reached will be returned.

The enrollment deposit is not credited toward tuition and fees. Instead, it is refunded when a student graduates or officially withdraws from CU-Boulder within established dates and guidelines, after paying any outstanding university obligations. Students should update their permanent address at the Bursar’s Office before they graduate or withdraw to be sure they receive their refund.

Estimated Expenses

Expenses for students attending the University of Colorado at Boulder vary, depending on whether they live on or off campus, their program of study, state residency (tuition classification), family size, personal needs, and individual interests.

It is difficult, therefore, to provide exact statements of total expenses. The following approximate costs per academic year were established for full-time undergraduate arts and sciences students living on the Boulder campus during the 2000-01 academic year. The Board of Regents reserves the right to change the costs for tuition and fees and room and board at any time, and it should be expected that costs will be higher for 2001-02.

2000-01 Costs at CU-Boulder

<table>
<thead>
<tr>
<th></th>
<th>In-state</th>
<th>Out-of-state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition and fees</td>
<td>$3,210</td>
<td>$16,392</td>
</tr>
<tr>
<td>Room and board</td>
<td>$5,488</td>
<td>$5,488</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>$8,698</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$21,880</td>
</tr>
</tbody>
</table>

The cost of attending only fall or spring semester would be one-half of the amount shown above. Students planning to attend summer session should take into account estimated expenses indicated in the Summer Session Catalog, available from the Office of the Registrar in mid-February. Additional costs would include books, supplies, special residential academic program fees, transportation, entertainment, health insurance, and any other personal needs, interest items, or services. Some courses carry laboratory or other fees for practical activities. Consult the Registration Handbook and Schedule of Courses for notation of special fees.
Tuition and fees for 2001-02 were not set when this catalog went to press in January 2001. The tuition rates per semester for the 2000-01 school year are listed here.

Note that a surcharge is assessed for each semester credit hour over 18 hours. Zero or fractional credit is regarded as 1 hour in assessing tuition and fee charges. No-credit (NC) courses are not free of charge; tuition for courses taken for no credit is the same as for courses taken for credit.

Students simultaneously enrolled in programs leading to two different degrees will be assessed tuition for the college or school with the higher tuition rate, according to the schedule on the previous page.

Housing Security Deposit

All students who live in the residence halls are required to pay a one-time security deposit of $250. This security deposit is held by the Department of Housing and is released to the tuition and fee account within 60 days after the expiration of the housing agreement.

Note: The security deposit required for housing is distinct and separate from the enrollment deposit required for admission to the university.

Fees

Matriculation Fee

All new degree students pay a one-time non-refundable matriculation fee of $35. This fee is assessed at the time of initial registration for students entering a new degree program and covers adding and dropping courses and official transcript orders. Nondegree students who are admitted to degree status are assessed the $35 matriculation fee at the time of their first registration as degree students.

Course Fees

Instructional fees are charged on an individual basis to help offset the higher costs of specialized supplies and equipment unique to these courses. Course fees for 2000-01 ranged from $5-$50 per credit hour and $5-$100 per course. Consult the Registration Handbook and Schedule of Courses for more detailed information, contact the Bursar’s Office at 303-492-5381, TTY 303-492-3528, visit the web site at www-bursar.colorado.edu, or send e-mail to bursars@colorado.edu. Other fees also exist in the College of Architecture and Planning. In addition, lab courses not linked to a lecture course may require payment of a course fee.

Late Registration Fee

A late registration fee may be charged to students who are authorized to register after their assigned registration period. The late
registration fee is $50. This fee is separate and distinct from any penalty that may be assessed for late payment of tuition and fees.

Golden Buffalo Student Health Insurance 2001-02

The university sponsors the Golden Buffalo student health insurance plan. All students enrolled for 6 credit hours or more are automatically enrolled in and billed for the insurance unless they select another plan or waive the health insurance by September 5, 2001 for fall semester 2001. The plan selected for fall automatically extends through spring/summer 2002. Students can elect to enroll in the insurance plan each semester and will be billed.

Enrollment is not automatic for the following categories of students: students taking 5 credits or less (including graduate students and law students), ACCESS, Continuing Education, Time Out, Semester at Sea and Study Abroad students, and spouse/domestic partners and dependents. Health insurance must be purchased each semester in the Golden Buffalo Student Insurance Office. Correspondence courses do not qualify for eligibility to enroll in the health plans.

For students who are teaching, research, graduate assistants, or graduate part-time instructors and who hold at least a 20 percent appointment, the university contributes a portion of the cost toward the comprehensive Golden Buffalo student health insurance plan. Approved doctoral candidates who select the comprehensive plan are billed and UCSU student fees are reduced.

For more information, call 303-492-5107, go on line to www.colorado.edu/stuhealth-insur, or stop by the Golden Buffalo Student Health Insurance Office at Wardenburg Health Center, room 251

Tuition and Fee Regulations

Drop/Add Tuition Adjustment

Adjustment of tuition and fees is made on drop/add changes as published in the Registration Handbook and Schedule of Courses.

Tuition Classification

Students are classified as in-state or out-of-state residents for tuition purposes on the basis of information provided on their application for admission and other relevant information. For more information, see Academic Records.

Students Registered on More Than One Campus

Students registering for courses on more than one campus of the university during a single term pay tuition and fees to each campus at the rate appropriate to the number of credits for which they are registered on that campus. Boulder campus students qualified to use the concurrent registration option pay Boulder campus rates for the total hours enrolled at all campuses.

Nondegree Students

Nondegree students enrolled in undergraduate courses are assessed tuition at the undergraduate student rate. Nondegree students enrolled in graduate courses are assessed tuition at the graduate student rate. Nondegree students enrolled in both graduate and undergraduate courses are assessed tuition at the graduate student rate.

University Employees

Any permanent employee may enroll for no more than 6 free semester hours of credit (and any permanent part-time employee for a proportionate number of hours of credit) in any academic year (summer, fall, spring) on a space-available basis beginning on drop/add day. Time taken to attend classes during normal working hours shall be made up and shall be limited to one course during any term. Persons appointed for less than full time are not eligible for release time during assigned hours. For details, call the student billing department in the Bursar’s Office.

Concurrent Bachelor’s/ Master’s Degree Programs

The Graduate School, in cooperation with the other colleges and schools, has instituted a concurrent bachelor’s/master’s degree option. Students will need to talk with specific departments regarding programs offered and verification of the following statements:

1. Students who complete the requirements for the concurrent bachelor’s/master’s degree receive both degrees simultaneously.
2. Students admitted to concurrent programs may register for graduate courses before they receive a bachelor’s degree.
3. Students admitted to bachelor’s/master’s programs will pay undergraduate tuition throughout the five years required to complete the concurrent bachelor’s/master’s degree.
4. Students admitted to these concurrent degree programs will be regarded as undergraduate students for the purposes of receiving financial aid throughout the five years of their program.

Master’s Candidate for Degree

Out-of-state students enrolled as master’s candidates for degree, who need only to take a comprehensive examination for a master’s degree, will pay for 3 semester hours at 60 percent of the 3-semester-hour charge for out-of-state graduate students. In-state master’s candidates will pay for 3 semester hours at the graduate in-state rate.

Approved Doctoral Candidates

A student admitted as an approved doctoral candidate is registered for 7 dissertation hours. Students not making use of campus facilities may petition the Graduate School for 3-credit-hour status. Consult the Graduate School for petition deadlines. Continuous registration for dissertation hours during fall and spring semesters is required until completion of the dissertation defense. Out-of-state students enrolled for doctoral dissertation will pay 60 percent of the out-of-state per-hour rate for each semester hour of enrollment. In-state students enrolled for doctoral dissertation will pay the in-state per-hour rate for each semester hour of enrollment.

Payment of Tuition and Fees

University Bills

Any student who completes registration agrees to pay the University of Colorado at Boulder according to the payment terms documented in the Registration Handbook and Schedule of Courses under the tuition and fees section. A service charge of up to 1 percent per month and other penalties as described therein may be assessed for late payment. The bill includes tuition, fees, university residence hall charges, financial aid awards, student loan proceeds, research and teaching assistant tuition waivers, and other credits to tuition and fees. All checks containing restrictive endorsements are null and void and nonbinding to the university. Credit card payments are not accepted due to the high administrative cost.

Failure to receive an official university schedule/bill does not relieve any student of responsibility for payment by the published deadline. To avoid assessment of service charges, a late registration fee ($50), and possible loss of future semester classes, tuition and fees must be paid by the deadline published in the Registration Handbook and Schedule of Courses. Subsequent bills will reflect adjustments and additional charges made throughout the semester. Those who need assistance with financial planning should call the Student Debt Management department in the Bursar’s Office at 303-492-5571. Tuition and fee billing information is available on the World Wide Web at www-bursar.colorado.edu.

Deferred Payment Plan

Students may apply for a deferred tuition payment plan by filling out a tuition deferment agreement. The agreement must be completed and submitted to the Bursar’s Office by the tuition payment deadline each
semester. Students should consult the Registration Handbook and Schedule of Courses for specific instructions relating to deferred tuition policies and deadlines.

For more information about the payment plan, call 303-492-5381 or visit the web site at www-bursar.colorado.edu.

Failure to Make Payment
Failure to make the required payment by the stated deadline will result in any or all of the following actions:
1. Registration for future terms will not be allowed. If the student is already registered for courses for a future term, the registration may be canceled.
2. No transcripts, diplomas, or certification materials are issued for the student until the bill is paid in full.
3. The student will be still responsible for full tuition and fees, as well as a service charge and a late charge according to the following schedule:

<table>
<thead>
<tr>
<th>Balance Due</th>
<th>Late Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.00-99.99</td>
<td>$5.00</td>
</tr>
<tr>
<td>$100.00-299.99</td>
<td>$10.00</td>
</tr>
<tr>
<td>$300.00-499.99</td>
<td>$20.00</td>
</tr>
<tr>
<td>$500.00-699.99</td>
<td>$30.00</td>
</tr>
<tr>
<td>$700.00-899.99</td>
<td>$40.00</td>
</tr>
<tr>
<td>$900.00 and over</td>
<td>$50.00</td>
</tr>
</tbody>
</table>
4. The student will become ineligible for all university services.
5. All past due accounts are referred to the university’s Student Debt Management department for collection, where any assessed collection charges must be paid.
6. Colorado law requires the university to place all delinquent accounts with the state’s Central Collection Services Office (CCS). If your account is referred to CCS, you must pay any collection costs allowed by the Uniform Consumer Credit Code.

Personal Check Policy
Those who write a bad check (regardless of the amount) to the university will be subject to late charges and service charges, and a stop will be placed on their record. A $17 returned-check charge is assessed, in addition to the amount due to the university. They may also be liable for collection costs and prosecution under the Colorado Criminal Statutes. Specific inquiries concerning reporting of bad checks should be directed to the Student Debt Management department in the Bursar’s Office.

Withdrawal Policy Regarding Tuition and Fees
Students who pay their $200 enrollment deposit and register for classes for any given semester are obligated to pay full tuition and fees for that semester, unless they officially withdraw from the university.

Tuition and fee obligations for withdrawing students are as follows (for fall and spring semesters):
1. If continuing students withdraw by the “deadline to withdraw and not be assessed a financial penalty,” they receive a refund of the enrollment deposit less any outstanding charges. (New and readmitted students are not eligible for a refund.) Deadlines to withdraw with no financial penalty vary by semester but occur some time before the first day of instruction. Refer to the Registration Handbook and Schedule of Courses for specific dates.
2. If students withdraw on or before the third Wednesday of instruction, the full amount of their enrollment deposit is retained by the university.
3. After the third Wednesday of instruction through the fifth Wednesday of instruction, 40 percent of full tuition and mandatory fees is assessed.
4. After the fifth Wednesday of instruction through the seventh Wednesday of instruction, 60 percent of full tuition and mandatory fees is charged.
5. After the seventh Wednesday of instruction, 100 percent of full tuition and fees is due the university.

To comply with federal financial aid regulations, financial aid recipients’ tuition and fee assessment for withdrawals may differ. Students should refer to the current Registration Handbook and Schedule of Courses for any changes, as the Board of Regents reserves the right to revise this schedule at any time. Refer to the Summer Session Catalog for information on the withdrawal policy and refund schedule for summer terms.

If the student withholds any special services fees removed at the time of withdrawal. Otherwise, these fees become a financial obligation.

Students who do not pay the full amount due the university at the time of withdrawal must make arrangements for payment with the Student Debt Management department in the Bursar’s Office. All withdrawals are handled through the Office of the Registrar, Regent Administrative Center 105.

Auditing
All persons who wish to attend regularly scheduled classes and who are not registered students must obtain auditor’s status. Auditors, whether in-state or out-of-state, pay in-state tuition for 3 semester hours per term and receive class instruction and library privileges only. An auditor’s card must be presented to the instructor when requesting permission to attend a class. Cards may be obtained from the student billing department in the Bursar’s Office in Regent Administrative Center after classes begin.

To qualify as an auditor, an individual must be 21 years of age or older. Persons are not eligible to audit courses if they are under suspension from the university. Auditors may attend as many courses as they wish (except those courses with laboratories or where equipment is used), provided they have permission from the instructor.

If a regular degree student wishes to participate in a class without receiving credit, the student must register for the course for no credit. Tuition for courses taken for no credit is the same as for courses taken for credit. Auditors should note that the Office of the Registrar does not keep any record of courses audited; therefore, credit for these courses cannot be established.

FINANCIAL AID
The Office of Financial Aid’s primary goal is to ensure that students who have been admitted to the university will have access to the resources necessary to complete their education. Approximately 50 percent of CU-Boulder students receive financial aid each year from federal, state, university, and private sources. Total aid for graduates and undergraduates approximates $124 million and is a combination of loans, work-study, grants, and scholarships.

Applying for Financial Aid
Students apply for financial aid by completing the Free Application for Federal Student Aid (FAFSA), the Renewal FAFSA, or FAFSA on the Web (www.fafsa.ed.gov). Based on a federal formula, the FAFSA determines a student’s eligibility for need-based and non-need-based financial aid, as well as some scholarships. Students must reapply for financial aid every year.

For financial aid for fall 2001, spring 2002, and summer 2002, the 2001-02 FAFSA must be submitted. Students should apply as soon as possible after January 1.

Several weeks after submitting the FAFSA, applicants receive a Student Aid Report (SAR) in the mail from the federal processor. The Office of Financial Aid receives the SAR results electronically if CU-Boulder is listed on the application.

Students must be admitted to the university before their financial aid application can be considered. However, prospective students should not wait for formal acceptance to CU-Boulder before applying for financial aid or scholarships.

Eligibility
Eligibility for financial aid is based on the cost of attending CU-Boulder and the amount students and their families are expected to contribute toward the cost of at-
tendance. Each year the financial aid office calculates the cost of attendance using local and national cost-of-living data.

The expected family contribution (EFC) is determined by an analysis of the student’s FAFSA. A student’s financial need is calculated by subtracting the EFC from the cost of attendance.

The financial aid award is funded from a combination of need-based and non-need-based financial aid sources in an effort to meet each applicant’s total financial eligibility. Students may need to borrow educational loans and work part-time while they are in school.

Financial Aid Awards
Most financial aid is awarded in April, but aid is offered as long as funds are available. Freshman and transfer students applying for aid for the 2001-02 academic year are encouraged to submit their FAFSA applications by April 1 in order to receive aid information in time to make an informed admission decision. Awards available to CU-Boulder students are listed below.

Loans
Students use the FAFSA to be considered for the following loan programs.

Federal Perkins Loan. The interest rate is 5 percent and students do not have to start repaying the need-based loan until nine months after they graduate or cease to be enrolled at least half time (6 semester hours). The deferred interest is capitalized at the time repayment begins. Loan limits are determined by year in school: freshmen and sophomores, up to $4,000 per year; juniors and seniors, up to $5,000 per year; graduate students, up to $10,000 per year.

Some of the information above may change without notice due to federal regulatory changes and fund appropriations.

Work-Study
Students submit the FAFSA to be considered for need-based work-study. Work-study students earn their award by working at on-campus or off-campus jobs. Students may apply for a variety of jobs at competitive wages (jobs are listed in the Student Employment Office, UMC 165, and online at www.colorado.edu/finaid). Employers on campus include the library, recreation center, academic departments, etc. Students who are not awarded work-study may call 303-492-5091 to have their name added to the work-study wait list.

Grants
Grants are awards that do not have to be repaid. Students submit the FAFSA to be considered for federal, state, and institutional need-based grants (including Pell, LEAP, SEOG, Colorado Student Grant, etc.).

CU-Boulder Scholarships
Students seeking information about merit or need-based scholarships administered by CU-Boulder are encouraged to obtain a free copy of the Guide to CU-Boulder Scholarships, available from the Office of Financial Aid or on the Web at www.colorado.edu/finaid. Incoming freshman and transfer students should refer to the Financial Aid and Scholarship Information section of the application for admission.

Financial need is rarely the primary factor considered, but is often used to make a final decision among equally qualified scholarship applicants. For this reason, applicants are encouraged to submit the FAFSA, even if they are only interested in merit scholarships.

Private Scholarships
Students who know they will be receiving a private scholarship (e.g., Elks, Rotary Club, etc.) should notify the financial aid office in writing immediately. Students who are awarded a scholarship are encouraged to write to their donor and express their gratitude.

Donors may provide instructions in a cover letter on how the scholarship funds are to be disbursed. If no specific instructions are provided, private scholarships of $500 or more are automatically divided equally between the fall and spring semesters. Private scholarships of less than $500 are applied in full to the current semester bill. Scholarship checks should be made payable to the University of Colorado and sent to:

University of Colorado at Boulder Scholarships
Office of Financial Aid
312 UCB
Boulder, CO 80309-0312

If the donor sends the scholarship check directly to the recipient, the check should not be included with the student’s payment to the Bursar’s Office. Instead, the scholarship check should be forwarded to the financial aid office for processing. If a student’s scholarship check is not received in the financial aid office by the bill payment deadline, he or she is advised to make other arrangements to pay the bill to avoid late and service charges. The scholarship is credited when it arrives, and, in most cases, generates a refund for the student at the Bursar’s Office.

Other Conditions

Changes in Enrollment
Most financial aid and scholarships require students to be enrolled full time (12 semester hours or more). Students who intend to enroll less than full time should notify the Office of Financial Aid to have their aid adjusted.

Drug Conviction
In accordance with the Higher Education Act of 1998, students who have been convicted under federal or state law for possession or sale of a controlled substance will be suspended from Title IV aid eligibility, regardless of when the conviction occurred.

If a student is convicted for possession, the ineligibility period begins as of the date of the conviction and is:

• first offense=one year
• second offense=two years
• third offense=indefinite

If a student is convicted for sale of an illegal substance, the ineligibility period begins as of the date of the conviction and is:

• first offense=two years
• second offense=indefinite

If a student is convicted for distribution of an illegal substance, the ineligibility period begins as of the date of the conviction and is:

• first offense=two years
• second offense=indefinite

If a student is convicted for possession or sale of a controlled substance while at study abroad, the ineligibility period begins as of the date of the conviction and is:

• first offense=one year
• second offense=two years
• third offense=indefinite

If a student is convicted for distribution of an illegal substance while at study abroad, the ineligibility period begins as of the date of the conviction and is:

• first offense=two years
• second offense=indefinite

A student may regain eligibility by successfully completing a drug rehabilitation program that complies with criteria established by the Department of Education. More information is available by calling the U.S. Department of Education at 800-433-3243.

Reasonable Academic Progress
Students who apply for financial aid at CU-Boulder are responsible for knowing and complying with the reasonable academic progress policy. Briefly, the policy requires
Each fall the residence halls provide a new home for approximately 4,500 entering freshmen. Subject to the availability of space, all freshmen are required to live in a residence hall for two academic-year semesters (a summer term does not count as an academic semester), unless they are married or live with parents and have permission to commute. Requests for permission to reside off campus for other reasons are considered on their merits, taking into account individual circumstances.

The residence halls provide a range of services and programs designed to support the intellectual, social, and personal growth of single student residents. All residence halls, for example, offer tutoring services to residents at no cost. Some halls offer special facilities, such as a dark room, computer room, an academic skills lab, or a music room. Further, mini-courses are offered on subjects such as photography and cardiopulmonary resuscitation, and a variety of academic and social programs are sponsored by residence hall and other university staff.

The residence hall dining service hours are planned to be convenient for most students’ schedules, and self-serve salad bars are available at noon and evening meals. Steak nights, ice cream socials, and late-night coffee and cookie breaks during exam week are among the special activities planned during the semester. The dining program permits students (regardless of hall assignment) to eat in any residence hall dining room.

For more information about university housing options and/or permission to reside off campus, prospective students may write the Supervisor of Reservations, 80 Hallett Hall, Boulder, CO 80310.

Residential Academic Programs

Many of the residence halls are home to residential academic programs, whereby students live in and take special classes in their hall that meet core curriculum and/or course requirements. These special academic programs are written up more completely in the College of Arts and Sciences and the Other Academic Programs chapters of this catalog. These programs charge additional fees. They include:

- Baker Residential Academic Program, designed for freshmen and sophomores interested in the natural sciences and environmental studies.
- Chancellor’s Leadership Residential Academic Program, dedicated to the development of community and professional leaders among students from all schools and colleges on the Boulder campus, is housed in Williams Village. Some scholarships to cover the program fee are available for those in need.

- Farrand Residential Academic Program, a coeducational program that offers 400 freshmen and sophomores in the College of Arts and Sciences the opportunity to enjoy the benefits of a small liberal arts college while taking advantage of the resources of a large university.
- The Hallet Diversity Program was created to encourage students to learn about differences and to celebrate them. It provides leadership opportunities and an environment for acquiring awareness of one’s own—and others’—culture and values.
- The Kittredge Honors Program aims to build a sense of community among a small group of honors students who live near one another but are not isolated from the rest of the Kittredge community.
- The Norlin Scholars program, part of the Farrand Residential Academic Program, is one of the most prestigious academic programs at CU-Boulder. It offers priority registration, discussion sessions with a distinguished faculty mentor, a two-semester course specifically for Norlin Scholars, and a $2,000 scholarship each year.
- Sewall Residential Program, limited to approximately 325 freshman and sophomore students in the College of Arts and Sciences, who study American culture and society.

Engineering and Science Residential Program

Freshmen and sophomores studying engineering and natural science who live in Aden, Brackett, Cockerell, or Crosman Halls may participate in this coeducational program. Sponsored by the College of Engineering and Applied Science and the Department of Housing, and supported by the College of Arts and Sciences, this program offers residents specialized tutoring, extensive computer-system access, and professional counseling and advising. An additional fee of $65 per semester was charged in 2000-01 to cover the support activities.
of students’ academic life with their campus residence hall life. Interested students, faculty, and staff are encouraged to participate in the planning and submission of projects to the council.

Room and Board Rates per Semester
Residence hall room and board rates per person, per semester, for the 2000-01 academic year were as follows:
19 meals/week and double room $2,769
19 meals/week and single room $3,203
Different meal plans are available to upper-division students. A modest rate increase should be expected for the 2001-02 year.

Application for Residence Hall Housing
New freshman and transfer students receive housing application materials from the Department of Housing after they have confirmed their intent to attend the university. The packet includes housing brochures, the residence halls application, two copies of the residence halls agreement, and a return envelope. The housing forms should be returned directly to the Residence Halls Reservation Center. Housing assignments are made on a first-come, first-served basis. The earlier these forms are received, the better chance students have of being assigned to the residence hall of their choice.

Space for the fall term can normally be assured for all freshmen who apply for housing by early May. However, due to heavy demand for limited hall space, the university cannot always guarantee that freshmen who apply for housing late (usually after early May for the fall term) will find space available in the residence halls. If this is the case, students are so advised and are given appropriate instructions regarding wait lists and assistance in securing off-campus housing.

Note: Application for admission to the university and application for housing are two separate transactions. Application for housing does not guarantee admission to the university, nor does admission to the university guarantee that housing will be available. For information regarding admission notification and confirmation procedures, see the Undergraduate Admission section.

A security deposit ($250 in 2000-01) is required to reserve residence hall accommodations. Students should note that residence hall facilities are reserved on a first-come, first-served basis.

All housing agreements are for the full two-semester academic year or remainder thereof. An early termination of contract is subject to financial penalties as stated in the residence halls agreement.

Family Housing
The university offers studio, one-, two-, and three-bedroom furnished and unfurnished apartments for student, staff, and faculty families. The university’s Children’s Center provides day care for the children of family housing residents, staff, and faculty. For information on applying to family housing, write the Family Housing Office, 1350 20th Street, University of Colorado at Boulder, Boulder, CO 80302, or call 303-492-6384, or send e-mail to familyhousing@housing.colorado.edu. The housing web site is www-housing.colorado.edu.

Off-Campus Student Services
Off-Campus Student Services (a service of UCSU) maintains listings of rooms, houses, and apartments for rent in the Boulder community. Currently-enrolled students may view these listings from the web site at www.colorado.edu/OCSS/.

To receive information via mail, a request should be sent with $10 (within the U.S.) or $15 (outside of the U.S.). Checks should be made out to the University of Colorado. The packet will include a 30-day web access code to housing listings, an apartment complex summary, a Boulder map, the Boulder Tenant’s Guide, and other information pertinent to living and renting in Boulder.

Office assistants are available to advise students about leases, security deposits, effective techniques for sharing a room, and ways to avoid landlord/tenant problems. Each spring the office sponsors an off-campus housing fair where landlords, property managers, and related businesses offer their services to students in a trade-show fashion. For additional information, call 303-492-7053 or write Off-Campus Student Services, University of Colorado at Boulder, 206 UCB, Boulder, CO 80309-0206. Office hours are 9:00 A.M. to 5:00 P.M., Monday through Friday. Summer hours are 8:00 A.M. to 4:30 P.M.

Students who require accommodations because of a disability should notify the Office of the Registrar, University of Colorado at Boulder, 20 UCB, Boulder, CO, 80309-0020, or call 303-492-6970, or if deaf or hard of hearing, call 303-492-5841 (TTY).

Enrollment Deposit
All degree students pay a one-time-only $200 enrollment deposit that allows them to enroll without paying a registration deposit each term. Enrollment deposits are refunded to students upon graduation or official withdrawal from CU-Boulder within established dates and guidelines. All refunds are reduced by any outstanding financial obligations. Refunds are issued no later than eight weeks after graduation or two weeks after official withdrawal. Interested earned from enrollment deposits is used for student financial aid.

The $200 deposit is required of all degree students. New students are required to pay the deposit when they first confirm their intent to enroll at CU-Boulder and are not permitted to register until the enrollment deposit is paid.

All questions regarding the enrollment deposit policy should be directed to the Office of the Registrar, Regent 105, 303-492-6970.

Registering for Courses
All CU-Boulder students register for courses either via CU Connect (the campus telephone registration system) or via web registration.

Registration instructions are sent to new freshmen as well as new transfer, new graduate, and readmitted students when they have confirmed their intent to enroll, with the exception of new freshmen and transfer students in arts and sciences, who receive their registration instructions at orientation. Continuing students are notified each semester of times, places, and requirements for registration.

Schedule/Bill Distribution
Combined schedule/bills are distributed to students before each semester begins. Schedule/bill distribution information is listed in each semester’s Registration Handbook and Schedule of Courses or the Summer Session Catalog.

Drop/Add
Students can adjust their schedules by dropping and adding classes using either CU Connect or the World Wide Web. For fall and spring semesters, drop/add activity takes place by time assignment during the first two days of the semester. After that, the system is available to all students, both by Web and by telephone, through the drop and add deadlines.
Drop/Add Deadlines

Specific drop and add deadlines for each fall and spring semester are listed in that semester’s Registration Handbook and Schedule of Courses. Summer deadlines appear in the Summer Session Catalog.

1. Students are allowed to add courses through the add deadline with no authorization signatures required (second Wednesday of instruction in the fall or spring semester; the deadline varies in the summer). After the add deadline in fall and spring semesters, the instructor’s approval is required to add a course through the “add deadline to drop a course without petitioning the dean” (three weeks after classes begin), unless enrollment levels are reached earlier. Courses cannot be added after this deadline. In summer, courses cannot be added after the add deadline.

2. Students can drop courses through the drop deadline with no authorization signatures required (third Friday of instruction in the fall or spring semester; the deadline varies in the summer). Tuition and fees are not assessed for courses dropped by this deadline. After the drop deadline, the instructor’s signature is required to drop a course through the deadline to drop a course without petitioning the dean. The signature indicates that the student is passing the course; students who are failing their courses are not permitted to drop. Courses dropped after the drop deadline appear on the transcript with a W grade and no tuition adjustment is made.

3. After the “deadline to drop a course without petitioning the dean” (six weeks after classes begin in the fall or spring semester; the deadline varies in the summer), courses may not be dropped unless there are documented circumstances clearly beyond the student’s control (e.g., accident or illness). In addition to obtaining the instructor’s signature, students must petition their dean’s office for approval to drop the course. Petitions normally are not approved after this date.

Credit/No Credit

Students who wish to take course work for no credit should indicate this at the time they register for courses or during the final drop/add period; changes in credit registration are not permitted after the drop/add deadline in the summer or after the third Friday of the semester in the fall and spring. Tuition is the same whether or not credit is received in a course.

Pass/Fail (P/F)

Students should refer to the college and school sections of this catalog to determine the number of pass/fail credit hours that may be taken in a given semester or credited toward a bachelor’s degree. Exceptions to the pass/fail regulations are permitted for certain courses that are offered only on a pass/fail basis. Procedures for requesting pass/fail enrollment can be found in each semester’s Registration Handbook and Schedule of Courses or the Summer Session Catalog.

Students who register on a pass/fail basis do so when they register or during the schedule-adjustment period. Changes to or from a pass/fail basis are not permitted after the drop/add deadline in the summer or after the third Friday of the semester in the fall and spring.

All students who register on a pass/fail basis appear on the class roster, and a letter grade is assigned by the instructor. When grades are received in the Office of the Registrar, those courses that have a P/F designation are automatically converted from letter grades to P or F. Grades of D- and above are considered passing grades.

Variable Credit

All independent study courses, and occasionally regular courses, are offered on a variable-credit basis. Students must designate the number of credit hours they wish to receive for the course at the time of registration. Consult the Registration Handbook and Schedule of Courses or the Summer Session Catalog for variable-credit hour ranges for particular courses.

Time Out Program

The Time Out Program (TOP) is a planned-leave program for currently enrolled Boulder students who are in good standing in their college or school and whose dean approves their leave. Students on TOP may leave for one semester or one year to pursue academic or nonacademic interests, and they do not need to reapply to the university. Students may take courses at another campus of the University of Colorado or at another college or university while on TOP.

TOP guarantees participating students a place in their current college or school and in their current major when they return to the university. In addition, students may apply for transfer to a different college or school upon returning to CU-Boulder, provided they observe all policies, procedures, and deadlines. Certain restrictions do apply, however, for some colleges and schools. Students are informed of registration procedures by mail.

Additional information and a TOP application can be obtained from the Office of the Registrar, Regent Administrative Center 105. A nonrefundable $40 program fee is required at the time of application to TOP. The TOP application must be submitted no later than the six-week drop deadline for the semester the student begins TOP.

Note: Students registered for the semester they plan to begin TOP must formally withdraw. See the withdrawal section below. Call 303-492-8673 for further information.

Withdrawal Procedures

Students may withdraw from the university by filling out a withdrawal form in the Office of the Registrar, Regent Administrative Center 105, or by sending a letter of withdrawal to Office of the Registrar, University of Colorado at Boulder, 20 UCB, Boulder, CO 80309-0020.

In all terms, students are not permitted to withdraw after the last day of classes.

Failure to withdraw officially will result in a failing grade being recorded for every course taken in a term and makes a student liable for the full amount of tuition and fees for that term. For refund stipulations, see the withdrawal policy regarding tuition and fees, in this catalog.

Rules for withdrawing may vary with each college and school. Students anticipating a withdrawal should consult with their dean’s office and read the Registration Handbook and Schedule of Courses or the Summer Session Catalog for specific withdrawal procedures. More information is available in the Office of the Registrar, Regent Administrative Center 105, 303-492-8673.

Withdrawing students (including students applying for the Time Out Program) with Federal Perkins/NDSL loans must complete a loan exit interview before leaving the university. Failure to do so will result in a “stop” on your record. This stop will prevent you from receiving a diploma or an academic transcript of work at the university and from registering for future terms. In order to complete a loan exit interview, contact the university Student Loans department in the Bursar’s Office at 303-492-5571, TTY 303-492-3528.

Students who withdraw from either a fall or spring semester and then wish to return to the university must either reapply for admission, or if eligible, go on the Time Out Program.

Other Registrations

Concurrent Registration

Boulder-campus students who are unable to obtain courses required for their degree program on the Boulder campus may be allowed to register for up to two courses or 6 credit hours, whichever is greater, on another University of Colorado campus.
The course work must be required for their degree program, students must have their dean’s permission, they must be enrolled for at least one course on the Boulder campus, and enrollment levels must not have been reached on the other campus.

Note: Graduate students should check with the Office of the Registrar for exceptions to the home-campus registration requirement and limitation on credit hours at the host campus.

Students taking required courses in the College of Business and Administration or in the Graduate School of Business Administration may only exercise the concurrent registration option if they are in their graduating semester; business students who are two semesters from graduating and who cannot obtain courses necessary to complete a prerequisite sequence may also be allowed to use this option. The courses must either be required for graduation or unavailable on the Boulder campus, or the courses must conflict with another required course in which the student is enrolled.

Boulder students exercising this option will pay tuition for their total credit hours at Boulder-campus rates. Concurrent registration forms and instructions are available at the Office of the Registrar, Regent Administrative Center 105, from 9:00 a.m. to 5:00 p.m. Registration takes place only during the designated schedule-adjustment period of the host campus.

Registration on Another CU Campus

Boulder-campus students who wish to take course work on another campus of the University of Colorado and not through the concurrent registration program may be able to register on that campus independent of Boulder-campus registration. However, students must apply for admission to and follow the registration procedures established by the other campus. Students should check with their dean’s office for approval. Arts and sciences students may not register at the University of Colorado at Denver or the University of Colorado at Colorado Springs campuses, except in the summer.

Late Registration

Students in certain categories may be allowed to register late for any given semester. These categories, however, cannot be designated until just before the semester begins. Late registration continues on a day-by-day basis until enrollment levels are met, or until the drop deadline, whichever comes first.

Students who fail to complete registration during their assigned registration period are assessed a $50 late registration fee, if eligible for late registration.

Graduate students registering as candidates for degree or for thesis hours must register during the assigned registration period or be subject to the $50 late registration fee, if late registration is held for their category. For further information, call 303-492-6970.

Registration for Faculty and Staff

All permanent faculty and staff are eligible to take 1-6 credit hours each fiscal year. Faculty and staff who wish to enroll in courses must bring a copy of their current Personnel Action Form (PAF) to the Bursar’s Office, Regent 150. All participants of this program must be admitted to the university as non-degree or degree-seeking students. If there has been a break in attendance at CU, not including summers, students must reapply. Applications are available at the Bursar’s Office. Faculty and staff members who are applying to a degree program must follow the regular application procedures of the Office of Admissions and return their applications to the Bursar’s Office.

To take advantage of the free credit hours, faculty and staff must wait until the second day of the drop/add period of a fall or spring semester to register. However, the PAF must be submitted by the published deadline in the Registration Handbook and Schedule of Courses or the Summer Session Catalog. Registration materials are issued when the PAF is received.

For further information, refer to the current Registration Handbook and Schedule of Courses or call the Bursar’s Office at 303-492-5381.

Commencement

Students must apply to their dean’s office for graduation at least one semester before they intend to graduate. Graduation ceremonies are held in May, August, and December and are open to the public. No tickets are required. The May commencement is held at Folsom Stadium; August commencement is held on the Norlin Quadrangle; and the December ceremony is held in the Coors Events/Conference Center. Details concerning the ceremony are sent to graduating students approximately one month before each ceremony. Students can also access the current semester’s ceremony information at www.colorado.edu/Chancellor/Commencement/.

Only doctoral and law graduates receive their diplomas at commencement. Diplomas are mailed to all other students approximately two months after the ceremony. Students may pick up their diplomas during scheduled distribution at the Office of the Registrar approximately two months following graduation. Diplomas not picked up are mailed to students’ permanent addresses.

Graduating students with Federal Perkins/NDSL loans must complete a loan exit interview and clear all outstanding financial balances before leaving the university. Failure to do so will result in a “stop” on the student’s record. This stop prevents receipt of a diploma or an academic transcript of work at the university and registration for future terms. Students can complete a loan exit interview by contacting the university Student Loans department in the Bursar’s Office at 303-492-5571, TTY 303-492-3528.

CAMPUS FACILITIES

Anderson Language Technology Center

The Anderson Language Technology Center (ALTEC) is a state-of-the-art facility supporting the study of foreign languages and cultures at the university. A large library of materials offers audiotapes, videotapes, videodiscs, computer programs, CD ROMs, reference books and journals, as well as foreign language magazines.

Computing facilities consist of an interactive video lab with Macintosh computers, a PC platform lab, and a computer classroom for foreign language word processing, tutorial programs, and Internet access.

The audiovisual area has carrels for independent study of video and audiotapes, as well as high-speed duplicators for audiotapes. In addition, there are viewing rooms for small groups, equipment for viewing non-U.S.-standard videotapes, a media classroom with a large-screen video projector, and video and audio production facilities. The center also receives satellite programs from the International Channel and SCOLA.

Located in Hellem's under the direction of the College of Arts and Sciences, ALTEC is open to the entire university community, including alumni.

Coors Events/Conference Center

The Coors Events/Conference Center is a multipurpose facility used for events such as educational conferences, seminars and meetings, convocations, and commencement ceremonies, as well as cultural, entertainment, and athletic activities that enhance and further the objectives of the university.

The main arena of the center seats between 8,500 and 12,000, depending on event configuration. The conference level offers five air-conditioned, carpeted rooms, which can seat from 28 to 150 persons.

Fiske Planetarium and Science Center

Fiske is considered one of the finest planetarium facilities in the world. Seating 210 people in its star theatre, it is the largest such facility
between Chicago and Los Angeles. The planetarium is equipped with a Zeiss Model VI star projector and an automated projection control system that operates hundreds of projectors and has the capacity to present over a dozen pre-recorded star shows at any given time. In addition to its use as a teaching facility for astronomy and other classes, the planetarium is used for star talks, star shows, laser shows, and space science presentations to school children and the general public in the Boulder-Denver area.

Heritage Center
The CU Heritage Center, located in the oldest building on campus, is a museum that reflects the history of the University of Colorado. Exhibits tell the CU story in seven galleries, from the early history of student life (as portrayed in a complete set of Coloradan yearbooks) to the engineering flag and CU football carried by alumnus Ellison Onizuka on the ill-fated flight of the space shuttle Challenger. Other exhibits depict the university’s contributions to space exploration (including Apollo 13 artifacts and a lunar sample), campus architecture, the accomplishments of CU athletes, photographs and accounts of distinguished CU alumni, and an overview of the university’s history. Located on the third floor of Old Main, the Heritage Center is open Monday through Friday from 10:00 a.m. until 4:00 p.m. and on Saturdays from 10:00 a.m. to 2:00 p.m. Call 303-492-6329 for information and to schedule tours.

Libraries
The university libraries system is composed of Norlin Library and five branch libraries. Norlin houses the book stacks and periodicals for the general humanities and social sciences; circulation, reserve, central reference, and interlibrary loan services; archives, government publications, and special collections; and art/architecture, East Asian, map, media, and science libraries. The William M. White Business Library is in the Business Building, the Jerry Crail Johnson Earth Sciences Library is in the Earth Sciences Building, the Leonard H. Gemmill Engineering Library is in the Mathematics Building, the Oliver C. Lester Library of Mathematics and Physics is in Duane Physics, and the Music Library is in the Imig Music Building. The Law Library is located in and administered by the School of Law.

This system, a constantly expanding network of resources, connects users with:

- dedicated libraries and staff who provide reference assistance, extended consultations, computer searches, and instruction;
- the largest library collection in the Rocky Mountain region—more than 11 million books, periodicals, government publications, microforms, audiovisual materials, maps, manuscripts, papers, artifacts, and computer-based resources;
- an on-line system, Chinook, that provides access from dedicated terminals in the libraries, CU-Boulder accounts, the campus ethernet or ISN, the Internet, and other information services (such as CARL and ACLIN) to the libraries catalog; national, state, and local services ranging from the Library of Congress to the University of California to the Boulder Public Library; and connections to more than 400 electronic indexes, over 3,000 full-text journals and magazines, and nearly 100 full-text newspapers, as well as a number of other significant research and reference tools;
- a web site at www-libraries.colorado.edu that includes a wealth of information about the collections, services, and activities available at the university libraries with links to each department and branch in the libraries system, as well as over 1,800 external links to other important web sites and a seamless interface with the World Wide Web version of Chinook;
- special collections and archives including English, American, and children’s literature; mountaineering; photography; the book arts; medieval manuscript leaves; human rights; history of Colorado and the West; environmentalism; women’s history; and labor; and

For more information, call 303-492-8705 and visit the libraries’ web site at www-libraries.colorado.edu.

Macky Auditorium Concert Hall
Originally built in 1912, Macky Auditorium Concert Hall is one of Colorado’s premiere concert halls. The 2,047-seat venue features classical and popular musical concerts, dance performances, lectures, and films. It is home to the Artist Series, the Boulder Philharmonic Orchestra, the Macky Auditorium Travel Film Series, and College of Music ensembles. The auditorium also houses the Andrew J. Macky Gallery, with artwork by local and national artists. For information on all events, call the box office at 303-492-6309 or check out the web site at www.colorado.edu/Macky.

Museum
The University of Colorado Museum houses extensive collections in anthropology, botany, geology, and zoology. The museum is nationally recognized for its holdings of specimens from the Rocky Mountain Region and beyond, making it a primary resource for faculty and student research. A program of foreign and domestic exchange of specimens and information has given the museum an international reputation.

The museum administers an interdisciplinary master’s degree in museum and field studies. A collections/field track is provided for students interested in the curatorial and research aspects of museum work, as well as an administrative/public track for students interested in the public aspects of this work. Through internships and assistantships, the museum provides professional experience to students in the field and in the laboratory. Museum faculty members teach courses in their areas of specialty, which include Southwestern archaeology and ethnology, plant systematics, invertebrate zoology, entomology, and paleontology. Participation in museum-related research is encouraged by financial support to selected, qualified students through the Walker Van Riper and William Henry Burt Funds.

The exhibit halls in the Henderson building are open daily to the public. The Geology Hall exhibits fossils and focuses on local paleontology. The Biology Hall shows animals of Colorado and the Rocky Mountain region. The Anthropology Hall emphasizes the fieldwork of CU-Boulder researchers. Temporary exhibits are presented each year. In addition, the museum offers extensive outreach programs to the schools and presents a number of special events, lectures, and activities for the community.

Recreation Center
Funded largely by student fees, the Student Recreation Center is one of the finest facilities of its type in the country. The center includes a 25-yard swimming pool and a 14-foot diving well; a patio for sunbathing; an ice arena used for hockey, broomball, and skating; handball/raquetball, squash, and tennis courts; a multi-use gymnasium; an indoor climbing wall; dry heat saunas; a free weight room; a dance/aerobics room; three regulation-sized basketball courts with a one-tenth mile running track suspended overhead; a spinning studio; and a fitness systems room with Cybex and cardiovascular equipment.

Current fee-paying students, their guests, and other members may take advantage of the facilities by showing their student ID or membership card. A variety of sports equipment, including volleyball sets, rollerblades, tents, sleeping bags, backpacks, snowshoes, and cross-country skis, can be checked out overnight for a nominal fee.

Members may also participate in a wide range of team sports including ice hockey,
ultimate frisbee, rugby, swimming, diving, speed and figure skating, lacrosse, soccer, baseball, and many others through the club sports program.

The recreation center also offers many other programs geared toward specific interests and instructions. The outdoor program offers students the opportunity to learn about the outdoors through special trips featuring rock climbing, backpacking, rafting, hiking, cross-country skiing, snowshoeing, and scuba diving, in addition to educational presentations. Through the instruction program, members may participate in non-credit classes at various levels of instruction in aquatics, aerobics, skating, tennis, fitness, CPR and first aid, martial arts, lifeguard training, yoga, and dance.

The intramural program offers leagues, tournaments, and special events in basketball, soccer, broomball, tennis, racquetball, hockey, touch football, badminton, softball, and other sports.

Sommers-Bausch Observatory
Located on the Boulder campus, the Sommers-Bausch Observatory has 16-, 18- and 24-inch aperture Cassegrain telescopes for introductory astronomy classes and for graduate student research. Ancillary instrumentation is available for direct imaging and spectroscopy and includes an advanced technology CCD camera. The observatory is also open to the public on Friday evenings for viewing of the planets, stars, and nebulæ, as weather permits. Call 303-492-5002 for reservations.

University Memorial Center
The University Memorial Center (UMC) is a focal point for campus activities, programs, and services. An official state memorial dedicated to those who died in past wars, the UMC has also been designated a multicultural center designed to promote understanding among all cultures represented in the university and the community.

At the heart of the UMC are its programming facilities and services. The facility, host to over 13,000 meetings and events each year, is a forum for a variety of speakers, seminars, concerts, films, and special events. The UMC is the home of the University of Colorado Student Union (UCSU) and its many operations, as well as the United Government of Graduate Students (UGGS). It also provides office space for more than 58 cultural student organizations. The Dennis Small Cultural Center, the Off-Campus Student Services office, the Women’s Resource Center, the Environmental Center, Student Legal Services, and NightRIDE NightWALK are also located in the UMC.

The facilities include a reception desk for campus information, the CU Book Store, meeting rooms, a copy center, a computerized ticket service, banking and check-cashing facilities, a travel agency, an art gallery, a used-CD cart, music listening rooms, a games area, and a bowling alley. Also located in the UMC are two 450-seat dining areas and a cafeteria with a fast food grill; full-meal service; Mexican food; a fruit, salad, and soup bar; a bakery and ice cream shop; a Subway sandwich shop; a Golden Panda Chinese food kiosk; a Celestial Seasonings kiosk; a Domino’s pizza restaurant; and a variety of food vending carts. The UMC also has a complete catering service.

The UMC is currently undergoing an expansion and renovation project to better serve the needs of CU students and the rest of the university community. The project will add approximately 51,000 square feet and remodel the entire building. Construction began in May 2000 and is expected to be completed by fall 2002. During construction, with minor or temporary exceptions, all facilities and services offered by the UMC will remain open and functional.

CAMPUS PROGRAMS

Alumni Association
The CU-Boulder Alumni Association, housed in the Koenig Alumni Center, sponsors a wide range of activities and programs to benefit students, former students, graduates, and the university. By fostering loyalty among CU-Boulder alumni and providing opportunities for involvement, the Alumni Association creates a foundation for life-long contact with the university.

Students can join the Student Organization for Alumni Relations, an active group that provides leadership for homecoming weekend and the annual teaching recognition awards, among other activities. Student membership is $15, and students receive free meals prior to home football games and free rides on the CU ski bus. After leaving CU-Boulder, alumni can become involved in their local alumni clubs and the Alumni Association’s constituent clubs, such as the Hispanic Alumni Association.

By joining the Alumni Association or one of its geographic or constituent clubs, alumni become ambassadors for CU-Boulder in their communities. Finding and recruiting the best students, including those from minority groups, and awarding scholarships to current CU students are among the valuable contributions alumni can make. The association also encourages advocacy on behalf of the campus by keeping alumni informed through its publication the Coloradan, which is issued five times a year. News about alumni and campus did coverage of CU-Boulder and the people and issues affecting it help to maintain mutually supportive relationships between the campus and its friends. The Coloradan is sent to all alumni, parents of undergraduates, and second-semester seniors.

For additional information, call 303-492-8484 or 800-492-7743.

Alliance for Technology, Learning, and Society
The Alliance for Technology, Learning, and Society (ATLAS) at CU-Boulder promotes excellence throughout the total learning environment by integrating information and communication technology into curricula, teaching and learning, research, and outreach activities. ATLAS is changing the campus learning culture by enabling all students, even those in traditionally non-technical fields, to experience firsthand the role that information technology plays and can play in their disciplines.

With the ATLAS initiative, CU-Boulder is making a major campuswide commitment. Like many universities, CU-Boulder is using technology to improve teaching and to widen access to instruction. But through ATLAS, CU-Boulder also is examining the integration of technology into its curricula, conducting research that critically assesses the impacts of technology on education and on society, and interacting with the K-12 system to help effect many of the same transformations at that level. In conjunction, CU-Boulder is providing an excellent technological infrastructure for all of its students, faculty, and staff.

More information on the various initiatives of ATLAS, including a proposed centrally located building as well as the Technology, Arts, and Media Certificate Program, can be obtained at the Alliance for Technology, Learning, and Society, University of Colorado at Boulder, 40 UCB, Boulder, CO 80309-0040, 303-492-5094, or www.colorado.edu/ATLAS.

The certificate program is explained more fully in the Other Academic Programs chapter of this catalog.

Art Galleries and Colorado Collection
The CU Art Galleries, founded in 1978, are the fine arts museum on campus. The galleries, located in the Sibell Wolfe Fine Arts Building, present an active program of exhibitions and events that emphasize the interdisciplinary significance of art. Their mission is to contextualize art more broadly in people’s lives; to be a lively forum for the discussion of art and related issues; and to provide access to 20th-century art of the highest quality and of regional, national, and international signif-
21st century. Space Grant students receive NASA and the U.S. space program into the future, training professionals in engineering and science experiments. Students with hands-on experience in building, testing, and operating space missions, as well as in analyzing data from space experiments, are prepared to carry out space science and engineering projects by participating in one of several missions.

Research Opportunities

Space Grant students gain valuable hands-on experience in space science and engineering projects by participating in one of several missions. Space Grant students, along with other students from colleges and universities throughout Colorado, are building and testing the Citizen Explorer satellite to measure the ozone in the Earth’s atmosphere. The second mission, called the Three Corners Satellite, is a constellation of three nanosatellites developed by students from CU-Boulder, Arizona State, and New Mexico State, and will be launched by the space shuttle.

For further information, contact the Colorado Space Grant Consortium, University of Colorado at Boulder, 520 UCB, Boulder, CO 80309-0520, 303-492-3141.

Concerts

CU Concerts, presented by the College of Music, includes performances of the Artist Series, CU Opera, Takács Encore Series, and the Holiday Festival.

The Artist Series in Macky Auditorium features a wide array of internationally renowned performing artists in classical music, jazz, dance, and world music. The Canadian Brass, Christopher Parkening, and the Parsons Dance Company are some of the outstanding performers who have appeared recently as part of the Artist Series.

CU Opera presents the best in opera and musical performance in Macky Auditorium and the Music Theatre. Recent performances have included The Merry Widow and Falstaff.

The Takács Encore Series features concerts by the world-renowned Takács String Quartet in Grusin Music Hall; and the annual Holiday Festival in Macky Auditorium features students and faculty in a celebration of seasonal music.

Students may purchase concert cards that entitle them to a 50 percent savings on tickets for Artist Series and CU Opera performances. Call 303-492-8008 for a free CU Concerts brochure.

Faculty Teaching Excellence

For further information on either of the programs described below, call 303-492-4985. The FTEP web site is located at www.colorado.edu/ftep, and the PTSP is at www.colorado.edu/ptsp.

Faculty Teaching Excellence Program

The Faculty Teaching Excellence Program (FTEP) provides an array of programs for CU-Boulder faculty to critically reflect on teaching and learning environments in the disciplines. For faculty members who wish to enhance their teaching, the program offers symposia and consultations on teaching that include videotaping. The teaching portfolio consultation guides faculty in the development and selection of materials that document teaching performance. The consultations assist faculty in designing course content to include multicultural perspectives. Publications available to all faculty are: Memo to the Faculty, a reprint of seminal and current research on teaching and learning; A Compendium of Good Teaching Ideas, a compilation of teaching tips authored by CU faculty; the brochure series On Diversity in Teaching and Learning; and three volumes of essays written from personal, practical, and intellectual points of view by Boulder campus faculty titled On Teaching.

An emphasis on how students learn, as well as how teachers teach, is incorporated within all of the program’s offerings. The program addresses the question: How can research on how people learn shape university education? Faculty participants read and discuss the work of scholars whose work covers a range of disciplines and who represent different theoretical perspectives on learning and teaching.

As a service of the Faculty Teaching Excellence Program, an education house has been established in collaboration with the Department of Computer Science, and offers resources and expertise to help Boulder faculty in instructional technology projects in conjunction with a sound, discipline-based pedagogy.

Additionally, 45 faculty members in their units who serve as FTEP faculty liaisons for teaching with technology have established departmental instructional technology forums and individual consultations.

A new service to enhance teaching called the Classroom Learning Instructional Process (CLIP) allows faculty to have confidential feedback from students at mid-semester in order to make mid-course corrections.

President’s Teaching Scholars Program

The President’s Teaching Scholars Program (PTSP) aims to produce a sustaining group of teacher scholars who are advocates of, and consultants for, teaching excellence at all...
four campuses of the university. Faculty selected for the program design and develop projects aimed at strengthening confidence in the art and craft of teaching and by establishing communities of faculty colleagues interested in specific teaching pedagogy. In addition, the scholars are asked to share their teaching acumen outside the university community and to exemplify the skills, talents, and characteristics of superior teachers. The guild numbers 54 teaching scholars.

Fraternities and Sororities
Over 2,500 students currently participate in CU-Boulder's approximately 30 social fraternities and sororities, emphasizing service, leadership, scholarship, and involvement in campus life. Most of the organizations have houses off campus where members can live after their freshman year. The university works through the Greek Liaison Office to establish an educational, growth-oriented environment for fraternity and sorority students that integrates them fully into the campus community.

The Greek system is autonomous from the university and not subject to its direct control. Additional information may be obtained by calling the Panhellenic and Interfraternity Council Office, 303-492-6359, or the University Greek Liaison, 303-492-0769. The Greek Liaison office also connects with both the historically Black and historically Latino Greek organizations.

A hazing tipsline has been established at the university. If you witness or experience hazing in any form, please report it to 303-492-0140.

Honor Societies
One way in which outstanding student scholarship is recognized at the University of Colorado at Boulder is through national and local honor societies. The national honor society, Phi Beta Kappa, founded in 1776 at the College of William and Mary in Virginia, was established at CU-Boulder in 1904. Phi Beta Kappa recognizes outstanding scholastic achievement in the liberal arts and sciences. The campus also has a chapter of Sigma Xi, an honor society for scientists. Sigma Xi's goals are to advance scientific research, to encourage communication among scientists, and to promote the understanding of science.

Other national honor societies with local chapters at Boulder are Beta Gamma Sigma (business), Kappa Delta Pi (education), Tau Beta Pi (engineering), Kappa Tau Alpha (journalism), Order of the Coif (law), and Pi Kappa Lambda (music). The criteria for membership in honor societies and their activities vary.

For more information on both national and local societies, consult the individual college and school sections of this catalog or associate deans' offices.

Intercollegiate Athletics
The University of Colorado is a member of the Big 12 Conference, and sponsors teams in a variety of intercollegiate sports. Competing at the national level, the Colorado Buffaloes pride themselves on many individual and team championships. In each of the last five years, 10 to 12 programs were ranked in the top 25 in the nation. CU-Boulder won four national championships in skiing during the last decade (1991, 1995, 1998, 1999). The football team won its first national title in 1990. In the 1996-97 academic year, CU-Boulder was one of just three schools in the nation to have football and men's and women's basketball teams ranked in the top 25, and 12 of its programs have been nationally ranked in each of the last four years.

In its 110-year athletic history, over 500 student athletes have been named All-American, with thousands earning academic honors.

There are around 310 student athletes involved in intercollegiate athletics annually (roughly 53 percent men and 47 percent women). The average grade point average for student athletes was 2.78 in 1999-2000, near the average for the entire Boulder campus.

Men's varsity sports include football, basketball, cross-country, track and field, skiing, golf, and tennis. Women's varsity sports include basketball, cross-country, golf, track and field, skiing, soccer, tennis, and volleyball.

Folsom Field, a 51,655-seat stadium, serves as the home of the Colorado Buffaloes football team. The basketball teams practice and compete in the Coors Events/Conference Center, a facility that seats 11,198 people. The golf and tennis teams use local clubs as their headquarters, and the CU-Boulder ski team takes advantage of Colorado's many ski resorts, including its home mountain, Eldora. The women's volleyball team uses both the Coors Events/Conference Center and Carlson Gymnasium for matches and practices. The soccer team uses the Pleasantview Soccer Complex in Boulder for its games.

Boulder's diverse terrain and a running-conscious community combine to create a vigorous atmosphere for track and cross-country training. The track teams practice and compete at Balch Fieldhouse on the main campus and at Potts Field on the east campus.

International Education
The Office of International Education (OIE) in the Division of Student Affairs houses the Foreign Student and Scholar Services and Study Abroad Programs. OIE serves as a liaison for international activities among academic departments, administrative units, foreign universities and governments, and U.S. governmental agencies and foundations. This liaison stimulates and provides administrative support for students and faculty members who desire to study or conduct research overseas; for foreign students, faculty members, and visitors who come to the University of Colorado at Boulder; and for all members of the campus community who wish to develop an international dimension in their teaching, research, or study.

Specific functions include expediting the exchange of students and faculty, sponsoring undergraduate study abroad programs, arranging the programs of foreign visitors, promoting special relationships with foreign universities, and advising on international scholarships. The office also offers noncredit, enrichment foreign language classes for faculty and staff on the Boulder campus. OIE also sponsors the Smith Hall International Program (SHIP), a residential academic program for first-year students interested in adding an international focus to their studies.

Study Abroad Programs
The Office of International Education offers study abroad programs at over 120 sites around the globe, on every continent except Antarctica. Undergraduate students are strongly encouraged to consider a study abroad program to enhance their studies and to experience a unique opportunity for intellectual and personal growth. All participants in CU-Boulder study abroad programs remain enrolled at the university and all credit earned while abroad is considered earned in residence. Financial aid from the university may be applied to program costs in most cases. Students may also apply for special study abroad scholarships.

The university’s study abroad programs are of various types. Students may study abroad for a summer, the winter interim, a semester, or a year. Some programs offer students the opportunity to be fully integrated in a foreign university system where they take classes from host country faculty and study alongside host country students. This is possible in Ghana, South Africa, Egypt, Israel, Costa Rica, Mexico, Argentina, Brazil, Chile, the Dominican Republic, Canada, Australia, Great Britain, France, Germany, Italy, Sweden, and Spain. Other semester or year-long programs offer a special curriculum for foreign students that generally focuses on fields in the social sciences and humanities, although some also offer courses in the natural sciences, architecture, business, and engineering. This type of program exists at numerous sites in Africa, Latin America, Asia, Oceania, Europe, and the Middle East.

In general, summer programs focus on language learning or the study of a specific discipline. Specialized summer and winter interim programs are offered in conjunction with aca-
demics at the university. Students may study with CU professors on programs focusing on art history in Italy, Russian language in St. Petersburg, theatre and music in London, primatology in Panama, or international finance in London. Other summer programs are offered in Israel, Costa Rica, Mexico, China, Japan, Thailand, Denmark, Iceland, France, Germany, Russia, and Spain.

Finally, the university participates in the Semester at Sea program. Each semester, the S.S. Universe Explorer, managed by the University of Pittsburgh’s Institute for Shipboard Education, voyages around the world and provides students with insights into the various societies visited and allows students to analyze and discuss their observations in formal classes on the shipboard campus. Each summer, the institute also sponsors a voyage visiting sites in Europe, North Africa, and the Middle East.

Most programs have prerequisites and some programs have language requirements. Generally, students must have a B average in their college-level work to qualify for CU study abroad programs. Planning ahead is essential and students are encouraged to consult with their academic advisors and with study abroad advisors in order to select a program that fits their needs.

More information about study abroad is available at the Office of International Education, Environmental Design 1B01, University of Colorado at Boulder, 123 UCB, Boulder, CO 80309-0123, 303-492-7741, e-mail: studyabroad@colorado.edu. OIE also maintains a web site at www.colorado.edu/OIE/StudyAbroad.

Foreign Student and Scholar Services

The University of Colorado has welcomed foreign students and scholars for many years. Currently more than 1,050 foreign students and over 600 scholars and visiting faculty members from more than 87 countries are on campus. Foreign Student and Scholar Services, a part of the Office of International Education, provides information and assistance to foreign students and visiting scholars regarding university regulations and procedures, immigration requirements, liaison with sponsors and home governments, and any other matters that are of special concern to students and scholars from other countries. All foreign students and visiting foreign scholars are urged to check in at Foreign Student and Scholar Services upon arrival at the university and to maintain contact with the staff during their stay at the university. For further information about foreign students and scholars, call 303-492-8057 or visit the web site at www.colorado.edu/OIE/fss.

International English Center

The university’s International English Center (IEC) provides intensive English-language instruction to students from all parts of the world. Classes are offered in eight-week sessions at seven levels of English-language proficiency and in all language skills. The program is designed to prepare international students for academic study at colleges and universities in Colorado and elsewhere in the United States. At advanced proficiency levels, IEC students are permitted to enroll concurrently in selected academic courses as additional preparation for a degree program.

The IEC’s fast-paced schedule is particularly appropriate for University of Colorado applicants who have been informed by the Office of Admissions that they are academically qualified but cannot be granted admission because of inadequate English-language proficiency. Such students are automatically eligible for study at the IEC. For IEC students who have not applied to CU-Boulder or any college or university in the United States, the IEC provides academic placement advice.

As a unit of CU-Boulder’s Division of Continuing Education, the IEC also offers non-intensive classes in English as a second language for non-English-speaking visitors or local residents.

Full information may be obtained from the International English Center, University of Colorado at Boulder, 63 UCB, Boulder, CO 80309-0063; in person at the IEC offices at 1030 13th Street; by telephone, 303-492-5547; by fax, 303-492-5515; or through the home page at www.colorado.edu/iec.

Music

With over 400 public concerts annually, the College of Music is a major musical resource in the Boulder-Denver metropolitan area. In addition to faculty and student recitals, the college features its own symphony orchestra, bands, and choirs in regular concerts. Music for many tastes is also provided through smaller performing organizations on the Boulder campus such as the Jazz Ensembles and the Early Music Ensembles.

Guest artists, speakers, and special events provide a vibrant and diverse musical atmosphere at the university. Acclaimed artists Dalton Baldwin, Trevor Wye, Spiro Malas, Martin Isepp, Neltia True, and Yevgeny Yevtushenko have appeared on campus.

Senior Auditor Program

During the fall and spring semesters, CU-Boulder offers a program to residents of the state who are 55 years of age or older. Senior auditors attend classes on a tuition-free, space-available basis. The only cost, outside of books if the auditors wish to buy them, is a low processing fee due at registration. No record is kept of attendance; no examinations are taken for credit; and class participation is at the discretion of the instructor. Senior auditor privileges include the use of the university’s libraries. For information, call 303-492-8484.

Service Learning Program

Service learning courses integrate academic course work with community service in a way that benefits students and faculty as well as communities. Service learning courses offer students an interesting way to apply and enhance their growing knowledge and skills, to gain work experience, to meet people in professions of interest, and to learn more about community dynamics.

Currently, over 40 faculty, 29 departments, and an average of 1,700 students at CU-Boulder annually participate in service learning courses. Linguistics students gain insights by teaching adults in literacy programs; engineering students design devices that provide greater functionality for people with disabilities; sociology students learn about community needs by working for homeless shelters; and students in scientific writing courses gain proficiency by writing proposals that bring in needed funds for K-12 science classes and scientific nonprofit organizations. Participating students gain confidence and expertise in their subject areas as they gain understanding about people and community needs.

The Service Learning Program Office works with faculty, students, community organizations, and other campus programs. To learn more about service learning opportunities at CU-Boulder, contact the Service Learning Program Office at 303-492-7718, at servicel@colorado.edu, or www.colorado.edu/servicelearning.

Theatre and Dance

Facilities for theatrical and dance presentations include the University Theatre, the beautiful outdoor Mary Rippon Theatre, the Loft Theatre, and the Charlotte York Irey Dance Studio.

The Department of Theatre and Dance presents six to eight major theatre productions each academic year. The 2000-01 season included Waiting for Godot, Fifth of July, Love’s Labor’s Lost, Songs in the Key of… Caffeine, and Curse of the Starving Class. The dance program presents several concerts featuring student, faculty, and guest artist work.

The Colorado Shakespeare Festival (CSF) is presented each summer in the outdoor Mary Rippon Theatre. One of the few repertory groups in the nation to have completed the entire Shakespearean canon, the festival has had 44 years of distinguished
history, and features the most advanced stu-
dents in the CU-Boulder theatre and dance
program as well as professional actors, direc-
tors, designers, and outstanding performers
and technicians from advanced training
programs throughout the country. CSF
“alums” include Jimmy Smits, Annette
Bening, Joe Spano, Tony Church, and Val
Kilmer. Also in the summer, the department
co-sponsors the Colorado Dance Festival
and hosts the Jazz Dance Workshop.

Undergraduate Research
CU-Boulder offers several ways for under-
graduate students to participate directly in
research and creative work. Through such
involvement, students acquire knowledge
and skills seldom attained through class-
room experience alone. Project results some-
times are presented at national professional
meetings or published in scholarly journals.

College of Arts and Sciences
Honors Program
Students in the program have the opportu-
nity to collaborate with faculty on research
and creative projects in any area of the col-
lege. Some students select highly individual-
ized projects, while others become involved
with major ongoing research programs.
Each student who wishes to graduate with
honors is required to complete a senior the-
sis. The thesis is usually a research paper or
creative essay, depending upon the project.
The thesis experience stresses intellectual
independence and introduces students to
proper research methods and creative tech-
niques in preparation for graduate or profes-
sional work. See Honors Program in the
College of Arts and Sciences chapter of this
catalog for detailed information.

Independent Study
Independent study course work provides
students the opportunity to become
involved in projects of their own choice.
Projects could include writing a play, doing
laboratory research, or designing a space-
shuttle experiment. The number of credit
hours earned depends upon the scope of the
project. In all cases, work is done under the
supervision of a faculty member and should
be arranged as early in the semester as possi-
ble. Departmental and faculty approval is
required, and all deadlines must be met.
Students should consult with their associate
dean’s office about any special provisions.

Undergraduate Research Opportunities Program
The Undergraduate Research Opportunities
Program (UROP) sponsors undergraduate
students who work in partnership with a
faculty member on a research or creative
project. UROP involves students in all areas
of research—from writing proposals, to con-
ducting research or pursuing creative work,
to analyzing data and presenting results.

Interested students must identify a project
and a faculty sponsor and then submit a pro-
posal. Projects are designed around an aspect
of the faculty sponsor’s research or involve
research or creative work of the student’s own
design. Proposals are evaluated on a competi-
tive basis. Students are awarded up to $1,200
in stipends and/or expense allowances to
support their projects. A limited number
of $2,400 summer research fellowships are
offered to enable students to spend the entire
summer engaged in research. For information
concerning opportunities for undergraduate
research, contact the UROP office in Norlin
M400H, 303-492-2596.

United Government of Graduate Students
The United Government of Graduate Stud-
ents (UGGS) represents more than 5,000
graduate students, law students, and business
students on the Boulder campus. UGGS, the
graduate student link to the Graduate School
and other administrative bodies, actively
pursues goals intended to enrich the quality
of life on campus and the quality of graduate
work for the university. As such, UGGS is
committed to full health and child care bene-
fits for graduate student employees of CU,
elimination of the mandatory athletic
department fee, clarification of policies
regarding research and teaching assistants,
improved teacher training programs, and pro-
vision of a multicultural campus.

UGGS holds bimonthly meetings during
the academic year and monthly meetings dur-
ing the summer. Graduate students from each
department choose or elect representatives for
the legislative governing body; UGGS officers
are elected from among the departmental rep-
resentatives. All are welcome to the general
meetings.

For further information on the United
Government of Graduate Students, call
303-492-5068, drop by at UMC 408, or
visit the web site at uggs.colorado.edu.

University of Colorado Student Union
Through the University of Colorado Student
Union (UCSU), students make poli-
cies and control many Boulder campus
facilities and programs. Based on its budget
of more than $24.3 million, half of which
comes from student fees and the other half
from self-generated revenues, UCSU is the
nation’s largest student government. UCSU
operates facilities such as the Wardenburg
Health Center, the University Memorial
Center (UMC), the Student Recreation
Center, and the campus radio station,
KVCU. UCSU also offers students off-camp-
us housing assistance, legal counseling, and
many other services.

UCSU is divided into executive, legisla-
tive, and judicial branches. The UCSU
executives, elected each spring by fee-paying
students, head the executive branch. In rep-
resenting the students, the executives work
with the Board of Regents and the CU-
Boulder administration on university poli-
cies and decisions. Support staff includes
student administrators who work in key ad-
mnistrative offices and serve as liaisons be-
tween the students and the administration.

The legislative branch of UCSU is com-
posed of an 18-member Legislative Council.
Nine seats are occupied by representatives of
the colleges and schools; the remaining nine
seats are occupied by elected representatives-
at-large. The joint boards on which council
members and any interested student may
serve include those in the environmental,
recreation, health, finance, cultural events,
and UMC areas.

The Appellate Court is UCSU’s judicial
branch. The seven students appointed by
the executives as justices to the court are
responsible for interpreting the UCSU con-
stitution and ruling on specific appeals
brought before them.

For more information regarding UCSU and
getting involved, call 303-492-7473 or
stop by UMC 333 between 8:00 A.M. and
5:00 P.M.

CAMPUS SERVICES

Career Services
The Career Services Center offers career
planning, internships, and assistance in
finding postgraduate employment. Career
development should be an integral part of a
student’s higher education, and students are
encouraged to use these services throughout
their university experience. Located on the
ground floor of Willard Administrative
Center, the Career Services office is open
year-round and serves university alumni as
well as students. Fees are charged for intern-
ship and career assistance services. Call 303-
492-6541 or refer to www.colorado.edu/
careerservices for more information.

Career Planning
Individual Career Counseling. Professional
counselors are available to help students
make informed career plans and decisions
and to develop strategies for conducting a
job search. Counselors are available on an
appointment basis and during scheduled
“walk-in” hours.
Videotaped Practice Interviews. Students have the opportunity to develop skills and techniques useful in interviews for employment or graduate or professional school admission. A videotaped mock interview, in which a counselor plays the role of the interviewer, helps the student understand the interview process and prepare for it. The student and the counselor review the tape and evaluate the student’s interview strengths and weaknesses.

Career Library. Information about thousands of occupations, educational institutions, and apprenticeship/internship opportunities is located in this library. Many other career-related books and electronic resources are available, including job vacancies, job market studies, employer directories, job search literature, and employer information (recruiting brochures, annual reports, etc.). Students can also arrange to take the “Discover” test, a computerized career counseling system with information on nearly 500 occupations, graduate schools, self-assessment, career decision-making, and job strategies. Discover is available by appointment. The library is open Monday through Friday from 8:00 a.m. to 5:00 p.m.

Presentations. Presentations are held throughout the year to sharpen students’ job-hunting and career-planning skills. Topics include skills and interests analyses, résumé writing, job search strategies, interviewing, and career planning. Students are encouraged to attend an appropriate presentation before seeing a counselor.

Career Assistance Services
These services are available to all graduating students:

On-Campus Interviewing. Career interviews are coordinated with over 400 employers annually. These interviews take place on campus or at the employer site. Participating students are required to attend an orientation session the first week of classes during the fall semester of their graduating year.

Employer Presentations. These meetings allow employers to give presentations about their organization and career positions on campus.

Employer Host. This program provides opportunities for students to network with employers at their information meetings.

Résumé Referral. Throughout the year, over 14,000 résumés are referred to employers who screen for candidates and contact them for interviews.

Career Vacancies. Approximately 5,000 positions are listed annually on the Web, which can be accessed by an access code.

Credentials. Letters of recommendation in support of graduate school or educational employment are kept on file and sent out upon request.

Internship Program
Participating in the Internship Program helps students explore and experience career possibilities firsthand. Internship placements are carefully structured and well supervised, offering students professional-level challenge, instruction, and responsibility. Part- and full-time placements are available to degree-seeking students with good academic standing in their college or school. All students are encouraged to enroll in this program. A $55 fee is charged for the application process and referral that runs for a full year.

Counselors assist students in obtaining an internship placement. Students interested in finding out more about enrolling in the Internship Program should attend an orientation. Stop by the office in Willard Administrative Center 18, or call 303-492-4129.

National and Institutional Testing
The center administers the following tests: Foreign Service Exam, GMAT, GRE, LSAT, MCAT, SAT, Achievement, and TOEFL. These are both traditional “paper and pencil” tests as well as computer-based tests. Registration and information packets for these tests can be picked up at the west entrance to Willard Administrative Center or in Willard 29.

The department also administers the ACT-Residual, CLEP (to test out of classes in biology, general chemistry, general psychology, introductory sociology, and calculus with elementary functions), the Graduate School Foreign Language Test (to test out of a CU-Boulder foreign language requirement), and the MAT. The following exemption tests from arts and sciences requirements are also administered: geography, quantitative reasoning and mathematical skills, undergraduate foreign language (French, German, Russian, and Spanish), and written communication. Registration and information forms for these tests can be picked up in Willard 84. For updated, recorded information on these tests, call 303-492-1253 at any time.

Child Care
The University of Colorado Children’s Center offers toddler and preschool programs for children 12 months to five years of age. There are two locations within the university: Newton Court and Smiley Court. The Children’s Center is a nationally accredited program and is licensed by the state of Colorado. The center serves children of university students, staff, and faculty. The center is open from 7:00 a.m. to 5:30 p.m., five days a week. For further information, call 303-492-6185.

Computing and Media Resources
Information Technology Services
Information Technology Services (ITS) supports teaching, learning, research, and administration through state-of-the-art media, computing, telephone, and networking resources.

Technology is highly used on the Boulder campus. Indeed, CU-Boulder has the highest-speed connection to the Internet in Colorado and one of the fastest in the nation. E-mail and web services are available to all campus constituents, via both Ethernet and dial-up access, with over 6,000 use of the modem lines during peak times each day and some 17,000 computers on campus connected to the Internet. The campus servers process over one million e-mail messages each week and host approximately 1,400 e-mail discussion lists and 7,000 newsgroups. The academic use of technology is increasingly integral to a CU-Boulder education; a personal computer is being strongly recommended for incoming students. Courses have a web presence and all of the residence halls provide a 100-megabit-second (Mbps) Ethernet jack to each student in every room.

ITS offices are located in three main areas: Folsom Stadium, the Computing Center, and the Telecommunication Center. The stadium location houses the media component of ITS, as well as faculty services and scanning; the Computing Center houses the computing and networking component of ITS, as well as scanning; and the Telecommunication Center houses ITS’ frontline user services, including the IT Service Center. The main ITS number is 303-735-HELP (4357). The stadium location can be reached directly by calling 303-492-8282; fax 303-492-7017. The Computing Center is located at 3645 Marine Street; phone 303-492-8172; fax 303-492-4198. The Telecommunication Center is on main campus and can be reached by phone at 303-492-1282, or fax at 303-735-3297. ITS’ home page is at www.colorado.edu/ITS.

Support Services
ITS offers a wide variety of support services, including a walk-in help center, free computing advising, seminars, workshops, help documents, and regular newsletters. All documentation is available in hard copy and at www.colorado.edu/ITS/docs. The IT Service Center offers call-in, walk-in, and e-mail help Monday through Friday, 8 a.m. to 5 p.m., with after-hours call coverage. The Telecommunication Center (two blocks east of the University Memorial Center) can be reached at 303-735-HELP, or by e-mail at help@spot.colorado.edu. Walk-in help is also provided in the two largest cam-
pus labs, Norlin N310 and Engineering ECCR 225. ITS BugBusters visit faculty and staff offices by appointment for one-on-one computer troubleshooting.

Free lunchtime seminars and other hands-on computer workshops are provided for faculty, staff, and students to facilitate the incorporation of technology in academic life. More information is available at www.colorado.edu/its/training.

ITS supports and encourages the use of video and audio tapes, slides, computer graphics, and multimedia and web-based presentations, as well as a variety of audiovisual equipment, through the following user-service facilities: WebCT (for faculty), Graphics, Faculty Services, the Video Library, and the Technology Experimentation Center (TEC). WebCT helps faculty create course-related web sites. (For help with departmental web sites, contact the office of Web Communications at 303-735-8000.) Graphics creates a wide variety of graphics for instructional use, from book covers to lecture slides. Faculty Services offers one-on-one consultation to ensure that every faculty member has access to ITS services. The Video Library contains a collection of 3,500 instructional videotapes and films for on-campus use. The TEC advises faculty on how to use instructional technologies effectively, and allows faculty and staff to experiment with the technologies that are available at the TEC.

Classroom Support
Staff members, assisted by student employees, work closely with faculty in over 90 self-service technology classrooms and more than 10 operator-assisted technology lecture halls. All of these rooms have Ethernet connections and most can project computer images onto large screens for full-class viewing.

Web Pages
The campus provides information services through an extensive set of World Wide Web pages. The CU-Boulder web site includes calendars, directories, available courses, job listings, department and individual home pages, weather, transportation, and maps. Students can create computing accounts, check their class schedules, look up grades from previous semesters, and billing information from any of the computing labs and from more than 75 kiosks around campus.

Computing Labs
ITS maintains over 60 student computing labs, which house more than 1,400 systems and their peripherals. Facilities include instructional and general-use labs equipped with Unix, Macintosh, Windows, and NT workstations. All are connected to the campus network. Some of the labs are focused on specific disciplines or applications, such as foreign language instruction, statistics, or graphics, but most are available for general-purpose use. The two largest labs, one in Norlin Library and one in the Engineering Center, are staffed by computing advisors. In addition to the resources that ITS provides, a large number of departments support their own computing facilities for administration, special research, and instruction, including the Department of Housing.

Media Production
ITS Media Production Services offers a wide range of support for faculty, staff, students, and departments on campus. These services include video/audio production, media digitizing and compression services, streaming media, studio and mobile video production, video and audio duplication, digital editing, cable TV programming, satellite downlink/uplink, video conferencing, video-editing and audio self-help facilities, custom graphics production, graphics design, photographic services, and media-production consultation.

Personal Computer Maintenance
At PC Maintenance, certified technicians repair personal computers and peripherals, doing both warranty and nonwarranty work both on-site and in-house. PC maintenance is located in the Stadium, gate 6, room 142, and is open from 8:00 a.m. to 5:00 p.m.

Networks
ITS is responsible for the major data communications networks on campus, which provide both communications within the campus and gateways to national computing networks via the Internet. These networks provide access to a host of computing resources, including the University Libraries’ bibliographic and information systems; the exchange of electronic mail with other faculty, staff, and students on the campus and around the world; and access to national resources such as library catalogs, databases, and research institutes. ITS also works with campus departments in designing and developing local area networks.

Core Business Systems
The applications and information systems group provides a full range of support for administrative computing at CU-Boulder, including systems development and maintenance, computing site management, and office consulting.

Server Support
UnixOps provides support for servers. UnixOps offers Unix system administration and operation for campus departments.

Counseling and Psychological Services: A Multicultural Center
Services are free and available to all CU-Boulder students, staff, and faculty. The center is a safe place to talk confidentially with a professional psychologist or counselor who understands and respects individual needs.

Counseling Services
Individual counseling and therapy. The center offers free counseling to individuals, couples, and families in order to meet personal, professional, cultural, academic, and career needs. Some concerns brought to the center include relationships, stress management, conflicts, trauma, sexual harassment, workplace issues, cultural identity, depression, racism, suicidal thoughts, eating disorders, coming-out issues, etc.

Free groups and workshops are offered on subjects such as assertive communication, anxiety, women’s support, surviving trauma, grief and loss, dissertation support, and adoption.

Interest testing (for a nominal fee) and counseling are available to guide choices in field of study and life planning.

Peer counselors are juniors and seniors who are trained in general counseling techniques and can provide confidential support in finding a major, homesickness issues, adjusting to life at CU-Boulder, test anxiety, and stress management.

The Multicultural Development Team is a professional, intentionally diverse group of community members committed to social justice and to building a university community that is compassionate toward all its members. The team educates and consults with students, staff, faculty, and the broader community.

The Organizational Development Team works with campus departments and student groups to improve communication in their working relationships.

Contacting Counseling. The office is located in Willard Administrative Center 134, phone 303-492-6766. Information is also on the Web at www.colorado.edu/sacs/counseling.

Cultural Unity Center
The Cultural Unity Center (CUC) is staffed by a diverse team of university personnel and students. Working with undergraduate students of color throughout their college career, CUC helps students form caring partnerships that are supportive of their goals.

Student Development. CUC helps students recognize that they are a vital part of the campus community. As students settle into the campus routine, it is helpful for them to become acquainted with the many services and resources available. CUC helps students
become connected. Not only does it offer direct services such as individualized cultural counseling, educational planning and orientation, and career development, through an active referral network it also helps students become aware of the many other campus and community resources.

Community Development. Through the efforts of a sensitive and caring CUC staff and a host of other identified resources, undergraduate students of color are assisted to proactively use programs such as the Students of Color Leadership Seminar, Parents as Partners, and services that link them to mentors and invaluable resources on and off campus. CUC communicates directly with students and student groups, connecting them with university and community resources.

Awareness and advocacy of student rights and issues involving gender, racial, cultural, and other forms of difference are also offered by the CUC through its diverse staff and through its Diversity Education Team (DET). The DET offers workshops, seminars, consultation, and other forms of assistance to individuals and groups on campus concerned with issues of culture, ethnicity, and race.

For more information on CUC, stop by Willard Administrative Center 118, or call 303-492-5666 or 303-492-5667 between 8:00 A.M. and 5:00 P.M., Monday through Friday.

Disability Services
Disability Services (DS) provides support and advocacy to students with disabilities so they can access the academic, social, and cultural life of the university. Students must initiate a request for services and submit appropriate documentation (documentation requirements are on the web site below). Support services are provided on an individual basis and include assistance with advocacy, academic advising, strategy development, and campus and community referral.

Physical and Communication Access
Physical and Communication Access provides support services to students who are deaf or hard of hearing, mobility impaired, and blind or visually impaired. Support services include interpreting services, Communication Access Real-Time Translation (CART), C-Print, alternate print texts, and assistance with physical access, etc.

Individualized support is also provided.

The Academic Access and Resources Program of DS provides support services to students with non-visible disabilities (i.e., learning disabilities, AD/HD, head injury, psychiatric disabilities, etc.). Support services include screeners/psychoeducational testing and interpretation (fee: $250), and individual sessions with a disability specialist to work on strategies. In addition, DS provides a writing lab and a career program for students with disabilities.

The Assistive Technology Lab allows students with disabilities access to computer systems, information resources, and online services. The lab also provides alternate writing tools and access to print materials.

For further information about services for students with disabilities, call 303-492-8671, fax 303-492-5601, write to Disability Services, University of Colorado at Boulder, 107 UCB, Boulder, CO 80309-0107, or visit the DS web page at www.colorado.edu/sasc/disability.services.

Environmental Health and Safety
Environmental Health and Safety (EH&S) is a division of the Public Safety Department. Campus safety and environmental stewardship are responsibilities shared by every member of the university community. In this sense, EH&S is striving for partnerships in safety through quality services and education.

Five programs within the division focus upon these goals through preventive, remedial, and emergency response measures:

The Environmental Compliance Unit ensures that the university is in compliance with all applicable environmental regulations through on-site inspections, training, and program review. Its staff also investigates incidents and initiates policy within fields such as indoor air quality, water quality, and health exposures.

The Health Physics Laboratory oversees the safe and responsible use of radioactive materials and radiation-producing machines.

The Hazardous Materials Management Unit educates and serves the university toward the minimization, safe-handling, and appropriate disposal of hazardous materials.

The Asbestos and Lead Management Unit specializes in the testing, detection, and responsible abatement and disposal of materials containing asbestos and/or lead.

The Emergency Planning Coordinator works collaboratively to develop business recovery plans for individual departments and contingency plans and procedures for the university as a whole.

For more information about EH&S, call 303-492-6025, fax 303-492-2854, send e-mail to ehs@stripe.colorado.edu, or visit the web site at ehs.colorado.edu.

Ombuds Office
The Ombuds Office provides confidential, informal, independent, and neutral dispute resolution services for all members of the university community. The office assists students, faculty, and staff in identifying and evaluating options for resolving and managing conflicts, provides mediation services, conducts workshops on conflict management, and makes referrals to other appropriate university and community resources.

The staff is familiar with the organizational structure of the university and can provide current information about campus services, programs, policies, and procedures.

Due to its informal, confidential, and independent role outside the administrative structure of the university, notice to the Ombuds Office about a problem does not result in the generation of records, nor does it constitute legal notice to the university about the existence of a problem. For those interested in making official complaints to the university about a problem, the Ombuds Office can assist by making appropriate referrals.

For more information, contact the Ombuds Office, University of Colorado at Boulder, 112 UCB, Boulder, CO 80309-0112, 303-492-5077 or visit the Ombuds Office web site at www.colorado.edu/Ombuds.

Parking and Transit Services
Frequent Parking. Those who park on campus frequently should consider buying a parking permit. Permits may be purchased online in late spring (www.ucbparking.colorado.edu), during the permit sale at Coors Events/Conference Center the week before classes start each semester, and in the lobby at 1050 Regent Drive any other time. Call the permit information line at 303-492-3550 for permit availability, or call Parking and Transit Services at 303-492-7384 for general permit information.

Students buying a permit must present their photo ID and a valid state vehicle registration card at the time of purchase. No one can buy a permit for another person. Permits may be returned for a prorated refund. Permits must never be sold or transferred to another person.

Permit Rates and Payments. Permit rates are determined by location. Semester rates range from $81 to $139.50; academic year (August-May) rates range from $162 to $279. Fees are subject to change without notice. Visa, MasterCard, American Express, or student bills may be charged, or permits can be purchased with cash or check. All online purchases require charges to a credit card or student bill. Permit rates are lower during summer sessions. Charges cannot be made to student bills for summer-session permits.

Visitor Parking. The Euclid Avenue AutoPark, located just east of the UMC, provides visitor parking at an hourly rate. Visitors may also park at the 600 parking meters and the three pay-on-foot stations on campus. Meters require payment seven days a week between 7:30 A.M. and 5:00 P.M. Temporary parking permits are available for occasional needs. Call the business office at 303-492-7384 for more specific information. Visitor parking locations are high-
lighted on the campus parking map, which can be obtained at Parking and Transit Services, 1050 Regent Drive.

Bicycle Program. Bicycles parked on campus must be registered with Parking and Transit Services at a cost of $5 for up to four years. Bicycles bearing valid registrations from other jurisdictions may be registered on campus at no charge. Unregistered bicycles parked on campus may be impounded. Bikes can be registered at the Coors Events/Conference Center during the week before fall semester begins and at the bike kiosk, between the music building and Wardenburg Health Center, during the semester. Call 303-492-2322 for bicycle parking and registration information.

Parking and Traffic Regulations. Complete parking and traffic regulations can be obtained at the Parking and Transit Services office, 1050 Regent Drive, Boulder, CO 80309-0502. Call 303-492-7384 for any questions. Campus parking regulations are strictly enforced.

Photo ID Cards/Buff OneCards
The Buff OneCard is the official CU-Boulder student ID to be used for a student’s entire career at CU-Boulder. The card is required as official verification of eligibility for many student privileges, including access to the Student Recreation Center, the university libraries, and Wardenburg Health Center, as well as for buying football tickets and getting free or discounted rides on local and regional buses. The card also offers three convenient, optional features. Buff Bucks is the quick-cash program for on-campus debit purchases at places like the UMC Grill, Domino’s Pizza, and many others. The Buff Gold option turns the card into a debit card recognized at places like the UMC Federal Credit Union. Each card also can be used as a long-distance calling card. For more information on these programs, call the Buff OneCard office at 303-492-0355 or visit the web site at www.colorado.edu/buff-onecard.

The first card is free for fees-paying students. All others cost $15. After paying the confirmation deposit, students can get a Buff OneCard by bringing picture identification to the Buff OneCard Office, located in UMC 25, across from the CU Book Store. Hours are Monday through Friday, 9:00 A.M. to 4:30 P.M.

Planning, Budget, and Analysis
The Office of Planning, Budget, and Analysis provides direction and support for campus budgeting, planning, and management. The office is responsible for directing and supporting campus budgeting, planning, and management through oversight of budget services, institutional research, and planning processes; providing institutional analyses, assessments, and information for decision support; supporting the development of operating budget requests; maintaining a balanced and fiscally healthy annual budget; providing assistance to campus units on the use or development of management information and technology; and serving as the liaison with the system office and the Colorado Commission on Higher Education (CCHE) on planning issues and requirements. The office also administers the faculty course questionnaires (FCQs), which give students the opportunity to evaluate their courses and instructors. For more information, call 303-492-8631.

Speech, Language, and Hearing Center
The Speech, Language, and Hearing Center provides a complete range of speech, language, and hearing services to students, faculty, staff, and members of the community. Services include evaluation and treatment programs for hearing, articulation, voice, stuttering, language, and learning problems. Programs for children and adults with communication problems related to learning disabilities, strokes, head injury, developmental delays, and other concerns are available on an individual and group basis. A group for individuals who stutter and voice treatment for persons with Parkinson’s Disease are two examples of services offered. The center dispenses and services hearing aids and offers instruction on using aids. The center also houses the Child Learning Center, with an inclusive toddler and preschool program for children ages two to five and parent/infant interaction groups. For more information about the center’s programs and services, call 303-492-5375.

Student Academic Services Center
The Student Academic Services Center (SASC) offers academic support services to help students improve their learning potential.

Academic Excellence Program
The Academic Excellence Program offers academic, logistic, and counseling assistance to qualified students wishing to improve their academic success. Program activities include individual sessions, tutor-supervised study halls, and workshops on such topics as note taking, reading strategies, test preparation, career exploration, and time management. Undergraduate students who are the first generation in their family to receive a four-year college degree, are low income, and/or have a physical or learning disability may be eligible to participate.

Ronald E. McNair Postbaccalaureate Achievement Program
The McNair Program prepares eligible CU-Boulder undergraduates for graduate study at the doctoral level. Twenty McNair Scholars are selected each year to participate in both academic-year and summer activities. The McNair Achievement Program aims to increase participation by citizens from groups underrepresented in graduate education. The web address is www.trio.gov.

McNeill Academic Program
Through this program, the Student Academic Services Center offers courses in writing and college algebra in a small classroom setting, as well as support services in English as a second language, science, study skills, and academic advising to a selected group of students. Students also benefit from participation in a specially designed leadership class and planned special events.

Support Services
SASC provides a range of services tailored to meet the specific academic and personal needs of eligible students. These include alternative core curriculum courses in math and writing, tutorial support and academic skills development in key subject areas, and tutorial referral in a wide range of subjects. Academic specialists provide guidance and assistance in meeting students’ academic goals. Assistance is also available in other areas such as counseling, financial aid, academic advising, and career exploration.

Students interested in these services can come to Willard 386 or call 303-492-1416. The e-mail address is SASC@colorado.edu and the web site is at www.colorado.edu/SASC.

Veterans’ Services
The Veterans’ Services Office is part of the Office of Financial Aid and helps eligible students apply to the Department of Veterans’ Affairs for educational benefits. As a condition of receiving benefits, prospective students must be accepted to a degree program at CU-Boulder or acceptance must be imminent.

A certified copy of Copy 4 of the DD-214 may be required in order to apply for educational benefits as a veteran; this form is available from local county clerk and recorders’ offices without charge. The certified copy must have the raised seal of the county clerk. If the veteran has used educational benefits any time since discharge from active duty, a certified copy of Copy 4 of the DD-214 is not necessary. Persons on active duty who wish to take advantage of their educational benefits under any of these pro-
ograms should contact their base education officer for eligibility requirements.

CU-Boulder students receive VA educational benefits under the following programs.

Veterans’ Educational Assistance Program (VEAP), Chapter 32. Students must have entered active duty on or after January 1, 1977, and before July 1, 1985, and have participated in the program while in the service.

Chapter 30, Montgomery GI Bill, Active Duty. Students must have entered active duty on or after July 1, 1985, and participated in the program while in the service. Also eligible are those veterans who entered active duty before January 1, 1977, and who served continuously on active duty through June 30, 1988 (or June 30, 1987, with at least a four-year obligation to the Selected Reserve).

Dependents’ Educational Assistance Act, Chapter 55. Students between the ages of 18 and 26 who feel they are eligible to receive educational benefits due to the death of a parent in active military service or a parent’s service-connected disability should establish their eligibility with the local Department of Veterans’ Affairs regional office.

Children and spouses of 100-percent-disabled veterans may also qualify. Applicants must provide the VA file number and a certified copy of their birth certificate to the Veterans’ Services Office in order to initiate the educational benefits. Those students eligible for social security benefits under the Restored Entitlement Program for Survivors (REPS) should contact the Veterans’ Services Office or the local Department of Veterans’ Affairs regional office.

Chapter 1606, Montgomery GI Bill, Selected Reserve. Students may be eligible if they enlisted, reenlisted, or extended an enlistment in the Selected Reserve or National Guard for a period of six years beginning on or after July 1, 1985. Each student must provide the Veterans’ Services Office with a Notice of Basic Eligibility, DD-2384, from the reserve or guard unit.

Disabled Veterans, Chapter 31. Veterans may be entitled to vocational rehabilitation benefits of tuition, fees, books, and a monthly stipend if they meet the following conditions: they were discharged from the service under other-than-dishonorable conditions; they have a service-connected disability for which they are receiving or could elect to receive VA compensation; and the Department of Veterans’ Affairs determines they need rehabilitation services and assistance to overcome an employment handicap or to improve their capacity for independent living in their family and community. Interested persons should contact the Department of Veterans’ Services Vocational Rehabilitation at 303-914-5550.

Payment. Students may request advance payment by completing the proper forms at the Veterans’ Services Office at least 60 days before the start of a term (they must not have used the benefits in the 30 days preceding the term). The advance paycheck for the first month (or partial month) and the succeeding month is delivered to the Veterans’ Services Office. The next educational benefit check and subsequent checks are sent to the student’s address for that enrollment period.

The office has a counselor on staff to assist students with planning academic schedules in relation to VA regulations. Financial aid counseling is also available. The office is located in the Office of Financial Aid, Environmental Design, room 2. For further information, call 303-492-7322.

Wardenburg Health Center

Wardenburg Health Center is a convenient, comprehensive, on-campus health care and wellness facility providing a wide range of medical, women’s health, mental health, and sports medicine services. Health promotion programs include peer education, interactive theater, wellness, sexual health, and alcohol prevention activities, as well as a cold care clinic and musculoskeletal injury screening clinic. The physicians employed are board certified, and Wardenburg received the highest rating of any medical center in Boulder County from the Joint Commission on Accreditation of Healthcare Organizations.

Who Can Use the Health Center

All CU-Boulder students who pay full student fees or the Wardenburg student affiliate fee (including Continuing Education, ACCESS, Time Out, graduate, and law students) can use the free programs and services provided through the health center, regardless of insurance coverage. These students also have access to the fee-based programs and services.

The health center is the PCP (primary care provider) for the university-sponsored Golden Buffalo student health insurance plan. (See the Expenses section of this chapter for more information.) Most illness and injury expenses are covered at 100 percent when this insurance is purchased.

Workers’ compensation/occupational health benefits are also provided for CU-Boulder students, faculty, and staff.

Any CU-Boulder employee (faculty, staff, active or retired retiree, or family member of an employee—i.e., spouse/domestic partner and/or dependent) is eligible to pay cash for services if their insurance does not cover expenses at the health center.

Health Records

A confidential health record is created after each person’s first visit to the health center. This health information cannot be released without written consent unless mandated by law. If students are under 18 years of age, their parents(s) or legal guardian(s) must sign a “Consent for Treatment” form, which is then kept in the health record file. Medical and mental health records are not included in the general university record system. Health records are maintained in compliance with federal and Colorado laws and are destroyed in a confidential manner after 10 years.

Fee-Based Services

Fee-based services include the medical clinic for illness and injuries, men’s health, travel services, GLBT services, immunizations, nutrition, pharmacy, sports medicine, physical therapy and massage therapy, specialty services, women’s health, emergency contraception, birth control and pregnancy tests, psychiatry services for crisis intervention and outpatient psychotherapy, and laboratory and radiology.

Services Offered for Free

Free services include peer education programs, smoking cessation, bipolar and diabetes support groups, HIV testing, the musculoskeletal injury screening clinic, cold clinic, body image and aromatherapy sessions, safer spring break program, sexual health, the CU Rape and Gender Education program, interactive theater, wellness and alcohol prevention programs, student resource center, CU Victim Assistance, health fairs, skin cancer screening, blood pressure screening, and many more outreach services.

Hours

Fall and Spring Semesters

Monday–Thursday, 8:00 a.m.–6:00 p.m.
Friday, 8:00 a.m.–5:00 p.m.
Saturday–Sunday, 11:00 a.m.–4:00 p.m.

Summer Session

Monday–Friday, 8:00 a.m.–5:00 p.m.
Saturday, 10:00 a.m.–2:00 p.m.

*Hours change during holidays and breaks

Emergencies

When Wardenburg is closed, the nearest 24-hour emergency service is the Boulder Community Hospital Emergency Room (303-440-2273), on the corner of North Broadway and Balsam. Payment for services is the responsibility of each individual.
Accessing Wardenburg Health Center
Appointment times are available for medical, mental health, and women’s health services, as well as HIV testing. Urgent medical or mental health services are available for those who cannot wait for an appointment due to the nature of the illness, injury, or personal crisis.

Walk-in service is available during business hours for the cold clinic, musculoskeletal injury screening clinic, student resource center, and the community health education programs such as peer education, wellness, sexual health, rape and gender information, and consultations.

Location
Wardenburg Health Center is located at the corner of 18th Street and Wardenburg Drive. The mailing address is Wardenburg Health Center, University of Colorado at Boulder, 119 UCB, Boulder, CO 80309-0119; the phone is 303-492-5101; and the web site www.colorado.edu/wardenburg.

Parking Information
Validated parking is available to all health center patients at the Euclid Avenue AutoPark, one block from the health center. The AutoPark ticket can be validated by Patient Financial Services staff for the duration of stay in the health center. Close-in parking for the disabled or emergency customers is available at no cost near the health center’s southwest entrance in lot 324.

CAMPUS POLICIES

Academic Integrity
A university’s intellectual reputation depends on maintaining the highest standards of intellectual honesty. Commitment to these standards is a responsibility of every student, faculty, and staff member on the University of Colorado at Boulder campus.

A student-run honor code (see page 3) is scheduled for implementation fall 2001. The intent of the honor code is to establish a community of trust within which students do not lie, cheat, or steal. An honor council will collaborate with the colleges and schools in addressing acts of academic dishonesty.

Breaches of academic honesty now include cheating, plagiarism, and the unauthorized possession of exams, papers, computer programs, or other class materials that have not been formally released by the instructor.

Cheating
Cheating is defined as using unauthorized materials or giving or receiving unauthorized assistance during an examination or other academic exercise. Examples of cheating include: copying the work of another student during an examination or other academic exercise (includes computer programming), or permitting another student to copy one’s work; taking an examination for another student or allowing another student to take one’s examination; possessing unauthorized notes, study sheets, or other materials during an examination or other academic exercise; collaborating with another student during an academic exercise without the instructor’s consent; and/or falsifying examination results.

Plagiarism
Plagiarism is defined as the use of another’s ideas or words without acknowledgment. Examples of plagiarism include: failing to use quotation marks when quoting from a source; failing to document distinctive ideas from a source; fabricating or inventing sources; and copying information from computer-based sources, i.e., the Internet.

Unauthorized Possession or Disposition of Academic Materials
Unauthorized possession or disposition of academic materials may include: selling or purchasing examinations or other academic work; taking another student’s academic work without permission; possessing examinations or other assignments not formally released by an instructor; and/or submitting the same paper for multiple classes without specific authorization.

Sanctions
Breaches of academic honesty will result in disciplinary measures that may include: a failing grade for a particular assignment; a failing grade for a particular course; and/or suspension for various lengths of time or permanent expulsion from the university.

Procedures
Each college and school has developed procedures to enforce its statement or code of academic honesty. These generally contain a requirement that a student accused of academic dishonesty be notified of specific charges, that the student be given an opportunity to respond to the charges before an unbiased individual or committee, and that the student be notified in writing of the decision or recommendation made by the individual or committee reviewing the charges. If a student wishes to appeal a case, the student should request a listing of the procedures used by his or her school or college and follow the requirements therein.

Students are under the academic standards and codes of their primary college. This is the academic body that takes action on any violation of academic standards. The academic unit that taught the course in which an academic standards breach is alleged will cooperate with the appropriate college disciplinary committee.

Breaches of academic honesty are under the purview of each college and school pursuant to the Laws of the Regents, Article 4A6. For further information and for individual college and school policies, students should consult their dean’s office.

Academic Program Discontinuance
In the event a degree program is discontinued, students currently enrolled in the program have a four-year period in which to complete their degree requirements. This four-year period starts with the date of the Colorado Commission on Higher Education (CCHE) action to discontinue the program. No new or returning students will be admitted into a discontinued degree program. Students not completing the degree requirements in the four-year period are not permitted to receive the discontinued degree. In such cases, credits accumulated may be applied to the overall number of credits required toward graduation, but the student must seek the advice of their college or school to determine how these credits might apply to a new degree program.

Alcohol and Other Drugs
In order to create the best possible environment for teaching and learning, the University of Colorado at Boulder affirms its support for a responsible campus policy that addresses the inappropriate use of alcohol and other drugs. The university is proud to be one of 10 universities in the United States to participate in a program, titled “A Matter of Degree,” that is supported by the Robert Wood Johnson Foundation and the American Medical Association. This program is designed to increase the safety and health of the campus and larger community in regard to the use of alcohol.

The university complies with all federal, state, and local laws concerning alcohol and illegal drugs. As a CU-Boulder student, you are responsible for acquainting yourself with the laws and university policies regarding alcohol and other drugs. University policies regarding alcohol consumption and illegal drug use are described in several publications: Students’ Rights and Responsibilities Regarding Standards of Conduct and Alcohol and Drug Policy, available in the Office of Judicial Affairs; A Guide to Residence Hall Living, available at the Department of Housing; and Ralphie’s Guide to Student Life, distributed to new and continuing students. In addition, Wardenburg Health Center provides individual and group counseling for students with substance abuse problems.

For further information on campus policies, call the Office of Judicial Affairs, 303-492-5550; for policies within campus
Final Examination Policy

It is the policy of the University of Colorado at Boulder to adhere to the final examination schedule as published in the Registration Handbook and Schedule of Courses each semester. While it may be appropriate not to give a final in some cases, such as laboratory courses, seminars, and colloquia, final examinations are integral parts of the instructional program and should be given in all other undergraduate courses. Unless notified otherwise in writing during the first week of classes, students should assume that an examination will be given.

In addition to the principles stated above, the following guidelines should be followed by all faculty members and administrators in order to assure fairness and the best possible educational experience for students.

1. The final examination in a course should be given as scheduled and not at other times, even if the faculty member and all students in a course agree to such a change.

2. The week of classes preceding the scheduled final examination period should be used primarily for continued instruction and may include the introduction of new material. No hourly examinations are to be given during the seven days preceding the start of the examination period. However, lab practicums and seminar presentations may be scheduled in that week.

3. Individual students may be granted a variance from these policies, provided the instructor is satisfied that the exception is based on good and sufficient reasons, and that such an exception for an early or late examination will not prejudice the interests of other students in the course.

4. When students have three or more final examinations on the same day, they are entitled to arrange an alternative examination time for the last exam or exams scheduled on that day. Such arrangements must be made no later than the end of the sixth week of the semester. Students are expected to provide evidence that they have three or more examinations to qualify for exceptions.

5. This policy applies to all undergraduate students, including seniors. Graduating seniors are not exempted from final examinations. Such exemptions are inappropriate on both procedural and academic grounds.

Personal Safety on Campus

While the University of Colorado at Boulder is a relatively safe place to be, the campus is not a haven from community problems. The Committee on Personal Safety (COPS), composed of students and representatives from across campus, is taking steps to promote safety issues on campus and striving to make the campus a safe and pleasant place.

Specific efforts to promote safety on campus include the provision of adequate lighting, police protection, educational programs, and special prevention programs, such as the NightRIDE and NightWALK escort services. Emergency telephones are located on campus to provide direct access to the police dispatcher. See the university’s parking and traffic map in the Parking Services Office or Ralphie’s Guide to Student Life for exact locations of these phones.

In compliance with the Federal Crime Awareness and Campus Security Act of 1990 and the Higher Education Amendments of 1992 and 1998, students and employees receive (at the start of the fall semester) information on campus security policies and programs, including crime rate information.

Members of the university community are encouraged to report any incident of threatening or harmful behavior to the administrator closest to the situation and/or the University Police at 303-492-6666. Other resources include the Office of Judicial Affairs at 303-492-5570 and the Ombuds Office at 303-492-5077.

Additional safety information can be found on the Web at www.colorado.edu/police.

Sexual Harassment

It is the policy of the University of Colorado at Boulder to maintain the university community as a place of work, study, and residence, free of sexual harassment for students, faculty, staff, and administrators. Sexual harassment is prohibited on campus and in university programs. The university is committed to taking appropriate action against those who violate the university’s policy prohibiting sexual harassment.

No retaliation of any kind shall be taken against any individual for complaining about sexual harassment or for participating in any procedure to redress a complaint of sexual harassment. However, the university policy does not preclude disciplinary actions against individuals who are found to have made intentionally false and malicious complaints of sexual harassment.

Sexual harassment is defined as unwelcome sexual advances, requests for sexual favors, and other verbal or physical conduct of a sexual nature when 1) submission to such conduct is made either explicitly or implicitly a term or condition of an individual’s employment, living conditions, and/or educational evaluation; 2) submission to or rejection of such conduct by an individual is used as the basis for tangible employment or educational decisions affecting that individual; or 3) such conduct has the purpose or effect of unreasonably interfering with an individual’s work or academic performance or creating an intimidating, hostile, or offensive working or educational environment.

Sexual harassment may occur between persons of the same gender or of different genders.

There is a telephone help line accessed only by the co-chairs of the Office of Sexual Harassment Policy. The number is 303-492-5748, and can be used to leave messages regarding sexual harassment or retaliation. This help line is checked daily.

For more information, call 303-492-2127. There is also a copy of the policy at www.colorado.edu/FacultyStaff/sexualharassment.html.

Smoking Policies

Campuswide smoking regulations are not intended to deny smokers their prerogatives, but rather to limit the potential adverse effects of smoking on others.

The Boulder campus smoking policy states:

• There will be no smoking or sale of tobacco products in any Boulder campus-owned or leased building, except as provided below. This includes hallways, classrooms, offices, restrooms, meeting rooms, lobbies, elevators, shops, cafeterias, snack bars, waiting rooms, indoor or open-air athletic facilities and performance halls, and all other spaces in university-owned or leased buildings. There will also be no smoking in campus-owned or leased vehicles.

• Smoking may be permitted in accordance with the policies of Boulder Campus Housing Administration in buildings providing overnight accommodations. Boulder Campus Housing Administration will provide information regarding its policies to all housing residents and guests.

• Smoking is not permitted in the seating areas of Folsom Stadium and the Mary Rippon Theatre and their contiguous buildings. Designated smoking zones have been created in well-ventilated areas outside the seating areas.

• Smoking and the sale of tobacco products may be permitted in designated food service areas and lounges in accordance with the policies of that facility. Designated smoking areas must be well posted and have adequate ventilation and separation for nonsmokers. Designated smoking areas must be reviewed and approved by the Department of Environmental Health and Safety (EH&S). Any disputes regarding the recommendations of EH&S will be referred to the vice chancellor for administration for resolution.

• Smoking may be permitted in laboratories conducting sponsored research on the effects of smoking. Designated laboratories...
must be well posted and have adequate venti-
lization and separation for nonsmokers. Designated labs must be reviewed and ap-
proved by the Department of Environmental Health and Safety (EH&S). Any disputes
regarding the recommendations of EH&S will be referred to the vice chancellor for
administration for resolution.

- Smoking areas are permitted outside of university facilities provided that these areas
are located far enough away from doorways, windows, and ventilation systems to prevent
smoke from entering enclosed buildings and facilities. Check with Environmental Health
and Safety for details.
- Signs posted at all building entrances shall state that smoking is prohibited in the
building.
- Smokers and nonsmokers need to re-
main courteous to each other. Since smokers
can no longer smoke while working, they
may want to take ‘smoke breaks.’ As long as
their absences from their work fall within
applicable work-break policies, accommoda-
tions should be made by supervisors and
colleagues. Smokers are reminded that a
wish to smoke is not a sufficient reason to
be gone from their workplace in excess of the
standard work-break policies.
- All members of the university commu-
nity are responsible for compliance with this
policy. Violations of this policy by univer-
sity employees will be referred first to the
violator then, if agreement cannot be
reached, the violation should be reported
to the appropriate appointing or supervisory
authority for resolution.

For those employees who wish to stop
smoking, call the Employee Assistance
Program (303-492-6766) for information
on available programs.

For more information on the campus
smoking policy, contact the Office of the
Vice Chancellor for Administration.

University Code of Conduct
The University of Colorado at Boulder has a
code of conduct based on maintaining the
general welfare of the university community.
The university strives to make the campus community a place of study, work,
and residence where people are treated with
respect and courtesy.

The Office of Judicial Affairs adheres
to the Boulder campus policy on matters
of discrimination. That policy is straight-
forward: the Boulder campus does not and
will not tolerate discrimination of any kind,
for any reason, against any member of the
university community.

Students must accept responsibility to
maintain an atmosphere conducive to edu-
cation and scholarship by respecting the
personal safety and individual rights of all in
the university community, by conducting
themselves in accordance with accepted
standards of social behavior, and by abiding
by the regulations of the university and the
laws of the city, state, and nation while on
university premises.

The university Standards of Conduct that
follow clearly state the university’s expecta-
tions for student behavior. Students are
expected to become familiar with these stan-
dards to fully understand their responsibility
as university community members and to
avoid jeopardizing their relationship with the
university. Students are also expected to par-
ticipate in conduct proceedings if asked to do
so by a university official.

Standards
These standards help to promote a safe and
civilized campus environment. All students
enrolled at CU-Boulder must follow these
standards.

It is important for students to know these
standards. If a standard is violated, a student
may be subject to discipline. An attempt to
commit an act prohibited by these rules, or
attempts to aid, abet, or incite others to com-
mite acts prohibited by these rules, is subject
to discipline and sanction to the same extent as a
completed act. In accordance with individual
responsibility as a member of the university
community, the following acts are prohibited:

1. Interfering with, obstructing, or
disrupting:
 a. a university activity. This includes all
 normal university activities, such as teach-
 ing, research, recreation, meetings, public
 events, and disciplinary proceedings;
 b. the freedom of expression and move-
 ment of students or other members of the
 university community and their guests.

2. Interfering with, obstructing, or dis-
rupting police or fire responses. Tampering
with, impairing, disabling, or misusing fire
protection systems such as fire or smoke
detectors, fire extinguishers, sprinklers,
alarms, or exit signs. Failing to evacuate dur-
ing a fire alarm. Arson.

3. Failing to comply with the direction
of university officials who are performing
their duties. This includes, but is not limi-
ted to, requests to present identification.

4. Entering or using a university facility in
any way that is unauthorized, illegal, or oth-
erwise prohibited. This includes using univer-
sity property for any illegal purpose.

5. Violating any federal, state, or local law.

6. Violating any university policy or reg-
ulation while on university premises (e.g.,
Information Technology Services, Sexual
Harassment Policy, and University Memo-
rial Center policies).

7. Forging, altering, or falsifying any
documents or record. Use of forged or al-
terred documents is also prohibited, even if
someone else made the changes.

8. Stealing, embezzling, or issuing checks
to the university with insufficient funds or
funds drawn from closed accounts. Possess-
ing property known to be stolen. Taking the
property of another without permission, even
if it is intended to be returned.

9. Damaging university property or
property belonging to another.

10. Providing false information to
university officials or to the Judicial Affairs
Hearing Board.

11. Possessing firearms, explosives, fire-
works, incendiary devices, or other danger-
ous or illegal weapons. Only police officers
and individuals with written permission
from the chief of police or from the chancel-
lor after consultation with the chief of police
can possess weapons on campus.

A harmless instrument designed to look
like a firearm, explosive, or dangerous
weapon that is used by or is in the posses-
sion of a person with the intent to cause fear
in or assault to another person is expressly
included within the meaning of a firearm,
explosive, or dangerous weapon.

In the case of a student who is found
guilty via a due process procedure to have
intentionally or recklessly used or possessed
such weapon(s) in a way that would intimi-
date, harass, injure, or otherwise interfere
with the learning and working environment
of the university, the minimum disciplinary
sanction shall be suspension.

12. Harassing another person. This
includes but is not limited to placing another
person in fear of his or her personal safety
through words or actions directed at that
person, or interfering with the working, learning,
or living environment of the person.

13. Assaulting or physically abusing,
threatening, or endangering the health or
safety of another person.

14. Sexually assaulting or inflicting un-
wanted sexual contact upon another person.
Conduct is considered “without consent” if
no clear consent is given; if inflicted through
force, threat of force, or coercion; or when
inflicted upon a person who is unconscious
or who is otherwise without the physical or
mental capacity to consent.

15. Hazing. Any action or situation that
recklessly or intentionally endangers the
health, safety, or welfare of an individual for
the purpose of initiation, admission into, or
affiliation with any organization at the univer-
sity. Hazing includes any abuse of a mental or
physical nature; forced consumption of any
food, liquor, drugs, or substances; or any
forced physical activity that could adversely affect the health or safety of the individual.

Hazing also includes any activity that would subject the individual to embarrassment or humiliation, the willingness of the participant in such activity notwithstanding.

16. Failing to abide by or complete in a satisfactory manner a university sanction.

17. Misuse of computer facilities and/or systems, including but not limited to the following acts:
 a. unauthorized use of a terminal, file, password, or account;
 b. attempts to degrade system performance or capability;
 c. breach of computer security;
 d. abuse of communal resources (e.g., unauthorized batch programs);
 e. misappropriation of intellectual property or licensed software;
 f. invasion of privacy; and
 g. harassment or threats.

18. Possessing, using, manufacturing, distributing, or selling illegal drugs or drug paraphernalia.

19. Possessing, using, manufacturing, distributing, or selling alcoholic beverages in violation of the law or university policies.

In the case of a student who is found guilty via a due process procedure to have endangered the health, safety, or welfare of an individual through the provision of alcohol or other drugs in violation of state or federal laws, the minimum disciplinary sanction shall be suspension.

20. Violating any housing or residence life policies. See the Guide to Residence Hall Living.
Old Main

When the university opened in 1877, the entire campus, including classrooms and living quarters for President Sewall and his family, was housed in Old Main. It stood up on a hill above Boulder, surrounded, as one early grad said, “by nearly a mile of mud.” Early occupants thought the building would blow down in the fierce Boulder wind. Today, the top floor of Old Main houses the Heritage Center, filled with memorabilia about CU’s distinguished people and accomplishments.
The College of Architecture and Planning at the University of Colorado (at both the Boulder and Denver campuses) prepares students for careers in architecture, planning, landscape architecture, urban design, and other design and planning-related fields. The college offers the only undergraduate and graduate education in these fields in the state of Colorado. Students intending to enter these design and planning professions normally first complete the college’s undergraduate degree at CU-Boulder as preparation for entry into the college’s graduate-level professional programs at CU-Denver. Graduate programs are also available for those who already hold an undergraduate degree in a field unrelated to design and planning.

The College of Architecture and Planning is unique in that it offers its 1,100 students exceptional educational experiences in two distinctive and different locations. The college’s undergraduate program is offered on the Boulder campus in an environment ideally suited to the needs of undergraduate students, and the graduate programs in architecture, landscape architecture, urban design, and urban and regional planning are taught on the Denver campus in the heart of a vital downtown. With a diverse faculty committed to excellence in teaching, research, scholarship, and professional work, the college provides students with a broad range of learning opportunities. For detailed information on the college’s graduate programs, see the University of Colorado at Denver catalog.

Undergraduate Programs
Study at the undergraduate level leads to the bachelor of environmental design (B.Env.d.) degree as preparation for entry into graduate and professional degree programs. At the undergraduate level, the college takes a broad and integrated view of the design professions. In recent years the problems and opportunities facing the design professions have changed dramatically. These changing conditions demand a broader educational experience than the individual professions traditionally have supplied.

To prepare students for these conditions, the college expects students to take a wide range of courses in the humanities, the arts, and the sciences, in order to examine the world and contemporary society from a variety of viewpoints.

Unlike undergraduate education in many fields, architecture and planning students receive practical experience under the direct supervision of the college’s professors and outside professional designers. From the first day of the freshman year, students actively integrate and synthesize knowledge gained in studio and related lecture courses.

The college provides required core courses throughout the curriculum in which students from all design disciplines study shared problems together. Architects, interior designers, landscape architects, urban and regional planners, building technologists, and engineers need to understand each other’s perspectives and increasingly work together on the complex issues facing the design of the built environment.

Graduate Programs
Master’s-level professional programs in architecture, landscape architecture, and urban and regional planning are offered by the college at its Denver site. The college also offers post-professional master’s degrees in the areas of architecture, landscape architecture, and urban design.

Additionally, the college’s degree offerings include a doctoral program with opportunities for research and study with faculty on both the Boulder and Denver campuses. The three areas of specialization within the college’s Ph.D. program in design and planning are land use and environmental planning and design; design and planning processes and practices; and history, theory, and criticism of the built environment.

Detailed information about graduate admission, degree requirements, and college policies are outlined in the University of Colorado at Denver catalog and at the college’s web site: www.cudenver.edu/public/AandP/. Additional information about Ph.D. opportunities may be obtained by contacting the college’s Ph.D. offices, 303-492-1319, or on the Web at: www.cudenver.edu/public/AandP/departments/phd/main.html.

Facilities
Facilities for the college’s programs in Boulder are provided in the Environmental Design building. On its lower floors are administrative and faculty offices, lecture rooms, and exhibit space.

A media center, photographic laboratory, slide library, and a model shop with a variety of power tools for student use supplement design studios, which are available throughout the building. Studio space is provided for all students for academic use during the entire semester and is available throughout the day and evening.

Beginning and advanced computer facilities, including graphic capabilities, are also available to students. An urban simulation lab provides students with a facility for testing possible patterns of growth and development in the urban environment.

Career Opportunities
Architecture
According to the National Architectural Accrediting Board, which is responsible for accreditation of all architecture programs in the United States, “Most states require that an individual intending to become an architect hold an accredited degree. There are two types of degrees that are accredited by the National Architectural Accrediting Board: the bachelor of architecture, which requires a minimum of five years of study; and the master of architecture, which requires a minimum of three years of study following an unrelated bachelor’s degree or two years following a related preprofessional bachelor’s degree. These professional degrees are structured to educate those who aspire to registration and licensure to practice as architects. The four-year preprofessional degree, where offered, is not accredited by NAAB. The preprofessional degree is useful to those wishing a foundation in the field of architecture, as preparation for either continued education in a professional degree program or for employment options in fields related to architecture.”

The College of Architecture and Planning at the University of Colorado offers the four-year preprofessional bachelor of environmental design (B.Env.d.) degree at its Boulder site and the NAAB-accredited master of architecture (M.Arch.) on its Denver site.

The B.Env.d. alone is not accepted as sufficient education to become a licensed architect in most states. However, the B.Env.d. in architecture is endorsed by the NAAB as part of a six-year plan of study in conjunction with the college’s accredited M.Arch. In pursuing this six-year program of study, students completing the B.Env.d. on the Boulder campus complete a minimum of four semesters of additional course work (63 hours of credit) on the Denver campus of the University of Colorado after entry into the M.Arch. program. For further
details on the M.Arch., and for descriptions of the fifth- and sixth-year professional courses outlined in the architecture degree requirements listed on page 48, please see the University of Colorado at Denver catalog.

Students seeking licensure as an architect also must complete a number of years after graduation in a paid internship. In Colorado and most states, documentation of work experience in each of 16 areas of practice must be provided to become eligible to enroll for the architectural registration examination.

Planning

While the practice of planning is not currently licensed in most states, in areas of high growth like New York, California, and Florida, the need for licensing to regulate practice is becoming more apparent. Professional regulation and certification is currently overseen by the American Planning Association (APA) and the American Institute of Certified Planners (AICP). Degrees in the field are accredited by the Planning Accreditation Board (PAB) of the Association of Collegiate Schools of Planning.

Although students interested in entry-level positions in planning may find the B.Envd. degree adequate, an advanced degree (master’s or Ph.D.) is highly desirable and advisable. Students primarily interested in professional practice should obtain a master’s degree in city planning, in city and regional planning, or in city planning and community development. Students interested in teaching or research in planning should complete a Ph.D.

Graduate Study in Denver. Students from the undergraduate program who continue their studies in the graduate professional planning program in Denver are given advanced standing when accepted into the program. Copies of the policies relating to advanced standing are available in the college office. Though the amount of advanced standing received is directly related to the specific course work completed in the undergraduate program, undergraduate planning students who continue in the graduate planning program typically receive between 9 and 15 semester hours of credit, and complete their graduate studies in two or three semesters.

Design Studies

Students who do not wish to complete the emphases in architecture or planning, but who are nonetheless interested in issues concerning the built environment, may pursue the design studies emphasis. Students may use this emphasis to broaden their undergraduate program, integrating several related disciplines. There is an increasing demand in the design, construction, and management industries for people who combine an understanding of design with a specialized understanding of related fields like computing, management, finance, or marketing. Some students may use it as general preparation for graduate study in any number of academic fields that also are concerned with the design and planning of the built environment, including anthropology, geography, sociology, psychology, historic preservation, and architectural history. Other students may use this emphasis to prepare for further graduate study in a professional field related to architecture and planning, including business, law, journalism, public administration, or landscape architecture.

As the design studies curriculum is individually tailored to each student, students in this emphasis must outline and receive approval of their individual course plan by a faculty sponsor and the college dean’s office before entering the design studies emphasis. Participants in this emphasis are expected to attain a competent level of understanding and skill in either architecture or planning. Additionally, they are expected to attain a high level of understanding and skill in one specialized aspect of these fields. Such specializations might include computer applications, resource management, housing policy, environmental psychology, history of architecture, or building systems analysis. In support of their specialization, students are further expected to attain a competent level of understanding of a relevant cognate field outside the college (e.g., anthropology, civil engineering, business, or fine arts). Students in the design studies emphasis take core courses within the college and general requirements outside the college in parallel with the architecture and planning emphases. Additionally, design studies students must complete foreign language courses through level three (third-year level in high school, or third-semester at the college level). With approval of their faculty sponsor, students may substitute computer programming languages for the foreign language requirement. A minimum of 30 hours of course work must be completed after official approval of entry into the design studies emphasis, and the 30-hour residency requirement in this emphasis is not waived under any circumstances.

Landscape Architecture

Though the College of Architecture and Planning does not offer a separate emphasis in landscape architecture at the undergraduate level, a graduate professional degree (the master of landscape architecture or M.L.A.) is offered by the college on the Denver campus of the University of Colorado. Undergraduates may complete one of the undergraduate emphases in architecture, planning, or design studies as preparation for entry into the Denver campus M.L.A. program or other graduate-level landscape architecture programs offered elsewhere.

Study Abroad

The College of Architecture and Planning and the Office of International Education urge design students to participate in one of the various study abroad programs offered for university credit.

Each summer, faculty of the college offer course work abroad through the University of Colorado at Denver campus. In recent years, sites have included Prague, Rome, Helsinki, Paris, and St. Petersburg. These studio-based courses offer students an opportunity to study the process of design in another culture and to examine their own perceptions and attitudes toward design.

The University of Colorado at Boulder is also a coordinating institution for DIS, Denmark’s international study program at the University of Copenhagen. DIS offers semester and year-long programs in architecture and design. Taught in English, the DIS program offers advanced design studio and related courses in addition to guided travel and study opportunities in other European nations, including the former Soviet Union. For more information about these programs, contact the Office of International Education, University of Colorado at Boulder, 123 UCB, Boulder, CO, 80309-0123, 303-492-6016.

College Lecture Series

The college’s lecture series enables students and faculty to meet people whose work significantly contributes to the design and planning fields. All students registered in the College of Architecture and Planning may be required to attend convocations and special lectures throughout the year. In addition, the graduate programs in Denver sponsor a year-long series of lectures, and AIA (American Institute of Architects) Denver and AIA Colorado present a lecture series in Denver that is open to the public. The college also cosponsors the annual National Natural Hazards Information and Applications Conference held in July, the National Pedestrian Conference held in September, and the annual World Affairs Conference held in April.

ACADEMIC EXCELLENCE

Recognition of Scholarship

As a professionally oriented school, the College of Architecture and Planning provides an atmosphere for study and creative investigation in which the attainment of quality is held in the highest esteem. In recognition of high scholarship and professional attai-
ment, the college grants honors at graduation in two categories: honors and special honors. At an annual awards program, scholarships, prizes, and awards are given to outstanding students and faculty.

Honors at Graduation

Students achieving a grade point average of 3.50 to 3.74 (honors) and 3.75 to 4.00 (special honors) are recognized at commencement. Honors are based on course work completed at the University of Colorado.

Scholarships, Loans, Awards, and Prizes

Several scholarships are awarded upon recommendation of the faculty of the college. In 1961, the Educational Fund of AIA Colorado was incorporated by appropriate action of its executive committee. The purpose of this fund is to advance education in architecture by granting scholarships, prizes, and financial aid to satisfying students in architecture and students interested in research programs directly related and of value to the architectural profession.

The original Educational Fund was founded in January 1934 by William E. Fisher, F.A.I.A.; George H. Williamson, F.A.I.A.; Fred E. Mountjoy, A.I.A.; William H. Bowman, A.I.A.; and Robert K. Fuller, F.A.I.A. Kenneth R. Fuller, son of the founder, now serves as secretary of the fund, and acting with the president and vice president of AIA Colorado, forms the board of directors of the fund. This board has granted scholarships annually to students and alumni of the College of Architecture and Planning.

Awards provided by the AIA Colorado Educational Fund include the Anniversary Scholarship, the Centennial Scholarship, Arthur A. and Florence G. Fisher Travelling Scholarships, Robert K. Fuller Scholarship for Graduate Study, James M. Hunter Scholarship for Graduate Study or Travel, and the C. Gordon Sweet Scholarship for disadvantaged students.

The Hunter Douglas Scholarship. Through the generosity and support of Hunter Douglas, Inc., an award is given to an outstanding third- or fourth-year student in the undergraduate design program with a demonstrated interest in interior design or space planning.

The Charles Haertling Architecture Scholarship. In honor and living tribute to one of Boulder’s most distinguished architects, an award is given in alternating years to an undergraduate student intending to pursue the profession of architecture. Architecture and planning students may apply for the 1998 and 2000 awards. The award is given to music students in the alternating years.

The Martin Luther King, Jr. Housing Prize is a memorial award intended to encourage the design of housing that improves the quality of living environments for low- and moderate-income groups.

The Dana Soper Memorial Scholarship. This $2,000 grant, started in 1973, is awarded to a second-year student in environmental design based upon proven academic performance, personality and character, contribution to the college, and professional potential.

Design certificates also are presented to the outstanding design students at each year level.

Dean’s scholar awards are available to Colorado residents on a funds-available basis. A limited number of these merit scholarships are available to nonresidents. In addition, interested students may participate in faculty-student research projects funded by the Undergraduate Research Opportunities Program (UROP) for a maximum of $750 per award.

ACADEMIC STANDARDS

Student Rights and Responsibilities

The College of Architecture and Planning is part of an academic community whose mission requires an open learning and working environment for students, faculty, staff, and administrators. An open learning and working environment values and protects individual dignity and the integrity of human relationships, and is based upon mutual trust, freedom of inquiry, freedom of expression, and the absence of intimidation and exploitation. Any infringement upon these freedoms and rights may be cause for review by the college or by other university offices. Students in both graduate and undergraduate programs of the College of Architecture and Planning are subject to the policies and procedures governing student rights and responsibilities on the CU-Denver campus. Please refer to the CU-Denver catalog for explicit policies governing issues of sexual harassment and for the full code of student conduct.

Ethics and Academic Dishonesty

Students are expected to conduct themselves in accordance with the highest standards of honesty and integrity. Cheating, plagiarism, illegal possession and distribution of examinations or answers to specific questions, alteration, forgery, or falsification of official records, presenting someone else’s work as one’s own, or performing work or taking an examination for another student are examples of acts that may lead to suspension or expulsion. Any reported case of academic dishonesty may be referred by faculty to a college committee for study and disciplinary decision. Students in either the college’s undergraduate or graduate program are subject to the CU-Denver academic honor code and discipline policies (for details, refer to the CU-Denver catalog).

Grade Point Average Requirements and Scholastic Suspension

A student must achieve a grade of C- or better in all courses applied toward graduation requirements, excluding general electives. General electives that receive a minimum grade of D- may be credited toward the degree if the student has maintained a minimum cumulative grade point average of 2.00.

As a general rule, students who fail to meet the minimum cumulative grade point requirement (2.00) are permitted to continue their studies on a probationary basis during the following semester. Scholastic records of students are reviewed as soon as possible after the close of the probationary semester, and students are informed in writing if they are to be suspended.

When a student is suspended, the reasons for the suspension are recorded and placed in the student’s file. The student is asked to define the problems and draft a plan for dealing with them in consultation with the college academic advisor. It is the responsibility of the academic advisor to monitor the student’s progress.

Students on suspension are not allowed to register on any campus of the University of Colorado while on suspension, except continuing education or regular campus summer sessions.

Suspended students are readmitted on a case-by-case basis by review of the college. Students suspended a second time are reinstated only under special circumstances. Students who believe that their situations warrant a departure from these normal stipulations may petition for reinstatement. The college looks with favor on such petitions only if the student has shown marked improvement in academic work or if there are unusual circumstances that have contributed to the student’s academic difficulties.

ADMISSION AND ENROLLMENT POLICIES

Requirements for Admission

Candidates for regular admission to the College of Architecture and Planning are expected to meet the general requirements for admission to the university. Please see Undergraduate Admission in the General Information chapter of this catalog for specific requirements.

Transfer Students

Qualified students transferring from other institutions are accepted into the College of Architecture and Planning. Former students
who have attended another college or university for one semester (12 hours or more) are considered transfer students. Since the College of Architecture and Planning has a limited enrollment, all qualified students are not guaranteed admission. All course work except the last term, if in progress, must be completed and must be listed on the official transcript sent for admission consideration. Transfer students should apply to the Office of Admissions.

Normally, students should transfer by the beginning of the second year of college-level work, as the College of Architecture and Planning requires approximately three years of design and/or planning related course work. All transfer students are required to take a minimum of 30 semester hours in the College of Architecture and Planning. Transfer students are admitted for the fall, spring, and summer terms each year.

If a student chooses to provide letters of intent and recommendation, they must accompany the application. It is the responsibility of the student to be sure transcripts and other application materials are complete. Only complete application files are considered for admission.

A maximum of 60 semester hours taken at a two-year college may be applied toward the baccalaureate degree. In general, credits in vocational-technical courses are not accepted for transfer by the college. Transfer agreements between the University of Colorado and all Colorado community colleges outline approximately one year of prescribed general education courses that may be completed as preparation for transfer into the College of Architecture and Planning. As noted above, students should plan to transfer to the University of Colorado by the beginning of their sophomore year. See Undergraduate Admission in the General Information chapter of this catalog for admission standards for transfer students.

Intrauniversity Transfer
University of Colorado students in good standing who are interested in pursuing a design education may apply for transfer into the college. Applications are accepted and reviewed on a continuous basis throughout the academic year. Though a factor in admission, grade-point average is not in itself a sole determinant, and interested students in good academic standing are encouraged to apply. Students may anticipate a response to their application within approximately one week of the college’s receipt of a complete application packet (available in ENVD 168). Students meeting criteria for automatic admission are so notified. Students not meeting automatic admission criteria are held for additional review at the end of the application semester.

Attendance
Students are expected to attend classes regularly and to comply with the attendance regulations specified by their instructors. At the beginning of each semester, instructors inform students of policies governing grading policies and attendance in each class.

Students who miss a final examination for illness or other good reason must notify the instructor or the college office no later than the end of the day on which the examination is given.

Credit Policies
Advanced Placement
Advanced placement and college credit may be granted on the basis of the College Board’s Advanced Placement tests. For students who have taken advanced placement course work in high school and receive scores meeting university standards in the advanced placement examination, advanced placement as well as college credit is granted. Granted college credit is treated as transfer credit without a grade, but counts toward graduation and meet other specific requirements for which it is appropriate.

Denver Campus Credits
Students in residence on the Boulder campus in the College of Architecture and Planning may take work on the Denver campus on a space-available basis with the approval of the dean of the college.

Incomplete Grades
The College of Architecture and Planning does not give incomplete grades except in cases of extreme emergency. By petition of the instructor, a grade of IP may be granted.

Independent Study
Ordinarily, only students at the 3000- or 4000-level of studio are permitted to obtain independent study credit. Independent study credit may not be used to substitute for any required design studio course. A complete prospectus of the work expected, how it shall be carried out, and what the end product might be must be submitted to the supervising faculty member no later than five days after the official beginning of a semester. Approval of the prospectus must be granted by the faculty member and the department chair before permission is granted for enrollment in the course. Students should make arrangements for the independent study course details during registration or well before the semester begins.

Only students who have at least a 3.00 GPA are permitted to register for independent study. Additional requirements could be established depending on the proposed topic. Not more than 3 hours of independent study credit during one semester and not more than a total of 6 are given for the entire time the student is enrolled, unless exception is granted by the dean.

Other Credits
Credits for teaching assistantships, research assistantships, and internships are all guided by the same standards as those for independent study. Credits earned as a teaching assistant, research assistant, or intern are not subject to the 6 credit-hour limitation on independent study credit. Teaching assistantships and internships are offered on a pass/fail basis only.

Pass/Fail Credits
A student may choose to take up to 15 semester hours toward the B.Env. degree on a pass/fail basis, but these credits must fall in the category of general electives. No courses taught within the College of Architecture and Planning and that meet specific requirements or requirement areas may be taken on a pass/fail basis. No more than 6 credit hours (or two courses) may be taken pass/fail during a single semester.

Repeated Courses
Students should confer with the college’s academic advisor regarding specific academic standards for repeating laboratory, studio, and other undergraduate courses. Credits for repeated courses are not counted toward the 128 semester hours needed for graduation.

ROTC Credit
Students matriculating in the College of Architecture and Planning are eligible to participate in the ROTC programs on the Boulder campus.

Students interested in such programs should contact the professor in charge of the ROTC program of their choice (Army, Navy, Air Force) and also the academic advisor for the college for information on residence and curriculum requirements for graduation. Credit for ROTC courses may be given upon faculty recommendation to a maximum of 8 hours.

Transfer Credit
Credits transferred from other institutions are limited to the number of credit hours given for similar work in regular offerings at the University of Colorado. Exceptions to this regulation may be made by the dean upon written petition.

In general, the college does not accept vocational/technical course work in design, graphics, or construction as meeting specific course requirements of the program; nor does it consider such course work acceptable toward the
college's elective requirements. Only in exceptional circumstances may a student petition the dean of the college to request a transfer of such credits. A student may, however, ask that vocational/technical course work be considered as a basis for waiving a specific course in a required sequence.

A grade of C- or better is required in any course for which credit is granted in transfer from another institution to the university. Grades earned in other institutions (excluding other campuses of the University of Colorado) are not computed with the student's CU grade point average.

For more information on transfer credit policies, see Transfer of College-Level Credit in the admissions section of this catalog.

Residence Requirement

A student must complete a minimum of 30 course credits within the College of Architecture and Planning. Students also must complete their last semester in residence as full-time students.

Retention of Student Work

The College of Architecture and Planning reserves the right to retain any student project submitted in fulfillment of class requirements for whatever period of time it deems necessary. This retained work is used to provide accrediting agencies with tangible evidence of performance, to serve as additional visual aid material in presentations to other students, and to contribute to possible educational exhibits requested by the university community and the general public.

UNDERGRADUATE DEGREE REQUIREMENTS

General Education in Architecture and Planning

The undergraduate programs in architecture and planning emphasize knowledge and awareness of:

- the role of the built environment in human affairs and knowledge of people-environment relations;
- the major theoretical perspectives of design and planning, including those of the related professional fields and community planning;
- information gathering, analysis, design, and decision-making methods utilized in the planning, design, and management of built environments;
- the physical properties of built environments and the natural and man-made physical factors that condition their realization;
- historical design and planning processes and products in their related social, cultural, and geographic contexts; and

- professional norms, roles, and institutions related to the analysis, planning, design, and management of the built environment in the broader context of social, political, and economic processes.

In addition, students completing the B.Envd. degree are expected to acquire the ability and skills to:

- effectively and creatively organize built environments, integrating and utilizing appropriate substantive and procedural knowledge;
- define built environmental requirements for various human populations;
- effectively and creatively utilize appropriate physical technologies in the planning, design, and/or management of built environments; and
- effectively use verbal, graphic, and written communication skills required to function as architecture and planning professionals.

Advising

Academic advising for students presently enrolled or anticipating enrollment in the college's undergraduate program is provided in a variety of forms. High school students or prospective transfer students from other universities are encouraged to participate in the "Be a CU Student for a Day" or other visitation programs co-sponsored by the college and the CU-Boulder Office of Admissions. Further information on campus visitation programs may be obtained by contacting the Office of Admissions at 303-492-6301. Students already enrolled in Boulder campus programs who are interested in university transfer (IUT) into the College of Architecture and Planning should contact the college office at 303-492-7711 for group meeting times focusing on the IUT transfer process.

Students enrolled in the college's undergraduate programs receive academic advising from faculty or professional staff in the college. Information on appointments and open office hours for advising is available at the college office, ENVD 168, or by calling 303-492-7711.

Orientation

In order to receive an overview of educational opportunities and the philosophy of the college and meet other new students and the faculty of the college, incoming freshmen and transfer students are required to attend an orientation approximately one week prior to the beginning of the fall semester.

Curriculum

By the end of their second year, students in the College of Architecture and Planning must choose to emphasize in either architecture, planning, or design studies. Each emphasis is designed to prepare students for graduate studies.

All students in the college must take certain core courses common to architecture, planning, and design studies. These include an introductory survey course, a design studio, a graphics course, and introductions to social and ecological factors in design. The various design professions are increasingly collaborating on complex design and planning issues related to the built environment, and the college core courses reflect this interdisciplinary, interprofessional focus.

General Degree Requirements

Students must complete a minimum of 120 semester hours, subject to the maximum outlined in this document, and maintain a GPA of 2.00 or better. Students must complete one course from each subject area.

Required Courses

<table>
<thead>
<tr>
<th>Writing</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>UWRP 1150</td>
<td>3</td>
</tr>
</tbody>
</table>

Students also must demonstrate advanced-level writing skills. If they cannot, they may be required to complete additional course work.

Social Science

Humanities

- CHST 1031; ENGL 1200, 1260, 1300, 1400, 1500, 1600, 1700, 1701; HUMN 1010, 1020; PHIL 1045, 1051, 1113, 1123, 1180, 1217, 2117, 2437, 2537; PSYC 1001; SOCY 1001, 1002, 1031, 2011, 2041; WMST 1260 3

Architecture Emphasis

Required Courses

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVD 1004 Introduction to Environmental Design (Note 1)</td>
<td>6</td>
</tr>
<tr>
<td>ENVD 2002 Environmental Design</td>
<td>6</td>
</tr>
<tr>
<td>ENVD 2003 Ecological Design (Note 1)</td>
<td>3</td>
</tr>
<tr>
<td>UWRP 1150 (Note 2)</td>
<td>3</td>
</tr>
<tr>
<td>Non-ENVD elective</td>
<td>3</td>
</tr>
</tbody>
</table>

First Year—Fall

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVD 1004 Introduction to Environmental Design (Note 1)</td>
<td>6</td>
</tr>
<tr>
<td>ENVD 2002 Environmental Design Media (Note 1)</td>
<td>3</td>
</tr>
<tr>
<td>ENVD 2003 Ecological Design (Note 1)</td>
<td>3</td>
</tr>
<tr>
<td>UWRP 1150 (Note 2)</td>
<td>3</td>
</tr>
<tr>
<td>Non-ENVD elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Social Science

Humanities

- CHST 1031; ENGL 1200, 1260, 1300, 1400, 1500, 1600, 1700, 1701; HUMN 1010, 1020; PHIL 1045, 1051, 1113, 1123, 1180, 1217, 2117, 2437, 2537; PSYC 1001; SOCY 1001, 1002, 1031, 2011, 2041; WMST 1260 3

First Year—Spring

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVD 1004 Introduction to Environmental Design</td>
<td>6</td>
</tr>
<tr>
<td>ENVD 2002 Environmental Design Media (Note 1)</td>
<td>3</td>
</tr>
<tr>
<td>ENVD 2003 Ecological Design (Note 1)</td>
<td>3</td>
</tr>
<tr>
<td>UWRP 1150 (Note 2)</td>
<td>3</td>
</tr>
<tr>
<td>Non-ENVD elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Social Science

Humanities

- CHST 1031; ENGL 1200, 1260, 1300, 1400, 1500, 1600, 1700, 1750; HUMN 1010, 1020; PHIL 1045, 1051, 1113, 1123, 1180, 1217, 2117, 2437, 2537; PSYC 1001; SOCY 1001, 1002, 1031, 2011, 2041; WMST 1260 3
Second Year—Fall
ENVD 2110 Architecture Studio 1-6
ARCH 3114 History and Theories of Architecture ... 1-3
MATH 1300 Analytical Geometry and Calculus I .. 1-3
Non-ENVD elective ... 5

Second Year—Spring
ENVD 3001 Environment and Behavior (Note 1) .. 3
ARCH 3214 History and Theories of Architecture ... 2-3
PHYS 2010 (includes lab) ... 5
Non-ENVD elective ... 3

Third Year—Fall
ENVD 3210 Architecture Studio 2-6
ENVD 3352 Architectural Computer Media ... 3
AREN 4035 Structures ... 1-3
ENVD elective ending in ‘4’ ... 3

Third Year—Spring
AREN 4045 Structures 2 .. 3
ENVD elective ending in ‘5’ ... 3
ENVD electives ... 6
Non-ENVD elective ... 3

Fourth Year—Fall
ENVD 4310 Architecture Studio 3-6
ENVD 3115 Introduction to Building Materials and Systems 3
AREN 3050 Environmental Systems ... 1-3
ENVD elective ending in ‘2’ ... 3

Fourth Year—Spring
ENVD 4410 Architecture Studio 4-6
ENVD 4314 Architectural Theory ... 3
AREN 3060 Environmental Systems ... 2-3
ENVD elective 3

Graduate Sequence
Includes two years at CU-Denver with approximately 30 credits each year. (For course descriptions, please refer to the University of Colorado at Denver catalog.)

Fifth Year—Fall
ARCH 6150 Advanced Design Studio 4
ARCH 6151 Advanced Design Seminar 2
Electives (Note 3) ... 3

Fifth Year—Spring
ARCH 6150 Advanced Design Studio and ARCH 6151 Advanced Design Seminar, or
ARCH 6951 Thesis Preparation 6
Electives (Note 3) ... 3

Sixth Year—Fall
ARCH 6150 Advanced Design Studio and ARCH 6151 Advanced Design Seminar, or
ARCH 6951 Thesis Preparation 6
LA 6632 Site Planning ... 3
Electives (Note 3) ... 3

Sixth Year—Spring
ARCH 6150 Advanced Design Studio and ARCH 6151 Advanced Design Seminar, or
ARCH 6951 Thesis Preparation 6
ARCH 6750 Professional Practice 3
Electives (Note 3) ... 6

Curriculum Notes
1. Curriculum core course that must be taken by all students in the College of Architecture and Planning, regardless of emphasis area. Must be completed within the first four semesters of study (prior to the completion of 60 hours of credit).
2. These requirements must be completed within the first four semesters of study (prior to the completion of 60 hours of credit).
3. Students entering the M.Arch. degree program at the University of Colorado at Denver beginning fall 1998 must take 9 credits in both cultural studies and professional studies, and 6 credits in technology studies. The remaining 6 credits may be taken in any architecturally related electives on campus.

Planning Emphasis
The planning emphasis is intended for those students who wish to pursue careers in community, urban, and/or regional planning. It is expected that most students continue on for a master’s degree in planning, urban design, landscape architecture, geography, law, or public administration.

Within the undergraduate planning emphasis, students may choose a general planning emphasis or elect to complete a concentration in the areas of sustainable environments, real estate, or landscape planning.

Required Courses Semester Hours
General Education Requirements 9
(see Writing, Social Science, and Humanities under the general degree requirements section.)
Math (complete one of the following) BCOR 2010; ECON 3818; GEOG 3023;
MATH 2510; PSYC 2101; SOCY 2061 3-4
Natural Science (complete one of the following) CHEM 1111; EPOB 1030 and 1050; EPOB
1210 and 1230; PHYS 2010 .. 4-5

Required Courses Semester Hours
First Year—Fall
ENVD 1004 Introduction to Environmental Design (Note 1) 6
ENVD 2003 Ecology and Design (Note 1) 3
UWRP 1150 (Note 2) ... 3
Non-ENVD elective ... 3

First Year—Spring
ENVD 2002 Environmental Design Media (Note 1) .. 3
ENVD 2001 Social Factors in Design (Note 1) .. 3
Social science (see list of options under general degree requirements) (Note 2) 3
Humanities (see list of options under general degree requirements) (Note 2) 3
Non-ENVD elective ... 3

Second Year—Fall
ENVD 2052 Computers in Architecture and Planning .. 3
ENVD 3001 Environment and Behavior (Note 1) .. 3
Statistics course from the above list (Note 2) .. 3
Planning option course ... 3
Elective (ENVD or non-ENVD) ... 3

Second Year—Spring
ENVD 2120 Planning Studio I .. 6
ENVD 2152 GIS for Planners ... 3
ENVD 3124 Issues in Planning ... 3
Natural science, including lab (see above list for options) (Note 2) 4

Third Year—Fall
ENVD 3220 Planning Studio II .. 6
ENVD 3122 Research Issues and Methods for Planning .. 3
Planning option course ... 3
ENVD elective ... 3

Third Year—Spring
Planning option courses ... 6
ENVD elective ... 3
Electives (ENVD or non-ENVD) ... 3

Fourth Year—Fall
ENVD 3320 Planning Practicum (internship) ... 2
ENVD 4023 Environmental Impact Assessment ... 3
ENVD 4794 History of Urban Design and Planning ... 3
Planning option course ... 3
Elective (ENVD or non-ENVD) ... 3

Fourth Year—Spring
ENVD 4320 Planning Studio 3 .. 6
ENVD 4420 Senior Planning Seminar ... 3
ENVD 4511 Housing Policies and Practices ... 3
ENVD elective ... 3

Planning Option Courses
Complete one of the following planning options:

General Planning option:
Complete three upper-division courses from any of the following arts and sciences areas: economics, human and cultural geography, sociology, and political science ... 9
Complete two upper-division courses in civil engineering, physical geography, or geographic technique ... 6

Sustainable Environments option:
Complete elective course work from a specified range (see department) 15

Real Estate option:
Complete a specified range of relevant courses (see department) 15

Landscape Planning option:
Complete a specified range of relevant courses (see department) 14-15

Curriculum Notes
1. Curriculum core course that must be taken by all students in the College of Architecture and Planning, regardless of emphasis area. Must be completed within the first four semesters of study (prior to the completion of 60 hours of credit).
2. These requirements must be completed within the first four semesters of study (prior to the completion of 60 hours of credit).

Design Studies Emphasis
The design studies emphasis is intended for those students who do not wish to pursue a professional career in architecture or planning, but who are interested in issues concerning the built environment. Students in this emphasis are expected to attain a moderate level of understanding and skill in either the architecture or planning field. In addition, they are expected to attain a high level of understanding and skill in one specialized aspect of these fields, and a moderate level of understanding in a cognate discipline outside the college.

A minimum of 30 semester credit hours must be completed after official approval of entry into the design studies emphasis.

Required Courses Semester Hours

General Education Requirements (Note 1) 9
(see Writing, Social Science, and Humanities under the general degree requirements section.)

Foreign Language
Complete any level three course in a foreign language (Note 2) ... 0-15
(Hours may be applied to required electives outside the college, as noted below.)

Math (complete one of the following) (Note 1)
BCOR 2010; ECON 3818; GOG 3023; MATH 1300; MATH 2510; PSYC 2101; SOCY 2061 3-5

Natural Science (complete one of the following) (Note 1)
CHEM 1111; EPOB 1030 and 1050; EPOB 1210 and 1230; PHYS 2010 4-5

Studies
Complete one of the following pairs:
ENVD 2110 and 3210 Architectural Studio 1 and 2 .. 12
or
ENVD 2120 and 3220 Planning Studio 1 and 2 .. 12

Methods
ENVD 2002 Environmental Design Media (Note 3) .. 3
ENVD 3002 Design Theory and Methods .. 3

History and Theory
ENVD 1004 Introduction to Environmental Design (Note 3) .. 6
One of the following:
ENVD 4794 History of Urban Design and Planning ... 3-6
or
ARCH 3114 and 3124 History and Theories of Architecture 1 and 2 6

Social Factors
ENVD 2001 Introduction to Social Factors in Environmental Design (Note 3) 3
ENVD 3001 Environment and Behavior (Note 3) .. 3

Physical Factors
ENVD 2003 Ecology and Design (Note 3) .. 3

Electives 62-68
Electives must be approved by both the student’s faculty sponsor and the college dean’s office.
At least 24 credits must be taken within the College of Architecture and Planning, of which at least three courses must be chosen from separate categories (i.e., design, methods, history, social factors, physical factors, and technology). At least 30 credits (inclusive of hours meeting the foreign language requirement) must be taken from outside the College of Architecture and Planning. Elective hours beyond these specified 54 may be taken either within or outside the college.

Curriculum Notes
1. These requirements must be completed within the first four semesters of study (prior to the completion of 60 hours of credit).
2. Completion of three years in a single foreign language in high school will meet this requirement. Alternatively, with approval of the student’s faculty sponsor, students may substitute course work in computer programming languages.
3. Curriculum core course that must be taken by all students in the College of Architecture and Planning, regardless of emphasis area. Must be completed within the first four semesters of study (prior to the completion of 60 hours of credit).

Double-Degree Programs
In addition to the bachelor of environmental design degree, students may pursue a degree in another college at CU-Boulder. Past students have received the B.Envd. degree concurrently with undergraduate degrees in business, engineering, and various programs offered by the College of Arts and Sciences. Typically, specific course requirements do not change in either program of a double degree; however, additional hours (varying by college) may be required. All undergraduate students must complete the general education requirements and the requirements for their specific emphasis area within the College of Architecture and Planning in addition to the other college’s requirements. Students considering a double-degree program are encouraged to speak with advisors in both colleges to determine requirements and procedures for application.

COURSE DESCRIPTIONS

The following courses are offered in the College of Architecture and Planning on the Boulder campus. This listing does not constitute a guarantee or contract that any particular course will be offered during a given year.

For current information on times, days, and instructors of courses, students should consult the Registration Handbook and Schedule of Courses issued at the beginning of each semester.

Some courses may be open to nonmajors. Students should check for current policies.

Courses numbered in the 1000s and 2000s are intended for lower-division students and those in the 3000s and 4000s for upper-division students.

Courses are organized by subject matter and are generally listed numerically by last digit (courses ending in the number “0” are listed before courses ending in “1,” and so on). The number after the course number indicates the semester hours of credit that can be earned in the course.

Abbreviations used in the course descriptions are as follows:

Prereq.-Prerequisite
Coreq.-Corequisite
Lab.-Laboratory
Rec.-Recitation
Lect.-Lecture

Architecture

ARCH 3114-3. History and Theories of Architecture 1. Surveys architecture, landscape architecture, and urban design from ca. 3000 B.C. to ca. 1400 A.D., emphasizing developments in the western world. Open to nonmajors.

ARCH 3214-3. History and Theories of Architecture 2. Surveys architecture, landscape architecture, and urban design from ca. 1400 A.D. to the present, emphasizing developments in the western world. Open to nonmajors.

ARCH 4010-3. Architectural Appreciation and Design. Introduces basic processes and principles of architectural design to provide students with a basis for understanding and evaluating architecture. Open to AREN seniors only.

Environmental Design

Studies

ENVD 2120-6. Planning Studio 1. Applies knowledge from other courses in the curriculum; introduces the various physical systems (natural and built) affected by planning interventions; and progressively addresses more complex issues in planning for neighborhoods, central districts, and citywide and regional planning scales. Prereqs., ENVD 1004 and 2002.

ENVD 3320-2. Planning Practicum. Supervised practicum in some aspect of urban or regional planning. Prereq., ENVD 3220.

ENVD 4300 (1-6). Special Topics: Design. Advanced studio or seminar course exploring new and emerging themes in design. May be repeated for credit by petition. Prereq., instructor consent.

ENVD 4410-6. Architecture Studio 4. Directs students toward the discovery and design of a personal philosophy synthesizing the varied facets of the architectural process. Involves longer and larger projects of a complex socio-logical, philosophical, and symbolic character. Projects address issues of urban design, emphasizing architecture in evolving, densely built environments. Prereq., ARCH 4310. Prereq. or coreq., ARCH 4314.

ENVD 4420-3. Senior Planning Seminar. Advanced seminar focusing on theoretical concerns and practical issues inherent in environmental design planning. Views concerns and issues in terms of setting, processes, and planning outcomes. Provides a critical synthesis of the inherently interdisciplinary nature of planning education. Open to planning seniors only, or by instructor consent.

Social Factors

ENVD 2001-3. Introduction to Social Factors in Environmental Design. Critically evaluates built environments. Considers how social and individual behavior is reflected in and influenced by the built environment. Open to nonmajors.

ENVD 3001-3. Environment and Behavior. Examines the social and behavioral aspects of relationships between people and the built environment. Gives special attention to antecedent factors (why we have the environments we do), implications of given arrangements for special population groups, and responses to incongruent environments. Open to nonmajors.

ENVD 4031-3. Thinking Like a Mountain: A New Land Ethic. Critically reviews and analyzes land use policies, the ethics and economics of air and water pollution, regional sustainability, and resource management. Includes critical evaluation of empirical methodologies, and criteria of cultural and social equity. Prereqs., junior or senior standing in the college.

ENVD 4311-3. Housing Policies and Practices. Provides students with descriptive knowledge and analytical understanding of the use and development of residential settings in different political economies, globally divided into advanced capitalist nations, collectivist economies, and the Third World. Prereqs., ENVD 2001 and 3001.

ENVD 4361 (1-6). Special Topics: Social Factors in Design. Addresses variable topics in the relationship of human experience and behavior to the built environment, e.g., social research methods in environmental design. May be repeated for credit by petition.

Methods and Techniques

ENVD 2002-3. Environmental Design Media. Develops skills in the use of computers, emphasizing drawing as a means to design. Includes investigation of drawing types and methods; diagramming of ideas and systems; and informative, exploratory, and developmental sketching.

ENVD 2052-3. Computers in Architecture and Planning. Introduces the use of computers in design fields, including applications for word-processing, desktop publishing, graphic creation, and CAD-style design. Aims to provide basic general skills in computer use that are transferrable to other computer applications.

ENVD 2152-3. GIS for Planners. Focuses on construction and use of computer-based information systems to represent and manipulate geographic data. Emphasizes the recording, mapping, and transforming of data for analysis and use by planners.

ENVD 3002-3. Design Theory and Methods. Explores the nature of design and systematic methods for improving design. Topics include nature of design problems, structure of design process, theory of form, problem definition, generation of solutions, evaluation, and roles of form and functions.

ENVD 3022-3. Technical Photography. Introduces students to the technical and practical aspects of making photographic images: the workings of the camera and lens, principles of depth of field, black and white film processing, printing, and basic darkroom procedures.

ENVD 3052-3. Introduction to Computer Methods in Environmental Design. Surveys existing and emerging computer methods used in the environmental design professions, with an introduction to computer programming. Open to nonmajors. Prereqs., MATH 1300 and PHYS 2010, or instructor consent.

ENVD 3152-3. Introduction to Computer Graphics Applications. Explores principles and uses of computer graphics in design. Topics include creation and modification of complex two- and three-dimensional objects; orthographic and perspective views; use of color; input using mouse and digitizer; output using screen, plotter, matrix printer, and slides; automated aids for form generation and manipulation; and analysis of current and future trends of computer usage for design.

ENVD 3252-3. Computer Graphic Programming. Provides an introductory computer programming course designed to teach the capabilities of a computer in providing graphic representations of environments, including buildings. Open to nonmajors.

ENVD 4012-3. Imagination and Creativity. Offers a seminar on imagination and creativity in environmental design. Students research and prepare a class presentation and paper on a topic of interest. Open to nonmajors at all levels.

ENVD 4092-3. Improving Imaging Ability. Offers an advanced course dealing with theories of imaging and methods of improving imaging in the design process. Open to nonmajors.

ENVD 4122-3. Advanced Technical Photography. Focuses on working with a variety of alternative photographic processes intended to give students an array of photographic techniques to incorporate into studio course presentations and portfolio work. Processes include hand-applied color to black and white images, using two or more negatives to produce black and white combination prints, shooting color slides to produce graphic arts, high-contrast
ENVD 4192-3. Improving Imaging Ability
2. Offers an advanced course dealing with theories of imaging and methods of improving imaging in the design process. Open to nonmajors.

Surveys architecture, planning, and landscape design. Lectures introduce theories of design and planning, offer a historical review of these fields, and present career opportunities within these professions.

ENVD 4004-6. Introduction to Environmental Design.
Surveys factors shaping the built environment, emphasizing architecture, planning, and landscape design. Lectures introduce theories of design and planning, offer a historical review of these fields, and present career opportunities within these professions.

Introduces the mechanics of entering 2-D images and 3-D objects into the computer. Once entered, graphics are interactively rotated in space, walked through, and displayed in perspective from any position. Also covers the mechanics of other computer programs allowing additional manipulation of images and objects.

Covers development of an architectural set of construction documents combined with job administration, field observation, and guest speakers from related construction and architectural disciplines. Prereq., ENVD 1002.

Covers underlying two- and three-dimensional graphics in the Pascal programming language: perspective, object hierarchies, viewing and modeling transforms, symmetry transformations, form grammars, fractals, windowing, and graphic databases.

ENVD 4322 (1-6). Special Topics: Graphics.
Provides an advanced seminar on special issues in design communications. Open to nonmajors. May be repeated for credit by petition. Prereq., upper-division standing.

ENVD 4352 (1-6). Special Topics: Computer Methods.
Topics include animation and environmental simulation, computational methods of technical evaluation and optimization, and computational mapping and analysis. May be repeated for credit by petition.

Explores the interdisciplinary field of environmental aesthetics, examining the history of landscape tastes, theoretical approaches to the study of aesthetic responses, and contemporary attempts to incorporate matters of aesthetics in American planning. Emphasizes developing analytical and critical approaches to aesthetics in the public realm.

ENVD 4363 (1-6). Special Topics: Physical Factors in Environmental Design.
Includes such topics as appropriate technology, public policy and natural hazards, organization of the designing and building process, and physical elements of urban development. May be repeated for credit by petition. Prereq., upper-division standing.

History and Theory

ENVD 1004-6. Introduction to Environmental Design.
Surveys factors shaping the built environment, emphasizing architecture, planning, and landscape design. Lectures introduce theories of design and planning, offer a historical review of these fields, and present career opportunities within these professions.

Introduces physical environmental planning in the U.S., examining both historical roots and recent trends in American planning concepts and implementation. Emphasizes an analytical and critical approach to historical and contemporary planning issues, mechanisms, and cases.

Surveys architecture, landscape architecture, urban design, and planning in the U.S. from ca. 1600 to the present. Open to nonmajors. Prereq., ARCH 3214 or equivalent, or instructor consent.

Surveys, through lectures and readings, the major historical developments and contemporary directions in architectural theory. Prereq., ARCH 3114 and 3214.

ENVD 4364 (1-6). Special Topics: History and Historiography of Environmental Design.
Provides an advanced seminar on history and historiography of environmental design, e.g., American dwellings. May be repeated for credit by petition. Prereq., ARCH 3214, equivalent, or instructor consent.

ENVD 4764 (1-6). Special Topics: Theory and Criticism in Environmental Design.
Provides an advanced seminar on theory and criticism in environmental design, e.g., architecture now and introduction to design theory and criticism. May be repeated for credit by petition. Prereq., ARCH 3214, equivalent, or instructor consent.

Technology and Practice

Introduces methods for identifying historic structures and evaluating their materials. Considers techniques for preserving and restoring and legal options for promoting preservation efforts.

ENVD 3115-3. Introduction to Building Materials and Systems.
Surveys building methods, materials, and assemblies from the designer’s perspective.

Teaches students how to research the various codes and to draft and pass laws. Covers environmental, water quality, property, zoning, and building codes and laws. Open to nonmajors.

Introduces aspects of solar technology relevant to the environmental design professions. Includes readings and lectures on the nature of energy limitations, energy needs, and the potential role of solar energy in meeting these needs. Open to nonmajors. Prereq., PHYS 2010 or equivalent.

ENVD 4365 (1-6). Special Topics: Technology and Practice.
Provides an advanced seminar on new technologies and issues of professional practice in the environmental design professions. May be repeated for credit by petition.

Miscellaneous

ENVD 3909 (1-6). Independent Study.
By special arrangement with instructor. Prereq., junior standing and 3.00 GPA.

ENVD 3919 (1-6). Teaching Assistant.
By special arrangement with instructor. Prereq., junior standing and 3.00 GPA. Available for pass/fail credit only.

ENVD 4909 (1-6). Independent Study.
By special arrangement with instructor. Prereq., junior standing and 3.00 GPA.

ENVD 4919 (1-6). Teaching Assistant.
By special arrangement with instructor. Prereq., junior standing and 3.00 GPA. Available for pass/fail credit only.

ENVD 4929 (1-6). Research Assistant.
By special arrangement with instructor. Prereq., junior standing and 3.00 GPA.

ENVD 4939 (1-6). Internship.
By special arrangement with instructor and outside sponsor. Prereq., junior standing and 3.00 GPA. Available for pass/fail credit only.
FACULTY

PATRICIA O’LEARY, Dean of the College of Architecture and Planning; Professor of Architecture. B.Arch., M.Arch., Arizona State University. Registered Architect: Arizona and Arkansas.

JAVIER GOMEZ ALVAREZ-TOSTADO, Senior Instructor in Architecture. B.Arch., Universidad Anahuac Mexico; M.Arch., Architectural Association School of Architecture, London; M.Arch., Universidad Nacional Autonoma de Mexico.

BARBARA AMBACH, Assistant Professor of Architecture. B.Arch., B.A., Rhode Island School of Design.

ERNesto G. ARIAS, Associate Professor of Planning and Design. B.Arch., University of Florida; M.Arch., M.C.P., Ph.D., University of Pennsylvania. Registered Architect: Pennsylvania, Florida.

CHeryl Barton, Professor Adjunct of Landscape Architecture. B.A., Bucknell University; M.L.A., Harvard University.

ALAN BERGER, Assistant Professor of Landscape Architecture. B.S., University of Nebraska; M.L.A., University of Pennsylvania.

C. HERBERT BOWES, Professor Emeritus.

GENE BRESSLER, Director, Landscape Architecture Program; Professor of Landscape Architecture. B.L.A., State University of New York–Syracuse; M.L.A., Harvard University.

LOIS A. BRINK, Associate Professor of Landscape Architecture. B.A., M.L.A., University of Pennsylvania.

DeVON M. CARLSON, Dean Emeritus.

TIM CASTILLO, Senior Instructor in Architecture. B.Arch., University of New Mexico; M.Arch., Columbia University.

THOMAS A. CLARK, Professor of Planning and Design. A.B., Brown University; M.A., Ph.D., University of Iowa.

GERALD S. CROSS, Professor Emeritus.

JOAN DRAPER, Associate Professor of Architecture. A.B., M.Arch., Ph.D., University of California, Berkeley.

ROBERT H. FLANAGAN, Assistant Professor of Architecture. B.Arch., University of Notre Dame; M.Arch., University of Colorado. NCARB certification; Registered Architect: Colorado, New Mexico, South Dakota, and Wyoming.

MARK GELENTNER, Associate Vice Chancellor of Academic Affairs and Dean of the Graduate School, CU-Denver; Professor of Architecture. B.Arch., Montana State University; Ph.D., Bartlett School of Architecture and Planning, University College, London.

MARVIN HATAMI, Associate Professor of Architecture. B.Arch., University of Colorado; M.Arch., Yale University. Registered Architect: Colorado.

SPENNER W. HAVLICK, Professor of Planning and Design. B.A., Beloit College; M.S., University of Colorado; Ph.D., University of Michigan.

JULIE HERDT, Assistant Professor of Architecture. B.S., Western Kentucky University; B.Arch., University of Tennessee; M.Arch., SCI-ARC. NCARB certification; Registered Architect: Tennessee.

MICHAEL E. HOLLERAN, Assistant Professor of Planning and Design. A.B., Brown University; M.C.P., Ph.D., Massachusetts Institute of Technology.

GEORGE HOOVER, Chair, Department of Architecture; Professor of Architecture. B.Arch., Cornell University. NCARB certification; Registered Architect: Colorado, California, and Texas.

MARK JOHNSON, Associate Professor Adjunct of Landscape Architecture. B.L.A., Utah State University; M.L.A., Harvard University.

TODD JOHNSON, Associate Professor Adjunct of Landscape Architecture. B.L.A., Utah State University; M.L.A., Harvard University.

JOSEPH JUHASZ, Professor of Architecture. A.B., Brown University; Ph.D., University of California, Berkeley.

ROBERT W. KINDIG, Professor Emeritus.

ANN KOMARA, Assistant Professor of Landscape Architecture. B.A., Pennsylvania State University; M.A., M.L.A., University of Virginia.

YUK LEE, Professor of Planning and Design. Dipl., Chung Chi College, Chinese University of Hong Kong; B.A., Eastern Kentucky University; M.A., University of Cincinnati; Ph.D., Ohio State University.

LAURENCE K. LOFTIN, III, Assistant Professor of Architecture. B.A., Princeton University; M.Arch., University of Virginia.

TAISTO MÄKELÄ, Associate Professor of Architecture. B.Arch., University of Oregon; M.A., Ph.D., Princeton University.

RAYMOND MccALL, JR., Associate Professor of Planning and Design. B.S., University of Wisconsin, Milwaukee; M.S., Illinois Institute of Technology; Ph.D., University of California, Berkeley.

GILBERT MCNEISH, Professor Adjunct of Planning and Design. B.A., Drake University; M.P.A., University of Pittsburgh; J.D., University of Denver.

THOMAS I. MILLER, Associate Professor Adjunct of Planning and Design. B.A., M.A., University of Wisconsin; Ph.D., University of Colorado.

HANS R. MORGENTHALER, Associate Professor of Architecture. B.A., University of Zurich; M.A., Ph.D., Stanford University.

ERIC MORRIS, Assistant Professor of Architecture. B.F.A., Colorado State University; M.Arch., University of Houston. Registered Architect: Colorado.

BRIAN MULLER, Assistant Professor of Planning and Design. B.A., Yale University; M.P.A., University of Texas.

BENNET R. NEIMAN, Associate Professor of Architecture. B.Arch., Montana State University; M.Arch., Yale University.

DWAYNE C. Nuzum, Chair, Department of Planning and Design; Professor of Planning and Design. B.Arch., University of Colorado; M.Arch., Massachusetts Institute of Technology; Doctoral, Delft Technical University, The Netherlands. Registered Architect: Colorado, Virginia.

RANDALL OTT, Associate Chair for Undergraduate Studies, Department of Architecture; Associate Professor of Architecture. B.S., M.Arch., University of Michigan.

DAVID L. PAULSON, Professor Emeritus.

JOE ALLEN PORTER, Professor Adjunct of Landscape Architecture. B.L.A., Utah State University; M.L.A., University of Illinois.

FAHRIYE HAZER SANCAR, Professor of Planning and Design. B.Arch., Middle East Technical University, Turkey; M.S., Ph.D., Pennsylvania State University.

DANIEL J. SCHLER, Professor Emeritus.

PETER A. SCHNEIDER, Professor of Architecture. B.Arch., University of Cape Town, South Africa.

RAYMOND G. STUDER, JR., Associate Dean; Professor of Planning and Design. B.Arch., University of Texas; M.Arch., Harvard University; Ph.D., University of Pittsburgh.

Luis Summers, Professor of Architecture and Civil, Environmental, and Architectural Engineering. B.Arch., M.S., Ph.D., Notre Dame.
DORIS SUNG, Assistant Professor of Architecture. B.A., Princeton University; M.Arch, Columbia University.

WON JIN TAE, Associate Professor Adjunct of Architecture. B.C.E., M.Arch., Yon Sei University, Korea; M.Arch, D.Arch, University of Michigan.

WILLEM K. T. VAN VLIET, Director, Ph.D. program; Professor of Planning and Design. Doctorandus, Free University of Amsterdam; Ph.D., University of Toronto.

EKATERINI VLAHOS, Assistant Professor of Architecture. M.S., M.Arch., University of Colorado. Registered Architect: Maryland.

PING XU, Associate Professor of Architecture. B.A., M.A., Tsinghua University (PRC); M.L.A., University of Pennsylvania; D.D., Harvard.
Exalted Womanhood

In 1878, President Sewall succeeded in hiring Mary Rippon, the first woman in the United States to teach at a state university. She had been warned before she came that the university was "way out on the prairie." She soon earned the admiration of students and faculty; President Sewall praised her for "exalted womanhood." She became the head of the Department of Germanic Languages and Literatures, a position she held with distinction for 28 years.
The College of Arts and Sciences is the liberal arts college at CU-Boulder. Its mission is to provide an outstanding liberal arts education for its undergraduate, cutting-edge graduate education, and world-class research, scholarship, and creative work. In addition to gaining the knowledge and skills of their areas of study, students learn how new information is acquired, and they can participate in original research and creative work with individual faculty members.

The college offers an enormous variety of fields of study, with nearly 50 undergraduate majors. The environment and advantages of a small liberal arts college are created through “academic neighborhoods” in which students can meet and interact with other students and faculty in small group settings. In addition, over 60 percent of undergraduate classes are small, with 25 or fewer students.

As the liberal arts college of CU-Boulder, the College of Arts and Sciences has several goals in the education of its students:

- Educate students for careers and a productive life. Arts and sciences students gain the most current knowledge and skills in their major fields of study. In addition, they learn how to acquire new skills and contend with—and lead—the changes that will occur in the decades to come. Education for a productive life also means that students learn how to analyze situations, solve problems, and speak and write effectively.
- Provide students with a well-rounded education. Arts and sciences students acquire a broad knowledge and an integrated understanding of art and music, great literary works, philosophy, history and politics, the social world, science, and technology. They learn how to critically evaluate and think about morals, ethics, and values. The core curriculum and breadth requirements give students a broad, liberal-arts education that develops the whole person, not just the specialist.
- Educate citizens who can think for themselves, understand the rapidly changing world, and make wise choices within a democratic way of life.
- Impart a love of learning so that students can continue to grow throughout life. For some students, this is important for enriching their lives.
- Prepare students to help enrich the lives of others. Arts and sciences graduates become lifelong resources for their families, neighbors, friends, and co-workers.

The college is dedicated to both outstanding undergraduate and graduate education. Advanced degrees are offered by nearly every academic department in the college, and the Ph.D. is offered in 30 different disciplines. In addition, an increasing number of departments offer combined bachelor’s/master’s degrees that can be earned in five years. Graduate training focuses on teaching and research careers as well as on professional careers in the public and private sector.

The strength of the College of Arts and Sciences comes from its outstanding faculty. In addition to being dedicated teachers, they are active scholars in disciplines throughout the arts and humanities, social and behavioral sciences, biological sciences, and physical and mathematical sciences. They are the recipients of numerous national awards and honors for their research, scholarship, and creative work. Faculty and staff of the College of Arts and Sciences join together to create an intellectual community of students and scholars to discover, critically examine, integrate, preserve, and transmit knowledge, wisdom, and values.

PROGRAMS OF SPECIAL INTEREST

Fall Freshman Experience Success Teams

The College of Arts and Sciences sponsors the Fall Freshman Experience Success Teams (FallFESTs). Designed for incoming freshman open option students, this program brings together courses that have a common theme or focus to form a single FEST. Most of the courses that form the groupings meet either core curriculum or other requirements. Groups of 18 to 25 freshman students are registered for all the courses of a FEST as a block. In addition to the course work, these same students participate in an accompanying workshop that deals with a variety of topics and issues, ranging from academic skills to student social life. These noncredit workshops are led by arts and sciences advisors with participation by staff and faculty mentors.

The intent behind each FEST is to ease the decision-making process of what courses to take. By choosing a FEST of interest, students are also well on their way toward constructing a fundamentally sound first-semester schedule. Also, by having groups of students taking courses and the FEST workshops in common, a starting point is established for the formation of study groups.

Honors Program

The Honors Program is designed to provide special educational opportunities for highly motivated students. It is open to well-prepared freshmen, as well as sophomores and upper-division students. The Honors Program offers thoughtful advising, close contact with faculty and other honors students, and an opportunity to write an honors thesis. Each year over 50 honors courses are offered in a wide variety of areas; with one or two exceptions, each course is limited to an enrollment of approximately 15 students.

Faculty members teaching honors seminars are carefully selected for special interests and enthusiasm, for teaching excellence in small discussion classes, and for insistence on high academic standards. Honors seminars are designed for the student who wishes challenge, knows that the mind expands only with effort, and actively seeks academic and intellectual challenges. Honors courses encourage students to combine and synthesize concepts and methodologies from other courses and disciplines. Many honors courses are consciously interdisciplinary, but all encourage students to read widely and think critically.

The honors council, consisting of faculty from all participating academic departments, is responsible for deciding which students merit the award of the bachelor’s degree with honors: cum laude, magna cum laude, and summa cum laude. These awards are made on the basis of special honors work and not simply on the basis of grades earned in courses.

Students may graduate with departmental honors or general honors, or both. Departmental honors may require a junior or senior honors seminar, an independent research project, and/or directed readings. All departments require an honors thesis. Each department has information pertaining to its own particular program. Students who pursue general honors must have a cumulative GPA of 3.50 or higher, have completed 12 credit hours of required honors courses, and have written a thesis on an interdisciplinary topic.
Kittredge Honors Program (KHP) is the optional residential component of the program. KHP, open to a limited number of qualified entering first-year students, consists of small classes offered in the Kittredge residence hall as well as opportunities to participate in extracurricular activities. There is an additional charge for the Kittredge Honors Program. See below for more information.

Detailed information concerning the Honors Program may be obtained in the honors office in Norlin Library. Qualified students may register for courses in the Honors Program at the honors office.

Freshmen are invited to join the Honors Program based on their high school GPA and test scores. Transfer students must have a 3.30 GPA from their previous school. Students currently enrolled are accepted on the basis of academic achievement at CU-Boulder. While honors students are expected to have a GPA of at least 3.30, it should be emphasized that no student who shows ability and promise is excluded from consideration. This is a program of excellence and commitment in which the best teaching faculty is committed to serve the most highly motivated students for the benefit of those students and the larger society.

Minority Arts and Sciences Program

The Minority Arts and Sciences Program (MASP) is an academic excellence community dedicated to assisting underrepresented scholars of color in their successful matriculation in and retention and graduation from the College of Arts and Sciences at CU-Boulder. For students interested in science and mathematics, MASP emphasizes study leading to the B.A. degree in selected fields, including biology, chemistry/biochemistry, kinesiology, mathematics, physics, and applied mathematics. In the fall of 1999 MASP expanded to support students of color interested in pursuing humanities and social sciences degrees, including history, theatre, fine arts, and other disciplines within the College of Arts and Sciences.

MASP facilitates the often-difficult transition from high school to the college learning environment. It provides a personally supportive community and intense academic instruction, and helps develop a strong sense of group cohesiveness and spirit.

MASP provides scholarships to promising students from underrepresented groups. Grade point average (GPA) and other academic indicators assist in determining scholarship amounts. MASP also provides academic advising and clustering, academic excellence workshops, the Summer Bridge Program for new freshman students, self-management and leadership workshops, and a MASP networking and study center.

For further information, interested students should call the MASP office at 303-492-8229.

Norlin Scholars Program

The Norlin Scholars Program is a special academic and scholarship program designed for students with a strong love of learning. It is open to students in all majors and all colleges and schools. Two special courses have been created exclusively for Norlin Scholars; they are broadly synthetic to be appropriate for any student in any major. Special mentoring, residential academic program spaces, and opportunities for original research receive emphasis.

The program is highly competitive and carries a $2,000/year scholarship. Students may enter as first-year students or as rising juniors. More information and application forms are available at www.colorado.edu/norlinscholars, or Norlin Scholars Program, University of Colorado at Boulder, 40 UCB, Boulder, CO 80309-0040, or at 303-492-5538.

RESIDENTIAL ACADEMIC PROGRAMS

Baker Residential Academic Program

The Baker Hall Residential Academic Program (RAP) is designed primarily for 300 freshman and sophomore students who are interested in the natural sciences and environmental studies. The program provides an array of courses that satisfy various core curriculum requirements in the College of Arts and Sciences and in majors such as environmental, population and organismic biology; geography; geology; chemistry; and the interdisciplinary major in environmental studies.

Courses are typically limited to 25 students and are taught in classrooms located in Baker Hall. Baker RAP offers access to academic advising, career counseling, student internships, guest speakers, field trips, and close faculty contact. The combination of small classes, a group of students who take many of the same classes together, and frequent field trips and special lectures creates a small-college atmosphere while offering the advantages of studying at a major research university.

Baker RAP provides introductory courses in biology, geology, chemistry, geography, mathematics, economics, history, political science, philosophy, anthropology, and expository writing. The curriculum is designed to maximize the opportunities for students to satisfy core curriculum requirements in the College of Arts and Sciences. Upper-division courses are presented in ecology, geography, and environmental economics. Upper-division credit also is available through independent study and research. Students usually take one of the above courses each semester. Baker RAP also reserves seats for its students in certain high-demand courses taught outside the program, including introductory biology and chemistry laboratories.

Some of the geology and geography courses offered by Baker RAP emphasize research techniques and are affiliated with the Summer Undergraduate Research Experiences (SURE) program and the Undergraduate Research Opportunities Program (UROP). These courses offer students access to research opportunities during the summer and academic year.

Baker RAP cocurricular activities offer social and educational opportunities for students in the program. These activities include a kick-off barbeque at the beginning of the school year, local hikes, a day of cross-country skiing, and a spring-time service-oriented activity emphasizing environmental conservation. Guest lecturers are invited to speak about scientific or environmental themes.

There is a fee for participation in Baker RAP in addition to regular tuition, fees, and room and board. A limited number of merit-based scholarships are available. Students eligible for financial aid may request that their budget be adjusted to include the program fee. Their eligibility for aid will then be increased by an amount equal to the Baker RAP fee. Students interested in the program should write to the Baker Hall Residential Academic Program, 176 UCB, Boulder, CO 80309-0176, or call 303-492-3188.

Chancellor's Leadership Residential Academic Program

This residential academic program, founded in 1999 and located in Williams Village, is dedicated to the development of community and professional leaders for the 21st century. Students in other residence halls may enroll with permission of the director. Students from all schools and colleges on the Boulder campus are eligible to participate in the program.

Leadership courses meet core requirements in the College of Arts and Sciences, and may be applied towards graduation in programs across the campus. As with all residential academic programs, there is an extra charge for participating. Some scholarships to cover the program fee are available for those in need.

Information is available from the Academic Director, Chancellor’s Leadership RAP, University of Colorado at Boulder, 452 UCB, Boulder, CO 80309-0452 or 303-735-1987. Students may also contact Richard.Kraft@colorado.edu or access the web page at www.colorado.edu/chancellor/chancellorslap/. For more complete information on the program, please refer to the Other Academic Programs chapter of this catalog.
Farrand Residential Academic Program

The Farrand Residential Academic Program combines the advantages of a small liberal arts college with the benefits of a major research university for its 400 first-year and sophomore residents. Assets such as small classes offered in the residence hall, informal contact with award-winning faculty, extensive academic advising and personal counseling services, participation in community service, and special programs generated from student interests make Farrand an intellectual as well as a residential community.

Each semester, every Farrand student takes a Farrand course that provides a shared academic experience. Because helping others contributes to the learning experience as well as to the whole community, Farrand offers several service-learning classes each semester. Service learning gives students the chance to apply what they study in their classes to real-life situations, such as a homeless shelter, a humane society, or a tutoring program. The Farrand curriculum also offers a wide range of popular core curriculum classes taught by faculty known for their teaching skills.

Farrand courses constitute about one-third of a student’s course work during the first two years. The remaining two-thirds is composed of courses selected from regular on-campus offerings.

The program is sponsored jointly by the College of Arts and Sciences and the Department of Housing and is designed primarily for students in the College of Arts and Sciences. Interested students in other colleges should contact the Farrand program for special admission procedures. It is administered by academic directors selected from the faculty and a hall director experienced in the operation of a large residence hall. There is a charge for the program in addition to regular tuition, fees, and room and board.

Inquiries concerning any aspect of the academic program may be directed to the Farrand Residential Academic Program, University of Colorado at Boulder, 180 UCB, Boulder, CO 80310-0180, 303-492-8848.

Kittredge Honors Program

The Kittredge community is home to the Kittredge Honors Program (KHP). This residential academic honors program is open to 125 high-ability students, who are considered integral members of the Kittredge complex. Members of KHP live in Buckingham Hall.

The Kittredge Honors Program seeks to build a program based both on academics and community. Each semester KHP offers a selection of honors courses in the residence hall that satisfy arts and sciences core curriculum requirements. Students are required to take at least one of these courses each semester. Honors courses are limited to 15 students, and faculty pursue a discussion- and writing-based approach to teaching.

KHP strives to combine the academic and social aspects of the college experience. KHP sponsors evening activities once a week to meet this goal. A monthly lecture series provides students with an opportunity to gain exposure to some of the great teachers and researchers in the university community. Social events are sponsored in order to create community.

The program is sponsored by the College of Arts and Sciences, the Honors Program, and the Department of Housing. Students in KHP may draw on the resources of the Honors Program for advising and information. The director of KHP is available in the KHP office in Buckingham Hall for academic advising and as a liaison to the rest of the campus. There is a fee to participate in the program in addition to regular tuition, fees, and room and board.

Students who are invited into the Arts and Sciences Honors Program may choose this residential component on a space-available basis. The Honors Program invites students to participate in honors based on high school GPA and test scores. To remain eligible for honors courses (including those in KHP), students must maintain a University of Colorado GPA of 3.30 or above.

Initial invitations are issued beginning in mid-February. Students who have questions about the program should address them to the Kittredge Honors Program, University of Colorado at Boulder, 184 UCB, Boulder, Colorado 80309-0184, 303-492-3695.

Sewall Residential Academic Program

The Sewall Residential Academic Program in American Culture and Society provides freshmen and sophomores with the opportunity to participate in a unique living and learning experience. Limited to 330 students, this coeducational program combines many of the advantages of a small liberal arts college with the vast resources of the university.

Students who live in Sewall Hall are required to take one class in the hall each semester. Freshmen are required to take either AMST 2000 or 2010 (Themes in American Culture). As part of these courses, students are automatically enrolled in a section of Conversations on America. This one-credit course provides students with an opportunity to interact with well-known intellectuals from on and off campus.

The program also offers a wide range of courses that satisfy core curriculum requirements in the College of Arts and Sciences, as well as general education requirements in the Colleges of Business and Engineering. Classes are usually limited to 20 students, carry 3 credit hours, and count toward a degree. In addition to the seminars, many of the large lecture classes at the university offer special laboratory or recitation sections for Sewall students.

The director and associate director of the Sewall Residential Academic Program, who are members of the university faculty, provide academic assistance to students in planning individual programs, choosing courses, and making contact with major departments. The director and associate director also offer personal counseling and guide students to find the proper university resources.

Participants in Sewall are fully involved in regular campus life, take the majority of their classes with the rest of the university, and are encouraged to join in all university activities. The major emphasis is on participation—in classes, in student government, and in special programs and performances. Faculty, administrators, and staff enjoy close working relationships with the Sewall residents.

Interested freshmen and sophomores should indicate Sewall Hall as their first choice on the housing application form and return it to the Housing Reservation Center as early as possible. Students are admitted on a first-come, first-served basis, determined by date of receipt of the housing application form. Students with a serious interest in American culture and society and who want a liberal arts education are encouraged to apply. There is an extra charge for participating in the program in addition to regular tuition, fees, and room and board. Some scholarships are available to students enrolled in the College of Arts and Sciences.

Students who have questions about the program should address them to the Academic Director, Sewall Residential Academic Program, University of Colorado at Boulder, 353 UCB, Boulder, CO 80309-0353, 303-492-6004.

Smith Hall International Program

The Smith Hall International Program (SHIP) promotes the recognition of global interdependence, exposes first-year students to the many cultures of the world, encourages the study of foreign languages and international affairs, and emphasizes the value of international education.

A diverse group of students who have similar interests and goals participate in programs designed to promote understanding of the global community. SHIP students are required to take one designated course in the fall semester with an international focus. Spaces are reserved for SHIP students in appropriate international
courses. SHIP takes advantage of many internationally focused events on and off campus, such as the Conference on World Affairs and exhibits at the Denver Art Museum and the Denver Museum of Natural History. Throughout the year, faculty and staff guide and advise the students on academic and career options, course selection and college requirements, and study abroad opportunities.

SHIP is open to all entering first-year students. Participants live together in one wing of Smith Hall in the Kittredge Complex—a collection of residence halls providing a unique community experience.

In addition to benefitting students interested in studying abroad or those whose majors have an international component, SHIP enhances many of the majors offered at CU-Boulder.

A fee is charged for participation in SHIP. For more information, contact the Office of International Education, University of Colorado at Boulder, 123 UCB, Boulder, CO 80309-0123, call 303-492-6016, or check www.colorado.edu/OIE/SHIP.

ACADEMIC EXCELLENCE

Dean's List
Students in the College of Arts and Sciences who have completed at least 12 credit hours of CU-Boulder course work for a letter grade in any single semester with a GPA of 3.50 or better are included on the dean's list and receive a notation on their transcript and a letter from the dean.

Graduation with Honors
The award of honors at graduation—cum laude, magna cum laude, or summa cum laude—is determined by the Honors Program of the college and is based on several criteria, including the quality of original scholarly work. Honors are not conferred on a graduate simply by virtue of high grades. Interested students should consult the Honors Program listing in this catalog or contact the Honors Program in Norlin Library.

Graduation with Distinction
Students will graduate “With Distinction” if they have at least 30 credit hours completed at the University of Colorado at Boulder, have a grade point average of 3.75 or higher for all course work completed at the University of Colorado, and have a cumulative grade point average of 3.75 or higher for all collegiate course work completed. The average includes all grades except P.

Phi Beta Kappa
Phi Beta Kappa is the nation’s oldest and most prestigious honor society. The CU-Boulder chapter was established in 1904. Upper-divi-
sion students whose undergraduate academic records fulfill certain requirements are eligible for election to membership in recognition of outstanding scholastic achievement in the liberal arts and sciences. Students are notified by mail of their nomination; students do not apply for Phi Beta Kappa membership.

ACADEMIC STANDARDS

Good Academic Standing
Good academic standing in the college requires a grade point average of 2.00 (C) in all University of Colorado work. Grades earned at another institution are not used in calculating the grade point average at the University of Colorado (this includes courses taken at Metropolitan State College on the Denver campus). However, grades earned in another school or college within the University of Colorado system are used in determining a student’s scholastic standing and progress toward the degree in the College of Arts and Sciences.

Probation
Students whose cumulative grade point average falls below 2.00 are placed on probation. Those students who enroll in any term in the calendar year, excluding summers, after being placed on probation are expected to raise their grade point to a 2.00 overall at the end of that term. Neither CU-Boulder’s summer session (including Maymester) nor enrollment through Boulder evening courses counts as a probationary semester. Students are not dismissed at the end of the summer term.

If students who have been placed on probation elect to remain out of school for a full calendar year, they may return to the university in good standing, but are placed on probation again at the end of the semester in which they return if their cumulative grade point average remains below 2.00.

Scholastic Dismissal
Students who still have a cumulative average below 2.00 after their semester of probation will be dismissed and will not be able to register for University of Colorado daytime courses on any campus during any academic year, August to May. Students dismissed from the college are eligible for readmission when they have achieved a cumulative 2.00 average by virtue of work done during the University of Colorado’s summer term (any of the three campuses) and/or through the Division of Continuing Education (Boulder evening or correspondence courses). They also may return as transfer students when they have overcome their deficiencies by enrolling at another institution (i.e., by achieving an overall 2.00 average in the University of Colorado work plus all work taken elsewhere since dismissal.

These transfer grades are used only for the purpose of readmission and do not remain in the University of Colorado grade point average. Dismissed students pursuing this latter option have two semesters after readmission to bring their University of Colorado grade point average up to 2.00 or they are dismissed again.

Students who have met the required performance standards described above and desire to be readmitted must reapply to the university through the Office of Admissions. Readmission is subject to enrollment limitations.

Academic Ethics
A university’s intellectual reputation depends on the maintenance of the highest standards of intellectual honesty. Commitment to those standards is a responsibility of every student and faculty member at the University of Colorado. Cheating, plagiarism, illegal possession and distribution of examinations or answers to specific questions; alterations, forgery, or falsification of official records; presenting someone else’s work as one’s own; or performing work or taking an examination for another student are examples of acts that may lead to suspension or expulsion. Reported acts of academic dishonesty must be referred to the Academic Advising Center and may be referred to the Arts and Sciences Academic Ethics Committee. The policy document describing this committee’s procedures is available in the Academic Advising Center.

Appeals and Petitions
Students have the right to appeal accusations of academic dishonesty. These appeals should be directed to the Committee on Academic Ethics.

Petitions for exceptions to the academic policies stated in this catalog should be submitted to the Appeals Committee on Academic Rules and Policies. Both committees are located in the Academic Advising Center.

GENERAL CREDIT AND ENROLLMENT POLICIES

Students are required to follow the graduation requirements listed in the catalog at the time of their initial entry into the College of Arts and Sciences. Students who attended a Colorado community college must follow the requirements in the transfer guide in effect during the time of their enrollment in the community college.

Attendance
Successful work in the College of Arts and Sciences is dependent upon regular attendance in all classes. Students who are unavoidably absent should make arrangements with instructors to make up the work missed. Failure to attend regularly may result in receipt of an F in
a course. Students who, for illness or other legitimate reason, miss a final examination must notify the instructor or the Academic Advising Center no later than the end of the day on which the examination is given. Failure to do so may result in receipt of an F in the course.

Credit Policies
Advanced Placement Program
See Undergraduate Admission in the General Information chapter of this catalog.

International Baccalaureate
In general, college credit is granted for International Baccalaureate examinations at the highest level with a score of 4 or better. For specific equivalencies, contact the Office of Admissions at 303-492-6665.

College-Level Examination Program (CLEP)
The College of Arts and Sciences accepts a limited number of hours of CLEP credit from subject (not general) examinations toward its bachelor’s degree programs (see Undergraduate Admission for subjects accepted). In addition, certain CLEP examinations may be used to meet the minimum academic preparation standards (MAPS) for admission to the university. No more than 30 total credit hours of CLEP will apply, nor may CLEP credit be used in the final 30 credit hours presented for a degree.

CLEP tests are administered through Career Services, 303-492-5854.

Cooperative Education/Internships
Students in the College of Arts and Sciences may receive up to 6 credit hours of credit for a department-sponsored cooperative education program or internship. Each internship project must be approved by the assistant dean of the college (in the Academic Advising Center) before the student enrolls in the course in order for the student to receive credit. Students are encouraged to contact their major department office or Career Services for information regarding the possibility of enrolling in a cooperative education program in their major. Many internships are graded on a pass/fail basis only. Participation in an internship with mandatory pass/fail grading does not affect the total credit hours of pass/fail a student may apply toward a degree. Some departments further restrict the use of internship credit toward meeting major requirements.

Correspondence Study
A maximum of 30 credit hours of correspondence work may count toward the degree. Arts and sciences courses offered by the CU-Boulder Division of Continuing Education carry resident credit.

Credit/No Credit
Credit/no credit changes must occur during the schedule adjustment periods.

Credit Taken as a Nondegree Student
Once a student has been admitted to a degree program, credits from the Division of Continuing Education such as ACCESS, Boulder evening credit courses, and CU-Boulder correspondence classes are eligible to be applied toward the degree. Students will receive initial advising during orientation once they have been accepted to a degree program in the College of Arts and Sciences.

Credit Taken Outside the College of Arts and Sciences
Students may count a total of 30 credit hours from the other colleges and schools at CU-Boulder as well as specified ROTC and President’s Leadership Class toward the fulfillment of requirements for the B.A. and B.F.A. degrees. Within these 30 total hours, up to 8 credit hours in activities courses (applied music and ensembles) may be used. Transferred courses that were taught by departments considered to be outside the College of Arts and Sciences are counted as part of the allowed 30 hours. If a course has been approved to meet a core curriculum requirement and the course is taught outside the College of Arts and Sciences, the credit for this course will not be included as part of the 30 semester hour limitation.

Cross-Listed Courses
Courses that are cross-listed in two or more departments are credited in the department in which the student has the most semester hours, irrespective of the department in which the student formally enrolled for the course.

Foreign Language Courses
Once a student passes a college-level foreign language course, that student cannot receive credit toward the degree for a course at a lower level in the same language.

Independent Study
With departmental approval, students may register for independent study during the normal registration periods for each semester. Students may not register for more than 6 credit hours of independent study credit during any term. No more than 8 credit hours of independent study taken in a single department or program can be applied toward the total hours needed for graduation. A maximum of 16 hours of independent study may count toward the degree. The minimum expectation for each semester hour of credit is 25 hours of work.

A student may not use independent study projects to fulfill the college’s general education requirements. Some departments further restrict the use of independent study hours toward meeting major requirements.

Required Hours Outside the Major
To complete the B.A. degree, students are required to complete a minimum of 75 credit hours outside their major department. Exceptions are:
• Students who complete designated departmental honors courses in their major and/or in honors thesis credit can reduce the 75 credit hours required outside the major department by a corresponding number of credits, up to a maximum of 6.
• Students completing the bachelor of fine arts degree must complete a minimum of 53 credit hours outside of their major department.

Pass/Fail
Students in the College of Arts and Sciences may not use the pass/fail option for courses taken to fulfill general education requirements, courses used to satisfy the foreign language requirement, courses used to fulfill the Minimum Academic Preparation Standards (MAPS), or courses used to complete the minimum requirements for the major.

Students may take elective courses pass/fail, to a maximum of 6 credit hours. Courses offered only on a mandatory pass/fail basis are not counted toward the maximum allowed. The pass/fail option may be used only for elective credit.

Repetition of Courses
If a student takes a course for credit more than once, all grades are calculated into the grade point average. However, the course is only counted toward graduation once, unless a course description specifically states that it can be taken more than once for credit.

ROTC Credit
The ROTC courses listed below have been certified as acceptable college-level course work by the faculty of the College of Arts and Sciences or by other colleges and schools on the Boulder campus. These courses are counted as elective credit in the college, subject to the 30-semester-hour limitation on course work taken outside the college for students in the B.A. and B.F.A. programs. Courses not included on this list do not count toward any degree requirements. Transfer ROTC course work must be evaluated as equivalent to course work on this list to count toward degree requirements.

AIRR 3010 and 3020
AIRR 4010 and 4020
they were taught at the previous institution. Community colleges carry lower-division course work at all universities except the University of Colorado after the students transferred to the University of Colorado. Remedial vocational course work does not transfer.

Articulation Agreement with Colorado Four-Year Institutions

CU-Boulder accepts the lower-division core curriculum from these Colorado four-year institutions as equivalent to its own core curriculum: Adams State College, Colorado School of Mines, Colorado State University, Fort Lewis College, Mesa State College, Metropolitan State College of Denver, University of Colorado at Colorado Springs, University of Colorado at Denver, University of Northern Colorado, University of Southern Colorado, and Western State College. Students still need to meet all upper-division arts and sciences core curriculum requirements.

Withdrawal

See the first chapter of this catalog for specific withdrawal procedures and university-wide policies.

Students in the College of Arts and Sciences who withdraw two semesters in a row will have a dean’s stop placed on their registration. Summer session is not counted as a regular semester. They will not be permitted to return to CU-Boulder before one full academic year has elapsed (not including their semester of withdrawal). Students may never withdraw after the last day of classes.

These policies also apply to arts and sciences students who are enrolled in continuing education courses.

UNDERGRADUATE DEGREE REQUIREMENTS

Students are subject to the general degree requirements in effect at the time they first enter the College of Arts and Sciences and are subject to the major requirements in force at the time they declare a major. Arts and sciences students have 10 years to complete the requirements for a declared major. If the 10-year limit is exceeded, the student may be required to satisfy current major requirements.

The requirements, rules, and policies stated in this catalog apply to all students first entering the College of Arts and Sciences during the 2001-02 academic year.

Academic Advising and Orientation

Students in the college are expected to assume responsibility for planning their academic program in conjunction with their academic advisor and in accordance with college rules and policies and with departmental major requirements. Any questions concerning these provisions are to be directed to the student’s academic advisor or to the Academic Advising Center.

Academic advising is an integral part of undergraduate education. The goal of all academic advising is to help students make responsible decisions as they develop educational plans compatible with their potential and their career and life goals. Advising is more than the sharing of information about academic courses and programs; it includes encouraging students to formulate important questions about the nature and direction of their education and working with them to find answers to those questions. Advisors confer with students about alternative course schedules and other educational experiences, but students themselves are responsible for selecting the content of their academic program and making progress toward an academic degree.

As students progress through their academic program, their questions and concerns change. CU-Boulder offers a system of faculty and professional academic advisors to address these ongoing and multifaceted concerns.

Academic advisors assist students in clarifying their interests, values, and goals and help students relate these to academic programs and educational opportunities. As students work with their advisors, the advisors help students develop a coherent and balanced program of study that fulfills graduation requirements and assists students in identifying and integrating their programs educational experiences outside the classroom that enhance their personal, intellectual, and professional development.

Academic advisors also assist students in understanding academic policies, requirements, procedures, and deadlines.

The Academic Advising Center provides comprehensive advising services to students who are undecided about their major or are thinking of changing their major to another CU-Boulder college or school. Open option majors are assigned primary advisors in the advising center who are familiar with the courses and degree requirements for all majors offered at CU-Boulder and who assist students in exploring all of the degree programs related to the students’ interests. While students are exploring majors, open option advisors assist students in designing programs of study that fulfill the requirements of the major and support academic growth.
study that meet graduation requirements while providing them with the academic flexibility to pursue whichever degree program they ultimately choose.

The advising center also provides preprofessional advising for all students who are preparing to pursue the study of medicine, law, or other professional fields.

Students should refer to college, school, and departmental advising materials for specific details on their advising programs.

Responsibilities of Students and Advisors

Within the advising system on the Boulder campus, both students and advisors have responsibilities.

Students are responsible for:
- knowing the requirements of their particular academic program, selecting courses that meet those requirements in an appropriate time frame, and monitoring their progress toward graduation;
- consulting with their academic advisor several times every term;
- scheduling and keeping academic advising appointments in a timely manner throughout their academic career, so as to avoid seeking advising only during busy registration periods; and
- being prepared for advising sessions (for example, by bringing in a list of questions or concerns, having a tentative schedule in mind, and/or being prepared to discuss interests and goals with their advisor).

Advisors are responsible for:
- helping students clarify their values, goals, and abilities;
- helping students understand the nature and purpose of a college education;
- providing accurate information about educational options, requirements, policies, and procedures;
- helping students plan educational programs consistent with the requirements of their degree program and with their goals, interests, and abilities;
- assisting students in the continual monitoring and evaluation of their educational progress; and
- helping students locate and integrate the many resources of the university to meet their unique educational needs and aspirations.

Four-Year Graduation

The College of Arts and Sciences has adopted a set of guidelines to define the conditions under which a student should expect to graduate in four years. Further information is available through the Academic Advising Center and major program and departmental offices.

The University of Colorado at Boulder guarantees that if the scheduling of essential courses is found to have prevented a student in the College of Arts and Sciences from completing all course work necessary for a B.A. or B.F.A. degree from the university by the end of his or her eighth consecutive fall and spring semester, the college will provide tuition plus any course fees for all courses required for completion of the degree requirements. Students must satisfy all the conditions described below to be eligible for this guarantee.

This guarantee extends to all students who enrolled the summer of 1994 or after into the College of Arts and Sciences as first-semester freshmen without MAPS deficiencies and who satisfy all the requirements described below. This guarantee cannot be extended to include completion of a second major, a double degree, a minor, or a certificate program. Some CU-Boulder study abroad programs may not provide a sufficient range of courses to allow students to meet the requirements and thus students who participate in study abroad are not included in this guarantee.

Four-Year Guarantee Requirements

1. Students should enroll in University of Colorado at Boulder course work for eight consecutive fall and spring semesters.
 - No fewer than 60 credit hours of applicable course work should be completed with passing grades by the end of the second year (24 calendar months), 90 hours by the end of the third year (36 calendar months), and 120 hours by the end of the fourth year. Students should enroll in and pass an average of 15 credit hours each semester.
 - A minimum of 30 credit hours of college core-curriculum courses should be completed by the end of the second year, including college core-curriculum courses that also meet major requirements. All remaining college core-curriculum requirements must be fulfilled by the end of the eighth semester.
 - Students should complete 45 upper-division hours by the end of the eighth semester of study.
 - A GPA of at least 2.00 must be earned each semester.
 - Grades of C- or better in all course work required for the major should be earned, and students should have a cumulative GPA of 2.00 in all major course work attempted.
 - A recommended plan of study must be started toward the major no later than the start of the second semester of study (see note below for exceptions) and thereafter students must make adequate progress toward completing the major (defined by each major). A statement of adequate progress is available from the major or departmental office at the time the major is declared.

2. Maintain a 2.00 (C) grade point average in all University of Colorado work and a 2.00 (C) in all major course work attempted.
 - (Some majors may require a higher minimum grade point average.)
 - Complete the last 30 credit hours in University of Colorado courses on the Boulder campus as a degree student in the College
of Arts and Sciences. This requirement, however, is currently under review. Courses taken at the Colorado Springs campus or at the Denver campus (excluding Metropolitan State College and Community College of Denver courses) in the summer only count toward resident credit. Courses taken while on CU-Boulder study abroad programs, through CU-Boulder continuing education, or CU-Boulder correspondence courses are considered to be in residence.

5. For the bachelor of arts degree, students must complete a minimum of 75 hours outside their major department. Students who complete designated departmental honors courses in their major department and/or in honors thesis credit can reduce the 75 hours required outside the major department by a corresponding number of credits, up to a maximum of 6.

6. For the bachelor of fine arts degree, students must complete a minimum of 53 credit hours outside of their major.

7. Complete a major. Students are subject to the major requirements in force when they declare the major. See the sections Majors and Other Areas of Interest and Minimum Major Requirements in this chapter.

8. Complete the general education (college core curriculum) and MAPS requirements with the following limitations:
 a. Although a single course may be listed in more than one core area, a student may use it to meet only one area requirement.
 b. Neither independent study nor pass/fail courses may be used to meet MAPS deficiencies, core requirements, or the minimum major requirements.
 c. A single course may be used to meet both MAPS and core requirements as long as the course is applicable to both requirements. For example, a student admitted with a MAPS deficiency in English composition may take UWRP 1150, Introductory Composition: Expository Writing, to satisfy both the MAPS requirement and the core curriculum lower-division written communication requirement.

This policy only applies to college level course work (University of Colorado or accepted transfer credit). If a student is exempt from a given core area, this does not exempt the student from fulfilling a MAPS deficiency in that area.

Note: A description of the College of Arts and Sciences MAPS requirements can be found in the General Information section of this catalog.

Core Curriculum

The mainstay of the general education requirements is the College of Arts and Sciences core curriculum. The core curriculum requirements are divided into two parts: skills acquisition and content areas of study. The following sections provide descriptions of the individual requirement areas, their underlying educational philosophies and goals, and the list of approved courses. The updated list of approved core courses is printed in each semester’s Registration Handbook and Schedule of Courses.

Exemptions

Selected majors and minors are exempt from portions of the core curriculum, as core course work is considered equivalent to course work in the major. Students who graduate with more than one exempt major may apply their exemptions cumulatively.

Skills Acquisition

These requirements are designed to assure that each student has attained a minimum level of competency in each of the areas listed: foreign language, quantitative reasoning, and mathematical skills, written communication, and critical thinking.

1. Foreign Language. All students are required to demonstrate, while in high school, third-level proficiency in a single modern or classical foreign language. Students who have not met this requirement at the time of matriculation will have a MAPS deficiency. They may make up the deficiency only by passing an appropriate third-semester college course or by passing a CU-Boulder approved proficiency examination.

Students who are under the core curriculum, but not subject to MAPS, must complete the foreign language requirement to meet degree requirements.

Questions about placement should be referred to the appropriate foreign language department.

The goal of the language requirement is to encourage students to confront the structure, formal and semantic, of another language, significant and difficult works in that language, and one or more aspects of the culture lived in that language. This enables students to understand their own language and culture better, analyze texts more clearly and effectively, and appreciate more vividly the dangers and limitations of using a translated document. The language requirement is a general education requirement and so concentrates on reading. In some languages other abilities may be emphasized as well. Understanding what it means to read a significant text in its original language is essential for general education according to the standards of this university.

Courses offered at CU-Boulder that satisfy this requirement include the following:

- CHIN 2110-5 Intermediate Chinese 1
- CLAS 2114-4 Intermediate Latin 1
- CLAS 3113-3 Intermediate Classical Greek 1
- FREN 2110-3 Second-Year French Grammar Review and Reading 1
- GRMN 2104-4 Intermediate German 1
- ITAL 2110-3 Intermediate Italian Reading, Grammar, and Composition 1
- JPNS 2020-10 Intensive Intermediate Japanese
- JPNS 2110-5 Intermediate Japanese 1
- NORW 2110-4 Second-Year Norwegian Reading and Conversation 1
- PORT 2110-3 Second-Year Portuguese 1
- PORT 2150-5 Intensive Second-Year Portuguese
- RUSS 2104-4 Second-Year Russian 1
- SLHS 2325-4 American Sign Language 3
- SPAN 2110-3 Second-Year Spanish 1
- SPAN 2150-5 Intensive Second-Year Spanish
- SWED 2110-4 Second-Year Swedish Reading and Conversation 1

2. Quantitative Reasoning and Mathematical Skills (QRMS) (3-6 semester hours). Liberally educated people should be able to think at a certain level of abstraction and to manipulate symbols. This requirement has two principal objectives. The first is to provide students with the analytical tools used in core curriculum courses and in their major areas of study. The second is to help students acquire the reasoning skills necessary to assess adequately the data which will confront them in their daily lives. Students completing this requirement should be able to: construct a logical argument based on the rules of inference; analyze, present, and interpret numerical data; estimate orders of magnitude as well as obtain exact results when appropriate; and apply mathematical methods to solve problems in their university work and in their daily lives.

Students can fulfill the requirement by passing one of the courses or sequences of courses listed below or by passing the CU-Boulder QRMS proficiency exam.

- ECEN 1200-3 Telecommunications
- ECON 1078-3 Mathematical Tools for Economists 1
- GEOL/PHYS 1600-4 Order, Chaos, and Complexity
- HONR 2810-3 Practical Statistics for the Social and Natural Sciences
- MATH 1012/QRMS 1010-3 Quantitative Reasoning and Mathematical Skills
- MATH 1110-3 and 1120-3 The Spirit and Uses of Mathematics 1 and 2
- MATH 1150-4 Precalculus Mathematics
- MATH/QRMS 2380-3 Mathematics for the Environment
- PHYS 1010-3 Physical Science for Nonscientists 1
- PHYS 1020-4 Physical Science for Nonscientists 2
- PSCI 2074-3 Quantitative Research Methods
- Any three 1-credit math modules: MATH 1000, 1010, 1020, 1030, 1040, 1050, 1060, 1070, 1080, 1090, or 1100. It is recommended that students register for clusters of three modules, for example, MATH 1000-1020, 1020-1040, 1050-1070, or 1080-1100.
Any 3 credits of mathematics courses numbered MATH 1300 and above or applied mathematics courses numbered APPM 1350 and above.

3. Written Communication (3 lower-division and 3 upper-division semester hours). Writing is a skill fundamental to all intellectual endeavors. While some college courses require more writing than others, good writing is recognized as a necessary means of communication in every scholarly discipline. The core curriculum promotes the principle that ideas do not exist apart from language, and thus content cannot be isolated from style. For ideas to flourish, they must be expressed clearly and gracefully, so that readers take pleasure while taking instruction.

Students may meet the lower-division component of this requirement by first passing one of the approved lower-division courses or by receiving a score of 3, 4, or 5 on the English Language and Composition Advanced Placement exam. The lower-division requirement may be waived if a student scores appropriately on the SAT verbal or ACT English examinations. Students may then complete the upper-division component of this requirement by passing one of the approved upper-division courses or by passing the written communication proficiency exam.

Lower-Division Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARSC 1080</td>
<td>College Writing and Research</td>
</tr>
<tr>
<td>ARSC 1100</td>
<td>Advanced Expository Writing</td>
</tr>
<tr>
<td>ARSC 1150</td>
<td>Writing in Arts and Sciences</td>
</tr>
<tr>
<td>ENGL 1001-3</td>
<td>Freshman Writing Seminar</td>
</tr>
<tr>
<td>EPOB 1950-3</td>
<td>Introduction to Scientific Writing</td>
</tr>
<tr>
<td>HONR 2020-3</td>
<td>Honors Writing Workshop</td>
</tr>
<tr>
<td>JOUR 2001-3</td>
<td>Mass Media Writing</td>
</tr>
<tr>
<td>KAPH 1950-3</td>
<td>Introduction to Scientific Writing</td>
</tr>
<tr>
<td>SEWL 2021-3</td>
<td>Conversations in American Writing</td>
</tr>
<tr>
<td>UWRP 1150-3</td>
<td>Introduction Composition: Expository Writing</td>
</tr>
<tr>
<td>UWRP 1250-3</td>
<td>Introduction Composition: Argumentative Writing</td>
</tr>
</tbody>
</table>

Upper-Division Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARSC 3100-3</td>
<td>Advanced Writing and Research: Multicultural Perspectives and Academic Discourse</td>
</tr>
<tr>
<td>ENVS 3020-3</td>
<td>Advanced Writing in Environmental Studies</td>
</tr>
<tr>
<td>EPOB 3940-3</td>
<td>Arguments in Scientific Writing</td>
</tr>
<tr>
<td>FINE 3007-3</td>
<td>Writing in the Visual Arts</td>
</tr>
<tr>
<td>HONR 3220-3</td>
<td>Advanced Honors Writing Workshop</td>
</tr>
<tr>
<td>KAPH 3700-3</td>
<td>Scientific Writing in Kinesiology (formerly KINE 1950)</td>
</tr>
<tr>
<td>SEWL 2021-3</td>
<td>Conversations in American Writing</td>
</tr>
<tr>
<td>UWRP 1150-3</td>
<td>Introduction Composition: Expository Writing</td>
</tr>
<tr>
<td>UWRP 1250-3</td>
<td>Introduction Composition: Argumentative Writing</td>
</tr>
</tbody>
</table>

Critical Thinking (3 upper-division semester hours). Courses in this area encourage the active practice of critical reasoning, evaluation, and discussion. They do so by providing opportunities for student participation beyond those offered in ordinary lecture courses, labs, or seminars. Critical thinking courses address matters of controversy within a given field of study or in the society at large.

Students learn how to construct, defend, and criticize arguments; identify and assess tacit assumptions; and gather and evaluate evidence. Critical thinking courses emphasize some combination of the methodology of acquiring knowledge in a specific discipline, key arguments in the discipline, and problems of interpreting original literature and data. In addition, they may subject arguments within the discipline to scrutiny from competing cultural, social, or methodological perspectives. Students must pass 3 credit hours of specified course work at the upper-division level that requires them to practice sustained critical thinking and to demonstrate such thinking in both written form and oral discussion. Some of the listed courses are intended for specific majors. Others are open to all students with a general background in the field. Note the prerequisites before registering.

Courses offered at CU-Boulder that satisfy this requirement include the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAST 3670-3</td>
<td>Japanese American Internment</td>
</tr>
<tr>
<td>AMST 3950-3</td>
<td>Critical Thinking in American Studies</td>
</tr>
<tr>
<td>ANTH 4180-3</td>
<td>Anthropological Perspectives: Contemporary Issues</td>
</tr>
<tr>
<td>ANTH 4520-3</td>
<td>Symbolic Anthropology</td>
</tr>
<tr>
<td>ANTH 4590-3</td>
<td>Urban Anthropology</td>
</tr>
<tr>
<td>ANTH 4740-3</td>
<td>Peoples and Cultures of Brazil</td>
</tr>
<tr>
<td>ASTR 4800-3</td>
<td>Space Science: Practice and Policy</td>
</tr>
<tr>
<td>ASTR 4810-3</td>
<td>Science and Pseudoscience in Astronomy</td>
</tr>
<tr>
<td>ATOC 4800-3</td>
<td>Policy Implications of Climate Controversies</td>
</tr>
<tr>
<td>BLST 4670-3</td>
<td>The Sixties: Critical Black Views</td>
</tr>
<tr>
<td>CAMW/NRLN 4001-3</td>
<td>Seminar on the American West</td>
</tr>
<tr>
<td>CHEM 4181-4</td>
<td>Instrumental Analysis</td>
</tr>
<tr>
<td>CHEM 4761-4</td>
<td>Biochemistry Lab</td>
</tr>
<tr>
<td>CLAS 4040-3</td>
<td>Seminar in Classical Antiquity</td>
</tr>
<tr>
<td>COMM 3100-3</td>
<td>Current Issues in Communication and Society</td>
</tr>
<tr>
<td>ECON 4309-3</td>
<td>Economics Honors Seminar 1</td>
</tr>
<tr>
<td>ECON 4999-3</td>
<td>Economics in Action: A Capstone Course</td>
</tr>
<tr>
<td>EPOB 4380-3</td>
<td>Respiratory Adaptations to the Environment</td>
</tr>
<tr>
<td>EPOB 4570-3</td>
<td>Advanced Plant Physiology</td>
</tr>
<tr>
<td>EPOB 4590-3</td>
<td>Plants and Human Affairs</td>
</tr>
<tr>
<td>EPOB 4800-3</td>
<td>Critical Thinking in Biology</td>
</tr>
<tr>
<td>FILM/HUMN 4004-3</td>
<td>Film Theory</td>
</tr>
<tr>
<td>FINE 3009-3</td>
<td>Critical Thinking in Art History</td>
</tr>
<tr>
<td>FINE 3089-3</td>
<td>Early Christian and Early Medieval Art</td>
</tr>
<tr>
<td>FINE 3109-3</td>
<td>Art in Contemporary Society</td>
</tr>
<tr>
<td>FINE 3209-3</td>
<td>Art, Culture, and Gender Diversity, 1400-1600: Renaissance Art Out of the Canon</td>
</tr>
<tr>
<td>FINE 3227-3</td>
<td>Critical Thinking: Women’s Art-Issues and Controversies</td>
</tr>
<tr>
<td>FINE 3409-3</td>
<td>Modern Art 1780-1970</td>
</tr>
<tr>
<td>FINE 4087-3</td>
<td>Selected Topics in Contemporary Art</td>
</tr>
<tr>
<td>FINE 4729-3</td>
<td>Readings/Issues in Photography</td>
</tr>
<tr>
<td>FINE 4739-3</td>
<td>Intellectual Roots of Italian Renaissance Art</td>
</tr>
<tr>
<td>FINE 4779-3</td>
<td>Multicultural Perspectives on New Mexican Santos</td>
</tr>
<tr>
<td>FREN 3100-3</td>
<td>Introduction to Critical Reading and Writing in French Literature</td>
</tr>
<tr>
<td>FREN 3200-3</td>
<td>Introduction to Literary Theory and Advanced Critical Analysis</td>
</tr>
<tr>
<td>GEOG 4302-3</td>
<td>Introduction to Research in Human Geography</td>
</tr>
<tr>
<td>GEOG 4713-3</td>
<td>Research Seminar</td>
</tr>
<tr>
<td>GEOG 4430-3</td>
<td>Seminar: Conservation Trends</td>
</tr>
<tr>
<td>GEOG 4622-3</td>
<td>City Life</td>
</tr>
<tr>
<td>GEOG 4742-3</td>
<td>Environment and Peoples</td>
</tr>
<tr>
<td>GEOG 4812-3</td>
<td>Environment and Development in South America</td>
</tr>
<tr>
<td>GEOG 4822-3</td>
<td>Environment and Development in China</td>
</tr>
<tr>
<td>GEOG 4892-3</td>
<td>Geography of Western Europe</td>
</tr>
<tr>
<td>GEOI 3620-3</td>
<td>Controversies in Planetary Geology</td>
</tr>
<tr>
<td>GEOI 4800-3</td>
<td>Societal Problems and Earth Sciences</td>
</tr>
<tr>
<td>GEOI 4500-3</td>
<td>Critical Thinking in Earth Sciences</td>
</tr>
<tr>
<td>GRMN 4550-3</td>
<td>The Role of Academics in German Culture</td>
</tr>
<tr>
<td>HIST 3000-3</td>
<td>Seminar in History (nonmajors)</td>
</tr>
<tr>
<td>HIST 3010-3</td>
<td>Communist Societies in Historical Perspective</td>
</tr>
<tr>
<td>HIST 3011-3</td>
<td>Seminar in Ancient History</td>
</tr>
<tr>
<td>HIST 3012-3</td>
<td>Seminar in Modern European History</td>
</tr>
<tr>
<td>HIST 3016-3</td>
<td>Seminar in History of Gender and Science</td>
</tr>
<tr>
<td>HIST 3018-3</td>
<td>Seminar in Latin American History</td>
</tr>
<tr>
<td>HIST 3019-3</td>
<td>Seminar in Asian and African History</td>
</tr>
<tr>
<td>HIST 3110-3</td>
<td>Honors Seminar</td>
</tr>
<tr>
<td>HIST 3112-3</td>
<td>Seminar in Renaissance and Reformation</td>
</tr>
<tr>
<td>HIST 3113-3</td>
<td>Seminar in Medieval and Early Modern English History</td>
</tr>
<tr>
<td>HIST 3115-3</td>
<td>Seminar in Early American History</td>
</tr>
<tr>
<td>HIST 3116-3</td>
<td>Seminar in American Diplomatic History</td>
</tr>
<tr>
<td>HIST 3133-3</td>
<td>Seminar in Britain since 1688</td>
</tr>
<tr>
<td>HIST 3212-3</td>
<td>Seminar in Early Modern Europe</td>
</tr>
<tr>
<td>HIST 3317-3</td>
<td>Seminar in the American West</td>
</tr>
<tr>
<td>HIST 3328-3</td>
<td>Seminar in Middle Eastern History</td>
</tr>
<tr>
<td>HIST 3414-3</td>
<td>Seminar in European Intellectual Thought</td>
</tr>
</tbody>
</table>
HIST 3415-3 Seminar in Recent American History
HIST 3416-3 Seminar in American Society and Thought
HIST 3425-3 The Great Depression, 1929-1945
HIST 3436-3 Seminar in American Economic History
HIST 3511-3 Seminar in Medieval History
HIST 3516-3 American Culture and Reform, 1880-1920
HIST 3616-3 Seminar in Women’s History
HIST 3628-3 Seminar in Recent Chinese History
HIST/WMST 3656-3 History of Women in Progressive Social Movements
HIST 3713-3 Seminar in Russian History
HIST 3718-3 Seminar in Japanese History
HONR 3270-3 Journey Motif in Women’s Literature
HONR 4055-3 Discourse Analysis and Cultural Criticism
HONR 4250-3 State and Individual: Civil Disobedience
HUMN 4155-3 Philosophy, Art, and the Sublime
HUMN 4555-3 The Arts of Interpretation
IAFS 4500-3 The Post-Cold War World
IAFS 4800-3 Honors in International Affairs
INVS/PSCI 4732-3 Critical Thinking in Development
KAPH 4560-3 Quantitative Analysis in Kinesiology (formerly KINE 4560)
KAPH 4660-3 Topics in Exercise Physiology (formerly KINE 4660)
KAPH 4760-3 Critical Thinking in Motor Behavior (formerly KINE 4760)
LING 4100-3 Perspectives on Language
MATH 3000-3 Introduction to Abstract Mathematics
MATH 3200-3 Introduction to Topology
MCDB 3330-3 Evolution, Creationism, and the Origins of Life
MCDB 4140-3 Plant Molecular Biology and Biotechnology
MCDB 4410-3 Human Molecular Genetics
MCDB 4426-3 Cell Signaling and Developmental Regulation
MCDB 4444-3 The Cellular Basis of Disease
MCDB 4471-3 Mechanisms of Gene Regulation in Eukaryotes
MCDB 4480-3 Great Literature in the Nucleic Acids
MCDB 4680-3 Mechanisms of Aging
MCDB 4750-3 Animal Virology
MCDB 4790-3 Experimental Embryology
PACS 4900-3 Seminar in Peace and Conflict Studies
PHIL/WMST 3110-3 Feminist Practical Ethics
PHIL 3180-3 Critical Thinking: Contemporary Topics
PHIL 3480-3 Critical Thinking and Writing in Philosophy
PHIL/PHYS 4450-3 History and Philosophy of Physics
PHIL 4830-3 Senior Seminar in Philosophy
PHYS 3340-3 Introduction to Research in Optical Physics
PHYS 4420-3 Nuclear Particle Physics
PHYS 4430-3 Introduction to Research in Modern Physics
PSCI 4701-3 Symbolic Politics
PSCI 4703-3 Alternative World Futures
PSCI 4704-3 Politics and Language
PSCI 4711-3 Selected Policy Problems
PSCI 4714-3 Liberalism and Its Critics
PSCI 4718-3 Honors in Political Science
PSCI 4721-3 Rethinking American Politics
PSCI 4731-3 Progress and Problems in American Democracy
PSCI 4734-3 Politics and Literature
PSCI 4741-3 American Goals: Spending and Revenues
PSCI 4751-3 The Politics of Ideas
PSCI 4752-3 Seminar in Central and East European Studies
PSCI 4761-3 Rethinking Political Values
PSCI 4771-3 Civil Rights and Liberties in America
PSCI 4783-3 Global Issues
PSCI 4792-3 Issues in Latin American Politics
PSYC 3105-3 Experimental Methods in Psychology
PSYC 4001-3 Honors Seminar 2
PSYC 4521-3 Critical Thinking in Psychology
RLST 3500-3 Religion and Play
RLST 3700-3 Religion and Psychology
RLST 4800-3 Critical Studies in Religion
SLHS 4000-3 Multicultural Aspects of Communication Differences and Disorders
SOCY 4461-3 Critical Thinking in Sociology
SPAN 3100-3 Literary Analysis in Spanish
THTR 4021-3 Development of Theatre 4: American Theatre and Drama
THTR 4081-3 Senior Seminar
WMST 3090-3 Critical Thinking in Feminist Theory

5. Historical Context (3 semester hours). Courses that fulfill this requirement enable students to study historical problems or issues and to develop an understanding of earlier ideas, institutions, and cultures. Courses explore the times and circumstances in which social, intellectual, artistic or other developments occurred. The purpose of this exploration is to analyze subjects in their context, that is, to investigate both the processes and the meanings of change. Among the educational aims of these courses are the following: to contribute to historical perspectives that may help to clarify issues that arise today or will arise tomorrow, to arouse the curiosity of students concerning historical conditions that may be relevant to subjects studied in other courses, and to expand the imagination by generating an awareness of the diverse ways in which our common humanity has expressed itself.

Students may choose to meet this 3-hour requirement by passing any course listed below.

- ANTH 1180-3 Maritime People: Fishers and Seafarers
- ANTH 1190-3 Origins of Ancient Civilizations
- CEES 1000/HIST 1002-3 Introduction to Central and East European Studies
- CLAS/HIST 1051-3 The World of Ancient Greeks
- CLAS/HIST 1061-3 The Rise and Fall of Ancient Rome
- CLAS 1140-3 Roman Civilization
- ECON 4514-3 Economic History of Europe
- ENGL/HIST 3164-3 History and Literature of Georgian England
- ENGL/HIST 4113-3 History and Culture of Medieval England
- HIST 1010-3 Western Civilization 1: Antiquity to the 16th Century
- HIST 1020-3 Western Civilization 2: 16th Century to the Present
- HIST 1038-3 Introduction to Latin American History
- HIST 1040-3 Honors: Western Civilization 2
- HIST 1113-3 History of England to 1660
- HIST 1123-3 History of England 1660 to Present
- HIST 1180-3 History of Christianity: From the Reformation
- HIST 1208-3 Sub-Saharan Africa to 1800
- HIST 1308-3 Introduction to Middle Eastern History
- HIST 1608-3 Introduction to Chinese History
- HIST 1708-3 Introduction to Japanese History
- HIST 2100-3 Revolution in History
- HIST 2113-3 Early Modern England (1450-1700)
- HIST 2222-3 War and Society in the Modern World
- HIST 2543-3 Medieval Nations
- HONR 2251-3 Introduction to the Bible
- HUMN 1010-6 Introduction to Humanities 1
- HUMN 1020-6 Introduction to Humanities 2
- PHIL 1010-3 Introduction to Western Philosophy: Ancient
- PHIL 1020-3 Introduction to Western Philosophy: Modern
- PHIL 3000-3 History of Ancient Philosophy
- PHIL 3010-3 History of Modern Philosophy
- PHIL 3410-3 History of Science: Ancients to Newton
- PHIL 3430-3 History of Science: Newton to Einstein
- RLST 3000-3 The Christian Tradition
- RLST 3100-3 Judaism
- RUSS 2211-3 Introduction to Russian Culture
- SCAN 2202-3 The Vikings

6. Cultural and Gender Diversity (3 semester hours). Courses fulfilling this requirement increase the student’s understanding of the world’s diversity and pluralism through the study of two broad and interrelated areas: (1) the nature and meaning of the categories of race, ethnicity, and gender; and (2) cultures other than those of Europe and the United States. This requirement explicitly identifies an awareness and understanding of pluralism as essential to a liberal education.

(1) Gender and Ethnic Diversity. Courses in this area are designed to expand the range of each student’s understanding of the origin, definition, and experience of the categories of gender, ethnicity, and race. They apply new approaches to knowledge and scholarly inquiry and explore the ways in which nonexist and nonracist language expand understanding of social groups. They are concerned with recovery of knowledge about individuals and...
groups excluded from traditional studies of societies and share the fundamental goal of identifying the way these social categories define and therefore shape human thought and experience.

(2) Non-Western Cultures. These courses are designed to expand the range of the student’s understanding of cultures that are not derived principally from the western experience. A comparative perspective introduces students to the commonality and diversity of cultural responses to universal human problems. Each course seeks to cultivate insight into and respect for diversity by requiring students to explore a cultural world quite different from their own.

Courses satisfying this requirement are intended to portray culture in the most integrated sense, including aspects of material adaptation, social pattern, ideas and values, and aesthetic achievement.

Students are required to pass 3 hours of course work from any course listed below.

Courses who graduate with a major in ethnic studies are exempt from completing the cultural and gender diversity requirement.

AAST 1015-3 Introduction to Asian American Studies
AAST 2210-3 The Japanese American Experience
AAST 3671/CHST/ETHN/WMST 3670-3 Immigrant Women in the Global Economy
AIST 1125-3/ANTH 1120-3 Exploring a Non-Western Culture: Hopi and Navajo
AIST 2000-3 Introduction to American Indian Studies: Precontact Native America
AIST 2015-3 Topical Issues in Native North America
AIST/RLST 2700-3 American Indian Religious Traditions
AIST/WMST 3210-3 American Indian Women
AIST 4565-3/ANTH 4560-3 North American Indian Acculturation
ANTH 1100-3 Exploring a Non-Western Culture: The Tamils
ANTH 1110-3 Exploring a Non-Western Culture: Japan
ANTH 1130-3 Exploring a Non-Western Culture: Amazonian Tribal Peoples
ANTH 1140-3 Exploring a Non-Western Culture: The Maya
ANTH/BLST 1150-3 Exploring a Non-Western Culture: Regional Cultures of Africa
ANTH 1160-3 The Ancient Egyptian Civilization
ASTR 2000-3 Ancient Astronomies
BLST 2000-3 Introduction to Afro-American Studies
BLST 2200-3 Contemporary Black Protest Movements
BLST 2210-3 Black Social and Political Thought
BLST/SOCI 3023-3 African American Family in U.S. Society
BLST/PSCI 3101-3 Black Politics
CHST 1015-3 Introduction to Chicano Studies
CHST 1031-3 Chicano Fine Arts and Humanities
CHST/WMST 2537-3 Chicano History
CHST/WMST 3135-3 Chicana Feminisms and Knowledges
CHST 3153-3 Folklore and Mythology of the Hispanic Southwest
CHST 4133-3/PSCI 4131-3 Latinos and the U.S. Political System
CLAS/WMST 2100-3 Women in Ancient Greece
CLAS/WMST 2110-3 Women in Ancient Rome
EALC 1011-4 Introduction to Traditional East Asian Civilizations (formerly EALL 1011)
EALC 1021-4 East Asian Civilizations: Modern Period (formerly EALL 1021)
ECON 4626-3 Economics of Inequality and Discrimination
EMUS 2772-3 World Musics
ENGL/WMST 1260-3 Introduction to Women’s Literature
ENGL/ETHN 1800-3 American Ethnic Literatures
ENGL 3677-3 Jewish-American Fiction and Old World Backgrounds
ETHN 3675-3 Fight the Power: People of Color and Social Movement Struggles
FARR/LDSP 2400-3 Understanding Privilege and Oppression in Contemporary Society
FILM 3013-3 Women and Film
FINE 3209-3 Art, Culture, and Gender Diversity, 1400-1600: Renaissance Art Out of the Canon
FREN 1700-3 Francophone Literature in Translation
FREN/HUMN 4500-3 Reading the Orient: French Literature and Exoticism
GEOG/WMST 3672-3 Gender and Global Economy
GEOG 3822-3 Geography of China
GRMN 3501-3 Jewish-German Writers: Enlightenment to Present Day
HIST 2437-3 Afro-American History
HIST 2616-3 Women’s History
HIST 2626-3 Gender and Culture
HONR 1810-3 Honors Diversity Seminar
HONR/WMST 3004-3 Women in Education
HONR 4025-3 Heroines and Heroic Tradition
HUMN 3065-3 Feminist Theory/Women’s Art
HUMN 3145-3 African America in the Arts
HUMN 4064-3 "Primitivism" in Art and Literature
ITAL 4150-3 The Decameron and the Age of Realism
ITAL 4730-3 Italian Feminisms: Culture, Theory, and Narratives of Difference
LAMS 1000-3 Introduction to Latin American Studies
LGBT 2000/WMST 2030-3 Introduction to Lesbian, Gay, Bisexual, and Transgender Studies
LING 2400-3 Language and Gender
LING 3220-3 American Indian Languages in Social-Cultural Context
PHIL/WMST 2290-3 Philosophy and Women
PSCI/WMST 4271-3 Sex Discrimination: Constitutional Issues
PSCI/WMST 4291-3 Sex Discrimination: Federal and State Law
PSYC/WMST 2700-3 Psychology of Contemporary American Women
RLST/WMST 2800-3 Women and Religion
RLST 3510-3 Australian Religions
RUSS/WMST 4471-3 Women in 20th-Century Russian Culture
SOCY/WMST 1006-3 The Social Construction of Sexuality
SOCY/WMST 1016-3 Sex, Gender, and Society 1
SOCY/WMST 3012-3 Women, Development, and Fertility
WMST 2000-3 Introduction to Feminist Studies
WMST 2020-3 Social Construction of Femininities and Masculinities
WMST 2050-3 Women and Society

7. United States Context (3 semester hours). Courses fulfilling the United States context requirement explore important aspects of American culture and society. They stimulate critical thinking and an awareness of the place of the United States in the world by promoting an understanding of the particular world views that the diversity, environment, culture, history, values, and expression of the United States have fostered. Courses familiarize students with the United States and enable them to evaluate it critically.

These courses teach an appreciation of American culture while inviting students to ask probing questions about American values and ideals. How have Americans derived a sense of identity from geography, language, politics, and the arts? How do Americans view and influence the world beyond their borders? How have the rights and responsibilities of citizenship changed over time? How have Americans dealt with opposing values in their culture? Completing this requirement, students will develop both a better understanding of the American present and past, and a considerable interest in the American future.

This 3-hour requirement may be fulfilled by passing any course listed below.

AAST/HIST 1717-3 Asian American History
AAST 3013-3 Asian Pacific American Communities
AAST/AMST/WMST 3900-3 Asian American Women
AIST 2015-3 Topical Issues in Native North America
AMST 2000-3 Themes in American Culture 1
AMST 2010-3 Themes in American Culture 2
AMST/FINE 3500-3 American Art
AMST 4500-3 American Autobiography
ANTH 3170-3 America: An Anthropological Perspective
BAKR 1500-3 Colorado: History, Ecology, and Environment
BLST 2015-3 History of the Black Experience 1
BLST 2016-3 History of the Black Experience 2
BLST/SOCI 3023-3 African American Family in U.S. Society
CAMW 2001-3 The American West
CHST/HIST 2537-3 Chicano History
ECON 1524-3 Economic History of the U.S.
ECON 4524-3 Economic History of the U.S.
8. Literature and the Arts (6 semester hours, 3 of which must be upper division). These courses promote a better understanding of fundamental aesthetic and cultural issues. They sharpen critical and analytical abilities so that students may develop a deeper appreciation of works of art. The goal of this requirement is to enhance the student’s ability to read critically, to understand the elements of art, and to grasp something of the complex relations between artist and public, and between art work and cultural matrix. The emphasis in courses which fulfill this requirement is on works that are generally recognized as central to and significant for one’s cultural literacy and thereby enhance the student’s understanding of our literary and artistic heritage.

Courses stress literary works as well as the history and criticism of literature and the arts. They may utilize creative projects as a means of arriving at a better understanding of the art form, but students may not use studio or performance classes to satisfy this requirement.

Students are required to pass 6 hours of course work in literature and the arts, of which at least 3 hours must be upper division, unless either HUMN 1010 or 1020 is completed.

If students graduate with a major dealing in depth with literature and the arts (Chinese, classics, dance, English, film studies, fine arts, French, Germanic studies, humanities, Italian, Japanese, Portuguese, Russian, Spanish, or theatre), they are exempt from this requirement.

Courses offered at CU-Boulder that satisfy this requirement include the following: Lower-Division Courses

CHIN 1051-3 Masterpieces of Chinese Literature in Translation
CHIN 2441-3 Film and the Dynamics of Chinese Culture
CLAS/FINE 1019-3 Introduction to Roman Art and Philosophy
CLAS 1100-3 Greek Mythology
CLAS 1120-3 Masterpieces of Greek Literature in Translation
CLAS 1120-3 Masterpieces of Roman Literature in Translation
DNCE 1029-3 Dance as a Universal Language
EMUS 1832-3 Appreciation of Music
EMUS 2762-3 Music and Drama
EMUS 2862-3 American Film Musical, 1926-
FINE 3060-3 Shakespeare for Nonmajors
FINE 4017-3 History and Philosophy of Dance
HUMN 1020-6 Introduction to Humanities 1
HUMN 1020-6 Introduction to Humanities 2
JAPS 1051-3 Masterpieces of Japanese Literature in Translation
RLST 2200-3 Religion and Dance
RUSS 2231-3 Fairy Tales of Russia
SPAN 1000-3 Cultural Difference through Hispanic Literature
THTR 1009-3 Introduction to Theatre
THTR 1011-3 Development of Theatre 1: Classical Theatre and Drama

Upper-Division Courses

CHIN 3351-3 Reality and Dream in Traditional Chinese Fiction
CLAS 4110-3 Greek and Roman Epic
CLAS 4112-3 Greek and Roman Tragedy
CLAS 4130-3 Greek and Roman Comedy
DNCE 3029-3 Looking at Dance
DNCE 4017-3 History and Philosophy of Dance
EMUS 3822-3 Music Literature 1
EMUS 3832-3 Music Literature 2
ENGL 3000-3 Shakespeare for Nonmajors
ENGL 3060-3 Modern and Contemporary Literature
FINE 4329-3 Modern Art 1
FINE 4619-3 Quattrocento Art of Florence and Central Italy
FINE 4659-3 The Roman Baroque
FINE 4759-3 17th-Century Art and the Concept of the Baroque
FREN 3110-3 Main Currents of French Literature 1
FREN 3120-3 Main Currents of French Literature 2
FREN 3200-3 Introduction to Literary Theory and Advanced Critical Analysis
FREN 4300-3 Theatre and Modernity in 17th-Century France
FREN/HUMN 4500-3 Reading the Orient: French Literature and Exoticism
GRMN 3502-3 Literature in the Age of Goethe
GRMN/HUMN 4504-3 Goethe’s Faust
HUMN 3065-3 Feminist Theory/Women’s Art
HUMN 3440-3 Literature and Medicine
HUMN 4064-3 “Primitivism” in Art and Literature
HUMN/RUSS 4821-3 20th-Century Russian Literature and Art
ITAL 4140-3 The Age of Dante: Readings from the Divine Comedy
ITAL 4150-3 The Decameron and the Age of Realism
ITAL 4730-3 Italian Feminisms: Culture, Theory, and Narratives of Difference
RUSS 4811-3 19th-Century Russian Literature in Translation
SCAN 3022-3 Old Norse Mythology
SCAN 3023-3 Masterpieces of Modern Scandinavian Literature
SCAN 3024-3 Medieval Icelandic Sagas
SCAN 3205-3 Scandinavian Folk Narrative
SPAN 3700-3 Selected Readings: Spanish Literature in Translation
SPAN 3800-3 Selected Readings: Modern Latin American Literature in Translation
THTR 3011-3 Development of American Musical Theatre

9. Natural Science (13 semester hours, including a two-course sequence and a laboratory or field experience). These courses study
the nature of matter, life, and the universe. They enhance literacy and knowledge of one or more scientific disciplines, and enhance those reasoning and observing skills that are necessary to evaluate issues with scientific content. Courses are designed to demonstrate that science is not a static list of facts, but a dynamic process that leads to knowledge. This process is one of subtle interplay between observation, experimentation, and theory, enabling students to develop a critical view toward the conclusions and interpretations obtained through the scientific process.

Through a combination of lecture courses and laboratory or field experiences, students gain hands-on experience with scientific research. They develop observational skills of measurement and data interpretation and learn the relevance of these skills to the formation and testing of scientific hypotheses.

The goal of this requirement is to enable students to understand the current state of knowledge in at least one scientific discipline, with specific reference to important past discoveries and the directions of current development; to gain experience in scientific observation and measurement, in organizing and quantifying results, in drawing conclusions from data, and in understanding the uncertainties and limitations of the results; and to acquire sufficient general scientific vocabulary and methodology to find additional information about scientific issues, to evaluate it critically, and to make informed decisions.

The natural science requirement, which consists of passing 13 hours of approved natural science course work, includes one two-semester sequence of courses and at least 1 credit hour of an associated lab or field experience. No more than two lower-division courses may be taken from any single department (1-credit-hour lab/field experience courses are excepted).

Students who graduate with a major in the natural sciences (biochemistry, chemistry, EPO biology, geology, kinesiology, MCD biology, or physics) or students who graduate with a minor in EPO biology are exempt from completing the natural science requirement.

Courses offered at CU-Boulder that satisfy this requirement include the following:

Two-Semester Sequences

(Nota: Although not recommended, the first semester of a sequence may be taken as a single course. Also, some sequences have included or optional laboratories.)

ANTH 2010-3 and 2020-3 Introduction to Physical Anthropology 1 and 2 (optional labs ANTH 2030, 2040)

ANTH 2050-4 and 2060-4 Honors: Human Origins 1 and 2 (optional labs ANTH 2030, 2040)

ASTR 1010-4 and 1020-3 Introductory Astronomy 1 and 2 (lab included)(previously APAS 1010 and 1020)

ASTR 1030-4 and 1040-4 Accelerated Introductory Astronomy 1 and 2 (lab included in ASTR 1030)(previously APAS 1030 and 1040)

ASTR 1110-3 and 1020-3 General Astronomy: The Solar System (lab included in ASTR 1020)(previously ASTR 2000-3 and 1040-4)

ASTR 2000-3 and 1010-3 Modern Cosmology: Origin and Structure of the Universe (lab included in PHYS 2100-4)

Non-Sequence Courses

ANTH 3000-3 Primate Behavior

ANTH 3010-3 The Human Animal

ARSC/GEOL 2110-4 Physical Science of the Earth System (lab included)

ARSC 2115-4 Life Science of the Earth Systems

ASTR 1110-3 General Astronomy: The Solar System

ASTR 1120-3 General Astronomy: Stars and Galaxies

ASTR 2000-3 Ancient Astronomies of the World

ASTR 2010-3 Modern Cosmology: Origin and Structure of the Universe

ASTR 2020-3 Introduction to Space Astronomy

ASTR 2030-3 Black Holes

ASTR/ASEN 3060-3 Introduction to Space Experimentation

ASTR 3210-3 Intermediate Astronomy: Solar System

ASTR 3220-3 Intermediate Astronomy: Stars and Galaxies

ATOC 3180-3 Aviation Meteorology

ATOC 3300/GEOL 3301-3 Analysis of Climate and Weather Observations

ATOC 3500-3 Air Chemistry and Pollution

ATOC/ENVS 3600/GEOL 3601-3 Principles of Climate

CHEN 1000-3 Creative Technology

CLAS 2020-3 Science in the Ancient World

ENVS/GEOL 3520-3 Environmental Issues in Geosciences

EPOB 3150-3 Introduction to Tropical Conservation Biology

EPOB 3180-3 Global Ecology

EPOB 3190-3 Tropical Marine Ecology

GEOL 3511-4 Introduction to Hydrology

GEOG/EOL 4241-4 Principles of Geomorphology (lab included)

GEOL/PHYS 1500-3 Order, Chaos, and Complexity

GEOL 2100-3 Environmental Geology

GEOL 3040-3 Global Change: The Geological Record

GEOL 3070-3 Introduction to Oceanography

GEOL 3720-3 Evolution of Life: The Geological Record

GEOL 4950-3 Natural Catastrophes and Geologic Hazards

HIST 4314-3 History of Science from the Ancients to Newton

KAPH 2420-3 Nutrition, Health, and Performance (formerly KINE 3420)

MCDB 1030-3 Plagues, People, and Microorganisms

MCDB 1041-3 Fundamentals of Human Genetics

MCDB 3150-3 Biology of the Cancer Cell

MCDB 3330-3 Evolution, Creationism, and Origins of Life

PHIL 1400-3 Philosophy and the Sciences

PHIL 3410-3 History of Science: Ancients to Newton

PHIL 3430-3 History of Science: Newton to Einstein

PHYS 1240-3 Sound and Music

PHYS 2900-4 Science, Computer Images, and the Internet

PHYS 3160-3 Energy and the Environment

SLHS 2010-3 Science of Human Communication

1-Credit-Hour Lab/Field Courses

(Nota: Each course below has a prerequisite or corequisite.)

ANTH 2030-1 Lab in Physical Anthropology 1

ANTH 2040-1 Lab in Physical Anthropology 2

ATOC 1070-1 Weather and the Atmosphere Laboratory

EPOB 1010-3 Biology: A Human Approach Laboratory

EPOB 1230-1 General Biology Lab 1

EPOB 1240-1 General Biology Lab 2
10. Contemporary Societies (3 semester hours). All individuals function within social frameworks. Courses in contemporary societies introduce students to the study of social groups, including social institutions and processes, the values and beliefs shared by their members, and the forces that mold and shape social groups. They prepare students to approach social phenomena of all kinds in an informed and critical way, and to describe, analyze, compare, and contrast them. Such study also provides students with new vantage points from which to view their own sociocultural assumptions and traditions.

These courses, which treat societies of the 20th century, study an individual society or compare several societies. All explicitly attempt to deepen the students’ understanding of the cultural, political, economic, or social contexts that shape people’s lives. Their scope may be global or specific, but all courses that fulfill this requirement address social processes, institutions, values, forces, and beliefs.

Students who graduate with a major in anthropology, economics, international affairs, political science, psychology, or sociology are exempt from the contemporary societies requirement. Students may satisfy this 3-hour requirement by passing any course listed below.

AALT 1015-3 Introduction to Asian American Studies
AALT 3013-3 Asian Pacific American Communities
AIST 4565-3/ANTH 4560-3 North American Indian Acculturation
BLST 2200-3 Contemporary Black Protest Movements
BLST/PSCI 3101-3 Black Politics
BLST/RLST 3125-3 Black Religious Life in America
COMM 2210-3 Perspectives on Human Communication
COMM 2400-3 Communication and Society
ECON 1000-4 Introduction to Economics
ECON 1001-3 Introduction to Economics: Kittredge Honors
ECON 2010 (3-4) Principles of Microeconomics
ECON 2020 (3-4) Principles of Macroeconomics
ECON 3403-3 International Economics and Policy
ECON 3535-3 Natural Resource Economics
ECON 3545-3 Environmental Economics
EDUC 3013-4 School and Society
FARR/LDSP 2400-3 Understanding Privilege and Oppression in Contemporary Society
GEOG 3742-3 Place, Power, and Contemporary Culture
GRMN 1601-3 Introduction to Modern German Culture and Civilization
HIST 2126-3 Modern U.S. Politics and Diplomacy
HIST 2166-3 The Vietnam Wars
HONR 1820-3 Critical Issues in Contemporary Societies
HUMN 4835-3 Literature and Social Violence
IAFS 1000-4 Global Issues and International Affairs
INVS/PSCI 4732-3 Critical Thinking in Development
LING 1000-3 Language in U.S. Society
PHIL 2230-3 Law and Morality
PRLC 1820-3 Community Issues in Leadership
PSCI 1101-3 American Political System
PSCI 2012-3 Introduction to Comparative Politics
PSCI 2223-3 Introduction to International Relations
PSCI 3032-3 Latin American Political Systems
PSCI 3082-3 Political Systems of Sub-Saharan Africa
PSCI 3143-3 International Relations
PSCI 4002-3 Western European Politics
PSCI 4012-3 Global Development
PSCI 4062-3 Emerging Democracies of Central and East Europe
PSCI 4223-3 Soviet and Russian Diplomacy
PSCI 4272-3 Political Economy of Industrial States
PSYC 2606-3 Social Psychology
RLST 2400-3 Religion and Contemporary Society
RUSN 2221-3 Introduction to 20th Century Russian Culture
SCAN 2201-3 Introduction to Modern Scandinavian Culture and Society
SLHS 1010-3 Disabilities in Contemporary American Society
SOCY 1001-3 Analyzing Society
SOCY 1005-3 Social Conflict and Social Values
SOCY 4024-3 Juvenile Delinquency
WMST 2600-3 Gender, Race, and Class in Contemporary U.S. Society

11. Ideals and Values (3 semester hours). Ideals and values have usually been determined by long-standing traditions and fixed social practices. In our modern world, the interaction of different cultures, movement from place to place, electronic media, and the rapidity of change, even within a given society, have combined to generate new constellations of ideals and hard choices among values.

Courses meeting the ideals and values requirement inquire into some specific sphere of human value (e.g., moral, religious, intellectual, aesthetic, environmental, etc.). In these courses students are encouraged to reflect upon fundamental ideals and values, their own and others, and the sources from which those value orientations derive. Such inquiry demands the development of the critical skills which help students identifying the assumptions and ramifications of value structures. It also requires consideration of approaches by which value systems are constructed, justified, and applied, especially in regard to the personal, societal, and in some cases cross-cultural contexts.

Students may complete this 3-hour requirement by passing any course listed below.

AIST/RLST 2700-3 American Indian Religious Traditions
BLST/RST 3125-3 Black Religious Life in America
CLAS/PHIL 2610-3 Paganism to Christianity
FARR 2560-3/HONR 2250-3 The Ethics of Ambition
FARR 2820-3 The Future of Spaceship Earth
FILM 2013-3 Film and the Quest for Truth
GRMN 2502-3 Representing the Holocaust
GRMN/HUMN 3505-3 The Enlightenment: Tolerance and Emancipation
HUMN 4155-3 Problems of Ancient and Modern Democracy
HUMN 3440-3 Literature and Medicine
HUMN 4155-3 Philosophy, Art, and the Sublime
INVS 1000-4 Responding to Social Problems: An Introduction to Service Learning
LDSP 1000-3 The Foundations of 21st-Century Leadership
PHIL 1000-3 Introduction to Philosophy
PHIL 1100-3 Ethics
PHIL 1200-3 Philosophy and Society
PHIL 1600-3 Philosophy and Religion
PHIL 2200-3 Major Social Theories
PHIL 3100-3 Ethical Theory
PHIL/WMST 3110-3 Feminist Practical Ethics
PHIL 3140-3 Environmental Ethics
PHIL 3160-3 Bioethics
PHIL 3190-3 War and Morality
PHIL 3200-3 Social and Political Philosophy
PHIL 3260-3 International Human Rights
PHIL 3600-3 Philosophy of Religion
PRLC 1810-3 Ethical Leadership
PSCI 2004-3 Survey of Western Political Thought
PSCI 3054-3 American Political Thought
RGS 1620-3 The Religious Dimension in Human Experience
RGS 2200-3 Religion and Dance
RGS 2450-3 Self, Society, and Spirituality since the Sixties
RGS 2500-3 Religion in the United States
RGS 2610-3 World Religions: West
RGS 2610-3 World Religions: India
RGS 2620-3 World Religions: China and Japan
RGS 3250-3 Gandhi: Life and Teaching
RUSN 3502-3 Ideals and Values in Modern Russia
SLHS 1010-3 Disabilities in Contemporary American Society
SOCY 1003-3 Ethics and Social Issues in U.S. Health and Medicine
SOCY 1004-3 Deviance in U.S. Society
SOCY 1005-3 Social Conflict and Social Values
SOCY 2031-3 U.S. Values, Social Problems, and Change
SOCY 3151-3 Self in Modern Society
Majors and Other Areas of Interest

To be eligible for the four-year guarantee, a student must begin the program of study and declare the major by the start of the second semester or earlier for some select majors. For complete information, see the Four-Year Graduation Requirements in this chapter.

All arts and sciences students pursuing a bachelor’s degree must enter a degree-granting major by the end of their sophomore year (i.e., the semester in which they will complete 60 semester hours of work, including transfer work).

Departments are responsible for advising their majors and also for certifying the completion of those students’ major programs for graduation. The college can assume no responsibility for difficulties arising out of a student’s failure to establish and maintain contact with the major department or program.

Minimum Major Requirements

The following minimum requirements are specified by the college. In many cases departmental requirements may be higher than the minimums listed here.

1. A minimum of 30 credit hours in the major area (for the B.F.A., a minimum of 50 hours).
2. Thirty semester hours in the major area, all with grades of C- (1.70) or higher.
3. Eighteen credit hours of upper-division courses in the major, all with grades of C- (1.70) or higher.
4. Twelve hours of upper-division coursework for the major on the CU-Boulder campus.
5. A 2.00 (C) overall grade point average in all major work attempted.
6. Special requirements as stipulated by the major department.
7. No more than 8 credit hours of independent study.

Students are subject to those major requirements in effect at the time they formally declare the major. All College of Arts and Sciences students have 10 years to complete the requirements for a declared major. If this 10-year limit is exceeded, students may be required to satisfy the current major requirements. Students with further questions should consult a major advisor.

Open Option

“Open option” (OPNO) is a major, but it is not a degree program. Open option offers a structured advising program that provides students with the necessary support and strategies to investigate and compare academic disciplines so they can make informed decisions about the degree programs they will pursue. Students can explore any major available in the college while completing course requirements toward a baccalaureate degree. To ensure that students graduate in a timely manner, open option majors are required to enter a specific degree program by the time they have completed 60 credit hours (approximately the end of the sophomore year). Students must declare and enter a degree-granting major by the start of the second semester (or earlier for certain majors) to maintain eligibility for the four-year guarantee.

Every open option student is assigned to a specific open option primary advisor with whom the student works until she or he declares and enters a degree-granting major.

Double Majors

Students pursuing either the B.A. or B.F.A. degree may graduate with more than one major within the degree (e.g., economics and French) by completing all requirements for both majors. A minimum of 120 total credit hours is required for double majors.

Minors

A number of departments and programs in the College of Arts and Sciences offer minor programs. Participation in a minor program is optional for students pursuing a bachelor’s degree. Course work applied to a minor also may be applied toward general education (core curriculum or college list) and major requirements. Students may not earn a major and a minor in the same program of study.

Departments and programs with approved minor programs currently include applied mathematics; astrophysical and planetary sciences; atmospheric and oceanic sciences; chemistry and biochemistry; classics; dance; economics; environmental, population, and organizational biology; ethnic studies; French; geography; geological sciences; Germanic studies; history; Italian; Japanese; kinesiology; linguistics; mathematics; philosophy; physics; political science; religious studies; Russian studies; theatre; and women’s studies. Minors are also available in business offered by the College of Business and Administration and in computer science offered by the College of Engineering and Applied Science. Interested students should contact the college, department, or program office for further information.

Although the structure of specific minor programs may differ, all minors offered in the College of Arts and Sciences must have the following restrictions or minimum requirements:

1. A minimum of 18 credit hours must be taken in the minor area, including a minimum of 9 upper-division hours.
2. All course work applied to the minor must be completed with a grade of C- or better (no pass/fail work may be applied).

The grade point average for all minor degree course work must be equal to 2.00 (C) or higher.

3. Students pursuing a major in distributed studies or an individually structured major are not eligible to earn a minor.
4. Students are allowed to apply no more than 9 credit hours, including 6 upper-division credit hours, of transfer work toward a minor.
5. Students may earn no more than one minor.

Areas of Interest

The college sponsors programs—but not undergraduate majors—in the areas of interest below. Course work in these areas is open to all interested students. Contact the Office of the Dean for more information.

Afroamerican Studies
American Indian Studies
Asian American Studies
Bibliography
Chicano Studies
Honors
International and National Voluntary Service
Training
Museum

Certificate Programs

The college also sponsors undergraduate certificate programs in a number of fields of study. Completion of specified course work in the certificate programs below entitles students to a certificate issued by the dean of the college. Students interested in these programs should contact the director of the appropriate program.

Actuarial Studies
British Studies
Central and Eastern European Studies
Cognitive Sciences
Lesbian, Gay, Bisexual, and Transgender Studies
Medieval and Early Modern Studies
Neurosciences and Behavior
Peace and Conflict Studies
Western American Studies

Multiple Degrees

Double Degrees

Two different degrees (i.e., a B.A. and B.F.A. from the College of Arts and Sciences, or two degrees from different schools or colleges) may be earned from CU-Boulder if the following conditions are fulfilled:

1. The student meets the residency requirements of, and is enrolled in, both arts and sciences and the college or school granting the second degree.
2. The student presents a total of at least 150 credit hours passed.
3. For the B.A. and B.F.A. degrees, 90 credit hours of arts and sciences course work are required.
4. The student has completed at least 30 credit hours of arts and sciences course work at the University of Colorado.

5. The student has completed all general education and major requirements of the College of Arts and Sciences.

6. Both degrees must be awarded at the same time.

Second Baccalaureate Degrees

A student who has been awarded a baccalaureate degree, either from this college or elsewhere, may be granted a second baccalaureate degree provided the following conditions have been fulfilled:

1. All general requirements for the degree to be awarded by the College of Arts and Sciences have been met. (Students are subject to the general degree requirements in effect the semester they enter the second baccalaureate degree program.)

2. The major in the B.A. or B.F.A. is different from the major in the first degree earned.

3. At least 30 credit hours of passing work in the new major or subject field, including 18 credit hours of upper-division work, are taken in this college after admission to a second degree program. Courses taken as a non-degree student do not count in these minimum requirements.

Graduation Deadlines

Arts and sciences seniors must meet appropriate application deadlines in order to graduate. To apply for graduation, students must consult with their primary advisor and complete a graduation packet. Students must submit the complete graduation packet to the main office of the Academic Advising Center by one of the deadlines listed below.

Commencement Date Due
May November 15
August April 15
December July 15

GRADUATE STUDY

Curricula leading to advanced degrees are offered by most of the departments in the College of Arts and Sciences. Students should consult the Graduate School chapter of this catalog for admission and degree requirements of the Graduate School. Curricula for graduate programs are listed alphabetically in this section.

For information about enrollment in graduate course work while still an undergraduate, see Seniors at the University of Colorado in the Graduate School chapter of this catalog.

AMERICAN STUDIES

Degree ...B.A.
American studies offers a broad interdisciplinary program of courses relating to American thought and culture.

The undergraduate degree in American studies emphasizes knowledge and awareness of:

• the main topics in the cultural history of the United States, from its origins to the present;

• at least three disciplinary approaches to the cultural study of the United States; and

• at least one non-American culture.

In addition, students completing the degree in American studies are expected to acquire the ability and skills to:

• research and determine the boundaries of an investigation by consulting appropriate works and developing a bibliography of primary and secondary sources, including documents, periodical articles, and monographs;

• analyze and read primary sources closely, base an exposition of general patterns in particular pieces of evidence, analyze arguments and interpretations presented in scholarly sources, and recognize and analyze conflicts of interpretation; and

• write an essay that is coherent, cogent, and grammatically correct.

Students interested in American studies may want to consider the Sewall Residential Academic Program. See Residential Academic Programs in this section of the catalog for more information.

Bachelor’s Degree Program

Students must complete the general requirements of the College of Arts and Sciences and the following required courses.

Required Courses Semester Hours
Two semesters of introductory American Studies courses (or equivalent): AMST 2000 3
Themes in American Culture 1 and AMST 2010 Themes in American Culture 26
Completion of one of the tracks in American Studies, consisting of five upper-division courses and representing at least two different departments (see a departmental advisor for course approval), plus one course from one of the two tracks not chosen18
AMST 3950 Methods in American Studies....3
Two senior seminars in American Studies (AMST 4500, 4950, or 4960)6
One upper-division course in the language, culture, or history of a non-North American civilization (a course that fits the theme of the track the student has chosen)3
Total hours for major36
(30 hours of the required 36 must be upper-

Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in American studies, students should meet the following requirements:

Declare an American Studies major by the beginning of the second semester.

Complete AMST 2000 and 12 additional credit hours of major requirements in American studies by the end of the fourth semester.

Complete 30 total credit hours of major requirements by the end of the sixth semester, including AMST 3950.

Complete AMST 4500 and one additional 3-credit major requirement by the end of the eighth semester.

Tracks in American Studies

American Political Cultures and Institutions

Addresses how governmental, economic, and civic institutions are embedded within cultural frameworks, and how they mediate relationships and contending claims among groups and individuals in the United States

American Identities

Examines how the United States’ historic experience as a nation of people of diverse ethnic,
racial, sexual, and other identities shaped the varied processes by which Americans forge individual and group identities and claim rights to citizenship, and in turn transform the nation’s collective identity.

American Cultures and Societies
Highlights the production, distribution, and consumption of expressive practices and forms—including novels, comic books, paintings, ideas, movies, television programs, songs, and other artifacts from both elite and popular culture—in terms of how they reflect the diversity of American experience.

Students may speak with faculty in the American Studies program to receive assistance in selecting a track and courses—McKenna 16 or 303-492-2524.

ANTHROPOLOGY

Degrees B.A., M.A., Ph.D.

Anthropology is the study of people, both ancient and modern, in their cultural context. The field involves a global look at human cultures from prehistoric times to the present, integrating findings from the social sciences, natural sciences, and humanities. Students of anthropology learn to appreciate the variety of cultures throughout human history and to understand the meaning of human biological and cultural development as well as diversity.

The undergraduate degree in anthropology emphasizes knowledge and awareness of:

• basic methods, concepts, alternative theories and approaches, and modes of explanation appropriate to each of the three main subfields of the discipline (archaeology, biological anthropology, and cultural anthropology);
• basic archaeological techniques, including stratigraphy, dating, and inference of human behavior from archaeological data, as well as human history from its beginning through the emergence of complex societies;
• variation, patterning, and creativity in human social behavior and symbolic systems, including ecological, social, cultural, and psychological factors, and the kinds of ethnographic data relevant to each (this includes the distribution and diversity of contemporary and recent human societies in terms of social, political, religious, and economic organization, and the effects of global interactions and cultural movements); and
• primate evolution, including theories of human evolution and the basic data of the hominid fossil record, as well as biological variation in contemporary human populations.

In addition, students completing the degree in anthropology are expected to acquire the ability and skills to:

• identify trends or patterns in anthropological data from different cultures or periods, identify an appropriate context of explanation or interpretation, and formulate a testable explanation or reasonable interpretation, including the ability to identify data that constitute credible evidence for an explanation or interpretation; and
• identify and define a significant problem or topic in anthropology and analyze and interpret data in a systematic manner.

Bachelor’s Degree Program
Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below. (A minimum of 30 credit hours in anthropology, 18 of which must be upper division, is required for the degree.)

Required Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 1010</td>
<td>Introduction to Physical Anthropology</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 2100</td>
<td>Frontiers of Cultural Anthropology</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 2200</td>
<td>Introduction to Archaeology</td>
<td>3</td>
</tr>
<tr>
<td>One upper-division topical course in cultural anthropology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>One upper-division ethnographic area course in cultural anthropology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>One upper-division course in archaeology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>One upper-division course in physical anthropology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives in anthropology (6 credits must be at the upper-division level)</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in anthropology, students should meet the following requirements:

Declare a major in anthropology by the beginning of the second semester.
Complete ANTH 2100, 2100, and 2200 by the end of the fourth semester.
Complete 12 credits of upper-division anthropology courses by the end of the sixth semester, including fulfilling at least two of the four upper-division requirements.
Complete 6 additional anthropology credits by the end of the seventh semester, including the two remaining upper-division requirements.
Complete one 3-credit anthropology course during the eighth semester.

Graduate Degree Programs

Prerequisites. To be considered for admission as a regular degree student, applicants should have a minimum undergraduate grade point average of 3.00 (4.00 = A) or a master of arts degree in anthropology. Graduate Record Examination scores for verbal and quantitative aptitude tests are required. Letters of recommendation and evidence of previous anthropologically oriented experience and work are carefully considered. Students with fewer than 18 credit hours of previous course work in anthropology are considered deficient and may be asked to present a greater number of hours for a degree.

Application. Inquiries concerning applications should be directed to the graduate secretary. Completed applications are reviewed once each year and are due by January 15. Students with no previous graduate work should apply for entrance into the M.A. program, which, if successfully completed, will prepare them for the Ph.D. program. Students who have or will have completed an M.A. degree in anthropology by the time of their admission may apply for direct admission into the Ph.D. program, but they may be required to complete specific remedial requirements in some cases.

Course Requirements. All entering graduate students must have had the equivalent of ANTH 4000 or 5000 (Quantitative Methods in Anthropology) or take the course during their first year in residence. As partial fulfillment toward a graduate degree, all students must complete three graduate core courses, one from each of the three subdisciplines of anthropology (cultural, physical, and archaeology). Core courses must be taken during the first two semesters in residence. Other specific course requirements are established through a qualifying interview and consultation with an academic advisor.

M.A. students are normally expected to write a thesis (plan I).

Students may have a primary specialization in any of the major subfields of anthropology: archaeology, cultural, or physical anthropology.

The department expects graduate students to maintain a breadth of competence in general anthropology through the master’s degree with specialization intensifying with progress toward the Ph.D. degree.

Additional information about other specific areas of specialization and other requirements for the degree may be obtained by writing directly to the graduate secretary, Department of Anthropology, and by referencing the Graduate School section of this catalog.

APPLIED MATHEMATICS

Degrees M.S., Ph.D.

The Department of Applied Mathematics in the College of Arts and Sciences offers courses and degree programs for undergraduate and graduate students. Course offerings at the undergraduate level focus on providing students with the mathematical tools and problem-solving strategies that are useful in science and
engineering. The undergraduate bachelor of science degree is offered through the College of Engineering and Applied Science.

The department offers a range of courses and research opportunities in many areas, including computational mathematics, probability and statistics, nonlinear phenomena, and physical applied mathematics. Each of these areas is described below.

Computational Mathematics

The study of computational mathematics has grown rapidly over the past 15 years and has allowed mathematicians to answer questions and develop insights not possible only 20 to 30 years ago. Modern computational methods require in-depth knowledge of a variety of mathematical subjects including linear algebra, analysis, ordinary and partial differential equations, asymptotic analysis, elements of harmonic analysis, and nonlinear equations. Since computers are invaluable tools for an applied mathematician, students are expected to attain a highly professional level of computer literacy and gain a substantial knowledge of operating systems and hardware. Computational mathematics courses include the study of computational linear algebra, optimization, numerical solution of ordinary and partial differential equations, solution of nonlinear equations, and advanced seminars in wavelet and multi-resolution analysis.

Nonlinear Phenomena

In recent years there has been an explosion of interest in the study of nonlinear waves and dynamical systems with analytical results, often motivated by the use of computers. The faculty in the Department of Applied Mathematics are actively and intensively involved in this growing field. Research areas include integrable systems, conservative and dissipative chaos, numerical computation, wavelets and multi-resolution analysis, solitons, integrable systems, cellular automata, pattern formation, qualitative structure and bifurcation theory, onset of chaos and turbulence, analytic dynamics, and transport phenomena. Department courses in this field include dynamical systems, nonlinear wave motion, and many advanced seminars. Suitable background courses are analysis, computation, and methods in applied mathematics. Valuable supplemental courses include mechanics and fluid dynamics.

Physical Applied Mathematics

Physical applied mathematics is a term that generally refers to the study of mathematical problems with direct physical application. This area of research is intrinsically interdisciplinary. In addition to mathematical analysis, it requires an in-depth understanding of the underlying applications area, and usually requires knowledge and experience in numerical computation. The department has approximately 40 affiliated faculty who can direct thesis research in areas such as atmospheric and fluid dynamics, theoretical physics, plasma physics, genetic structure, parallel computation, etc. The department’s course requirements are designed to provide students with a foundation for their study (analysis and computation). The department also requires supplemental courses in one of the sciences or engineering fields necessary for thesis research in physical applied mathematics.

Probability and Statistics

Almost all natural phenomena in the technological, biological, physical, and social sciences have random components. Applied probability is the application of probabilistic methods to understand the random elements in real-life problems. Statistics is the science of using data to make inferences about a population. Research areas of the applied math and affiliated faculty exhibit this interplay between mathematics and real-life problems. Areas of current interest include optimization of stochastic networks; the study of stochastic processes and stochastic differential equations in hydrology and telecommunications; probabilistic models, and statistical tests based on these models, in genetics and RNA sequencing; and extreme value theory in estimation of maximal wind speeds. Appropriate coursework includes analysis, probability and statistics, as well as background courses in one of the sciences or engineering fields in which one intends to do research.

Bachelor’s Degree Programs

A bachelor of science degree in applied mathematics is currently offered by the College of Engineering and Applied Science. The undergraduate curriculum in applied mathematics trains students in the applications of mathematics in engineering and science. The use of computational methods and implementation of algorithms on computers is central. Technical electives may be selected from mathematics, engineering, physics, chemistry, computer science, biology, astrophysics, and geology.

In general, non-technical electives should be broadening and have multicultural value. Students interested in research also are encouraged to take a foreign language as early as possible. French, German, or Russian are recommended.

Interested students should contact the applied mathematics office in the College of Arts and Sciences for information on specific major and degree requirements.

Minor Program

A minor is offered in applied mathematics. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For further information, consult the Web at www.colorado.edu/Arts-Sciences/minors/minors.html.

A minor in applied mathematics indicates that a student has received in-depth training in mathematical techniques and computational methods well beyond the training usually received by science and engineering majors.

Concurrent B.S./M.S. Degree Program

The concurrent B.S./M.S. program in applied mathematics enables well-qualified and motivated students to experience graduate-level course work earlier in their education and to obtain an M.S. degree in a reduced time period. Applied math majors may apply for this program during their junior year. Minimum requirements for admission include completion of at least two APPM courses numbered 3000 or higher, an overall GPA of 3.40 or higher, an APPM and MATH GPA of 3.40 or higher, and two letters of recommendation from APPM faculty. Students interested in this program are encouraged to consult with an applied mathematics faculty advisor early in their undergraduate career.

Graduate Studies

Prerequisites for graduate study in applied mathematics include three semesters of calculus and a course in differential equations and linear algebra. Other strongly recommended courses are Methods in Applied Mathematics (APPM 4350 and 4360); Intermediate Numerical Analysis (APPM 4650 and 4660, or MATH 4650 and 4660); either Matrix Methods (APPM 3310) or Linear Algebra (MATH 3130); and Advanced Calculus 2 (MATH 4320). The overall grade point average for mathematics and applied mathematics must be B or better.

M.S. Degree

The Department of Applied Mathematics offers the M.S. degree jointly with the Department of Mathematics. The department requires a candidate to complete an approved program of study consisting of at least 30 semester hours. At least 18 of these 30 hours must be in applied mathematics courses at the 5000 level or above. This must include the numerical sequence APPM 5600–5610, or the numerical preliminary exam must be taken. Also required is a year-long, graduate-level sequence in an area where mathematics has significant application.
(advisor approval required). Either a preliminary exam must be taken or a thesis has to be written and successfully defended.

Ph.D. Degree
The Department of Applied Mathematics on the Boulder campus offers course work and research leading to the Ph.D. degree in applied mathematics (in partial collaboration with the Department of Mathematics at the University of Colorado at Denver under the auspices of the systemwide Graduate School).

A minimum of 60 credit hours is required for the degree, including 30 in courses numbered 5000 or above and 30 hours of dissertation credit. A grade of B- or higher must be attained in each course. No specific courses are mandatory (apart from two semesters of seminars—APPM 8000, 8100, or 8200), but the selection ought to include some of the department’s core sequences, such as applied analysis (APPM 5440–5450) and numerical analysis (APPM 5600–5610). Other recommended sequences are methods (APPM 5470–5480) and statistics (APPM 5520–5560). Finally, each student must take a year-long graduate sequence outside of applied mathematics in an area where mathematics has significant application. Faculty advisor approval of the sequence is required. Of the four prelims offered, numerics and analysis must be successfully taken, as well as one of the PDEs and statistics.

Further information on the department and degree requirements is available from the Supplement to the Catalog in the Applied Mathematics office or in the Graduate School.

ASIAN STUDIES
Degree..B.A.
The Asian Studies Committee offers a broad interdisciplinary undergraduate major in Asian studies. In addition, a number of departments offer graduate training with an emphasis on Asia.

Students planning to major in Asian studies may participate in study abroad programs with prior approval from the Asian Studies Program and the Office of International Education.

For additional information on the major program, contact Stephen Snyder at 303-492-7241.

Bachelor's Degree Program
Approved Asian Studies Courses
Most classes are offered for 3 credit hours. Not all classes are taught every semester or every year. Other courses with primarily Asian-related content may be taken for major credit with the director’s approval.

ANTH 1110 Exploring a Non-Western Culture: The Tamils
ANTH 4750 Culture and Society in South Asia
ANTH 4760 Ethnography of Southeast Asia and Indonesia
ASIA 1000 South and Southeast Asian Civilizations
ASIA 4830 Senior Thesis in Asian Studies

The selection must include some of the department’s core sequences, such as applied analysis (APPM 5440–5450) and numerical analysis (APPM 5600–5610). Other recommended sequences are methods (APPM 5470–5480) and statistics (APPM 5520–5560). Finally, each student must take a year-long graduate sequence outside of applied mathematics in an area where mathematics has significant application. Faculty advisor approval of the sequence is required. Of the four prelims offered, numerics and analysis must be successfully taken, as well as one of the PDEs and statistics.

Further information on the department and degree requirements is available from the Supplement to the Catalog in the Applied Mathematics office or in the Graduate School.

ASTROPHYSICAL AND PLANETARY SCIENCES
Degrees............................B.A., M.S., Ph.D.

The bachelor's degree track in astrophysics/physics is directed toward students interested in pursuing graduate studies in astrophysics/physics (see the web site at aps.colorado.edu). The track in general astronomy is designed to meet student needs for training in space sciences (astronomy, astrophysics, planetary sciences, and space physics). Undergraduates are prepared for both academic research careers and the industrial market (aerospace, computer software, instrumentation, and other technical areas) as well as for science education, science journalism, and space policy.

The track provides a liberal arts degree in the science of astronomy, observations, and technology as well as core training in astronomical sciences and mathematics, applied physics, and computational and instrumental technology for professions in the space sciences. The track can focus on space observations (ground-based telescopes, rocket probes, space-borne observatories) or on K-12 science education, for which astronomy provides excellent science content for motivating young students. It also offers broad training in science policy and science writing.

The bachelor’s degree track in astrophysics/physics is directed toward students interested in pursuing graduate studies in as-
trophysics by focusing on multidisciplinary work in physics and mathematics together with astronomy. Graduates are provided with scientific and technological training in the space sciences, including mathematical, physical, computational, and instrumental expertise.

Specific goals for both new programs are to provide:

- both theoretical and practical knowledge of astronomy and astrophysics at a level comparable to the best programs at other major U.S. public institutions. The Department of Astrophysical and Planetary Sciences is one of the few programs that combines both astrophysics and planetary science, providing a unified view of space sciences, the solar system, and comparative planetology, stellar and galactic astronomy, and cosmology.

- courses and significant hands-on experience with telescopes, optics, instrumentation, and computer image processing and modeling. These skills are useful for students wishing to pursue graduate degrees or careers in aerospace, technical, or computer industries.

- opportunities for faculty-advised research and senior (honors) theses.

Bachelor’s Degree Program

A new major with two tracks (general astronomy and astrophysics/physics) was just approved by the Regents and CCHE on June 1, 2000.

General Astronomy Track

This is appropriate for someone aiming for a career in education, science journalism, science policy, information technology, science management, or technical work that does not require a graduate degree.

- ASTR 1030 and 1040 Accelerated Introductory Astronomy or ASTR 1010 and 1020 Introductory Astronomy ..7-8
- PHYS 1110, 1120, and 1140 General Physics 1 and 2 ...9

One upper-division course sequence:

- ASTR 3720 Planets and Their Atmospheres and ASTR 3750 Planets, Moons, and Rings or ASTR 3720 Astronomical Observing 1: Stellar and Interstellar and ASTR 3830 Astrophysics 2: Galactic and Extragalactic
- APPM 1350 and 1360 or MATH 1300 and 2300 Calculus 1 and 2 ...8-10

Two of the following six courses:

- ASTR 3010 Telescopes and Instrumentation
- ASTR 3020 Astronomical Observing
- ASTR/ASEN 3060 Introduction to Space Experimentation
- PHYS 2140 Methods of Theoretical Physics
- PHYS 2150 and 2170 Experimental Physics and Foundations of Modern Physics4

Minimum of one additional course selected from:

- ASTR 2000 Ancient Astronomies3
- ASTR 2010 Modern Cosmology3
- ASTR 2020 Space Astronomy3
- ASTR 2030 Black Holes3
- ASTR 3010 and/or 3020 Observations and Instrumentation 1 and 2 (if not taken to satisfy above) ..4 each
- ASTR 3060 Space Experimentation (if not taken to satisfy above)3
- ASTR 3210 and/or 3220 Intermediate Astronomy ...3 each

One other science sequence with lab. Can be satisfied by any sequence that satisfies arts and sciences core curriculum in natural sciences with lab, for example:

- CHEM 1111 and 1131; EPOB 1210–1230, GEOL 1010, 1020, and 1080, ATOC 1050, 1060, and 1070, or equivalent7-10

Four additional courses from the following or from those sequence courses not used for the upper-division sequence requirement, above:

- ASTR 3740 Cosmology and Relativity3
- ATOC 4710 Atmospheric Physics3
- ATOC 4720 Atmospheric Dynamics3
- ASTR 5750 Observational Astronomy (with instructor’s permission)3
- ASTR 5760 Astronomical Instrumentation (with instructor’s permission)3
- ASTR 4000 and 4010 Independent Study and Research ..3 each

A minor is available that may be satisfied by taking various combinations of courses among the diverse possibilities offered by the department.

Astrophysics/Physics Track (Jointly Supervised by the APS and Physics Departments)

For students aiming for a graduate program in astronomy or planetary sciences. Similar to Physics Plan 2 (Astrophysics), with additional astrophysics instrumentation labs and different electives.

Required Courses Semester Hours

- APPM 1350, 1360, 2350, and 2360 Calculus 1, 2, 3, and 4 or MATH 1300, 2300, 2400, and APPM 2360 Analytic Geometry and Calculus 1, 2, 3, and 4 and Introduction to Linear Algebra and Differential Equations 16-18
- PHYS 1110, 1120, and 1140 General Physics 1 and 2 and PHYS 2140, 2150, and 2170 Sophomore Physics ..16
- ASTR 1030 and 1040 Accelerated Introductory Astronomy or ASTR 3010 and 3020 Telescopes and Instrumentation and Astronomical Observing ..8
- PHYS 3310 and 3320 Electromagnetism and PHYS 3210 and 3220 Analytical and Quantum Mechanics12
- PHYS 4230 Thermodynamics and Statistical Mechanics or PHYS 4410 Quantum Mechanics II or PHYS 4420 Nuclear and Particle Physics or PHYS 4510 Optics or PHYS 4510 Plasma Physics3
- ASTR 3720 and 3750 planetary sequence or ASTR 3730 and 3830 astrophysics sequence ...6
- ASTR 3740 Cosmology and Relativity or ASTR 4000 and 4010 Independent Study and Research 1 and 2 or ATOC 4710 Atmospheric Physics or ATOC 4720 Atmospheric Dynamics ..9

Any ASTR 5000- or 6000-level course with instructor’s permission3

Total credit hours for the major 23 hours minimum in astrophysics and 28 hours minimum in physics (this must include at least 15 upper-division hours in astrophysics and 12 in physics).

Minor Program

Declaration of a minor in astrophysical and planetary sciences is open to any student enrolled at CU-Boulder, regardless of college or school. For further information consult the Web at www.colorado.edu/ArtsSciences/minors/minors.html.

A total of 18 credit hours is required for the minor. For guidance, see an astrophysical and planetary sciences (APS) faculty advisor or request written information from the departmental office. APS courses also may be used in undergraduate distributed studies programs. Lists of courses recommended for these majors may be obtained in the departmental office.

Graduate Degree Programs

The curriculum and research in the department emphasizes three major areas: astrophysics, planetary sciences, and space physics. The department offers both M.S. and Ph.D. degrees. During the first year of graduate study, students generally obtain a broad background in courses regarded as basic to all three areas in addition to more specialized studies. Many students take graduate-level courses in other departments (e.g., Departments of Physics, Chemistry, Applied Mathematics, or Aerospace Engineering) depending upon their particular interests or participation in interdisciplinary programs (see below).

Examples of basic first-year courses in the three areas include:

- ASTR 5110 Internal Processes 1
- ASTR 5120 Internal Processes 2
- ASTR 5140 Astrophysical and Space Plasmas
- ASTR 5400 Introduction to Fluid Dynamics
- ASTR 5540 Mathematical Methods

Descriptions of more specialized courses follow. Students interested in applying to this department are invited to write to the Chair, Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, 391 UCB, Boulder, CO 80309-0391.

Astrophysics (Including Solar Physics)

The department offers a broad range of courses and research in this area, leading to
the Ph.D. degree. Graduate-level courses are offered in the following subjects:

ASTR 5140 Astrophysical and Space Plasmas
ASTR 5700 Stellar Structure and Evolution
ASTR 5710 High-Energy Astrophysics
ASTR 5720 Galaxies
ASTR 5730 Stellar Atmospheres and Radiative Transfer
ASTR 5740 Interstellar Astrophysics
ASTR 5750 Observational Astronomy
ASTR 5760 Astrophysical Instrumentation
ASTR 5770 Cosmology
ASTR 6000 Seminar in Astrophysics

Research in observational and theoretical astrophysics is conducted in the following areas:

- Stellar atmospheres, radiative transfer, and stellar winds of hot and cool stars
- Formation of stars and planetary systems
- Solar physics
- Interstellar and intergalactic medium
- Cosmology and large-scale structure of the universe; galaxy formation
- Stellar interiors, pulsations, and neutron stars
- Cosmic X-ray sources, supernovae and their remnants, and accretion phenomena
- Galactic evolution, quasars, and active galaxies
- Radio and sub-millimeter astronomy
- Plasma astrophysics and MHD
- Astrophysical fluid dynamics
- Laboratory and atomic astrophysics
- UV, IR, sub-millimeter, and X-ray space astronomy
- Instrument and detector development

Planetary Sciences

As planetary sciences is an interdisciplinary field, students can obtain degrees from the Departments of Astrophysical and Planetary Sciences, Geological Sciences, Physics, and Aerospace Engineering. CU-Boulder is also home to a division of the Southwest Research Institute, with over 25 planetary scientists, many of whom work with CU students. Research and courses related to the physics and dynamics of the atmospheres of other planets, planetary surfaces and interiors, and other solar system studies are available in programs leading to the M.S. and Ph.D. degrees. Courses related to the physics and dynamics of the Earth’s atmosphere are offered through PAOS under the ATOC acronym. Graduate-level courses in these areas are:

- ASTR 5110 Internal Processes I
- ASTR 5250 Planetary Aeronomy
- ASTR 5300 Introduction to Magnetospheres
- ASTR 5410 Fluid Instabilities, Waves, and Turbulence
- ASTR 5560 Radiative Processes in Planetary Atmospheres
- ASTR 5800 Planetary Surfaces and Interiors
- ASTR 5810 Planetary Atmospheres
- ASTR 5820 Origin and Evolution of Planetary Systems
- ASTR 5830 Topics in Planetary Science
- ASTR 5835 Seminar in Planetary Science
- ATOC 5050 Physical Processes of the Atmosphere and Ocean
- ATOC 5960 Theories of Climate and Climate Variability

Research in theoretical, observational, and laboratory atmospheric and planetary science is conducted in the following areas:

- Dynamics and chemistry of planetary atmospheres, planetary clouds, and planetary climates; evolution of planetary atmospheres; and comparison of planetary and terrestrial atmospheres
- Planetary aeronomy, airglow and aurora, UV and IR spectroscopy, noctilucent clouds, structure and composition of planetary atmospheres (Venus, Mars, Jupiter, Saturn, Uranus, and Neptune), planetary magnetospheres, and cometary physics
- Satellite monitoring of the Earth’s atmosphere and environment, including remote sensing of mesospheric ozone, stratospheric trace species, convection, outgoing radiation, and magnetospheric dynamics
- Planetary geology, planetary interiors, and planetary geophysics

Graduate research opportunities exist with individual faculty members, as well as jointly with academic and research units such as the Departments of Geological Sciences, Physics, and Aerospace Engineering, as well as the Program in Atmospheric and Oceanic Sciences (PAOS), the National Center for Atmospheric Research (NCAR), the National Oceanic and Atmospheric Administration (NOAA), and the Laboratory for Atmospheric and Space Physics (LASP). The latter is involved in space investigations of the Earth and planets. Financial support is available in connection with all of the above research activities.

Atmospheric and Oceanic Sciences

This interdisciplinary program provides an educational and research environment to examine the dynamical, physical, and chemical structures of the atmosphere, ocean, and land surface, and the manner in which they interact. For further information, see the PAOS listing elsewhere in this catalog.

Geophysics

The department participates in the interdepartmental Ph.D. program in geophysics. For further information, refer to the discussion of the geophysics program under the Graduate School chapter of this catalog.

Departmental Requirements

Those wishing to pursue graduate work in APS leading to candidacy for an advanced degree should carefully read requirements for advanced degrees in the Graduate School chapter of this catalog. The following are special departmental requirements.

Master’s Degree

Prerequisites. A thorough undergraduate preparation in physics and mathematics is necessary for graduate study. Courses should include thermodynamics, mechanics, electricity and magnetism, quantum mechanics, atomic physics, and mathematics at least through calculus and differential equations.

Qualifying Examination. The Graduate Record Examination aptitude tests and advanced test in physics are used in place of a qualifying examination, and this examination should be taken before the time of application to the department.

Preliminary Interview. Students in the Department of Astrophysical and Planetary Sciences are given an oral interview prior to the beginning of the fall semester of their first year. This oral interview examines fundamental knowledge in undergraduate physics and mathematics. Students are required to overcome any academic deficiencies within a year in order to remain in the program.

Course Requirements. Under plan I, a student must present a thesis for 6 credit hours plus 24 credit hours of course work, at least 12 of which must be APS courses numbered 5000 or above. Under plan II, additional hours of approved graduate courses must be presented for a total of 30 credit hours, of which at least 16 must be APS courses numbered 5000 or above. The
master’s examination under plan I covers the thesis and related topics. The examination under plan II is more comprehensive and may be either written or oral or both. Master’s examinations are given after other degree requirements have been completed, but may be given during the last semester of residence if the student is making satisfactory progress on required courses. Students are encouraged to follow plan I except under special circumstances.

Doctoral Degree

In addition to the master’s degree requirements above, Ph.D. students must complete the following.

Course Requirements. A minimum of 36 semester hours of work (including 4 hours of graduate seminars) in courses numbered 5000 or above is required; however, the overall emphasis is on independent study and research.

Language Requirement. None.

Examinations. Students in the Ph.D. program are required to remove any deficiencies identified at the preliminary examination, to pass a two-part comprehensive examination composed of a written test on graduate course material and an oral exam on a research paper, and satisfactorily defend the thesis before a faculty committee.

ATMOSPHERIC AND OCEANIC SCIENCES

Degrees ... M.S., Ph.D.

The Program in Atmospheric and Oceanic Sciences (PAOS) is an interdisciplinary program that provides an educational and research environment to examine the dynamical, physical, and chemical processes in the atmosphere, ocean, and land surface, and the manner in which they interact. A major theme is the establishment of a physical basis for understanding climate and global change.

Although an undergraduate degree program is not yet offered, a minor is available that may be satisfied by taking various courses offered by the program. A total of 18 credit hours is required for the minor. A full list of approved courses for the minor is available in the program office.

Each graduate student must be admitted to the Graduate School and either to PAOS or to one of these major departments: aerospace engineering, chemistry and biochemistry, electrical and computer engineering, geology, or geological sciences. Students admitted directly to PAOS will be eligible for the degree "Astrophysical, Planetary, and Atmospheric Science." Students associated with other departments may pursue a Certificate in Atmospheric and Oceanic Sciences. See Graduate School/Interdisciplinary Programs in this catalog.

For more information about the program or application procedure, please contact the PAOS office at 303-492-6633.

Graduate Degree Program

PAOS offers a comprehensive graduate program with a core course structure that emphasizes the fluid dynamical, chemical, and physical processes in the atmosphere and ocean.

The PAOS (ATOC) graduate core courses comprise the following:

- ATOC 5060 Dynamics of the Atmosphere
- ATOC 5061 Dynamics of Oceans
- ATOC 5151 Atmospheric Chemistry
- ATOC 5225 Thermodynamics of Atmospheres and Oceans
- ATOC 5235 Remote Sensing of Atmospheres and Oceans
- ATOC 5400 Introduction to Fluid Dynamics
- ATOC 5560 Radiative Processes in Planetary Atmospheres
- ATOC 5600 Physics and Chemistry of Clouds and Aerosols
- ATOC 5810 Planetary Atmospheres

PAOS offers many graduate elective courses, and students are encouraged to take related electives offered by other departments.

Prerequisites. An undergraduate degree in mathematics, physics, engineering, chemistry, or another natural science is recommended. The general prerequisites expected of incoming graduate students include undergraduate courses in calculus, linear algebra, differential equations, and computer programming, as well as one-year sequences of undergraduate calculus-based physics and chemistry. Upper-division undergraduate courses in physics, chemistry, engineering, and mathematics are strongly recommended. Undergraduate courses in atmospheric and oceanic sciences are useful, but not expected, as part of the undergraduate background.

Master’s Degree

Course Requirements. A total of 30 credit hours is required for both plan I (thesis) and plan II (nonthesis) options. At least 15 credit hours must be earned in ATOC courses numbered 5000 and above. For plan I, three ATOC core courses are required, and for plan II, four ATOC courses are required.

Examinations. For the plan I option, the final examination consists of an oral exam on the thesis. For the plan II option, students must take a comprehensive examination based on course material.

Doctoral Degree

Course Requirements. A total of 36 credit hours is required with at least 18 credit hours in ATOC courses numbered 5000 and above, and a graduate-level course in applied or computational mathematics.

Examinations. Students must pass a two-part comprehensive examination before admission into candidacy. Part I of the comprehensive examination is a written exam based on course material and is normally taken in the second year. Part II of the comprehensive examination is normally taken in the third year and is an oral examination based on an original research paper prepared by the student. A final examination of the dissertation will be conducted.

BIBLIOGRAPHY

Several courses in bibliography and library research methods are offered to students who wish to explore the structure, organization, retrieval, and evaluation of information for their study and career needs. See the course descriptions for further information.

BIOLOGICAL SCIENCES

Course work and degree programs in the biological sciences are offered through the Department of Environmental, Population, and Organismic Biology; the Department of Molecular, Cellular, and Developmental Biology; and the Department of Kinesiology and Applied Physiology. Students should refer to program and course descriptions listed for each department.

BRITISH STUDIES

The Center for British Studies encourages students to develop programs that include a focus on British culture, history, and contemporary life from a variety of disciplinary perspectives. At the undergraduate level, the center offers a certificate in British studies for students who have taken 24 credit hours in British literature, history, and/or other fields. The center also assists undergraduates who want to study or do research in Britain.

For graduate students, it offers a series of interdisciplinary seminars, designed and planned by students, with a different focus each semester. These offer exposure to methods and sources outside the students’ own departments and provide preprofessional training in presenting research. The center has funds for acquiring microfilm collections for dissertation research, offers travel fellowships for graduate students, and awards writing prizes for both undergraduate and graduate papers.

For further information, call the Center for British Studies at 303-492-2723.
CENTRAL AND EAST EUROPEAN STUDIES

The Central and East European Studies major is being discontinued. Students already enrolled in the major will continue to be served; however, no new students will be accepted.

Students who seek in-depth, interdisciplinary knowledge of the region are encouraged to pursue the certificate in Central and East European studies. The certificate program offers students the opportunity to explore the culture, history, and politics of the nations of central and eastern Europe from a variety of disciplinary perspectives.

The purpose of the certificate program is to enhance, rather than to replace, the department major. Students work with CES faculty advisors to plan an appropriate certificate program. The certificate is issued by the dean of the College of Arts and Sciences, and is awarded in addition to a bachelor’s degree in another field.

The certificate program involves 24 hours of credit, including an introductory course (CES 1000) and at least one course from each of three core clusters (historical, social science, and literature/culture). Student pursuing the CES certificate are strongly encouraged to take advantage of a recognized study abroad program in Eastern Europe affiliated with CU-Boulder. Courses taken in such a program, as approved by an advisor, count toward the certificate in CES. Only 9 credits that apply to the major can be used to fulfill requirements for the CES certificate.

Contact the Director of Central and Eastern European Studies, Professor Padraic Kenney, at 303-492-5729 for further information about the program and participating faculty.

CHEMISTRY AND BIOCHEMISTRY

Degrees B.A., M.S., Ph.D.

The undergraduate degree in chemistry and biochemistry emphasizes knowledge and awareness of:

- the basic principles of chemistry—atomic and molecular theory, reactivities and properties of chemical substances, and the states of matter;
- the basic subfields of chemistry—organic, physical, analytical, and inorganic chemistry (and biochemistry for biochemistry majors);
- mathematics sufficient to facilitate the understanding and derivation of fundamental relationships and to analyze and manipulate experimental data;
- the basic principles of physics (and for biochemistry majors, knowledge of biology); and
- safe chemical practices, including waste handling and safety equipment.

In addition, students completing the degree in chemistry or biochemistry are expected to acquire the ability and skills to:

- read, evaluate, and interpret information on a numerical, chemical, and general scientific level;
- assemble experimental chemical apparatus, design experiments, and use appropriate apparatus to measure chemical composition and properties (for biochemistry students, this includes properties of proteins, nucleic acids, and other biochemical intermediates); and
- communicate results of scientific inquiries verbally and in writing.

Bachelor’s Degree Program

A student can earn a bachelor’s degree in either chemistry or biochemistry. For either option, students must complete the general requirements of the College of Arts and Sciences and the required courses listed below.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1111 and 1131 General Chemistry 1 and 2</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1151 and 1171 Honors General Chemistry 1 and 2 (Honors CHEM 1151 and 1171 are recommended for the student with advanced high school training in mathematics and physics)</td>
<td>10-12</td>
</tr>
<tr>
<td>CHEM 3351 and 3371 Organic Chemistry for Chemistry and Biochemistry Majors 1 and 2 or CHEM 3311 and 3331 Organic Chemistry 1 and 2</td>
<td>8</td>
</tr>
<tr>
<td>CHEM 3361 and 3381 Laboratory in Organic Chemistry 1 and 2 for Chemistry Majors</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 4011 Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 4181 Instrumental Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 4511 and 4531 Physical Chemistry 1 and 2 or CHEM 4411 and 4431 Physical Chemistry with Biochemistry Applications 1 and 2</td>
<td>6</td>
</tr>
<tr>
<td>CHEM 4561 Experimental Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1110 and 1120 General Physics 1</td>
<td>8</td>
</tr>
<tr>
<td>PHYS 1140 Experimental Physics 1</td>
<td>1</td>
</tr>
<tr>
<td>MATH 1300, 2300, and 2400</td>
<td>12-14</td>
</tr>
<tr>
<td>APPM 1350, 1370, and 2350</td>
<td>12-14</td>
</tr>
</tbody>
</table>

All students, and especially those intending to go on to graduate school in chemistry, will benefit from additional advanced courses. Recommended electives include the following: CHEM 4011, 4181, 4191, 4901, graduate courses in various fields of chemistry, or advanced courses in biology or mathematics.

Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of "adequate progress" as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in chemistry and biochemistry, students should meet the following requirements:

Declare chemistry or biochemistry as the major in the first semester.

Students must consult with a major advisor to determine adequate progress toward completion of the major.

Minor Program

Minors are offered in chemistry and in biochemistry. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For further information consult the Web at www.colorado.edu/ArtsSciences/minors/minors.html.

American Chemical Society Certification

The American Chemical Society maintains a certification program in which a student graduating with a specified minimum pro-
gram is certified to the society upon graduation. To be certified, a graduate must satisfy requirements in addition to the minimum for graduation. A list of these requirements may be obtained from the undergraduate Chemistry and Biochemistry office.

Chemistry Honors Program
Opportunity is provided for qualified chemistry and biochemistry majors to participate in the departmental honors program and graduate with honors (cum laude, magna cum laude, or summa cum laude) in chemistry or biochemistry. Students interested in the honors program should contact the departmental honors advisor during their junior year.

Transfer students who plan to take a chemistry or biochemistry major must complete at the Boulder campus a minimum of 12 credit hours of upper-division work covering at least two of the subdisciplines: organic, physical, analytical, inorganic, and biochemistry.

A more detailed listing of the bachelor’s degree program, together with advising information and alternate course options, is available at the undergraduate office in the Department of Chemistry and Biochemistry.

Graduate Degree Programs
Students wishing to pursue graduate work in chemistry or biochemistry leading to candidacy for an advanced degree should read carefully requirements for advanced degrees in the Graduate School chapter. For information on the doctoral program in chemical physics offered jointly with the Department of Physics, see Chemical Physics under Interdepartmental Programs in the Graduate School chapter of this catalog. Following are some of the special departmental requirements. Copies of more detailed rules are distributed to graduate students.

Prerequisites. An undergraduate major in chemistry, biochemistry, or a related field is desirable since entering graduate students are required to take examinations and complete selected course work covering the major fields of chemistry and biochemistry. The GRE general test and advanced subject test (in either chemistry or in biochemistry, cell, and molecular biology) is required for admission and for fellowship competition. Some or all of these tests may be waived under special circumstances.

Master’s Degree
Language. The department does not require foreign language proficiency for the master’s degree.

Examinations. Administration of preliminary examinations varies, depending on students’ entering field. Candidates must pass a master’s final oral examination at the time they complete their work.

Course Requirements. There are two methods of obtaining a master’s degree from the Department of Chemistry and Biochemistry. Plan I requires 30 credit hours, including 15 credit hours of formal course work, 15 credit hours in research/seminar courses, the completion of a research investigation, and the presentation of a thesis. Plan II requires 30 credit hours including 21 credit hours of formal course work plus 9 credit hours of research/seminar, and presentation of a research report, but no thesis; Plan II is available only with departmental approval.

Doctoral Degree

Language. The department does not require foreign language proficiency for the Ph.D. degree.

Examinations. Administration of preliminary examinations varies, depending on students’ entering field. These examinations are used in an advisory capacity. The minimum course work is 30 credit hours at the 5000 level or above, of which 15 credit hours must be in formal course work. In addition, a minimum of 30 credit hours of dissertation work is required. Ph.D. students must pass a comprehensive examination consisting of a series of written cumulative exams and an oral examination. Students entering with a master’s degree start the comprehensive examinations in their second semester; others start them in their third semester. Candidates must write a research proposal during their studies, complete a research investigation and present a thesis, and pass a Ph.D. final oral examination at the time they complete their work.

CLASSICS

Degrees B.A., M.A., Ph.D.

Through consultation with the undergraduate advisor, the bachelor’s degree in classics is tailored to the student’s interests in the field. Major and minor programs can be arranged with a concentration in either Latin or Greek or a combination of the two, or a broadly based program in classical antiquities (mythology, literature, philosophy, religion, art, archaeology, and history). Prospective majors and minors should consult with the undergraduate advisor and review the departmental list. The undergraduate degree in classics emphasizes knowledge and awareness of:

• the fundamental outlines of the history of Greek and Roman literature, from Homer to the end of classical antiquity;

• the historical and cultural contexts of particular works; and

• the art, religion, and philosophy of ancient Greece and Rome and their roles in world cultural history.

In addition, students completing the degree in classics are expected to acquire the ability and skills to:

• read, understand, and interpret written documents and works of literature in ancient Greek or Latin where relevant, as well as in translation;

• communicate in spoken and written form with adequate clarity and complexity for the relevant audience; and

• read and think critically.

Bachelor’s Degree Program
Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below, including at least 18 credit hours of upper-division courses.

Required Courses

Track I: Greek, Latin, or Greek and Latin

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greek and/or Latin ...30</td>
<td></td>
</tr>
</tbody>
</table>

Note: Students must designate one language as the primary field of study. The first year of this language does not count toward the major.

Electives (general classics courses dealing with the ancient world, ancient history, classical archaeology, classical tradition, or ancient philosophy) ..6

Track II: Classical Studies

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>General classics (CLAS 1010, 1100, 1105, 1110, 1115, 1120, 4110, 4120, 4130, or 4820) ..12</td>
<td></td>
</tr>
</tbody>
</table>

Ancient history, philosophy, and/or classical archaeology (CLAS 1009, 1051, 1061, 1140, 2020, 2100, 2110, 2610, 3330, 4021, 4031, 4041, 4049, 4051, 4059, 4061, 4079, 4081, 4091, 4761, PHIL 3000, or HIST 3011) ..18 |

Greek and/or Latin ..6

Note: Students must designate either Greek or Latin as the primary field of language study. The first year of this language does not count toward the major. With the approval of the undergraduate advisor, upper-level Greek or Latin courses may be substituted for general classics, ancient history, or archaeology.

Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in classics, students should meet the following requirements:

Declare the classics major by the beginning of the second semester.

Students must consult with a major advisor to determine adequate progress toward completion of the major.
Minor Program
A minor is offered in classics. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For further information consult the Web at www.colorado.edu/ArtsSciences/minors/minors.html.

Graduate Degree Programs

Master's Degree
Candidates may choose to emphasize Greek, Latin, classical antiquity, or the teaching of Latin.

It is expected that students opting for the teaching of Latin either have achieved accreditation at the secondary level or are planning to do so through the School of Education. The M.A. degree alone does not satisfy the state requirements for certification.

Degree Requirements. Candidates for the M.A. degree in Latin or Greek are required to pass a written examination in translation of the major language. Students intending to pursue the Ph.D. in classics are strongly advised to develop proficiency in both Latin and Greek, and to acquire a reading knowledge of German, French, or Italian.

Candidates for the M.A. degree with emphasis on classical antiquity are required to complete at least two graduate-level courses in Greek and/or Latin and must pass a written examination in two of the following fields: history, art and archaeology, religion and mythology, philosophy and political theory, and Greek or Latin translation.

Candidates for the M.A. plan I (24 hours of course work at the 5000-level or above, plus 6 credit hours of thesis) take an oral comprehensive examination in defense of the thesis. Candidates for the M.A. plan II (30 credit hours, 24 of which must be at the 5000-level or above, without thesis) must have departmental approval and pass an oral comprehensive examination covering their course work.

Candidates for the M.A. degree with emphasis on the teaching of Latin must pass a written examination in both Latin translation and Latin literature and an oral comprehensive examination on teaching methods. Thirty hours of course work, including one Latin workshop and a special project, are required. Plan I is not offered for the M.A. degree with emphasis on teaching.

Doctoral Degree
Candidates for the Ph.D. in classics must meet the following requirements:

1. A reading knowledge of two modern foreign languages; one must be German and the other must be approved by the department.
2. Successful completion of at least four graduate seminars.
3. One course each in Greek prose composition, Latin prose composition, and a special field such as epigraphy, paleography, literary theory, linguistics, or religion.
4. Two courses in ancient history or classical archaeology.
5. The candidate is tested in Greek and Latin languages (translation tests) and must pass an examination on one Greek and one Roman author. There is an oral comprehensive examination in which the student is expected to demonstrate overall factual knowledge of Greek and Latin literature.
6. The candidate must write a Ph.D. dissertation and complete a final oral examination in defense of the dissertation.

Cognitive Science Studies
The cognitive science certificate program is an interdisciplinary program for undergraduate majors in the Departments of Psychology, Philosophy, Linguistics, and Computer Science. Cognitive science is the study of human knowledge, of which one aspect is the study of how knowledge is acquired, stored, and represented in the mind, including the mind's underlying biological mechanisms. Another aspect of cognitive science concerns how knowledge is understood, remembered, communicated, and used in the performance of activities, including the acquisition and application of skills and information. This latter aspect provides the practical applications of cognitive science, and thereby ensures a demand for graduates in both academic and industrial markets. Training in cognitive science prepares students admirably well for many of the fields that are targeted as the major growth fields of the 21st century: telecommunications, information processing, medical analysis, data retrieval, education, and multimedia.

The program requirements include courses in all of the four core departments, basic courses providing mathematical, computational, natural science, and statistical skills, and two of four possible advanced skills sequences of courses. For more information, either visit the web site at psych-www.colorado.edu/ics or contact the program director, Alice Healy, at 303-492-5032.

COMMUNICATION

Degrees B.A., M.A., Ph.D.

The bachelor of arts in communication provides analytic work from both humanistic and scientific perspectives and practical work to improve communicative performance in various kinds of situations.

The undergraduate degree in communication emphasizes knowledge and awareness of:

- the history and development of communication as an object of scholarly study, including both the humanistic and scientific traditions;
- the basic contexts in which communication is enacted (e.g., interpersonal, small group, and organizational and public contexts);
- the various processes of influence within these contexts;
- communication codes and coding;
- the basic methods of investigating questions about problems in communication;
- the ethical issues and responsibilities of communication practice, particularly the role of debate and discussion in a free society; and
- the diversity of communication styles associated with gender and cultural differences.

In addition, students completing the degree in communication are expected to acquire the ability and skills to:

- express ideas in an informed, coherent, and effective manner, particularly the ability to articulate and develop a sustained argument, both orally and in writing;
- analyze, criticize, evaluate, and reflect upon messages and interactions in a variety of practical contexts, both orally and in writing; and
- adapt messages and negotiate interactions responsibly in diverse and changing situations.

Bachelor's Degree Program
Students majoring in communication must fulfill all of the following requirements in addition to the College of Arts and Sciences general education requirements. Majors must present a minimum of 33 credit hours of course work in communication; 18 of these hours must be upper division (3000 or above).

Required Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 1300</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COMM 1600</td>
<td>Interaction Skills</td>
<td>3</td>
</tr>
<tr>
<td>COMM 2210</td>
<td>Perspectives on Human Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 3100</td>
<td>Current Issues in Communication and Society</td>
<td>3</td>
</tr>
<tr>
<td>COMM 3310</td>
<td>Principles and Practices of Argumentation</td>
<td>3</td>
</tr>
</tbody>
</table>

One of the following:

- COMM 2360 Campaigns and Revolutions
- COMM 2400 Communication and Society
- COMM 2500 Interpersonal Communication
- COMM 2600 Organizational Communication

One of the following is required (the second may be taken as an elective, thus requiring only 3 courses from the last group of classes):

- COMM 3210 Human Communication Theory
- COMM 3300 Rhetorical Foundations of Communication
COMPARATIVE LITERATURE AND HUMANITIES

Comparative Literature

Degrees..M.A., Ph.D.
Humanities Degree...............................B.A.

Bachelor's Degree Program

The humanities major takes an interdisciplinary and comparative approach to the study of arts (e.g., literature, fine arts, music, and film) and cultures within their historical contexts. As currently constituted, the introductory sequence in humanities (HUMN 1010 and 1020) looks critically at that tradition whose beginning is often defined by Greece and Rome as well as our habit of still doing so. As students progress through the major, they sharpen their critical skills of analysis and interpretation as they broaden their cultural knowledge, enabling them to decode and compare multiple modes of representation and, to the extent possible, other perspectives.

The undergraduate degree in humanities emphasizes knowledge and awareness of:
- the ways cultures and traditions define both themselves and each other;
- the formal, rhetorical, and ideological properties of cultural texts in a variety of forms and media (literature, history, philosophy, film, music, visual arts, architecture, dance, theatre, performance);
- the dynamic relations between texts and their social and historical contexts;
- the genres and modes of texts and their production, transformation, and reception; and
- the theoretical and ideological underpinnings and implications of one’s own and others’ interpretive approaches and assumptions.

In addition, students completing the degree in humanities are expected to acquire the ability and skills to:
- analyze and interpret texts in a variety of forms and media;
- articulate such analyses and interpretations at a sophisticated level in both written and oral form;
- discern similarities and differences among individual works, artistic media, historical periods, and cultural traditions;
- reason critically; and
- explore the connections between contemporary issues and academic work.

The major consists of three parts: interdisciplinary work within the Department of Comparative Literature and Humanities; course work in the literature of a single language (English, French, German, etc.) or in related fields such as history, art history, or anthropology, and a secondary field of concentration (fine arts, music, philosophy, etc.). Since the program is tailored as much as possible to individual students’ interests, majors should see their humanities advisor each semester.

Students interested in humanities may want to consider the Farrand Residential Academic Program. See Residential Academic Programs in this section of the catalog for more information.

Required Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMN 1010</td>
<td>Introduction to Humanities 1</td>
<td>12</td>
</tr>
<tr>
<td>HUMN 1020</td>
<td>Introduction to Humanities 2</td>
<td>12</td>
</tr>
<tr>
<td>HUMN 2000</td>
<td>Topics in Humanities</td>
<td>3</td>
</tr>
<tr>
<td>HUMN 2000</td>
<td>Upper-division humanities courses</td>
<td>15</td>
</tr>
<tr>
<td>Area of concentration: either a single language/literature (English or a foreign language, ancient or modern; first-year courses may not be counted) or a field related to the humanities, such as history, art history, anthropology, etc.</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>(At least 12 of these 18 hours must be taken at the upper-division level.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary field: courses chosen from one other humanities-related discipline such as fine arts, music, dance, theatre, film, philosophy, foreign language literature (first-year courses may not be counted), or other discipline</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Graduate Degree Programs

Comparative Literature

The master’s and doctoral degree programs in comparative literature are offered through the Graduate School. Students wishing to pursue graduate work in comparative literature leading to candidacy for an advanced degree should read the information provided in the Graduate School chapter of this catalog and the guidelines for the M.A. and Ph.D. degrees in this field. These guidelines contain the most recent information on program requirements and are available from the Department of Comparative Literature and Humanities, University of Colorado at Boulder, Ketchum 233, 331 UCB, Boulder, CO 80309-0331.

All entering students must submit GRE scores, a sample course paper, and a statement describing intellectual goals and language preparation. Normally, entering students have majored in a national literature; applicants who have majored in a related field or those who have had substantial training in literature may also apply.

Master’s Degree

Prerequisites. Upon entrance to the program, students must have pursued one foreign language to the point of being able to take courses at the 4000 level and have completed a second-year college course in a second foreign language.

Requirements. Students take the Pro-seminar in Comparative Literature (COML 5000) and Introduction to Literary Theory (COML 5610) early in their course of study. Students also take the Colloquium in Comparative Literature (COML 6970), normally in their second or third year. Students complete a minimum of 30 hours of graduate coursework. Half the required credit hours are in courses offered by the Department of Comparative Literature and Humanities. At least 9 credit hours are in graduate courses in the department of the primary literature, and 6 credit hours are in the department of the secondary literature. Students should satisfy their language requirements by the beginning of their third semester of study.

Examinations and Thesis. All Ph.D. candidates take a comprehensive examination and a final examination. The final examination is an oral defense of the dissertation, and is conducted by the student’s advisory committee after all other requirements for the Ph.D. have been completed.

DISTRIBUTED STUDIES PROGRAM

Degree .. B.A.

Students working toward the B.A. degree may elect a two- or three-area major track in the distributed studies program. The areas that may be used in the program are limited to those in which a departmental major for the B.A. is offered.

For further information, please contact the College of Arts and Sciences Academic Advising Center in Woodbury 109.

EAST ASIAN LANGUAGES AND CIVILIZATIONS

Chinese or Japanese Degree B.A.

Undergraduate students may choose to major in either Chinese or Japanese. In either case they receive a thorough grounding in the modern language, an introduction to the classical language and literature, and a broad familiarity with the literary and cultural history of the selected area.

Before registering for specific courses, students should consult with a departmental advisor concerning appropriate placement in language classes. Also, students interested in Chinese or Japanese are encouraged to broaden their career options through a double major, combining either language with another field of interest. Recent graduates have found positions in such fields as government service, international business, and secondary-school teaching; others have gone on to graduate study in Chinese or Japanese.

Bachelor’s Degree Programs

Chinese

The undergraduate degree in Chinese emphasizes knowledge and awareness of:

• Chinese literary history, focusing on selected canonical or widely recognized works;
• the historical and cultural contexts in which particular works were written;
• critical approaches to the study of Chinese language and civilization; and
• the challenges, deficiencies, and possible gains inherent in the process of translating from one language to another.

In addition, students completing the degree in Chinese are expected to acquire the ability and skills to:

• read modern Chinese at a level at which critical literary analysis can be performed;
• read classical Chinese, with the aid of appropriate reference works, at the level at which the text may begin to be appreciated for its literary value;
• speak and comprehend Mandarin sufficiently for all situations in daily life and for a basic level of academic conversation;
• analyze and interpret literary texts in terms of style, structure, character, themes, and use of allusion; and
• communicate such interpretations competently in standard written English.

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below. CHIN 1010, 1020, and 2110 do not count toward the maximum of 45 credits in the major department.

Chinese Language and Literature Track

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below, including 30 credit hours of courses in Chinese language and literature above CHIN 2110. CHIN 2120 or its equivalent is the prerequisite to upper-division courses required for the major. At least 25 credit hours must be in upper-division courses.

Required Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Description</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIN 2120</td>
<td>Intermediate Chinese 2</td>
<td>5</td>
</tr>
<tr>
<td>CHIN 3110</td>
<td>and 3120 Advanced Chinese 1</td>
<td></td>
</tr>
<tr>
<td>CHIN 4210</td>
<td>Introduction to Classical Chinese</td>
<td>10</td>
</tr>
<tr>
<td>CHIN 4220 Readings in Classical Chinese</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Additional credit hours selected from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Description</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIN 3311</td>
<td>The Tao and the World in Medieval China</td>
<td>3</td>
</tr>
</tbody>
</table>
CHIN 3321 Culture and Literature of Ancient China ...3
CHIN 3331 Culture and Literature of Late Imperial China3
CHIN 3341 Modern Chinese Literature in Translation ...3
CHIN 3351 Reality and Dream in Traditional Chinese Fiction3
CHIN 3361 Women and the Supernatural in Chinese Literature3
CHIN 3441 Language and Chinese Society ..3
CHIN 4110 Readings in Modern Chinese 1 ...3
CHIN 4120 Readings in Modern Chinese 2 ...3
CHIN 4300 Open Topics ...3
CHIN 4750 Taoism ...3
CHIN 4900 Independent Study ..1-3
CHIN 4950 Honors Thesis ..3

Chinese Language and Civilization Track
Requires successful completion of 30 credit hours, apportioned as follows:
CHIN 2120 Intermediate Chinese 2 ..5
CHIN 3110 and 3120 Advanced Chinese 1 and 2 or CHIN 4210 and 4220 Introduction to Classical Chinese and Readings in Classical Chinese8-10

The remaining 15 or 17 credits may be chosen from other CHIN or EALC courses, excluding only language courses numbered below 2120. Six of these remaining hours may be satisfied by courses focusing wholly or substantially on China offered in other departments, subject to approval by the undergraduate advisor in Chinese.

Of the 30 credit hours presented for the degree, at least 18 must be at the upper division.

Graduating in Four Years with a B.A. in Chinese
Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in Chinese, students should meet the following requirements:
Declare the major in the first semester.
Students wishing to major in Chinese and who have no prior knowledge of the language should begin the required major courses no later than the sophomore year.
Students must consult with a major advisor to determine adequate progress toward completion of the major.

Japanese
The undergraduate degree in Japanese emphasizes knowledge and awareness of:
• the outlines of the history of Japanese literature from the Nara period to the present;
• the outlines of Japanese historical and cultural development; and
• appropriate research strategies for Japanese language, literature, and culture.
In addition, students completing the degree in Japanese are expected to acquire the ability and skills to:
• speak and comprehend Japanese sufficiently for daily life;
• read, interpret, and analyze modern written texts;
• compose letters and simple compositions;
• use cultural awareness and understanding to function appropriately in a range of social situations; and
• communicate the results of research in Japanese.
In addition, students target one or more of the following goals:
• read and comprehend classical Japanese, with the aid of appropriate reference works;
• translate a range of Japanese texts into English; and
• understand and analyze the structure of the Japanese language and communication patterns in Japanese.

Japanese Language and Literature Track
Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below. JPNS 1010, 1020, and 2110 do not count towards the maximum of 45 credits in the major department.

Required Courses Semester Hours
Successful completion of 30 credit hours of courses in Japanese language and literature above JPNS 2110. JPNS 2120 or its equivalent is the prerequisite to upper-division courses required for the major. At least 25 credit hours must be at the upper-division level.
JPNS 2120 Intermediate Japanese 1 and 2 ..5
JPNS 3110 and 3120 Advanced Japanese 1 and 2 ..6
JPNS 4110 and 4120 Readings in Modern Japanese 1 and 26
Additional credit hours selected from the following courses:
JPNS 3210 and 3220 Advanced Japanese Conversation and Composition 1 and 24
JPNS 3441 Language and Japanese Society ...3
JPNS 3811 Classical Japanese Literature in Translation ..3
JPNS 3821 Medieval Japanese Literature in Translation ..3
JPNS 3831 Early Modern Japanese Literature in Translation3
JPNS 3841 Modern Japanese Literature in Translation ...3
JPNS 4030 Japanese Syntax ..3
JPNS 4310 and 4320 Classical Japanese 1 and 2 ...6
JPNS 4300 Open Topics ..3
JPNS 4900 Independent Study ...1-3
JPNS 4950 Honors Thesis ..3

Japanese Language and Civilization Track
Requires successful completion of 30 credit hours, apportioned as follows:
JPNS 2120 Intermediate Japanese ...5
JPNS 3110 and 3120 Advanced Japanese 1 and 2 ..6

The remaining 19 credits may be chosen from other JPNS or EALC courses, excluding only language courses numbered below 2120. Six of the remaining credit hours may be satisfied by courses focusing wholly or substantially on Japan offered in other departments, subject to approval by the undergraduate advisor in Japanese.

Of the 30 credit hours presented for the degree, at least 18 must be at the upper-division level.

Graduating in Four Years with a B.A. in Japanese
Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in Japanese, students should meet the following requirements:
Declare the major in the first semester.
Students wishing to major in Japanese and who have no prior knowledge of the language should begin the required major courses no later than the sophomore year.
Students must consult with a major advisor to determine adequate progress toward completion of the major.

Minor Program
A minor is offered in Japanese. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For further information consult the Web at www.colorado.edu/ArtsSciences/minors/minors.html.

Courses Taught in English
The department offers several courses in translation. These courses require no previous study of the language, history, or culture of the area involved and are open to all interested students, whether majors in this department or not. They provide excellent introductions to Chinese or Japanese literary and cultural history.
CHIN 1051 is a core curriculum course in the area of literature and the arts that focuses on the “Great Books” of China, both ancient and modern. CHIN 3311, 3321, 3331, and 3341 focus, respectively, on medieval, ancient, late imperial, and modern Chinese culture. CHIN 3351 and 3361 focus, respectively, on issues in fiction and on women and the supernatural.
JPNS 1051 is a core curriculum course in the area of literature and the arts focusing on
both ancient and modern “Great Books” of Japan. JPNS 3811, 3821, 3831, and 3841 focus, respectively, on classical, medieval, early modern, and modern Japanese literature.

EALC 1011 and 1021 provide an interdisciplinary introduction to the history, literature, religion, and art of both China and Japan before major contact with the western world; they are core curriculum courses in the area of cultural and gender diversity.

Study Abroad

The Department strongly recommends that all majors participate in study abroad. The University of Colorado is affiliated with study abroad programs based at Peking, Nanjing, and Fudan Universities in China; National Chengchi University in Taiwan; and Kansai Gaidai and Tsukuba Universities in Japan. Consult a departmental advisor. For further information, contact the Office of International Education. Note, however, that not more than 20 transfer credit hours from universities in the U.S. or abroad may count toward the major in Chinese or Japanese.

Concurrent B.A./M.A. Program

The concurrent B.A./M.A. degree program in East Asian Languages and Civilizations language and literature tracks offers a challenging and focused academic experience for exceptional students who demonstrate the ability to express their ideas clearly, both orally and in written form, using standard English. Highly motivated students who are accepted into the program begin graduate work no later than the senior year and earn both the B.A. and M.A. in five years. Students must have a minimum 3.25 GPA for all courses taken at CU-Boulder and must have completed most MAPS and core requirements by the end of the sophomore year. Three letters of recommendation indicating strong potential for advanced intensive study also are required. Applications will be reviewed by the graduate faculty in Chinese or Japanese. For specific requirements, please contact the department.

B.A./M.S.I.B. Program (Bachelor of Arts in Chinese or Japanese/ Master of International Business)

The Department of EALC, in conjunction with the Business School at the University of Colorado at Denver, offers a degree track in either Japanese or Chinese leading to accelerated admission to the CU-Denver MSIB program. Students complete the standard requirements for the Japanese or Chinese major and a block of basic courses in Boulder College of Business and Administration. These courses, along with Japanese or Chinese language and culture requirements, are counted by the CU-Denver Business School, allowing EALC graduates to complete the MSIB on an accelerated schedule. The concurrent B.A./M.A. Program

Master’s Degree Requirements

Applicants to the graduate program in East Asian Languages (Chinese or Japanese emphasis) should have successfully completed the equivalent of the undergraduate major in Chinese or Japanese language and literature with advanced competence in modern Chinese or Japanese, an introduction to classical Chinese or Japanese, an understanding of the interrelationship of Chinese or Japanese language and society, and a familiarity with the history, major writers, and works of Chinese or Japanese literature. Foreign applicants must submit results from a TOEFL exam, with 560 being the minimum acceptable score.

The M.A. may be pursued in one of four different tracks: Chinese language and literature, Japanese language and literature, Chinese language and civilization, and Japanese language and civilization. All entering students must take either CHIN 5010 or JPNS 5010 at the earliest opportunity. Students employed as teaching assistants also must take CHIN/JPNS 5020 Methods of Teaching Asian Languages. Selection of courses beyond these is made in consultation with the graduate advisor. Minimum requirements for graduation include a total of 24 hours of course work plus a thesis of 6 credit hours, or 30 hours of course work without a thesis. If deemed appropriate by the student graduate committee, up to three courses (9 credit hours) taken outside the department may be included in the graduate curriculum.

Dual Master's Program

The department of East Asian Languages and Civilizations also participates in a dual master’s program with the Departments of History and Religious Studies. Students interested in exploring this option should contact the department for specific requirements.

ECONOMICS

ECON 1000 Introduction to Economics

- **ECON 1010 and 1020** ..12
- **ECON 1030 and 1040** ..12
- **ECON 1050 and 1060** ..12
- **ECON 1078 and 1088**, or equivalent, plus 3 credit hours of upper-division ECON courses (15 credit hours)
- **ECON 4808 Introduction to Mathematical Economics**, or **ECON 4818 Introduction to Econometrics**, or **ECON 4838 Microcomputer Applications in Economics**
- **ECON 4898 Introduction to Mathematical Economics**, or **ECON 4818 Introduction to Econometrics**, or **ECON 4838 Microcomputer Applications in Economics**
- **ECON 3070 Intermediate Microeconomic Theory** and **ECON 3080 Intermediate Microeconomic Theory**
- **ECON 3818 Introduction to Statistics with Computer Applications**
- **ECON 4600 Microeconomics**
- **ECON 4818 Introduction to Econometrics**, or **ECON 4838 Microcomputer Applications in Economics**

Electives in upper-division ECON courses (15 credit hours of upper-division ECON courses if ECON 1000 is substituted for ECON 2010 and 2020) ..12

Note: Transfer students majoring in economics must complete at least 12 credit hours of upper-division economics courses at CU-Boulder.

Graduating in Four Years

Students should consult the “Four-Year Guarantee Requirements” in this chapter for...
further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in economics, students should meet the following requirements:

Declare economics as a major by the beginning of the second semester.

Complete ECON 2010 and 2020 or ECON 1000 and all mathematics requirements by the end of the fourth semester.

Complete ECON 3070, 3080, and 3818, as well as 4808, 4818, or 4838 by the end of the sixth semester.

Complete 12 or 15 credit hours (if ECON 1000 is substituted for ECON 2010 and 2020) of additional upper-division economics credit by the end of the eighth semester.

Business Emphasis Option
The economics major with business emphasis is designed for a select group of economics majors who have a relatively high GPA (economics GPA above 3.00), and who have an interest in sampling the core business courses. The program does not provide a distinctive diploma or transcript. Students who are considering pursuing an M.B.A. degree may wish to pursue this program or a minor in business.

College of Business and Administration Courses (19 credit hours)

BCOR 1000 Business Computing Skills .. 3
BCOR 2000 Accounting and Financial Analysis 1 4
BCOR 2100 Accounting and Financial Analysis 2 3
BCOR 2050 Adding Value with Management and Marketing 1 3
BCOR 2150 Adding Value with Management and Marketing 2 3
BCOR 3000 Business Law, Ethics, and Public Policy, or MKTG 3250 Buyer Behavior, or INBU 4100 International Business and Marketing, or FNCE 4030 Investment and Portfolio Management .. 3

Minor Program
A minor is offered in economics. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For further information consult the Web at www.colorado.edu/Arts sciences/minors/minors.html.

Economics Honors Program
The honors program in economics provides an opportunity for highly motivated majors to undertake individualized research and to graduate with honors (cum laude, magna cum laude, summa cum laude) in economics. Economics majors with senior standing and both economics and overall GPAs of 3.40 or better are eligible to participate. Participants enroll in the economics honors seminars, which provide instruction in research methodology essential to the preparation of the honors thesis. Students interested in the economics honors program should contact the departmental honors advisor during their junior year.

Economics Internship Program
This program offers course credit while providing students the opportunity to integrate theoretical concepts of economics with practical experience in economics-related institutions. Juniors and seniors interested in the program should contact the departmental internship coordinator.

Concurrent B.A./ M.A. Program
This program is designed for exceptional students who wish to combine their B.A. and M.A. degrees in economics. Because six hours of course work taken for the master’s degree (6000 level) also count for the undergraduate degree, students are able to complete B.A. requirements in four years and the combined B.A./M.A. requirements in five years. The B.A./M.A. requirements are identical to the requirements for the two separate degrees.

In the fourth year, candidates for the B.A./M.A. degree take a number of required courses (6000-level) for the M.A. degree. Two of these courses are counted twice for both the B.A. and M.A. degrees, allowing students to satisfy elective and total hour requirements for the B.A. in economics after four years of study. Students in this program are encouraged to take two semesters of calculus (MATH 1300 and 2300) and linear algebra.

Note: Any undergraduate economics credits over 45 hours will not count towards the B.A. degree except by petition to the Dean of Arts and Sciences.

All M.A. degree candidates must complete five core courses (ECON 6070, 6080, 6808, 6818, and 6209). Honors students who write an honors thesis may substitute one course (ECON 6209).

In addition to the core requirements listed below, candidates who plan to write a master’s thesis are required to take two 6000-level and one 8000-level field electives during their fourth and fifth years of study. These candidates also take the 4-hour thesis credit courses (ECON 6959) during their fifth year. Candidates who complete these requirements for the M.A. degree with thesis will have completed a total of 28 graduate credit hours. These will include 24 course hours at the 5000-level or above, and a minimum of 4 thesis hours (but no more than 6).

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourth Year—Fall</td>
<td></td>
</tr>
</tbody>
</table>
| ECON 6070 Applied Microeconomic Theory 3
| ECON 6080 Applied Macroeconomic Theory 3
| ECON 6808 Introduction to Quantitative Economics 3
| **Fourth Year—Spring** | |
| ECON 6818 Econometric Methods and Application 3
| ECON 6xxx Field Electives .. 6
| **Fifth Year—Fall** | |
| ECON 6209 Research Methods in Economics .. 3
| ECON 8xxx Field Electives .. 3
| **Fifth Year—Spring** | |
| ECON 6959 Master’s Thesis (spring) ... 4

Candidates who do not plan to write a master’s thesis are required to take two 6000-level courses and three 8000-level courses as field electives during their fourth and fifth years of study. At the end of their fifth year, these students take a comprehensive examination covering their M.A. course work. Candidates who complete these requirements will have completed a total of 30 graduate credit hours.

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourth Year—Fall</td>
<td></td>
</tr>
</tbody>
</table>
| ECON 6070 Applied Microeconomic Theory 3
| ECON 6080 Applied Macroeconomic Theory 3
| ECON 6808 Introduction to Quantitative Economics 3
| **Fourth Year—Spring** | |
| ECON 6818 Econometric Methods and Application 3
| ECON 6xxx Field Electives .. 6
| **Fifth Year—Fall** | |
| ECON 6209 Research Methods in Economics .. 3
| ECON 8xxx Field Electives .. 3
| **Fifth Year—Spring** | |
| ECON 8xxx Field Electives .. 6

Admission Procedures. Undergraduates interested in pursuing the concurrent B.A./M.A. degree should apply during the second semester of their third year by completing the application for admission to the concurrent bachelor/master degree program and requesting the submission of four letters of recommendation. Graduate Record Examinations are not required for those seeking admission to the program. All other standing requirements for admission to the regular M.A. program, including one year of calculus (MATH 1300 and 2300) or the equivalent area, are applied for admission to the combined degree program. Candidates for admission to this program need to complete the undergraduate course in econometrics (ECON 4818) as an elective during their second or third year. Students must have at least a
3.40 GPA in economics and a 3.40 overall GPA to be eligible.

Graduate Degree Programs

Master’s Degree

1. Admission Requirements. An applicant for admission as a regular degree student must:
 a. Hold a baccalaureate degree from a college or university of recognized standing, or have done work equivalent to that required for such a degree and equivalent to the degree given at this university. The undergraduate GPA must be at least 2.75 (2.00 = C).
 b. Have at least 16 credit hours in economics.
 c. Submit Graduate Record Examination scores for aptitude (verbal, quantitative, and analytical). Foreign applicants must also submit a TOEFL score.
 d. Submit four letters of recommendation.
 e. Graduate study in economics is quantitative and analytical. Students should be comfortable with basic calculus (derivatives and integration), linear algebra, matrix algebra, and basic statistics.
 f. Students who do not meet the requirements for admission as regular degree students may be recommended for provisional degree status. (See the Graduate School chapter of this catalog for more information.)

The application deadline for foreign students is March 1 for the following fall semester. Students desiring admission beginning with other terms will be considered but may be referred to the Economics Institute, 1030 13th St., Boulder, CO 80302.

2. Degree Requirements. There are three options open to students for fulfilling the requirements for the master of arts degree in economics.
 a. Plan I—Thesis. This option requires a minimum of 24 credit hours of graduate course work plus a master’s thesis (which entails registering for an additional 4 master’s thesis semester hours, but no more than 6) plus passage of a comprehensive final examination over all work presented for the degree.
 b. Plan II—Nonthesis. This option requires a minimum of 30 credit hours of graduate course work plus passage of a comprehensive final examination over all course work presented for the degree.
 c. Plan III. This option, open only to students enrolled in the Ph.D. program in economics, requires a minimum of 30 credit hours of graduate course work in the Ph.D. program plus passage of all Ph.D. preliminary examinations, which shall count as the master’s comprehensive examination.

3. Sequence of Study. The sequence of study for these degree options, including required and elective courses, is outlined as follows:

Plan I and II

First Year—Fall
ECON 6070 Applied Microeconomic Theory
ECON 6080 Applied Macroeconomic Theory
ECON 6808 Introduction to Quantitative Economics

First Year—Spring
ECON 6xxx Field Elective
ECON 6xxx Field Elective
ECON 6818 Econometric Methods and Application

Second Year—Fall
ECON 6209 Research Methods in Economics
ECON 8xxx Ph.D. Field Elective

Second Year—Spring
ECON 6659 Master’s Thesis (4-6 hours) (plan I only)
ECON 8xxx Ph.D. Field Elective (plan II only)
ECON 8xxx Ph.D. Field Elective (plan II only)

All students opting for plan I or plan II are required to take five core courses (ECON 6070, 6080, 6808, 6818, and 6209). The last of these courses, ECON 6209, is Research Methods in Economics. This 3-credit course trains students at the masters level in scientific methodology and research in economics. This course culminates in a research project that normally leads directly to thesis work. However, this course and its research project are required even if the student opts for the non-thesis plan.

The exact timing of course work is subject to the specific requirements of individual students. For instance, in some cases all requirements for the degree might be fulfilled in three semesters. Up to 9 hours of transfer credit, including courses taken at the Economics Institute, can be substituted for required or elective courses with the approval of the Director of Graduate Studies (DGS). When transfer credit is allowed for a required course, the DGS may require the student to pass the final examinations of required courses he or she omits because of transfer credit.

Before attempting course work at the 8000 level, students in plan I or plan II must meet specific prerequisites. Consult the course descriptions for the exact prerequisites in each field.

Plan III (M.A. degree for students in the Ph.D. program)

First Year—Fall
ECON 7010 Microeconomic Theory 1
ECON 7020 Macroeconomic Theory 1
ECON 7818 Mathematical Statistics for Economists

First Year—Spring
ECON 7030 Microeconomic Theory 2
ECON 7040 Macroeconomic Theory 2
ECON 7828 Econometrics 2

Second Year
ECON 7050 Advanced Economic Theory
9 hours of elective graduate course work.

Consult the Ph.D. degree requirements for more details.

4. Comprehensive Final Examination. All students must pass a comprehensive final examination before earning the master of arts degree. Consult the Graduate School chapter for details.

A student opting for plan I takes an oral examination covering his or her master’s thesis and course work. The examining committee consists of three members including, if possible, the student thesis advisor(s) and the student instructor in ECON 6209. This examination takes place following the completion of the student thesis work.

A student opting for plan II takes a written comprehensive examination put together and graded by a committee normally consisting of faculty members who taught elective courses taken by the student. This examination follows the completion of the fall or spring term in which the student completes his or her course work.

For a student earning the master of arts degree by following plan III, the comprehensive examination consists of passing all of the preliminary examinations required by the rules of the Ph.D. program.

The DGS has final say on the composition of the comprehensive final examination committees. The evaluation of the final exam committee is final. If a student fails an initial comprehensive examination, he or she may attempt a second examination by the same examining committee (if at all possible) after a period of time of at least three months.

5. Satisfactory Progress Toward a Degree. In order to attain satisfactory progress toward the M.A. degree, students in plan I or plan II must complete all courses in the core with a grade of B- or better by the end of their second fall semester. Furthermore, a final comprehensive examination must ordinarily be passed within three years of entering the program (the maximum time allowed by the Graduate School is four years). Failure to make satisfactory progress is grounds for suspension from the graduate program.

Students in plan III must satisfy the requirements listed for satisfactory progress in the Ph.D. rules.

6. Other Requirements. Other requirements for the M.A. degree relating, for example, to transfer of credits, residence, time limitations, thesis, and admission to candidacy, are stated in this catalog.

Doctoral Degree

1. Admission Requirements. An applicant for admission as a regular degree student must:
 a. Hold a baccalaureate degree from a college or university of recognized standing, or
have done work equivalent to that required for such a degree and equivalent to the degree given at this university. For those applicants who do not have a master’s degree in economics, the undergraduate grade point average must be at least 2.75 (3.00=C).

b. Have completed intermediate microeconomics and macroeconomics and advanced courses, 6 semester hours of calculus at the university level or equivalent, and statistics.

c. Submit Graduate Record Examination (GRE) scores for aptitude (verbal, quantitative, and analytical). Foreign applicants must also submit a TOEFL score.

d. Submit four letters of recommendation.

Graduate study in economics is quantitative and analytical. Students should be comfortable with basic calculus (derivatives and integration), linear algebra, matrix algebra, and basic statistics.

It is not necessary to have an M.A. degree to be admitted to the Ph.D. program; qualified applicants may be admitted directly to the Ph.D. program and may obtain the M.A. degree while working toward the Ph.D. See the list of M.A. requirements for more information.

The application deadline for foreign students is February 1 for the following fall semester. There is no deadline for U.S. applicants; however, those students who wish to be considered for financial aid must apply by February 1. Students must begin the program in the fall semester; those requiring prior remedial work may be referred to the Economics Institute, 1030 13th Street, Boulder, CO 80302.

2. Degree Requirements. Full-time students are ordinarily expected to complete all requirements for the Ph.D degree within four years of entering the program (the maximum time allowed by the Graduate School is six years), and the schedule of required courses below is centered on this expectation. However, it is recognized that some students may require six or more semesters to earn the degree. Failure to make timely and satisfactory progress toward the degree, as prescribed in a supplementary document on file in the graduate secretarial office, may result in loss of financial assistance or dismissal from the program.

3. Course Requirements.

a. Prior to beginning the program, students must demonstrate an acceptable degree of competence in integral and differential calculus and optimization techniques. Students with extensive mathematical preparation in prior studies are judged by the DGS to have done so. Otherwise, such competence may be demonstrated in one of three ways:

1. Take ECON 7800, an intensive, two-week preparatory course offered immediately prior to each fall semester and pass its final examination with a grade of B- or better (no credit is offered for this course).
2. Pass the final examination in ECON 7800 without taking the course.
3. Pass a substantially equivalent course at the Economics Institute or other accredited graduate institution.

Students who fail the examination in ECON 7800 are given a second opportunity to pass an equivalent examination two weeks later. Students who fail it on the second try are required to take ECON 6808 in the fall semester and pass the course examination.

b. There are seven core courses in the Ph.D. program (ECON 7010, 7020, 7030, 7040, 7050, 7818, and 7828). Course requirements beyond the core courses include four courses taken in the student two proposed fields of specialization at the 8000-level; two graduate elective courses with at least one of the courses at the 8000-level and at least one of the courses outside the two fields of specialization; 6 credit hours in a research colloquium; and at least 30 hours of dissertation credit after admission to candidacy.

c. At least four of the core courses must be taken on the Boulder campus. Courses transferred for credit must be approved by the DGS. After entry into the Ph.D. program, all remaining core requirements must be taken on the Boulder campus.

d. All courses for Ph.D. credit taken on the Boulder campus must be passed with a grade of C- or better. A student who receives a grade of C- or lower in a core course must retake that course the following academic year.

e. No more than 12 credit hours (exclusive of dissertation credit) from a single faculty member may be counted toward Ph.D. requirements. Independent study is allowed only to satisfy elective requirements. No more than 6 credit hours of independent study may be applied to the Ph.D. degree and no more than 3 credit hours of independent study may be taken from a single faculty member. Students who wish to take independent study must apply to the Graduate Curriculum and Review Committee (GCRC) in order to do so. In consultation with the DGs, students may choose to take up to two graduate offerings in other departments as elective courses.

f. Course requirements for the program include:

First Year—Fall
ECON 7010 Microeconomic Theory 1
ECON 7020 Macroeconomic Theory 1
ECON 7818 Mathematical Statistics for Economists

First Year—Spring
ECON 7030 Microeconomic Theory 2
ECON 7040 Macroeconomic Theory 2
ECON 7828 Econometrics 2

Second Year—Fall
ECON 7050 Advanced Economic Theory
Field or elective course
Field or elective course

Second Year—Spring
Field or elective course
Field or elective course
Elective course

Ordinarily, students would be expected to complete course work in at least one field of specialization in the second year.

g. Course requirements in the third year include ECON 8209 (fall) and ECON 8219 (spring), which constitute the third-year research colloquium; remaining elective course(s); and dissertation research, if practicable.

h. Course requirements in the fourth year consist of relevant dissertation credit hours.

4. Preliminary Examinations. Written preliminary examinations in microeconomic theory, macroeconomic theory, and econometrics must be taken in the August examination period following the successful completion of the core courses in these areas. Under most circumstances this period would be prior to the second year. An examination attempted and failed must be taken again and passed in the next examination period. A second failure results in dismissal from the program, subject to appeal under extraordinary circumstances to the GCRC. In no case are attempts beyond the third granted.

Students who have failed any of the core courses are ineligible to take the preliminary examination in the area of failure. These students must retake the failed course(s) in the following year and attempt the relevant preliminary examination in the first scheduled examination period thereafter.

Students must pass all preliminary examinations within two-and-one-half years of beginning the Ph.D. program. Exceptions for part-time students may be allowed under extraordinary circumstances by the DGS.

5. Fields of Specialization. By the conclusion of the second year each student must declare to the graduate secretary his or her proposed two fields of specialization. With the approval of the DGS, one of the fields may be designed to include a course outside the economics department. Fields consist of at least two courses at the 8000-level as designated by faculty in particular areas. In lieu of one of the standard fields the student may offer a combination field when courses from different areas are complementary in meeting the specialization objectives of the student. In such a case, the student is responsible for obtaining the approval of the DGS and the written agreement of at least two faculty members who will be involved in evaluating his or her competence in the field.
6. Comprehensive Examinations. Students must pass a written comprehensive examination in two fields of specialization. The examination for each field must be taken in the examination period immediately following the successful completion of all required courses in that field. Comprehensive examinations are administered regularly in August and January. Students who fail a comprehensive examination in one or more fields on the first attempt may retake the unsatisfactory examination(s) in the next examination period. Students who fail such an examination a second time may appeal to the GCRC for a final third attempt under extraordinary circumstances. Subject to this appeal, students who fail a particular field comprehensive examination twice are required to choose a different field of specialization and complete the course requirements and comprehensive examination in the following academic year. This procedure is available only for one field; students who fail the comprehensive examination twice in two fields are dismissed from the program.

7. Third-Year Research Colloquium. By the end of October following the second academic year, students must submit to the graduate secretary a written proposal describing the topic, methodology, and objective of the third-year paper to be completed in the colloquium. The proposal must include the names and signatures of the student main and secondary faculty advisors. All second-year students are given a packet of lists of faculty research interests to facilitate this process.

Each third-year student is required to register for 3 credit hours per semester in the research colloquium, which meets weekly under the direction of a faculty member. The purpose of the colloquium is to provide students the opportunity and guidance to complete the required third-year paper and to facilitate progress toward the dissertation stage. Meetings in the fall semester allow preliminary discussions of the research and lectures in research methodology, data sources, and the like. In the spring semester each student presents work in progress in the colloquium. In April or May of the third year each student must present a final version of the research paper in a departmental seminar series. Ordinarily, this seminar also constitutes the required dissertation proposal defense (see below).

Under some circumstances, students may delay taking this colloquium until the fourth year with the approval of the DGS.

8. Admission to Candidacy and Dissertation Requirements. Students are formally admitted to candidacy for the Ph.D degree after completing all course requirements (other than the research colloquium) and all preliminary and comprehensive examinations and after earning four semesters of residency (see the front section of this catalog for details). After admission to candidacy, students must register each fall and spring semester for dissertation credit (ECON 8999) until attaining the degree; the accumulated credit for the thesis must total at least 30 semester credit hours to attain the degree. A student must prepare a written dissertation and successfully pass an oral examination before a dissertation committee and other interested persons on its content before receiving the degree. The minimum residence requirement for the Ph.D degree is six semesters of scholarly work beyond the bachelor's degree.

9. Administration.
 a. Examining Committees for Preliminary Examination. Examining committees for preliminary examinations consist of three members of the economics department who teach in the relevant area. Examining committees for comprehensive committees consist of at least two members of the economics department who teach in the relevant area, with a third member appointed from another department in cases where the student has structured a field including a course from that department.
 b. Grading Preliminary and Comprehensive Examinations.

 1. Written examinations are numbered so that insofar as possible the identity of the student is unknown. Each faculty member grades independently and writes no comments in the examination booklet. A meeting of the graders is called by the chair of the examination committee and the committee grade is submitted to the graduate secretary. The possible grades include High Pass or Distinction (used sparingly), Pass, Fail, and Marginal Fail (used sparingly).

 2. Shortly after submission of grades a general faculty meeting is held to discuss and report examination results. In cases where the committee initial grade was marginal fail, if two of the members of the committee then vote affirmatively, a grade of pass will be recorded; if two of the members of the grading committee then vote negatively, a grade of fail will be recorded. If the vote of the grading committee is tied and the third member is absent (but will be available within seven days), the decision to pass or to fail to be made by the reconvened grading committee. If fewer than two members of the grading committee are present and voting, or if the vote of the grading committee is tied and the third member is not available within seven days, the decision to pass or fail will be made by the assembled faculty; in such circumstances the grade is reported as pas if a majority votes affirmatively.

 3. When examination results are reported, a student who failed should have an opportunity to discuss his performance with a member of the examining committee.

 1. To facilitate progress on the dissertation, a “basic committee” consisting of a supervisor and two other members who are most interested in the proposed research is organized by the student, in conjunction with the DGS, during the third year. Any subsequent changes in this committee (or of the full committee later) must be approved by the supervisor and recorded with the graduate secretary after all basic committee members have been consulted.

 2. By September 1 of the academic year following the research colloquium, each student must submit a written dissertation proposal to his or her basic committee and the graduate secretary. The dissertation proposal form must be signed by each member of the basic committee and submitted to the graduate secretary as well by this date. An acceptable proposal must include a statement of purpose and a justification for the importance of the work; a full literature review and a statement of how this research will contribute to the literature; and a detailed description of the methodologies to be used and of the data bases, if appropriate.

 3. By October 15 of the same academic year students must present the proposal in an open seminar. If the dissertation topic is related to the third-year paper, the proposal may be presented at the end of the paper presentation (see above). Otherwise a separate presentation must be scheduled. At the conclusion of the seminar, the basic committee and candidate must agree on necessary changes. If these are major, an additional proposal defense will be scheduled after they are made. A successful proposal defense results in a letter from the basic committee to the candidate indicating that successful completion of the planned research constitutes an acceptable dissertation. Students who fail to present a proposal in a timely fashion are denied a passing grade on dissertation credit for which they are registered.

 4. Within three months of the dissertation proposal presentation, the DGS, in consultation with the dissertation supervisor, appoints remaining members of the full dissertation committee. A full dissertation committee consists of at least four faculty members from the economics department and one member from outside the department.

 5. Normally students are expected to complete their dissertations by the end of their fourth academic year (or fifth in exceptional cases). The graduate secretary provides details on submission of the
The undergraduate degree in English emphasizes knowledge and awareness of:

- canonical and noncanonical works of English and American literature;
- the general outlines of the history of British and American literature;
- literary theories, including recent theoretical developments; and
- the social and historical contexts in which the traditions developed.

In addition, students completing the degree in English are expected to acquire the ability and skills to:

- analyze literary texts;
- interpret texts on the basis of such analysis;
- relate analyses and interpretations of different texts to one another; and
- communicate such interpretations competently in written form.

The undergraduate degree in creative writing emphasizes knowledge and awareness of:

- literary works, including the genres of fiction, poetry, playwriting, and screenwriting, and the major texts of contemporary writers;
- literary history, including the origins and development of genres, major writers of the past, and the role of the writer in society; and
- literary analysis, including theories of literary composition and critical theory.

In addition, students completing the degree in creative writing are expected to acquire the ability and skills to:

- write in different poetic modes and styles;
- write in various fictive styles; and
- evaluate other students’ written work.

Bachelor’s Degree Programs

Expository writing courses (except ENGL 1001 and 3151) do not apply toward the major. English courses taken on a pass/fail basis do not fulfill major requirements. Independent study credit hours cannot fulfill a major requirement unless that requirement is not being offered or available within the year that the student graduates. A minimum of 12 hours of upper-division course work for the English major must be completed on the Boulder campus. English courses taken at other colleges must be evaluated by the Department of English. Courses taken in other departments (except approved cross-listed courses) normally do not count toward the English major.

Note: For the Advanced Placement examination in English literature and composition, students will receive credit for ENGL 1500 for an exam score of 3, or ENGL 1500 and 2502 for an exam score of 4 or 5.

Students must complete the general requirements of the College of Arts and Sciences and one of the two programs listed below.

Literature

Students are subject to the major requirements in effect at the time they formally declare the major. A minimum of 36 credit hours must be earned in the Department of English, 18 of which must be upper division. Requirements may be fulfilled by taking specific courses designated by the Department of English.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 2000 Literary Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 2010 Introduction to Literary Theory</td>
<td>3</td>
</tr>
<tr>
<td>One course from each: backgrounds to literature in English, British literature to 1660, British literature after 1660, and American literature</td>
<td>12</td>
</tr>
<tr>
<td>One course from both categories: advanced theory/genre studies/popular culture and multicultural/gender studies</td>
<td>6</td>
</tr>
<tr>
<td>ENGL 4038 Critical Thinking in English Studies or ENGL 4728 Seminar: Topics in English</td>
<td>3</td>
</tr>
<tr>
<td>Three elective courses in English</td>
<td>9</td>
</tr>
</tbody>
</table>

In addition to the 36 hours required for the major, another 9 hours may be taken, for a maximum of 45 hours in English.

The recommended sequence of courses to be taken during the initial year of the literature program is ENGL 2000 and an English elective for the first semester, and ENGL 2010 and a 2000-level ENGL course for the second semester.

Creative Writing

Students are subject to those major requirements in effect at the time they formally declare the major.

A minimum of 36 credit hours must be earned in the Department of English, 18 of which must be upper division.

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 2000 Literary Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 2010 Introduction to Literary Theory</td>
<td>3</td>
</tr>
<tr>
<td>One course from any two of the following: the backgrounds to literature in English, British literature to 1660, and American literature</td>
<td>6</td>
</tr>
<tr>
<td>One course from advanced theory/genre studies/popular culture or multicultural/gender studies</td>
<td>3</td>
</tr>
</tbody>
</table>

ENGL 4038 Critical Thinking in English Studies or ENGL 4728 Seminar: Topics in English

Six creative writing workshops, three of which must be upper division

In addition to the 36 hours required for the major, another 9 hours may be taken, for a maximum of 45 hours in English.

The recommended sequence of courses to be taken during the initial year of the creative writing program is ENGL 2000 and ENGL 1191 for the first semester, and ENGL 2010 and a 2000-level workshop for the second semester.

Admission to the creative writing program is not automatic. Students must have completed at least 6 hours of writing with the program before being considered (3 hours for transfer students). In addition, they must submit two copies of a manuscript (if poetry, 7 poems; if fiction, 20 pages) to the admissions committee for approval.

In order to take a workshop beyond the 2000-level, students who have not been formally admitted to the creative writing program must submit a manuscript to the Department of English prior to registration. Each workshop may be taken three times for credit. Students may not take two poetry or two fiction workshops in the department in the same semester.

Advising

The director of undergraduate studies oversees the department advising program, working in conjunction with the College of Arts and Sciences Academic Advising Center. Upon declaring an English major, students are assigned to one of two primary English advisors. The primary advisors are available to meet with students by appointment or on a drop-in basis. The primary advisors monitor and evaluate student progress in completing the arts and sciences core curriculum and major requirements, evaluate transfer credit, preapprove study abroad course work, and certify students for graduation. The department encourages students to meet with their primary advisor at least once each semester to update their student file and ensure that they are making satisfactory progress in meeting the core and major requirements.

Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in English, students should meet the following requirements:
Declare the English major and begin course work in the major no later than the beginning of the second semester. Successfully complete one-third of the hour requirements for the major by the end of the fourth semester. For literature track majors, this includes ENGL 2000, 2010, an English elective, and any 2000-level course for the major. For creative writing track majors, this includes ENGL 2000, 1101, 2010, and 2021 or 2051, as well as formal admission to the program. Successfully complete two-thirds of the hour requirements for the major by the end of the sixth semester. Successfully complete the remaining major requirements by the end of the eighth semester.

Departmental Honors
Students interested in pursuing a special program leading to graduation with departmental honors should confer with the director of the English honors program as soon as possible, but definitely no later than the beginning of spring term in their junior year.

Students Who Contemplate Teaching
Sheets listing the curriculum required for a teaching license for secondary schools may be obtained in Education 151. Since fulfilling requirements for both education and English make a very tight schedule, students should seek early advising to complete their college requirements.

Undergraduate English Awards and Prizes
The Katherine Lamont Scholarship. The Lamont scholarship is a variable annual award to a continuing English major in recognition of sustained excellence and exceptionally scholarly performance in the major.
The Harold D. Kelling Essay Prize. The Kelling prize is a variable cash award for the best essay on literature submitted by an undergraduate currently enrolled in the university. The essay must have been written for an English class at CU-Boulder and should be submitted to the English department before March 15.
The Jovanovich Imaginative Writing Prize. The Jovanovich prize is an annual award for excellence in poetry, fiction, playwriting, or nature writing. Information is available in Hellems 101.

Graduate Degree Programs
Admission Requirements
Master’s Degree in English. The M.A. program offers theory and literary history combined with a rigorous training in critical analysis. Applicants interested in English literature should have satisfactory scores on the verbal and advanced literature parts of the GRE. In addition, at least 24 credit hours in English (exclusive of composition, creative writing, and speech) are normally required for admission. Sixteen of the 24 hours must be in upper-division courses.
Those applicants interested in creative writing must submit satisfactory scores on the verbal section of the GRE, plus at least 18 credit hours in literature. In addition, each student must submit a manuscript of at least 10 pages of poetry or a minimum of 25 pages of fiction, nonfiction prose (other than literary criticism), or a screen or stage play for evaluation.
Doctoral Degree in English. Students must present satisfactory scores on verbal and advanced literature parts of the GRE, and must have either an M.A. degree in English or at least 30 hours of postgraduate English course work beyond the B.A. degree. Entering graduate students with no degree beyond the B.A. are normally admitted to the M.A. program. They may later apply for admission to the Ph.D. program.

Degree Requirements
Students wishing to pursue graduate work in English should note requirements for advanced degrees in the Graduate School chapter of this catalog and should write the department for a more complete description of the graduate programs in English or visit the department web site at www.colorado.edu/English.

ENVIRONMENTAL, POPULATION, AND ORGANISMIC BIOLOGY

Degrees B.A., M.A., Ph.D.
The undergraduate degree in environmental population, and organismic biology emphasizes knowledge and awareness of:
• the diversity of living organisms, cellular structures, and processes; Mendelian, molecular, and population genetics; physiology, anatomy, and neurobiology; and ecological processes at the population, community, biome, and biosphere levels;
• the sources of variation within and among populations, and the mechanisms of natural selection;
• scientific methods and the relations among theory, experiment, data, data analysis, and general knowledge;
• the relevance of mathematics, chemistry, and physics to biology; and
• the evolution of biological thought.
In addition, students completing the degree in environmental, population, and organismic biology are expected to acquire the ability and skills to:
• read, critically evaluate, and synthesize information from biological literature;
• make observations and generate hypotheses to account for observations;
• formulate experiments to test hypotheses and reach conclusions based on biological data; and
• articulate, in oral and written form, knowledge of biology, biological methods, and biological thought.

Bachelor’s Degree Program
Students interested in EPO biology may want to consider the Baker Residential Academic Program. See Residential Academic Programs in this section of the catalog for more information.
The curriculum listed below is being revised. Students should check with the department as well as the web site at www.colorado.edu/arts Sciences/epob for the latest requirements.
In addition to the general requirements of the College of Arts and Sciences, students in EPO biology must complete 38 hours of course work in the major (in addition to the ancillary courses in chemistry, physics, and mathematics specified below), including 18 hours of upper-division work. Starting fall 1999, EPO biology majors complete a curriculum beginning with a four-course fundamentals sequence that includes a lab or recitation.

Required Courses Semester Hours
EPOB 2050 Environmental Biology 4
EPOB 2060 Cellular and Integrative Physiology ... 4
EPOB 2070 Genetics: Molecules to Populations ... 4
EPOB 2080 Evolutionary Biology.................... 4

Note: Options for students who declare the EPO major after having taken other introductory biology courses are available from the EPOB Undergraduate Advising Office in Ramaley N122-D.
EPOB 4000 level or above; at least 6 hours ... 6
(These 6 hours must be taken in the EPOB department on the Boulder campus and may include a maximum of 3 hours of independent study or independent research, but may not include EPOB 4000 or 4010. At least 3 of these 6 hours must be regular course work.)

Area Requirement ... 6-9
Students must take at least two courses from these areas: integrative physiology; environmental biology, and evolutionary biology

Tracks ... 16
After completing the fundamentals sequence, students have the option of choosing a track including, for example, such areas as: health sciences, ecology, conservation biology, integrative physiology, evolutionary biology and diversity, animal biology, plant biology, environmental management, etc. Tracks may also be individually designed in consultation with an advisor.

Ancillary Courses
One year of college chemistry:
CHEM 1111 and CHEM 1131 General Chemistry 1 and 2 or CHEM 1111 General
Chemistry 1 and CHEM 1071 Introduction to Organic and Biochemistry, or CHEM 1151 and CHEM 1171 Honors General Chemistry 1 and 2.................................9-12

One year of college physics:
PHYS 2010 and PHYS 2020 General Physics 1 and 2 or PHYS 1110 and PHYS 1120
General Physics 1 and 2 and PHYS 1140
Experimental Physics 1...............................9-10

One semester of college mathematics:
MATH 1310 Calculus 1 with Computer Applications or MATH 1300 Analytic Geometry and Calculus 1 or APPM 1350 Calculus 1 for Engineers..4-5

Note: Up to 12 credit hours of courses taken in other departments may be counted toward the 38 hours required for the EPO biology major. MCDB courses used to fulfill the general biology requirement are counted as part of this 12-hour limit. A listing of acceptable courses may be obtained from the EPOB Undergraduate Advising Office in Ramaley N122D.

Transfer students must complete at least 12 upper-division hours in EPOB courses on the Boulder campus.

Graduating in Four Years
Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in environmental, population, and organismic biology, students must meet the following requirements:

Declare the EPO biology major and begin course work in the major in the first semester. Sign up during the first semester with the department undergraduate services coordinator as a participant in the guarantee program. Complete additional requirements for the four-year guarantee that are described on a handout available in the EPO Biology Undergraduate Advising and Resource Center in Ramaley N122D.

Minor Program
A minor is offered in environmental, population, and organismic biology. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For further information consult the Web at www.colorado.edu/ArtsSciences/minors/minors.html.

Concurrent B.A./M.A. Program
A combined B.A. and M.A. degree with thesis is offered for the highly motivated undergraduate major who is interested in completing a bachelor and master’s degree within five years. Applications for the B.A./M.A. degree are considered on a competitive basis. Freshmen, sophomores, and juniors are eligible. Applicants must have an overall GPA of 3.50 or higher and the support of a faculty research advisor. Completed applications are due on October 15 and March 15.

Candidates for this degree must complete all college core requirements by the end of the senior year. To be awarded B.A. and M.A. degrees, students must maintain a GPA of 3.30 or better and complete at least 138 credit hours. The degree requires 24 hours of graduate credit at the 5000-level or above and 4-6 hours of thesis credit. In addition to a thesis based on original research, the candidate is required to take a comprehensive examination in three subject areas by the end of the senior year. The final examination consists of a thesis defense to the thesis committee; it should be scheduled by the end of the fifth year.

Students interested in this degree are encouraged to consult with the director of the program early in their undergraduate career. The department considers this a terminal degree, and no financial support is available from the department for students enrolled in this program.

Graduate Degree Programs
The Department of Environmental, Population, and Organismic Biology offers degree programs leading to the M.A. and Ph.D. in a wide range of areas of biological inquiry. Offerings include evolution, behavior, morphology, systematics, ecology, aquatic biology, population biology, genetics, neurobiology, and microbiology. Modern laboratory facilities for graduate study are in the Ramaley biology building. In addition, the department has strong ties with the University Museum, the Institute of Arctic and Alpine Research (INSTAAR), the Institute of Behavioral Genetics (IBG), and the Cooperative Institute for Research in Environmental Sciences (CIRES). INSTAAR operates the Mountain Research Station, an alpine field laboratory 25 miles from campus. Graduate research support is available in the form of fellowships, teaching assistantships, and research assistantships.

Graduate Admission
Admission materials may be obtained from the departmental office. Completed applications are due in the departmental office by January 2 for consideration for fall semester admission. A complete application includes a statement of intent, letters of recommendation, official transcripts, and GRE scores (both the general as well as the biology subject test). Applications for spring semester admission are not accepted. Students are required to have a bachelor’s degree in biology or an equivalent. Students admitted without a sufficient background in chemistry, physics, or mathematics are expected to make up those deficiencies during their first year of graduate study.

The M.A. I Program
A master’s degree with thesis is offered for students interested in continuing their training as professional biologists after completing the degree. For some students the M.A. I provides a basis for work on a Ph.D. at the University of Colorado or at another institution, although the M.A. is not required for admission to the Ph.D. program. Prospective students are urged to consult with faculty advisors before January 2 to see whether application for the M.A. I or Ph.D. program is appropriate. Applications for the M.A. I program are considered on a competitive basis; the department only admits students for whom financial support is available. Thirty hours of course work, which must be at the 5000-level or above, including 4-6 hours of thesis credit, are required for the degree. In addition to a thesis based on original research, each M.A. I student is required to take a comprehensive examination within the first three semesters of degree work. The thesis topic is presented to the thesis committee as a written research proposal. The M.A. I final examination consists of the thesis defense; it should be scheduled within two years for full-time students.

The M.A. II Program
A nonthesis master’s degree program is offered for students who are interested in obtaining a greater knowledge of biology but who are not interested in degree work beyond the M.A. This program is suitable for secondary school teachers and others whose career choices do not require a research thesis. A faculty sponsor is required before admission can be granted; applicants are encouraged to communicate with potential sponsors before January 2. Financial support is not guaranteed for M.A. II students. Thirty credit hours of course work are required for the degree, at least 24 of which must be at the 5000 level or above, including 4 hours of independent research leading to a paper to be presented to the faculty sponsor. A M.A. II final examination should be taken by the end of the student second year of degree work. Most requirements for the degree should be completed by this time, including the majority of course work and the paper based on independent research. The written exam is scheduled for three half days. It covers three subject areas related to the student scientific interests, chosen by the student and the final examination committee. An additional oral exam may be required by the final examination committee, following the written exam.
Doctoral Program

The Ph.D. is a research degree, involving the production of a major piece of original research (the dissertation). Most recipients of the Ph.D. from EPO biology go on to teach in a university setting or to do research in private or government laboratories. Because the area of work chosen for the Ph.D. is likely to determine the student career options, applicants should communicate directly with potential thesis advisors and visit the department before completing the application. Applications are considered on a competitive basis and financial support in the form of fellowships or assistantships usually is made available. Students are expected to form an advisory committee of five faculty members (including one from outside EPO biology) soon after beginning their studies. This committee aids the student in designing a research program and in making choices concerning course work. The Ph.D. comprehensive exam is administered by the student dissertation committee and must be taken within the first five semesters of degree work. It consists of a written research proposal on the dissertation topic, a formal presentation summarizing the student research progress, and an oral examination centered on the student research. Upon the student completion of the dissertation, a final examination is administered by the dissertation committee.

A total of 30 hours of course work must be taken, although independent study credit may be included in this total. Ph.D. students are required to teach at least one year, generally by serving as a departmental teaching assistant.

ENVIRONMENTAL STUDIES

Degrees ..B.A., M.S., Ph.D.

The environmental studies major is administered through the Office of Environmental Studies and draws from curricula in the earth and natural sciences as well as the social sciences. See the program office (Benson Earth Sciences 246A) for details of the program requirements. The graduate degrees were just approved when this catalog went to press.

In addition, students are required to complete either Track A (Society and Policy), or Track B (Environmental Sciences). Each track has several choices of specializations. An internship may be used as one course in a specialized area.

Track A: Society and Policy

Students must complete the three required courses and one of the four areas of specialization.

Required Courses Semester Hours
ANTH 4150 Human Ecology3
ECON 3545 Environmental Economics3
GEOG 3412 Conservation Practice3

Environment and Natural Resources

Complete a minimum of 15 credit hours from the following courses.

ENVD 4023 Environmental Impact Assessment3
ENVS/EPOB 4040 Conservation Biology3
GEOG 3551 Biogeography3
GEOG 3662 Economic Geography3
GEOG 4371 Forest Geography3
GEOG 4430 Seminar: Conservation Trends3
GEOG 4501 Water Resources and Water Management of Western United States3
GEOG 4732 Population Geography3
GEOG 4742 Environment and Peoples3
GEOL 3070 Introduction to Oceanography3
HIST 4417 Environmental History of North America3
PHYS 3070 Energy in a Technical Society3

International Environment and Development

Complete a minimum of 15 credit hours from the following courses:

ECON 3403 International Economics and Policy3
GEOG 3672 Gender and Global Economy3
GEOG 3682 Geography of International Development3
GEOG 3862 Geography of Africa3
GEOG 4712 Political Geography3
PHIL 2140 Environmental Justice3
PSCI 2223 Introduction to International Relations3
PSCI 3143 International Relations3
PSCI 3193 International Behavior3
PSCI 4012 Global Development3

Common Curriculum

Students are expected to complete the following common curriculum:

Required Courses Semester Hours
ENVS 1000 Introduction to Environmental Studies3
Biology sequence (EPOB 1030 and 1040 Biology: A Human Approach 1 and 2, and EPOB 1050 Biology: A Human Approach Laboratory; or EPOB 1210 and 1220 General Biology 1 and 2, and EPOB 1230 and 1240 General Biology Lab 1 and 2)7-8
Chemistry sequence (CHEM 1011 and 1031 Environmental Chemistry 1 and 2; or CHEM 1051 Introduction to Chemistry and 1071 Introduction to Organic and Biochemistry; or CHEM 1111 and 1131 General Chemistry 1 and 2; or CHEM 1151 and 1171 Honors General Chemistry 1 and 2)7-12
Economics sequence (ECON 1000 Introduction to Economics or ECON 2010 Principles of Microeconomics and ECON 3535 Natural Resource Economics and ECON 3545). Note: Students doing track A must complete both ECON 3535 and 3545; students doing track B must complete either ECON 3535 or 3545...7
Geography/geology sequence (GEOG 1001 Environmental Systems 1—Climate and Vegetation and 1011 Environmental Systems 2—Landscapes and Water; or GEOL 1010 and 1020 Introduction to Geology 1 and 2 and 1080 and 1090 Introductory to Geology Lab 1 and 2; or GEOL 1060, 1070, and 1110 Global Change 1 and 2 and Lab)8
Lab requirement (a total of three labs from any of the following: CHEM, EPOB, GEOL, or GEOG). Track B students are encouraged to take all labs
PHIL 3140 Environmental Ethics or GEOG 3422 Conservation Thought or ENVS/ ETHN 3003 Race, Class, and Pollution Politics3
PSCI 3201 The Environment and Public Policy or PSCI 2101 Introduction to Public Policy Analysis3
One calculus or statistics course3-5

Bachelor's Degree Programs

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below.

Degrees: B.A., M.S., Ph.D.

The environmental science track has specializations in water, biogeochemistry, and climate, and the social science track has specializations in environmental and natural resources, environmental analysis, and decision-making, planning, and policy.
Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in environmental studies, students should meet the following requirements:

Begin the common curriculum in the freshman year.

Declare environmental studies as the major by the beginning of the second semester.

Students must consult with a major advisor to determine adequate progress toward completion of major requirements.

Choose one sequence from the following:

- PHYS 1110 and 1120 General Physics 1 and 2, or PHYS 2010 and 2020 General Physics 1 and 2

ETHNIC STUDIES

Degree

The ethnic studies major was built on the strengths of the Center for Studies of Ethnicity and Race in America (now the Department of Ethnic Studies), which developed four ethnic-specific foci, with a multidisciplinary faculty. The goals for this major are to enable students to think comparatively and cross-culturally about the relationships within and across racially defined communities, and to the dominant society; allow students to gain substantive knowledge and expertise in one of the four specific racial/ethnic fields, and familiarity with at least a second racial/ethnic field; reinforce students’ acquisition of a critical approach to knowledge; involve learning and thinking within interdisciplinary frameworks; encourage participatory, experiential, diverse and student-centered learning; develop skills in oral and written expression; develop appropriate skills in research design, information retrieval, and use from an ethnic studies perspective; empower students of color to move beyond being objects of study toward being subjects of their own social realities, with a voice of their own; motivate majority and racial/ethnic students to examine and interrogate their inherited political/economic and social/cultural positions; and prepare all students to live and contribute to an increasingly diverse America, in an ever-interdependent world.

In short, the ethnic studies major provides a broad liberal arts education for the 21st century. It should impart fundamental skills in critical thinking, comparative analysis, social theory, data gathering and analysis, and oral and written expression. As a liberal arts degree with focus on American diversity, it is an especially appropriate training for those considering admission to graduate or professional schools and careers in education, law, medicine, public health, social work, journalism, business, urban planning, politics, counseling, international relations, creative writing, as well as university teaching and research.

The Department of Ethnic Studies promotes interdisciplinary research and teaching in Afroamerican studies, American Indian studies, Asian American studies, Chicano studies, and in cross-cultural and comparative race and ethnic studies.

The Department of Ethnic Studies seeks to provide a cohesive framework for the study of ethnic and racial groups and to promote research and critical examination of culture, history, and contemporary issues. The primary focus is on people of color and indigenous peoples of the Americas, but the department also considers important the study of race and ethnic issues. Interaction
across the Americas and global interaction are studied, as well as diasporas. Also of primary concern is recognition and incorporation of multicultural definitions and values in the university curriculum.

The Department of Ethnic Studies has a core faculty of its own, but also draws on the faculty resources of many departments in the College of Arts and Sciences, as well as the College of Architecture and Planning, the School of Education, the School of Journalism and Mass Communication, the School of Law, the College of Music, and the University Libraries.

Bachelor's Degree Program
In addition to the general requirements of the College of Arts and Sciences, students must complete at least 33 credit hours of ethnic studies requirements: students must complete 15 hours of required ethnic studies core courses, 12 hours in a primary ethnic-specific concentration, and 6 hours in a secondary ethnic-specific concentration. A comparative ethnic studies concentration option is also available upon consultation with and approval of the department chair.

A grade of C- or better must be received in all courses used to satisfy the major requirements, with an overall average of 2.00 in the major. At least 24 hours must be upper-division credit (3000 or 4000 level). No more than 6 credit hours may be taken in independent study. No pass/fail graded courses may satisfy the 33-semester-hour minimum requirement. Required ethnic studies courses may be substituted by other appropriate courses on a case by case basis, if requested by the student in advance and in writing, and with the approval of the student faculty advisor, as well as that of the department chair.

Required Courses Semester Hours
ETHN 2000 Introduction to Ethnic Studies...3
ETHN 3500 Research Methods in Ethnic Studies...3
ETHN 4510 Research Practicum in 3000-....3
ETHN 4950 Senior Seminar in Ethnic Studies..3
ETHN 3000- or 4000-level comparative course..3
Primary ethnic-specific concentration........12
Secondary ethnic-specific concentration......6

Graduating in Four Years
Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in ethnic studies, students should meet the following requirements:

Declare ethnic studies as the major no later than the beginning of the second semester of study.
Complete at least 12 credit hours toward the ethnic studies major requirements by the fourth semester.
Complete at least 24 credit hours toward the ethnic studies major requirements by the end of the sixth semester.
Complete ETHN 3500 Research Methods in Ethnic Studies no later than the sixth semester.
Complete ETHN 4510 Research Practicum in Ethnic Studies no later than the seventh semester.
Complete ETHN 4950 Senior Seminar in Ethnic Studies no later than the eighth semester.

Minor Program
A minor is offered in ethnic studies. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For further information consult the Web at www.colorado.edu/ArtsSciences/minors/minors.html.

Ethnic Studies Faculty Involvement in Graduate Studies
Faculty actively work to recruit Afroamerican, American Indian, Asian American, and Chicano/a students for graduate studies at the University of Colorado at Boulder, with special attention given to students who are interested in carrying out theses and/or dissertations that involve substantive and theoretical work revolving around the broad topic of “ethnicity and race in America.” Faculty are further committed to the intellectual mentorship of such students, which might include instruction in graduate courses, directed reading courses, service on students’ M.A. or Ph.D. committees, as well as helping to prepare graduate students for their qualifying examinations. An important dimension of this commitment includes attention to the step-by-step progress of these graduate students through their academic course work and research agendas.

Ethnic studies faculty will also recruit and employ whenever possible such students as graders and teaching assistants in large undergraduate courses, with the intention of providing experience in all aspects of classroom instruction, including syllabus design, design of assignments, grading, and issues of pedagogy vis-à-vis course content.

Ethnic studies faculty will mentor such graduate students in the area of writing for publication, and seek to facilitate publication opportunities in journals focusing on “ethnicity and race.” After successful completion of graduate studies, faculty will assist graduates with their employment goals.

In sum, by making an active commitment in each of these areas, ethnic studies faculty assume a responsible, proactive, role in ensuring a greater diversity in the graduate programs at the University of Colorado.

Study Abroad
The Department of Ethnic Studies encourages students to participate in the study abroad programs offered through the Office of International Education. These programs give students a deeper understanding of culture and attitudes of people of color in other parts of the world and their carryover into the United States. CU-Boulder is a member of the Council on International Educational Exchange that offers semester and full-year exchange programs with many institutions abroad, most notably in Africa, Asia, and Latin America.

Programs of special interest include study abroad in Mexico, Dominican Republic, Ghana, Tunisia, Spain, Taiwan, and Japan. Further information appears under “International Education” in the first chapter of this catalog.

FILM STUDIES

Degrees..B.A., B.F.A.

The Film Studies Program educates students in the history and development of film as an art form and a contemporary medium. The curriculum instills an informed analytic awareness of the ways in which film has been used and provides the resources for significant creative exploration of the medium.

The undergraduate degrees in film studies emphasize knowledge and awareness of:
• the major artistic contributions to the evolution of film, from the advent of the moving image to the present;
• the general outlines of world film from the silent period to the present, with emphasis on the historical contributions of major national cinemas; and
• methodological variations in film criticism and film theory, including at least one recent methodological development.

Students completing either the B.A. or the B.F.A. degree in film studies are expected to acquire the ability and skills to:
• analyze and interpret films critically;
• communicate such interpretations competently in essay form; and
• make a short 16-mm sound film (B.F.A. majors only).

Admission to the B.F.A. Program
Students are encouraged to consult with an advisor in the appropriate area in order to obtain advice and current information.

The B.F.A. degree is competitive. In order to graduate with a B.F.A. degree, students must first satisfy a number of prerequisites and then submit a formal application to the B.F.A. program at the end of a fall or spring semester. In particular, applicants must have a cumulative GPA at CU-Boulder of 2.70 or higher and have passed FILM 1502, 2000,
and 2600 each with a grade of C or higher, with a mean GPA in all three courses of at least 3.30 (B+). Applicants must submit a two-page essay expressing their interest in the film studies B.F.A. program along with their final film from FILM 2600. Admission into the B.F.A. program, and registration for FILM 3600, 4500, and other upper-division production courses are contingent upon approval of the application by the B.F.A. committee. Students may only apply twice to the B.F.A. program; complete details on the B.F.A. application procedure are available from the film studies office.

Note: Admission to any class after the third meeting of the class is contingent on professor permission. The department may drop a student from a class if the student misses the first two classes of the semester.

Bachelor's Degree Programs

Bachelor of Arts

No more than 6 hours of independent study may be credited toward the major. All course work submitted for a film studies degree must have a grade of C or better. The arts and sciences 18-hour minimum of upper-division hours must be met with film studies courses.

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below. The Film Studies Program requires a minimum of 49 hours in support of the B.A. requirements, including film courses and courses taken in other departments.

Required Courses

<table>
<thead>
<tr>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts History Requirement</td>
</tr>
<tr>
<td>Option 1: Humanities</td>
</tr>
<tr>
<td>Option 2: Fine Arts History</td>
</tr>
<tr>
<td>Option 3: Literature</td>
</tr>
<tr>
<td>Option 4: Fine Arts History and Literature</td>
</tr>
<tr>
<td>Creative Arts/Performance Requirements</td>
</tr>
<tr>
<td>Required Critical Studies Courses</td>
</tr>
<tr>
<td>FILM 3051 and 3061 Film History 1 and 2 (Note 2)</td>
</tr>
<tr>
<td>FILM 4004 Film Theory</td>
</tr>
</tbody>
</table>

Production Electives

Required Course

FILM 2000/2300 Beginning Filmmaking

Production Electives (not required)

FILM 3930 Internship

FILM 4005 Screenwriting

Critical Studies Elective Requirements

B.A. students must complete 18 hours from the following courses. At least 12 must be upper-division.

FILM 2002 Recent International Cinema

FILM 2003 Film Topics

FILM 2013 Quest for Truth

FILM 3002 Major Film Movements

FILM 3003 Major Film Directors

FILM 3012 Documentary Film

FILM 3013 Women and Film

FILM 3015 Jung, Film, and Literature

FILM 3901 Independent Study

FILM 3930 Internship

FILM 4003 Film and Fiction

FILM 4020 Senior Research Seminar

FILM 4064 Colloquium in Film Aesthetics

Any FILM class crosslisted with another department (i.e. foreign language) that has been approved by the film studies chair

Note: Any two upper-division courses in the following departments: Classics, Comparative Literature, English, Humanities, or a literature course offered by a foreign language department. Six hours minimum must be upper-division.

Curriculum Notes

1. This course is a prerequisite for FILM 2000 and 3051.
2. Must be taken in chronological order. FILM 1502 is a prerequisite.
3. FILM 2300 may be taken instead of FILM 2000; however, only one of the two courses may be counted toward the B.A. degree. Students will not receive credit for both courses.
4. FILM 2300 is offered summer session only.
5. Course may be taken for credit more than once, provided that the topics vary.
6. Total number of independent study credit hours cannot exceed 6.
7. Occasionally taught with FREN 4600.

Bachelor of Fine Arts

No more than 6 hours of independent study may be credited toward the major. All course work submitted for a B.F.A. degree in film must have a grade of C or better.

Students must complete the general requirements of the College of Arts and Sciences as well as the required courses listed below. The Film Studies Program requires a minimum of 52 hours in support of the B.F.A. degree requirements.

Required Courses

<table>
<thead>
<tr>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts History Requirement</td>
</tr>
<tr>
<td>Option 1: Humanities</td>
</tr>
<tr>
<td>Option 2: Fine Arts History</td>
</tr>
<tr>
<td>Option 3: Literature</td>
</tr>
<tr>
<td>Option 4: Fine Arts History and Literature</td>
</tr>
<tr>
<td>Creative Arts/Performance Requirements</td>
</tr>
</tbody>
</table>

Required Critical Studies Courses

FILM 1502 Introduction to Film Studies

FILM 3051 and 3061 Film History 1 and 2

FILM 4004 Film Theory

Production Course Electives

B.F.A. students must take 3-6 hours of any combination of the following courses:

FILM 3010 Special Topics in Production

FILM 3600 Intermediate Filmmaking
Complete FILM 2000 (3 credit hours), FILM 2002, 2003, 2013 for 3 credits by the end of the third semester. Complete the arts history lower-division requirements (6 credit hours), FILM 2600 (3 credit hours), and at least 2 credit hours of creative arts/performance requirements by the end of the fourth semester.

Note: Admission into FILM 3600 is subject to review of a student creative film work in FILM 2600 by a faculty committee. FILM 2600 may have to be repeated if the work does not meet faculty standards. In order to graduate in four years, a student must be accepted into FILM 3600 on the first review.

Complete 6 credit hours of upper-division arts history requirements and 8 credit hours of film history by the end of the fifth semester. Complete FILM 3600 (3 credit hours), and 3 credit hours of critical studies elective requirements by the end of the sixth semester.

Complete two upper-division courses of critical studies electives by the end of the seventh semester. All 6 credit hours must be upper-division critical studies courses.

Complete 3 credit hours of FILM 4500 or 4010 (Production), and 3-6 credit hours of production electives by the end of the eighth semester.

FINE ARTS

Degrees B.A., B.F.A., M.A., M.F.A.

The Department of Fine Arts offers the bachelor of arts in art history and in studio art, and the bachelor of fine arts in studio arts.

The undergraduate degree in art history emphasizes knowledge and awareness of:
- the major artistic monuments of the world in a historical context;
- varied methodologies used to study art historically; and
- artistic media and techniques.

In addition, students completing the degree in art history are expected to acquire the ability and skills to:
- relate individual monuments to their historical and cultural context by identifying technique, style, and subject matter;
- interpret historical and critical information about works of art, artists, and related issues; and
- organize and communicate concepts and data pertaining to the history of art effectively in written and oral form.

The undergraduate degree in studio art emphasizes knowledge and awareness of:
- the significance of the major monuments in art history, with an emphasis on contemporary art;
- at least one discipline of studio art;
- related critical issues in studio practice; and
- a wide range of stylistic approaches.

In addition, students completing a degree in studio art are expected to acquire the ability and skills to:
- analyze their own works of art in terms of form and content;
- interpret the work of others;
- execute ideas in one or more artistic media;
- demonstrate artistic ability and technical proficiency in one chosen medium; and
- communicate in verbal and written form the particular conceptual and perceptual attitudes and stances of their own artistic production.

Note: Double majors and double degrees are not allowed in the fine arts major.

Bachelor's Degree Programs

B.A. degrees in art history and in studio require 45 credits in the major and a minimum of 75 nonmajor credits. The B.F.A. degree in studio arts requires 66 credits. Regular contact with fine arts advisors is recommended.

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below.

Bachelor of Arts (Art History)

(45 credit hours in the major)

Required Courses

<table>
<thead>
<tr>
<th>Semester Hours</th>
<th>Required Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>FINE 1010 Introduction to Art</td>
</tr>
<tr>
<td>6</td>
<td>FINE 1300 and 1400 World Art 1 and 2</td>
</tr>
<tr>
<td>3</td>
<td>FINE 4919 B.A. Art History Seminar</td>
</tr>
<tr>
<td>18</td>
<td>Any six upper-division art history courses</td>
</tr>
<tr>
<td>15</td>
<td>FINE electives</td>
</tr>
</tbody>
</table>

Graduating in Four Years with a B.A. in Art History

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress toward a B.A. in art history, students should meet the following requirements:

Declare the major by the beginning of the second semester.

By the end of the third semester, complete lower-division studio courses, lower-division art history courses, and two classes in upper-division art history.

By the end of the sixth semester complete up to 32 credit hours in the major.

Final semesters not to exceed 45 credits toward the major.

Bachelor of Arts (Studio Arts)

(45 credit hours in the major)

Required Courses

<table>
<thead>
<tr>
<th>Semester Hours</th>
<th>Required Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>FINE 1010 Introduction to Art</td>
</tr>
<tr>
<td>3</td>
<td>FINE 1003 Printmaking 1</td>
</tr>
<tr>
<td>3</td>
<td>FINE 1012 Drawing 1</td>
</tr>
<tr>
<td>3</td>
<td>FINE 1171 Photography 1</td>
</tr>
</tbody>
</table>
FINE 1212 Painting 13
FINE 1514 Sculpture 1..................3
Two 2000-level courses in area of emphasis...6
FINE 1300 and 1400 World Art 1 and 2.....6
Any two upper-division art history courses....6
Upper-division studio emphasis (minimum)....12
Fine arts electives3

Graduating in Four Years with a B.A. in Studio Arts

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress toward a B.A. in studio arts, students should meet the following requirements:

Declare major by the beginning of the second semester.
Complete FINE 1010 Introduction to Art, two level-1 studio classes, and lower-division art history courses by the end of the third semester.
Complete 30-36 credit hours in the major by the end of the sixth semester.
Final semesters not to exceed 45 credits in the major.

Bachelor of Fine Arts (Studio Arts)

(66 credits toward the major)

Required Courses

Semester Hours
FINE 1010 Introduction to Art3
FINE 1300 World Art 13
FINE 1400 World Art 23
Select three of the following courses:
FINE 1003 Printmaking 13
FINE 1012 Drawing 13
FINE 1171 Photography 13
FINE 1212 Painting 13
FINE 1514 Sculpture 13
Any two 2000-level studio courses6
Any two upper-division art history courses ..6
Upper-division studio emphasis (min.)......18
Fine arts electives15
FINE 4117 B.F.A. Seminar3

Notes: B.A./B.F.A. candidates must complete a minimum of 9 out of 15 credits in the major on the Boulder campus.

Required Studio Courses for Studio Arts Majors

Painting and drawing majors must take any sequence of courses culminating in FINE 4002 Drawing 4 or FINE 4202 Painting 4.
Ceramics majors must take FINE 4085 Ceramics 4 and FINE 4095 Special Topics in Ceramics. Printmaking majors are not required to take FINE 1003 and may register for FINE 3403, FINE 3413, and FINE 3423 as sophomores.

Graduating in Four Years with a B.F.A. in Studio Arts

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress toward a B.F.A. in studio arts or divisional studio arts, students should meet the following requirements:

Declare the major by the beginning of the first semester, freshman year.
Complete FINE 1010, 1300, 1400, 9 credit hours of lower-division studio, two 2000-level courses, and one lower-division or upper-division studio or art history course by the end of the third semester (27 credit hours).
Apply for the B.F.A. in the fourth or fifth semester, with a minimum of 30 hours in the major.
Complete up to 48 credit hours in the major by the end of the sixth semester.
Final semesters not to exceed 66 credits toward the major.

Honors

Students may graduate with departmental honors. Those interested in pursuing this program should contact the Honors Department and/or the Department of Fine Arts honors representative as early as possible.
The minimum GPA requirement is 3.30 overall and 3.50 in the major. Students may take FINE 4008 Studio/Art History Honors Thesis to complete individual work.

Media Arts

The media arts area of the Department of Fine Arts is an internationally outstanding, progressive, future-oriented and coordinated graduate and undergraduate program that emphasizes teaching, research, and creative work. The area provides a thorough grounding in traditional media as well as nontraditional materials and techniques. Interaction with other units promotes interdisciplinary studies. A vigorous art history component, supported by one of the finest photography book collections in the world, is required. All aspects of photography, video, digital media, Internet art installation and performance, bookmaking, desktop publishing, history, and critical theory in new media are available to optimize personal growth, skills acquisition, and creative expression.

Special Programs

Art History in Italy. Art history faculty annually conduct this program, which offers 6 credit hours of upper-division or graduate-level credit during a five-week summer term. Course offerings may vary, covering the late Medieval, Renaissance, and Baroque periods. The course divides its time between Florence and Rome, with up to a week spent in Venice.

Inquiries regarding this and other foreign studies programs should be directed to the Study Abroad Office in the Office of International Education.

Colorado Collection. The Colorado Collection is a wide-ranging teaching collection comprised primarily of works on paper ranging from expert old master prints and drawings to innovative contemporary art that speaks to the issues of our times. The collection includes a modest selection of 19th- and 20th-century photographs, as well as ceramics, sculptures, and paintings. The collection is housed in the Fine Arts Building, under the auspices of the CU Art Galleries. It is used for instruction, research, and special study sessions, and is exhibited periodically in the CU Art Galleries. Each summer exhibitions drawn from the collection travel to communities across Colorado as part of the statewide outreach program CU This Summer, sponsored by the University of Colorado at Boulder.

Exhibitions Program. The CU Art Galleries, located in the Sibell Wolfe Fine Arts Building, present an active program of exhibitions and related activities that reflect the interests, constituencies, and resources of the university community and of the greater metropolitan area. The galleries focus on contemporary art by artists of international, national, and regional significance, and address current concerns and developments in the visual arts. Bachelor of fine arts shows and master’s of fine arts thesis shows also are held in the galleries, which have a total of 5000 square feet of space. The galleries sponsor a number of related educational programs and a graduate curatorial internship program. Graduate assistants and student guards help staff the galleries and receive practical training in the field.

Visiting Artist Program. Artists of national and international reputation interact with graduate and advanced undergraduate students and discuss their studio work at seminar meetings. Artists present a public lecture during their visit, providing continuous input of significant developments and a comprehensive view of contemporary issues in the arts.

Visual Resources Collection. An extensive collection of slides representing art from prehistoric to modern times is maintained by the Department of Fine Arts. This collection is especially strong in the areas of African, Asian, European, Islamic, Medieval, North American, Oceanic, and Pre-Columbian art. Electronic databases are also under development.
Thesis Collection. A collection of work donated by M.F.A. candidates from the thesis exhibition is also owned by the department.

Special Note: Students should be aware that work left in studios and/or exhibited in the Sibell Wolle Fine Arts building is left at their own risk. The department will not be held responsible for loss or damage.

Graduate Degree Programs
The master of arts degree is offered in art history, and a master’s of fine arts degree is offered in creative arts. The creative arts areas include ceramics, painting and drawing, photography and electronic media, and printmaking and sculpture. Students are encouraged to consult with an advisor in the appropriate area in order to obtain advice and current information.

Master of Arts Degree (Art History)
Prerequisites. The following are required for admission to the graduate program:
1. A baccalaureate degree from an approved college with a cumulative grade point average of at least 3.00.
2. A score of 500 or higher on the verbal section of the Graduate Record Examination.
3. A broad general background in history, literature, and philosophy.
4. An extensive background in art history.
5. Applicants to the master’s program in art history are asked to write a 750 to 1,000 word essay in Part II, number 6 on the application form.

Examinations. The comprehensive exams are given during the second year of study to measure graduate student knowledge of art history at the master’s degree level. The exams consist of essay questions relevant to the student chosen major and area of concentration in art history.

Degree Requirements: Plan I (Thesis Option). A minimum of 30 semester hours must be completed.
1. Three semesters of graduate work in art history are required, in which two semesters (minimum of 30 credit hours) must be spent in residence. Summer residence alone is unacceptable.
 a. FINE 6929 Theories of Art History must be completed during the first semester in the program. Topics vary from semester to semester.
 b. FINE 5929 Visiting Scholars Program must be taken during the second semester.
 c. At least one 3-credit, 5000-level course must be taken in each of four of the following areas of art history: ancient, Renaissance, Baroque, modern, Asian, tribal arts, American, and critical theory.
 d. Two 3-credit, 5000-level seminars in art history must be completed, which also fulfill the course requirements in the areas of art history listed above.
 e. At least one 3-credit, 3000-level course in a department outside fine arts, which supplements the major/minor areas of specialization.
 f. FINE 6959 Master’s Thesis (4-6 credit hours).
2. Thesis. See thesis requirements under Master of Arts and Master of Science in the Graduate School chapter of this catalog.
3. After acceptance of the final draft of the thesis by the thesis advisor, an oral examination takes place dealing with the subject matter of the thesis and any areas of weakness that may have been found in the written comprehensive exam.
4. Language Requirement. The candidate for the M.A. degree in art history is required to demonstrate an adequate reading knowledge of French, German, or another appropriate language before receiving the degree by satisfactorily passing a departmentally administered reading exam with dictionary, by course work, or by standardized testing. Minimum scores required on the Graduate Student Foreign Language Test are: German, 450; Russian, 380; French, 425; and Spanish, 425. Other languages, such as Italian or Chinese, must be arranged with the art history faculty on an individual basis.

Degree Requirements: Plan II (Nonthesis Option). A minimum of 36 credit hours must be completed.
1. Plan II (nonthesis) course of study is the same as Plan I, except for the thesis. A major study project is part of the substitute for the thesis (FINE 5969).
2. The precise nature of the project will be worked out among the student, faculty advisor, and faculty advisor, and must be approved by the entire art history faculty.

Master of Fine Arts Degree (Creative Arts)
Prerequisites. The following are required for admission to the graduate program:
1. Bachelor’s degree from an approved college or school of art with a minimum grade point average of 2.75.
2. Minimum of 34 credit hours of acceptable work in art; 12 credits in fine arts history is preferred.
3. Submission of a slide portfolio, including 20 examples, representing creative work.
4. Electronic media students should submit a portfolio of creative work to include slides, video and/or audio tapes, film, etc., as appropriate (especially for documentation of performance and/or installations) for screening by the electronic media committee for presentation to the full graduate faculty.

Degree Requirements. A minimum of 54 credit hours (of which 36 credit hours must be taken in residence on the Boulder campus) of acceptable graduate work must be completed beyond the bachelor’s degree.
1. Studio course work: 33 credit hours (a minimum of 12 hours completed in the major area of specialization).
2. Nonstudio course work: 21 credit hours consisting of the following:
 • 3 credit hours of Visiting Artist Seminar (FINE 5118).
 • 6 credit hours (5000-level) in art history.
 • 6 credit hours (5000-level) in other nonstudio course work (seminars, special topics, independent study).
 • Nonstudio hours completed outside the department may be taken at the 4000-level or above with faculty advisor approval; and
 • FINE 6957 (M.F.A. creative thesis), 6 credit hours.

Interdisciplinary Arts (IDA) Program
Graduate students interested in the IDA program should apply through their main area of concentration. Each IDA graduate student studies in at least one discipline outside of his or her main area of concentration. The advisor assigned to each IDA student should be a faculty member from the main area of concentration. The student course of study is planned with the advisor and/or the IDA advisor. The IDA program encourages students to explore several disciplines, both within the fine arts department and outside of fine arts.

Required Courses Semester Hours

Studio
Fine arts courses in accepted area..................12
Fine arts courses outside of accepted area, within fine arts (minimum)12
Electives outside accepted area in fine arts, theatre and dance, music, film studies, or any other relevant department9
Critical theory (taken as studio or nonstudio hours)..3

Nonstudio
Art history..6
FINE 5118 Visiting Artist Program3
Hours within or outside fine arts..................3

Thesis
FINE 6957 M.F.A. Creative Thesis...............6

Graduate First-Year Review
Graduate students are required to schedule a first-year review after one year of full-time study. The purpose of this review is to evaluate the student experience in the program and prepare the student for the qualifying paper (art history) or pre-thesis review (studio arts).

Transfer of Credit
Procedures for transferring credit from other graduate programs are governed by the reg-
The French undergraduate degree emphasizes knowledge and awareness of:

- the fundamental outlines of the history of French literature from the Middle Ages to the present;
- significant works of French literature and the literary culture of the French-speaking world;
- the historical context in which particular works were written and the relation between literature and other forms of cultural expression (e.g., art, philosophy, politics, religion);
- contemporary French culture, politics, and current events;
- a range of literary genres, their development and reception, and relevant critical methodologies; and
- the grammatical structure of modern standard French.

In addition, students completing the degree in French are expected to acquire the ability and skills to:

- speak and understand modern, spoken standard French sufficient for all purposes of daily life and for intellectual discussion in academic settings;
- read and write modern standard French with sufficient fluency and correctness for successful literary or linguistic analysis of French texts;
- analyze and interpret literary texts in terms of style, plot, structure, characters, themes, and the use of literary devices;
- communicate such analyses and interpretations simultaneously in French or at a more sophisticated level in English, and discuss a wide range of topics concerning French culture, civilization, and current events; and
- follow with reasonable comprehension French broadcasts or film.

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below. Students wishing to pursue an Honors major should also consult the Honors Requirements Semester Hours.

<table>
<thead>
<tr>
<th>Degree in French</th>
<th>Required Courses Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.A., M.A., Ph.D.</td>
<td>FREN 3100 Critical Reading and Writing in French Literature 1 and 2</td>
</tr>
<tr>
<td></td>
<td>FREN 3110, 3120 Main Currents of French Literature 1 and 2</td>
</tr>
<tr>
<td></td>
<td>FREN 3010 French Phonetics and Pronunciation</td>
</tr>
<tr>
<td></td>
<td>FREN 3050, 3060 French Composition 1 and 2</td>
</tr>
<tr>
<td></td>
<td>FREN 3100 Critical Reading and Writing in French Literature</td>
</tr>
<tr>
<td></td>
<td>FREN 3110, 3120 Main Currents of French Literature 1 and 2</td>
</tr>
<tr>
<td></td>
<td>Four or more other courses at the 3000 or 4000 level, of which 9 hours must be at the 4100 level or above</td>
</tr>
<tr>
<td></td>
<td>FREN 4990 Senior Seminar (including a senior essay and oral presentation, except where a student elects to present a senior honors thesis). Note: The seminar runs concurrently with one of the three courses taken at the 4100 level or above.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Honors Requirements Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honors candidates must meet all of the regular requirements for the major plus the following:</td>
</tr>
<tr>
<td>FREN 3200 Introduction to Literary Theory</td>
</tr>
</tbody>
</table>

One semester of independent study. Note: The semester of independent study is taken concurrently with FREN 4980, and is devoted to one-on-one work on the senior honors thesis with a faculty advisor. See departmental brochure for details.

Bachelor's Degree Programs

French

Beyond providing mastery of the language skills (listening, speaking, reading, writing) of modern French needed for all purposes of daily life, the major introduces students to a central tradition of western and world culture. Since the Middle Ages, French literature, thought, taste, and art have helped shape the essential experience and self-understanding of humanity at large. Survey courses and upper-division seminars offer a range of exposures to the French cultural past and the far-flung ethnic and national diversity of the French-speaking present. The major explores distinctively French contributions to world culture, such as Arthurian romance, troubador poetry, and Gothic architecture; the love sonnets of the Pèiade, the comic novels of Rabelais, and the essays of Montaigne; the neoclassical theatre of Corneille, Molière, and Racine and the critical philosophy of Descartes and Pascal; the Enlightenment philosophies of Voltaire, Diderot, and Rousseau; the psychological refinements of French fiction from Mme de La Fayette to Proust; artistic revolutions like impressionism and surrealism; the renewal of artistic conventions in the Theatre of the Absurd, the New Novel, and the cinema of the New Wave; the French-language literature of Africa, Canada, and the Caribbean; and the vital presence of French writers in major movements of 20th-century thought like existentialism, structuralism, feminism, psychoanalysis, and contemporary cultural studies and multiculturalism.

The French undergraduate degree emphasizes knowledge and awareness of:

- the fundamental outlines of the history of French literature from the Middle Ages to the present;
- significant works of French literature and the literary culture of the French-speaking world;
- the historical context in which particular works were written and the relation between literature and other forms of cultural expression (e.g., art, philosophy, politics, religion);
- contemporary French culture, politics, and current events;
- a range of literary genres, their development and reception, and relevant critical methodologies; and
- the grammatical structure of modern standard French.

In addition, students completing the degree in French are expected to acquire the ability and skills to:

- speak and understand modern, spoken standard French sufficient for all purposes of daily life and for intellectual discussion in academic settings;
- read and write modern standard French with sufficient fluency and correctness for successful literary or linguistic analysis of French texts;
- analyze and interpret literary texts in terms of style, plot, structure, characters, themes, and the use of literary devices;
- communicate such analyses and interpretations simultaneously in French or at a more sophisticated level in English, and discuss a wide range of topics concerning French culture, civilization, and current events; and
- follow with reasonable comprehension French broadcasts or film.

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below. Students wishing to pursue an Honors major should also consult the Honors Requirements listed below.

Note: Students undertaking a major in French should expect to have regular conferences with a college advisor and the department chair to ensure that they are making adequate progress and that requirements are being met in a timely way. The department will not certify majors for graduation when a failure to satisfy requirements is the fault of the student.

A minimum of 30 upper-division hours in French must be completed (see below for specific courses). FREN 2120 or its equivalent is the prerequisite for admission to courses required for the major.

Required Courses Semester Hours

FREN 3010 French Phonetics and Pronunciation	3
FREN 3050, 3060 French Composition 1 and 2	6
FREN 3100 Critical Reading and Writing in French Literature	3
FREN 3110, 3120 Main Currents of French Literature 1 and 2	6
Four or more other courses at the 3000 or 4000 level, of which 9 hours must be at the 4100 level or above	12

Minor Program

A minor program is offered in French. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For further information consult the Web at www.colorado.edu/ArtsSciences/minors/minors.html.
Concurrent B.A./M.A. Program in French

The department also administers a concurrent undergraduate and graduate degree program in French, offering students the opportunity to graduate with a B.A. and an M.A. in French in five years. Students interested in this program should consult a college advisor and the Associate Chair for Graduate Studies for details. Students should also read the relevant guidelines available in the main department office.

Italian

The major provides the language skills (listening, speaking, reading, writing) of modern Italian needed for all purposes of daily life. Moreover, by combining courses offered by the faculty of the Department of French and Italian with courses of Italian interest taught in other units, including film studies, fine arts, and history, the program promotes an understanding of the role of the Italian literary and cultural tradition within western civilization at large. As the birthplace of Dante, Petrarch, and Boccaccio, Ariosto, Tasso, and Marino, and Michelangelo, Raphael, and Da Vinci, Italy is the cradle of the Renaissance. Italy projects a powerful, formative influence into our own day through the work of 19th- and 20th-century writers like Leopardi, Manzoni, Pirandello, Levy, and Calvino; operatic composers like Rossini, Puccini, and Verdi; philosophers and critics like Croce, d’Annunzio, Gramsci, and Grinzburg; and filmmakers like Fellini, Pasolini, and Bertolucci. Thus, in addition to supplying the necessary background for advanced professional study and specialization, the Italian major introduces students to a rich literary, artistic, and intellectual history at the roots of the modern world.

Students wishing to major in Italian are required to have a thorough advising session with the Italian program advisor. In this session the student program of study is outlined in detail. Students are required to see the advisor in the event that any of their major courses are canceled so that substitutions and revisions in their programs can be made. The department will not approve a major in Italian unless the student has been advised by the program advisor.

For courses in other departments with an Italian emphasis (e.g., comparative literature, fine arts, history, honors, etc.), see those sections of this catalog.

The undergraduate degree in Italian emphasizes knowledge and awareness of:

- the fundamental outlines of the history of Italian literature from the Middle Ages to the present;
- significant works of Italian literature and the contribution to world literature of Italian letters;
- the historical context in which particular works were written;
- contemporary Italian culture, politics, and current events;
- a range of literary genres, their development and reception, and relevant critical methodologies; and
- the grammatical structure of modern standard Italian.

In addition, students completing the degree in Italian are expected to acquire the ability and skills to:

- speak and understand modern, spoken, standard Italian sufficient for all purposes of daily life and for intellectual discussion in academic settings;
- read and write modern standard Italian with sufficient fluency and correctness for successful literary or linguistic analysis of Italian texts;
- analyze and interpret literary texts in terms of style, plot structure, characters, themes, and the use of literary devices;
- communicate such analyses and interpretations simply in Italian or at a more sophisticated level in English, and discuss a wide range of topics concerning Italian culture, civilization, and current events; and
- follow with reasonable comprehension authentic Italian broadcasts or film.

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below. Thirty-six hours beyond the first year with a 2.00 (C) grade point average or better are required, as listed below.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITAL 2110 and 2120 Intermediate Italian Reading, Grammar, and Composition 1 and 2</td>
<td>6</td>
</tr>
<tr>
<td>ITAL 2130 Introduction to Literary Analysis ...</td>
<td>3</td>
</tr>
<tr>
<td>ITAL 3010 and 3020 Advanced Composition and Conversation 1 and 2</td>
<td>6</td>
</tr>
<tr>
<td>ITAL 3120 and 3130 Readings in Italian Literature 1 and 2</td>
<td>6</td>
</tr>
<tr>
<td>Two 4000-level courses in the Italian department (one will be taught in Italian and another in English). One of these seminars must focus on literature or culture before 1800</td>
<td>6</td>
</tr>
<tr>
<td>Nine hours in Italian studies at the upper-division level to be chosen in consultation with the major advisor from suitable courses offered by the following departments: Classics, Fine Arts, History, and Political Science. It is recommended that students select courses in diverse disciplines and time periods</td>
<td>6</td>
</tr>
<tr>
<td>ITAL 4990 Senior Seminar (including a senior essay and oral presentation, except where a student elects to present a senior honors thesis)</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: The seminar runs concurrently with one of the two courses taken at the 4000 level. See departmental brochure for details.

Honors Requirements

<table>
<thead>
<tr>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>One semester of independent study. Note: The semester of independent study is taken concurrently with ITAL 4980, and is devoted to one-on-one work on the senior honors thesis with a faculty advisor. It does not run concurrently with required 4000-level courses. See departmental brochure for details.</td>
</tr>
</tbody>
</table>

Graduating in Four Years with a B.A. in Italian

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in Italian, students should meet the following requirements:

- Declare the Italian major by the beginning of the second semester of study.
- Complete 12 credit hours of requirements (including ITAL 2110 and 2120) by the end of the second (sophomore) year.
- Complete 12 of the remaining 24 credit hours by the end of the third (junior) year.
- Complete the remainder of the major requirements in the fourth (senior) year.

Minor Program

A minor program is offered in Italian. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For further information consult the Web at www.colorado.edu/ArtsSciences/minors/minors.html.

Study Abroad

French and Italian majors are strongly encouraged to spend a semester or a year at a French or Italian-speaking university. CU-Boulder offers French study abroad programs in Annecy, Rennes, and Paris, and Italian study abroad programs in Florence, Bologna, and Siena. Transfer credit is readily available. CU-Boulder is also affiliated with the Syracuse University Program in Florence. All credit earned in courses in this program, with the exception of studio arts courses, may be applied to the Italian major. For further information about study abroad programs, students may visit departmental advisors or the Office of International Education. CU-Boulder also supports a summer program in Italy for students of art history. Credits earned on this program may be applied to the Italian major.

The Ayer Romance Language Scholarship is available for majors who plan to study...
abroad; it is awarded by the Department of French and Italian. The Lamont Scholarship is awarded alternately to French and Italian majors (in alternate years).

For further information, see International Education in the first chapter of this catalog, or inquire at the Office of International Education.

Graduate Degree Programs in French

Students wishing to pursue graduate work in French leading to candidacy for an advanced degree should read carefully Requirements for Advanced Degrees in the Graduate School chapter of this catalog. Graduate teaching exchanges at the Universities of Bordeaux and Valenciennes are available to students who have earned a master’s degree. The Lamont Scholarship is available for a graduate student in alternate years.

Master’s Degree

Prerequisites. The following are prerequisite to graduate study in French: the ability to read, write, speak, and understand spoken standard French; general knowledge of French literature and civilization; and ability to read one language in addition to English and French. This last requirement may be fulfilled either by taking at least 3 credit hours of a fourth semester undergraduate course in the language with a minimum grade of B- or by passing the Graduate Student Foreign Language Test. See department guidelines for the specific requirements for the M.A. in French.

Doctoral Degree

Prerequisites. Doctoral candidates should possess excellence in reading, speaking, writing, and understanding spoken standard French; general knowledge of French literature and civilization; and knowledge of one language other than English and French (see below).

Required Courses. See department guidelines for Ph.D. candidates.

Language Requirement. A sound reading knowledge of one modern language other than English and French is required. Proficiency must be shown by taking an undergraduate course in the language at the 4000 level. In some cases, when directly related to a student research area, a reading knowledge of a fourth language can be substituted for the 4000-level course in the third language. Such reading knowledge must be certified by the student passing a reading examination in the language. The examination normally consists of a timed translation of a literary text or a text dealing with literature (e.g., literary criticism). A dictionary is permitted. This language may be one of the following: German, Spanish, Italian, Latin, Greek, or Russian. Other languages are considered depending on the student area of research.

GEOGRAPHY

**Degrees **

| B.A., M.A., Ph.D. |

The Department of Geography offers theoretical and practical work in physical geography, including climatology, geomorphology, and biogeography; conservation of natural resources, including environmental education; human geography, including urban, social, economic, political, cultural, and population geography; geographic information science (GIS), including spatial analysis using GIS, remote sensing, computer cartography, GIS and society, and geography education; and regional analysis, including mountains, natural hazards, and specific regional courses. To complement its curriculum, the department offers geography majors internship opportunities.

The Department of Geography offers B.A., M.A., and Ph.D. degree programs in geography.

The undergraduate degree in geography emphasizes knowledge and awareness of:

- the unique contributions of the discipline to understanding the spatial components of problems and the diverse factors relating to human interaction with the environment;
- the spatial distributions of physical and human characteristics on the Earth surface, the general patterns these form, and the processes that have created and are changing these patterns;
- the major themes of geographical analysis, including absolute and relative location; human and physical characteristics of place; human and environmental relations; movement of people, ideas, and products; and regionalization; and
- the geographical processes of human–environment interaction, global change, and human spatial organization.

In addition, students completing the degree in geography are expected to acquire proficiency in:

- one or more of the specific geographic skill areas of cartography, air photograph interpretation, remote sensing, and geographic information systems;
- writing, quantitative methods, computer literacy, and library and field methods of data collection; and
- identifying the geographic dimensions of a problem and analyzing, synthesizing, and evaluating relevant data, and applying geographic principles offering a geographic perspective on that problem.

Bachelor’s Degree Program

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below. Students must complete at least 32 and no more than 45 credit hours in geography courses with grades of C- or better (18 hours must be upper division). No pass/fail grades are allowed in the major. Transfer students majoring in geography must complete at least 12 credit hours of upper-division geography courses at CU-Boulder.

Required Courses

<table>
<thead>
<tr>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 1001 Environmental Systems 1—Climate and Vegetation</td>
</tr>
<tr>
<td>GEOG 1011 Environmental Systems 2—Landscapes and Water</td>
</tr>
<tr>
<td>Two of the following: GEOG 1982 World Regional Geography</td>
</tr>
<tr>
<td>GEOG 1982 World Regional Geography</td>
</tr>
<tr>
<td>GEOG 1992 Human Geographies</td>
</tr>
<tr>
<td>GEOG 2002 Geographies of Global Change</td>
</tr>
<tr>
<td>GEOG 2412 Environment and Culture</td>
</tr>
<tr>
<td>One of the following: GEOG 2053 Maps and Mapping</td>
</tr>
<tr>
<td>GEOG 3053 Cartography</td>
</tr>
<tr>
<td>One of the following: GEOG 3002 Introduction to Research in Human Geography</td>
</tr>
<tr>
<td>GEOG 3023 Statistics for Earth Sciences</td>
</tr>
<tr>
<td>GEOG 3093 Geographic Interpretation of Aerial Photographs</td>
</tr>
<tr>
<td>GEOG 4023 Introduction to Quantitative Methods in Human Geography</td>
</tr>
<tr>
<td>GEOG 4043 Cartography 2—Computer Mapping</td>
</tr>
<tr>
<td>GEOG 4083 Mapping from Remotely Sensed Imagery</td>
</tr>
<tr>
<td>GEOG 4093 Remote Sensing of the Environment</td>
</tr>
<tr>
<td>GEOG 4103 Geographic Information Systems</td>
</tr>
<tr>
<td>GEOG 4173 Research Seminar</td>
</tr>
<tr>
<td>GEOG 4383 Methods of Vegetation Analysis</td>
</tr>
<tr>
<td>GEOG 4411 Methods of Soil Analysis</td>
</tr>
<tr>
<td>ANTH 4000 Quantitative Methods in Anthropology</td>
</tr>
<tr>
<td>ECON 3818 Introduction to Statistics with Computer Applications</td>
</tr>
<tr>
<td>MATH 2510 Introduction to Statistics</td>
</tr>
<tr>
<td>PSCI 4074 Quantitative Research Methods</td>
</tr>
<tr>
<td>PSYC 3101 Statistics and Research Methods in Psychology</td>
</tr>
<tr>
<td>SOCY 2061 Introduction to Social Statistics</td>
</tr>
<tr>
<td>SOCY 4061 Social Statistics</td>
</tr>
<tr>
<td>Additional electives</td>
</tr>
</tbody>
</table>

Students should consult the departmental office for further information and referral to departmental advisors.

Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain ade-
quate progress in geography, students should meet the following requirements:

Declare a geography major by the beginning of the second semester.
Complete GEOG 1001, 1011, and one of the following courses: GEOG 1982, 1992, 2002, or 2412, by the end of the third semester.
Complete GEOG 1982, 1992, 2002, or 2412 (must be different than the course used to complete the previous requirement) and 9 credit hours of upper-division geography courses by the end of the sixth semester.
Complete the remaining upper-division credit hours by the eighth semester.

Master Degree

Prerequisites. For admission without deficiency and to meet the department mandatory requirements for a knowledge of basic geography, all entering graduate students are required to have the kind of knowledge presented in the department introductory courses in physical geography (GEOG 1001 Environmental Systems/Climate and Vegetation and GEOG 1011 Environmental Systems/Landscapes and Water) and human geography (GEOG 1982 World Regional Geography, GEOG 1992 Human Geographies, GEOG 2002 Geographies of Global Change, and GEOG 2412 Environment and Culture). It is the responsibility of the student to obtain this knowledge as part of his/her preliminary exam. Students may gain the required knowledge by formally taking the introductory courses, by auditing the courses, by reading the textbooks, or by other means. This knowledge will enhance the student ability to perform at the level expected in the GEOG 5152-5161 core series. In addition to knowledge of basic geography, it is desirable that the student has course work in at least two areas outside geography in cognate fields in the social and natural sciences. Students are encouraged to have some background in college math, statistics, and computer skills.

General Requirements. The minimum requirements for an M.A. in geography may be fulfilled by completing 30 semester hours of graduate work, including a thesis, which carries up to 6 credit hours (i.e., 24 hours of course work at the 5000 level or above, plus a minimum of 4 but not more than 6 hours of thesis). Master students may, with the written approval of their advisor, use a maximum of 6 hours of 3000-4000-level course work to reach the required 30 hours.

Doctoral Degree

Prerequisites. The minimum requirements for admission to the Ph.D. program are normally a master degree, significant published research, or equivalent standing. Students without a master degree (or equivalent) are initially admitted into the M.A. program, but they may petition to change to the Ph.D. program if all of the following conditions are met: the student has the support of a three-member committee of geography faculty, which forms the core of the dissertation committee; the student produces an extensive literature review paper and proposal with research ideas for a dissertation; and the student passes an oral examination consisting of a discussion of the literature and defense of the research proposal. The oral examination must take place in or by the third semester of the student graduate program. This procedure is only recommended if the student has had prior independent research experience.

General Requirements. The Ph.D. degree is not conferred merely upon the satisfactory completion of a course of study. The candidate must also demonstrate proficiency in some broad subject of learning, and be able to critically evaluate work in the field, show the ability to work independently in the chosen field, and make an original contribution of significance to the advancement of knowledge.

The minimum requirement of course work is 30 credit hours numbered 5000 or above; ordinarily the number of hours is greater than this. Dissertation credit hours may not be used to fulfill the 30-hour requirement. At least 20 of these hours must be taken at the University of Colorado; up to 10 credit hours from another institution may be transferred upon approval.

A 3.00 (B) average or higher must be maintained in all course work.

Six semesters of residence are required beyond the bachelor’s degree, of which four must be at the University of Colorado; this may include two semesters for the master degree. Students with a University of Colorado master degree in geography, with departmental approval, may apply all credit hours from 5000 or above courses (except thesis credits) to the Ph.D. requirements.

GEOLOGICAL SCIENCES

Degrees.........................B.A., M.S., Ph.D.
The options available in the undergraduate program in geology are trifold: geology, geophysics, or environmental geoscience. Each program leads to the B.A. degree. The environmental geoscience option offers flexibility and broad training; the geology and geophysics options offer more traditional paths of training. All options provide a strong basis for graduate study and professional employment. Students who are uncertain as to which option best suits their needs should consult a departmental advisor. The B.A. in geology is also excellent preparation for later professional work in other fields, such as law, journalism, economics, engineering, etc.

Students who do not plan a career in the geosciences, or who would like to combine a basic knowledge of geology with that of some other field, should consider using geology as one subject in a distributed studies major. Individual programs can be tailored for such students.

Students interested in geological sciences may want to consider the Baker Residential Academic Program. See that section in the beginning part of this chapter for further information.
The undergraduate program emphasizes course work in theoretical, laboratory, and field-oriented aspects of the geological sciences. The nearby Rocky Mountains provide a natural laboratory for the study of geological materials and processes.

The undergraduate degree in geology emphasizes knowledge and awareness of:

- the ways in which Earth responds to internal and external forces; the physical, chemical, and biological evolution of Earth; the nature of the materials of which Earth is made; and mineralogy and petrology of igneous, metamorphic, and/or sedimentary rocks;
- interactions of the solid Earth with the hydrosphere and atmosphere, and how these interactions affect mankind and the environment;
- the processes of sedimentation, the use of stratigraphy, paleobiology of marine environments, and the role of geophysics and tectonics in understanding the nature of Earth and its history;
- the roles of physics, chemistry, biology, and mathematics in understanding geological processes;
- the history of discoveries and ideas that have contributed to our current awareness of the Earth and the planetary system;
- appropriate techniques for measuring and recording both past and present Earth processes; and
- the methods used in the field to map and interpret the diverse variety of rock types and structures.

In addition, students completing the degree in geology are expected to acquire the ability and skills to:

- read and critically evaluate relevant geological literature;
- observe and measure, in the field and laboratory, physical, chemical, and biological aspects of rock successions and to develop models of Earth history;
- present geological information in both written and oral form; and
- use appropriate tools from mathematics, chemistry, physics, and biology, including computers, to solve geological problems.

Bachelor's Degree Programs

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below.

All majors are required to take the following courses, and also must demonstrate a basic ability to work interactively with computers. Information on how to satisfy the requirements for computer literacy is available in the departmental office.

Required Courses
GEOL 1010 and 1020 Introduction to Geology 1 and 2 or GEOL 1060 and 1070 Global Change 1 and 26

GEOL 2700 Introduction to Field Geology ...2
GEOL 3010 Introduction to Mineralogy3
GEOL 3050 Computer-Assisted Geologic Techniques.................................2
GEOL 4960 Writing in Geosciences.........1
CHEM 1111 and 1131 General Chemistry 1 and 2 or CHEM 1151 and 1171 Honors General Chemistry 1 and 2.................5-6
MATH 1300 and 2300 Analytical Geometry and Calculus 1 and 2 or MATH 1310 and 1320 Calculus 1 and 2 with Computer Applications or APPM 1350 and 1360 Calculus for Engineers 1 and 28-10
PHYS 1110, 1120, and 1140 General Physics 1 and 2 and Experimental Physics 19

Note: GEOL 1080 Geology Laboratory is also recommended, particularly for students taking GEOL 1010 and 1020. GEOL 1110 Global Change Laboratory is recommended for students taking GEOL 1060 and 1070.

Geology Option

Students electing the geology option are required to take the following additional courses:

Required Courses
GEOL 3020 Petrology3
GEOL 3120 Structural Geology 1.........4
GEOL 3430 Sedimentology and Stratigraphy4
Two 2-credit-hour advanced (4000-level) field geology modules ..4
And any two of the following courses:
GEOL 3320 Introduction to Geochemistry ...3
GEOL 3410 Paleobiology3
GEOL 4130 Principles of Geophysics3

Environmental Geoscience Option

Students electing the environmental geoscience option are required to take the following additional courses:

Two 2-credit-hour advanced (4000-level) field geology modules ..4
GEOL 3030 Introduction to Hydrogeology ...3
GEOL 3320 Introduction to Geochemistry ...3
GEOL 3430 Sedimentology and Stratigraphy4

One course from Group A below, one course from Group B below, and a third course from either A or B:

Group A
GEOL 3023 Statistics for Earth Sciences3
GEOL 4093 Remote Sensing of the Environment ..4

Group B
GEOL 3040 Global Change: The Recent Geological Record3
GEOL 3120 Structural Geology 1............4
GEOL 3520 Environmental Issues in Geosciences ..3
GEOL 4241 Principles of Geomorphology ...4

Geology and Environmental Geoscience Options

Students in either of these options must take additional 3000- or 4000-level courses so that the total number of upper-division hours in geological sciences is at least 28 hours. Any upper-division course is acceptable, with the exception that only one of the following may be counted toward the 28-hour minimum in the geology option:

Required Courses
GEOL 3040 Global Change: The Recent Geological Record ..3
GEOL 3070 Introduction to Oceanography 3
GEOL 3520 Environmental Issues in Geosciences ..3
GEOL 3620 Controversies in Planetary Geology ..3
GEOL 3630 Great Geological Controversies3
GEOL 3720 Evolution of Life: The Geologic Record ..3
GEOL 4080 Societal Problems and Earth Sciences ..3
GEOL 4500 Critical Thinking in the Earth Sciences ..3
GEOL 4950 Natural Catastrophes and Geologic Hazards ..3

Geophysics Option

Students electing the geophysics option are required to take the following additional courses:

Required Courses
GEOL 3020 Petrology3
GEOL 3120 Structural Geology 1............4
GEOL 4130 Principles of Geophysics3
GEOL 4714 Field Geophysics2
PHYS 2130 General Physics 33
PHYS 2140 Methods of Theoretical Physics ..3
PHYS 2150 Experimental Physics Lab3
PHYS 3210 Analytical Mechanics3
PHYS 3310 Electricity and Magnetism3
MATH 2400 Analytical Geometry and Calculus 3 ..4

APPM 2360 Introduction to Linear Algebra and Differential Equations.........................4

Additional information on required courses and other departmental requirements may be obtained from the departmental office. Students should consult the department for a list of current major requirements.

Transfer students must satisfactorily complete a minimum of 12 credit hours of advanced work (3000-level or above) in the Department of Geological Sciences in Boulder if they wish to obtain a degree in geology from CU-Boulder. Before registering for the first time, or within the first week of the semester, such students must see a member of the departmental academic progress committee to have previous course work in geology, math, and allied sciences evaluated.

Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in geology, students should meet all college requirements plus
specific departmental requirements. These departmental requirements vary slightly between the three major options. Detailed information is available from the department office, but in general these requirements include:

- Declare a geology major and begin course work in the major during the first semester freshman year.
- Meet with a departmental advisor prior to the second and fifth semesters and during the seventh semester.
- Complete at least 33 credit hours (geology and environmental geoscience options; 44 credit hours for geophysics option) required for the major by the end of the fourth semester.
- Complete at least 47 credit hours (geology and environmental geosciences options; 63 credit hours for geophysics option) required for the major by the end of the sixth semester.
- Complete the remaining requirements for the major by the end of the eighth semester.

Minor Program

A minor is offered in geology. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For further information consult the Web at www.colorado.edu/ArtsSciences/minors/minors.html.

Geology Honors Program

Opportunity is provided for qualified geology majors to participate in the geology honors program and graduate with honors (cum laude, magna cum laude, or summa cum laude) in geology. Students interested in the honors program should contact the departmental honors advisor during their junior year.

Geology Internship Program

This program is an academically supervised opportunity for geological science majors to work with public or private organizations. Students interested in the internship program should contact the departmental internship advisor during their junior year.

Graduate Degree Programs

Students interested in graduate work in the geological sciences should carefully read the detailed information regarding admission, registration, and degree requirements that is available from the departmental office. A brief summary follows.

All students applying for admission must take the Graduate Record Examination. Results of this examination are used both for determining admittance and for initial academic counseling.

Entering students normally have completed at least 24 semester hours of basic courses in geological science and two semesters each of chemistry, physics, and calculus. In some cases, exceptional undergraduate preparation in other fields of science, mathematics, or engineering may substitute for part of the 24 hours in geological science.

Initial counseling is provided on an individual basis by the departmental committee on academic progress. Thereafter, each student acquires an advisory committee which provides guidance throughout the degree program.

Master’s Degree

Candidates for the master’s degree in geological sciences must complete at least 24 credit hours of graduate course work plus a thesis (plan I), or 30 credit hours of graduate course work without a thesis (plan II).

The plan II program requires at least 3 hours of GEOL 6960 (Plan II Master’s Research) under the supervision of the advisory committee. For both plans, at least 24 credit hours must be completed at the 5000 level or above. See Graduate School specifications for further information.

Doctoral Degree

Candidates for the doctoral degree must complete at least 30 credit hours in course work numbered 5000 or above, of which at least 20 must be taken at CU-Boulder. In addition to course work, candidates must take a total of at least 30 hours of GEOL 8990 doctoral dissertation hours, with not more than 10 of these in any one semester and not more than 10 before the comprehensive examination is passed.

The Department of Geological Sciences participates in the interdepartmental Ph.D. program in geophysics and hydrology. For more information about this program, consult the Graduate School chapter of this catalog.

GERMANIC AND SLAVIC LANGUAGES AND LITERATURES

Germanic Studies Degree

- B.A.

German Degree

- M.A.

Russian Studies Degree

- B.A.

Undergraduate students may choose to major in either Germanic studies or Russian studies.

The major in Germanic studies is an interdisciplinary program focusing on study of the German language, its manifestations in history, and its usage in the current cultural and social context; the literary, artistic, and philosophical aspects of German culture in the past and the present; the major historical events and developments in Germany and its neighboring countries, and the current political institutions and dynamics in Germany within the broader European framework.

The major in Russian studies is an interdisciplinary program focusing on study of the current cultural and social context, and the literary, artistic, and historical aspects of Russian culture in the past and present. The aim of the language curriculum is to equip students to read, write, speak, and understand Russian on a level allowing communication with natives and other users of the language. Before registering for a course, students should consult with a departmental advisor concerning appropriate placement.

Students interested in Russian studies should consider a double major in order to increase their career opportunities. Prospective teachers might combine Russian studies with a major in another foreign language, while those preparing for a career in government, business, or social services should benefit from a combination of Russian studies and a social science or business major. Students structure their curriculum according to the departmental checklist for majors, in close consultation with a departmental advisor.

The undergraduate degree in **Germanic studies** emphasizes knowledge and awareness of:

- the fundamental outlines of German history and culture;
- the history of modern German literature from 1750 to the present; and
- cultural developments in modern German-speaking Central Europe, such as the arts, the cinema, and architecture; and
- central issues such as the Nazi era and the Holocaust, the roles of women, German attitudes toward non-Germans, German culture after reunification, and their reflection in German literature, arts, and media.

In addition, students completing the degree in Germanic studies are expected to acquire the ability and skills to:

- read German at a level at which critical literary and cultural analyses can be performed;
- write and speak German sufficiently to participate in critical discussions and write critical essays; and
- speak and comprehend German sufficiently for all situations in daily life, especially the business and professional sectors of German life.

The undergraduate degree in **Russian studies** emphasizes knowledge and awareness of:

- the fundamental outlines of the history of Russian literature and culture from the Middle Ages to the present day;
- the major Russian creative writers of the 19th and 20th centuries;
- the historical context of Russian literature and culture; and
- basic critical methodologies as they relate to the study of Russian literature.

In addition, students with a degree in Russian studies are expected to acquire the ability and skills to:
• comprehend contemporary Russian, written or spoken, to a degree permitting sophisticated analysis of cultural texts;
• analyze Russian literary texts and give a reasoned response to them in literate English; and
• write and converse in Russian at their own intellectual level.

Bachelor's Degree Programs

Germanic Studies

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below.

Required Courses

Semester Hours

As of August 1, 1997, the major requirement in Germanic studies is 34 hours beyond GRMN 2010 (with grades of C- or above). Students who declared their major before August 1, 1997, will continue to fulfill the requirements that were in effect at the time they declared a major. Students design their own major in consultation with the undergraduate advisor and a faculty mentor.

Completion of the following courses is required; only 3 of these courses may be lower level courses. Students who test out of GRMN 2020 are required to complete 33 hours.

A. German Language Courses

Completion of the following German language courses or demonstration of third-year proficiency (GRMN 4010 is required of all majors, and must be taken at CU-Boulder); GRMN 2020 Intermediate German 2; GRMN 3010 Advanced Conversation and Grammar; GRMN 3020 Professional German; GRMN 4010 Advanced Composition, Conversation, and Stylistics.

Students have the option of taking the exam Zertifikat Deutsch als Fremdsprache in GRMN 3010, the exam Deutsch für den Beruf in GRMN 3020, and the exam Zentrale Mittelstufenprüfung in GRMN 4010.

B. German Culture, Literature, and other Electives

Including GRMN 4550 Senior Seminar, which must be taken at CU-Boulder. Any four courses from Groups I and/or II (courses may be taken entirely in either group or in any combination).

I. Courses Taught in German

GRMN 3110 German Literature from 1910 to Present; GRMN 3120 Modern German Literature from 1750 to 1910; GRMN 3140 Current Issues in German Literature; GRMN 3520 Open Topics in the Cultural Context; GRMN 3930 Internship; GRMN 4030 Business German (students in GRMN 4030 have the option of taking the exam Prüfung Wirtschaftsdeutsch International); GRMN 4330 The Age of Goethe; GRMN 4340 Seminar in German Literature; GRMN 4370 Introduction to German Literary History 1; GRMN 4380 Introduction to German Literary History 2

II. Courses Taught in English

GRMN 1601 Introduction to Modern German Culture and Civilization; GRMN 1602 Metropolis and Modernity; GRMN 2501 20th-Century German Short Story; GRMN 2502 Representing the Holocaust; GRMN 3501 German-Jewish Writers; GRMN 3502 Literature in the Age of Goethe; GRMN 3503 German Film and Society 1; GRMN 3504 Topics in German Film; GRMN 3505 The Enlightenment: Tolerance and Emancipation; GRMN 3513 German Film and Society 2; GRMN 4501 Seminar: Literature in Cultural Context; GRMN 4502 Nietzsche: Literature and Values; GRMN 4503 Issues in German Thought; GRMN 4504 Goethe Faust

C. Area Courses

If only one course is taken from Section C, another course from either Section A or B may be substituted.

ECON 4514 Economic History of Europe; FINE 4339 Modern Art 3; HIST 4312 19th-Century Europe; HIST 4412 20th-Century Europe; HIST 4413 German History to 1849; HIST 4423 German History since 1849; HIST 4433 Nazi Germany; HIST 4613 History of Eastern Europe to 1914; HIST 4623 History of Eastern Europe since 1914; HIST 4414 European Intellectual History, 1750–1870; HIST 4424 European Intellectual History, 1870–Present; HIST 4444 Topics in European Thought: 20th Century; INTB 6000 Introduction to International Business; INTB 6800 International Field Study German-related (INTB 6000 and 6800 are offered at CU-Denver; students admitted to the B/A.M.S.I.B. program with CU-Denver may use these courses as area requirements); PHIL 4040 Studies in 20th-Century Philosophy; PHIL 4250 Marxism; PSCI 4002 Advanced Comparative Politics—Western Europe; PSCI 4213 Europe in the International System; SCAN 2201 Introduction to Modern Scandinavian Culture and Society; SCAN 2202 The Vikings; SCAN 3202 Old Norse Mythology; SCAN 3203 Masterpieces of Modern Scandinavian Literature; SCAN 3204 Medieval Icelandic Saga; SCAN 3205 Scandinavian Folk Narrative

D. Required for Students in the Secondary Teacher Certification Program

GRMN 4100 Applied Linguistics; GRMN 4450 Methods of Teaching German; and GRMN 4460 High School German Teaching Plus other requirements as stated by the School of Education.

Note: GRMN 4450 and 4460 can be taken only after full admission to the teacher education program in the School of Education.

Minor Program

A minor is offered in Germanic Studies. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For further information consult the Web at www.colorado.edu/ArtsSciences/minors/minors.html.

Study Abroad

The department strongly recommends that all majors take part in study abroad. The university programs in Regensburg, Göttingen, and Tübingen provide a full year of study abroad. The fall or spring semester in Berlin provides study on culture, ethnicity, and nationalism. Kassel provides the opportunity for language study during the summer for a shorter period of time. Please consult with the major advisor. For further information on study abroad programs, see International Education in this catalog.

Russian Studies

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below.

Required Courses

Semester Hours

Completion of 38 hours with grades of C- or better. (None may be taken as pass/fail.) Note: RUSS 1010 and 1020 will not be counted toward the 38 hours required for the bachelor’s degree in Russian. Students are required to structure their curriculum in close consultation with a departmental advisor. Transfer credit must be approved by the department.

Students with advanced Russian language skills are strongly encouraged to meet with a departmental faculty advisor to discuss language placement. Students who have Russian language transfer credit and/or students who are Russian language native speakers may enter the program at the upper-division level, up to RUSS 4010. In the case of advanced language placement, the minimum of 30 hours, of which 18 must be upper division, will be required to complete the major in Russian studies. To meet this requirement the student may take available Russian courses from either major track approved by the departmental faculty advisor. Students who place out of Russian language courses required for the major must replace the credits with additional course work in Russian studies. Any substitutions to major course work must be pre-approved by the Russian faculty advisor.

Note: Beginning or middle-level language course requirements may be met by transfer credit or by testing out of the course. Students who enter the program at the third-year level must complete at least 18 credit hours in residence in courses numbered 3000 or above with grades of C- or better. (None may be taken pass/fail.) Students who enter at and enroll in Russian language courses at the 3000- or 4000-level may not receive credit for lower-division Russian language courses, unless lower-division language course work was completed prior to registration for 3000- and 4000-level Russian language courses.

Track A—Russian Language and Culture

RUSS 2010 Second-Year Russian 1…………4
RUSS 2020 Second-Year Russian 2…………4
RUSS 3010 Third-Year Russian 1; RUSS 3020 Third-Year Russian 2…………3
RUSS 4010 Advanced Conversation and Composition 1 ……………………3
RUSS 4020 Advanced Conversation and Composition 2 ..3
RUSS 2211 Introduction to Russian Culture or RUSS 2221 Introduction to 20th-Century Russian Culture ...3
RUSS 3000 Advanced Conversation or RUSS 3050 Business Russian3
RUSS 4210 Open Topics: Russian Literature and Culture ..3
RUSS 4811 19th-Century Russian Literature ..3
RUSS 4821 20th-Century Russian Literature and Art ..3
One 3000- or 4000-level Russian course not listed above ..3

Track B—Russian Culture and Literature
RUSS 2010 Second-Year Russian 1 ..4
RUSS 2020 Second-Year Russian 2 ..4
RUSS 2211 Introduction to Russian Culture ..3
RUSS 2221 Introduction to 20th-Century Russian Culture ..3
RUSS 3301 Contemporary Issues in Russian Film ..3
RUSS 3502 Ideals and Values in Modern Russia ..3
RUSS 4811 19th-Century Russian Literature ..3
RUSS 4821 20th-Century Russian Literature and Art ..3
RUSS 4431 Dostoevsky ..3
RUSS 4441 Tolstoy ..3
One 3000-level Russian language course (3000, 3010, 3020, or 3050)3
One 3000- or 4000-level RUSS course not listed above ..3

Language Placement
One year of high school Russian is usually considered equivalent to one semester of college Russian. Thus, a student with two years of high school Russian should enroll in RUSS 2010. Students who think that they should be placed at a level different from the normal one should consult the department for advice. Placement level is determined in consultation with the department and should be done before registration.

Graduating in Four Years
Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of "adequate progress" as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in Germanic or Russian studies, students should meet the following requirements:

- Begin to study the language in the freshman year, or have received AP credit.
- In consultation with the major program advisor before the end of the drop/add period in the first semester, plan a tentative schedule of courses to be taken over eight semesters.
- Discuss progress toward the degree each semester with the major advisor.

Note: Although these requirements apply only in cases in which students are seeking to graduate under the terms of the four-year guarantee, they are good advice for all majors. Consult the program advisor about the major at any time.

Minor Program
A minor is offered in Russian Studies. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For further information consult the Web at www.colorado.edu/ArtsSciences/minors/minors.html.

Study Abroad
The department strongly recommends that all Russian majors take part in the university summer language program in St. Petersburg. For further information, see the International Education section of this catalog.

Courses Taught in English
A number of courses are offered in translation. These courses generally require no previous study in the language, history, or culture of the area involved, and are open to all interested students, regardless of major.

Scandinavian
Courses are offered in English on Norwegian, Swedish, and Scandinavian culture and civilization. The language courses satisfy arts and sciences language requirements for the B.A. and B.F.A. degrees. In addition, there is an exchange program with Uppsala University in Sweden. At least two semesters of Swedish are required for application to the program. A minor is offered in Scandinavian.

Concurrent B.A./M.A. Program in Germanic Studies
Highly motivated undergraduates majoring in Germanic studies at CU-Boulder have the opportunity to enter a B.A./M.A. program, thereby earning both the B.A. and the M.A. in five years. The concurrent degree program offers a unique academic credential designed to produce skilled graduates for a variety of occupations. Students must make written application no later than April 1 of the sophomore year. A minimum GPA of 3.25 for all courses is required, as well as three letters of recommendation indicating strong potential for advanced, intensive work in Germanics. The recommended track requires a total of 58 hours of courses, with graduate courses in the fourth and fifth years only. Students should have completed most of their MAPS/core requirements (at least 30-37 hours) by the end of the sophomore year. Only CU-Boulder students may apply. For specific requirements please contact the department.

Master’s Degree in German
Students wishing to pursue the interdisciplinary master’s in German should read carefully Requirements for Advanced Degrees in the Graduate School chapter of this catalog. The following prerequisites and requirements apply: B.A. or equivalent in German or B.A.-level proficiency in German with a B.A. in a related field; general knowledge of the German-speaking countries’ literature, history, and culture; 24 hours of approved course work and a master’s thesis (6 hours), or 30 hours of course work without thesis; and reading knowledge of one modern foreign language in addition to German and English, to be demonstrated by approved course work or by examination. For specific requirements please contact the department.

HISTORY

Degrees..B.A., M.A., Ph.D.

The undergraduate degree in history emphasizes knowledge and awareness of:
- the main topics in the political, social, cultural, and economic history of the United States, from its origins to the present;
- the main topics in the political, social, cultural, and economic history of western civilization, from its origins in antiquity to the present;
- the main topics in the political, social, cultural, and economic history of one or more geographic areas outside Europe and America;
- one area of the world in more detail—the United States, Europe, or world areas acquired through upper-division study; and
- methodology in historical studies.

In addition, students completing the degree in history are expected to acquire the ability and skills to:
- research and conduct an investigation, consulting appropriate works for developing a bibliography;
- distinguish between primary and secondary sources, analyze arguments and interpretations, and recognize interpretative conflicts;
- interpret evidence found in primary sources and develop an historical argument based on and sustained by the evidence available; and
- produce historical essays that are coherent, cogent, and grammatically correct.

Bachelor’s Degree Program
Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below.

Required Courses Semester Hours
Complete either 36 or 39 hours in history courses with grades of C- (1.7) or better (21 or 24 hours must be upper division).
HIST 1015 The United States to 1865 and HIST 1025 The United States since 1865 or HIST 1035 Honors: The United States to 1865 and HIST 1045 Honors: The United States since 1865 ...6
HIST 1010 and 1020 Western Civilization 1 and 2, or HIST 1010 and 1040 Western Civilization 1 and Honors Western Civilization 2....6
Complete one of the following:
HIST 1038 Introduction to Latin American History; HIST 1208 Sub-Saharan Africa to 1800; HIST 1308 Introduction to Middle Eastern History; HIST 1608 Introduction to Chinese History; HIST 1708 Introduction to Japanese History..3
Complete a 12-hour concentration at the upper-
division level (including a 3000-level seminar) in
the history of one geographical area: the United
States, Europe, or World Areas (Africa, Asia, Latin
America, Middle East). Senior history majors
may, with instructor consent, substitute a
6000-level course for the seminar.
Complete either two upper-division history courses
outside the area of geographical concentration
plus HIST 4020 Capstone: Comparative His-
tory (three courses for a total of 36 hours in the
major); or two upper-division history courses
in each of two regions outside the area of concen-	ration (four courses for a total of 36 hours).
Note: All 1000- and 2000-level history courses
meet College of Arts and Sciences core curricu-
um requirements (check individual course
descriptions for the specific requirement met). HIST 1050, 1061, 1002, 1113, 1123, 1717, and all 2000-level courses do not fulfill major
requirements. Most 3000-level seminars in-
tended for history majors complete the critical
thinking requirement. Courses at the 4000-
level do not normally fill core requirements.
(A few courses do not conform to these rules.)

Graduating in Four Years
Students should consult the Four-Year Guar-
antee Requirements in this chapter for further
information on eligibility for the four-year
promise. The concept of “adequate progress”
as it is used here only refers to maintaining eli-
gibility for the four-year guarantee; it is not a
requirement for the major. To maintain ade-
quate progress in history, students should meet
the following requirements:
Declare the major no later than the second
semester of the freshman year.
Recommended sequence of courses:
Freshman year—Any two of the five required
lower-division courses....................................6
Sophomore year—Two of the five required lower-
division courses..6
Optional: one upper-division course if students
have completed an introductory course in
that area..3
Junior year—The one remaining required lower-
division course ...3
Two upper-division courses in area of
geographical concentration6
One upper-division course outside area of
concentration (may have been taken in
sophomore year) ..3
Senior year—Two upper-division courses in area
of geographical concentration, including
3000-level seminar.....................................6
One upper-division course outside area of
collection ..3
Either HIST 4020 Capstone: Comparative His-
tory, or two additional upper-division courses
outside area of concentration3 or 6
Note: No more than 45 credit hours in history
apply to graduation requirements. Students
must have a grade point average of at least 2.00
in the major in order to graduate. Students may
receive credit for HIST 1020 and/or 1015 and
1025 by obtaining a score of four or better on
the high school Advanced Placement history
test(s). (CLEP tests are not accepted.) Many
1000-level courses, most 3000-level seminars,
and all 4000-level courses count toward the 36-
39 credit hour major requirements. HIST 1051,
1061, 1002, 1113, 1123, 1717, and all 2000-
level courses count within the 45-credit hour
maximum in history but do not meet require-
tments toward the 36-39 credit-hour major.
Transfer students majoring in history must
complete at least 12 credit hours of upper-divi-
sion history courses taught by the University of
Colorado at Boulder faculty. In addition, 3000-
level critical thinking seminars and HIST 4020
must be taken on the CU-Boulder campus.

Minor Program
A minor is offered in history. Declaration of
a minor is open to any student enrolled at
CU-Boulder, regardless of college or school.
For further information consult the Web at
www.colorado.edu/ArtsSciences/minors/
minors.html.

Residential Academic Programs
Students interested in history may want
to consider the Smith Hall International
Program. See Residential Academic Pro-
grams in this section of the catalog for more
information.

Graduate Degree Programs
Students wishing to pursue graduate work in
history leading to candidacy for an advanced
degree should read carefully requirements for
advanced degrees in the Graduate School
chapter of this catalog. The following are spe-
cial departmental requirements. Additional
information should be obtained from the
Department of History.

Admission Requirements. For purposes of
admission to the graduate program, the verbal
portion of the Graduate Record Examination
is required and a score in the 80th percentile
or above is generally expected. Ph.D. appli-
cants who do not have an M.A. degree
from the department are encouraged to take the
advanced history portion of the GRE. For these
applicants, the department expects scores in
the 80th percentile or above on the verbal por-
tion and in the 70th percentile or above in the
history portion.

Master’s Degree
Prerequisites. As general preparation for
graduate work in history, a broad liberal arts
education is desired as well as a major in his-
...
ground in international affairs. To meet this need, the University of Colorado offers a comprehensive and flexible interdisciplinary program in international affairs leading to the B.A. degree.

The undergraduate degree in international affairs emphasizes knowledge and awareness of:

- the major political, economic, social, and cultural problems facing the international community, including international economic relations, world population, and resource utilization;
- the international political system in the broadest global context, international organizations and alliances, and foreign political systems and processes;
- the ethical issues involved in international relations;
- patterns of conflict and cooperation among nations;
- the chief historical factors that give rise to existing international institutions and processes; and
- the problems and issues in United States foreign policy.

In addition, students completing the degree in international affairs are expected to acquire the ability and skills to:

- analyze an international problem from a political, economic, historical, and cultural perspective;
- read, critically evaluate, and synthesize information obtained from international affairs literature;
- analyze international phenomena critically so as to separate the essential from the irrelevant and identify the probable; and
- communicate, orally and in writing, findings to other students of international affairs and to a broader audience.

Students interested in international affairs may want to consider the Smith Hall International Program offered through the residence halls. See Residential Academic Programs at the beginning of this chapter for further information.

Bachelor's Degree Program

Students must complete the general requirements of the College of Arts and Sciences and the required courses in the three categories listed below.

1. Core Courses. Completion of 39 hours with a grade of C(2.00) or better (none may be taken pass/fail), distributed as follows:

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 1000 Introduction to Economics or ECON 2010 Principles of Microeconomics</td>
<td>4-8</td>
</tr>
<tr>
<td>ECON 2020 Principles of Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>IAFS 1000 Global Issues and International Affairs</td>
<td>4</td>
</tr>
</tbody>
</table>

PSCI 2012 Introduction to Comparative Politics
PSCI 2223 Introduction to International Relations

Upper Division:
Complete the requirements listed below for general upper-division categories and the requirements for an area of concentration, senior seminar, and foreign language. There are two options.

Option I—Complete one course from each of the following seven categories and complete 9 hours of upper-division courses concentrating on a region outside the United States.

Option II—Complete one course from six of the following seven categories and complete 12 hours of upper-division courses concentrating on a region outside the United States.

No more than four courses out of the seven categories may be from one department. IAFS 3000 Special Topics in International Affairs could count for one upper-division category depending on the specific topic.

Development and Culture
ANTH 4500 Cross-Cultural Aspects of Socioeconomic Development or ANTH 4510 Applied Cultural Anthropology or ECON 3545 Environmental Economics or ECON 4610 Introduction to Economic Demography or ECON 4774 Economic Reform in Developing Countries or GEOG 3672 Gender and Global Economy or GEOG 3682 Geography of International Development or IAFS 4700 Global Perspectives and Political Philosophy, or LING 3545 World Language Policies or PSCI 4012 Global Development or PSCI 4732 Critical Thinking in Development International Economics/Business

ECON 3403 International Economics and Policy or ECON 4413 International Trade or ECON 4423 International Finance or INBU 4200 International Financial Management

Political Economy
ECON 4435 Economics of the Pacific Area or ECON 4784 Economic Development or ECON 4999 Economics in Action or INBU 4100 International Business and Marketing or PSCI 4272 Political Economy of Industrialized Society

Political Geography
GEOG 4712 Political Geography

International Relations/Behavior
ANTH 4580 Power: The Anthropology of Politics or PSCI 3121 War, Peace, and Strategic Defense or PSCI 3143 International Relations or PSCI 3193 International Behavior

Foreign Policy
HIST 4050 The World War II Era or HIST 4126 Diplomatic History of the U.S. since 1940 or HIST 4166 The War in Vietnam and Its Legacy or PSCI 3191 National Security Organization and Policy Making or PSCI 3163 American Foreign Policy or RLSI 4550 Religion, War, and Peace

Regimes, Norms, and Institutions
PHIL 3260 International Human Rights or PSCI 3062 Revolution and Political Violence or PSCI 4173 International Organization or PSCI 4183 International Law or PSCI 4213 Europe in the International System or PSCI 4703 Alternative World Futures or PSCI 4783 Global Issues

Critical Thinking Seminar
IAFS 4500 Post-Cold War World or IAFS 4800 Honors Seminar

2. Area of Concentration.
 a. General. International affairs majors must declare an area of concentration, and a language appropriate to that area of concentration, no later than the beginning of their junior year. IAFS 4930 Internship in International Affairs could count for either an upper-division category or for an area of concentration course depending on the internship.

 b. Requirements. International affairs majors are required to complete courses concentrating on the whole or part of a region outside the United States, including Africa south of the Sahara, Asia, Eurasia, Europe, Latin America, or Middle East.

Option I—Complete one course from each of the seven categories and complete 9 hours of upper-division courses in an area of concentration.

Option II—Complete one course from six of the seven categories and complete 12 hours of upper-division courses in an area of concentration.

While the area of concentration should be mainly in the social sciences, and must include one course in contemporary history, 3 hours of contemporary literature (taught in the foreign language) is also acceptable. Students wishing to use other areas of concentration must receive written approval from the director of the international affairs program.

3. Language Requirement. A third-year proficiency in a foreign language appropriate to the area of concentration. This requirement may be met by completion of two third-year, university-level grammar courses in the language with a grade of C (2.00) or better, or by certification from the appropriate department of such competence.

4. Recommendations.
 a. All international affairs majors should have a good command of the English language.
 b. Students should choose electives with a view to their relevance to this program.
 c. During the semester prior to graduation, each student must complete a statement of major status obtained from the office of the College of Arts and Sciences.
 d. Students in the international affairs program are encouraged to consider the possibility of participating in one of the study abroad programs directly or indirectly affiliated with the University of Colorado. Students wishing to participate in such a program should contact their advisor to work out an appropriate program. Some variation in the general requirements are permitted in these cases.

The specific courses that may be counted to meet the requirements in this program are determined by the committee on inter-
Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for information on eligibility for the four-year guarantee. The concept of "adequate progress" as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in international affairs, students should meet the following requirements:

Declare the major by the beginning of the second semester.
Begin language study by the third semester.
Complete the lower-division requirements by the end of the sophomore year.
Begin area of concentration courses in first semester of the junior year.
Begin upper-division general international affairs requirements in the junior year.
Successfully complete any remaining major requirements by the end of the eighth semester.

INTERNATIONAL AND NATIONAL VOLUNTARY SERVICE TRAINING (INVST)

Based on service-learning principles, INVST offers both independent courses and a comprehensive community leadership training program through the College of Arts and Sciences. In order to develop well-informed citizens who are trained as leaders to analyze and solve community problems as a lifetime commitment, the INVST program offers a unique educational experience to all majors through 16 credits of innovative classes.

During the two years of the program, approximately 16 students participate together as a cohort in theoretical work, skills training, and community service. Community service includes supervised positions and projects in the Boulder-Denver area during the academic year, as well as two summer programs, one in the U.S. and one abroad.

The INVST program combines academic and service perspectives on community life, social change, global development, democracy, and nonviolence. Specifically, the program integrates theory with the practice of community service, focusing on justice and sustainability. The program is available to students during their junior and senior years.

For further information, interested students should call the INVST Resource Office at 303-492-8045.
Minor Program
A minor is offered in kinesiology. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For further information consult the Web at www.colorado.edu/Arts-Sciences/minors/minors.html.

Concurrent B.A./M.S. Program
The Department of Kinesiology and Applied Physiology has developed a curriculum that results in simultaneously conferring B.A. and M.S. degrees following a five-year course of study. The program has been designed to provide qualified undergraduate students with an opportunity to enhance their knowledge base in the discipline, to increase their opportunities for employment, and to make their applications to medical/allied health professional schools more competitive. Candidates for the program are recruited from the undergraduate population of declared kinesiology majors during the beginning of their junior year. All interested candidates must apply by October 15. Decisions regarding acceptance into the program will be made by December 15. To apply, students must have a minimum GPA of 3.00 and three letters of recommendation. Approximately fifteen to twenty of the applicants will be selected on a competitive basis to begin the program.

Once accepted into the program, a student must maintain a GPA of 3.00 in all course work undertaken. By the completion of their senior year, students must have completed the 114 undergraduate credits as outlined in the concurrent degree plan options. Continuing students must register for at least 5 graduate course credits per semester, beginning with the fall semester of their senior year. Students deciding to discontinue the program may do so at any time during their course of study. All credits completed toward the concurrent degree program will be counted toward the completion of the requirements for a B.A. degree in kinesiology.

The curriculum for all students in the first year of the program is the same and is designed for students to complete their undergraduate requirements (114 credit hours) and 8 of their graduate credits. To complete the program in 5 years, students will be allowed to count 6 credits of their graduate work as electives for the kinesiology undergraduate degree and 6 pre-specified credits of undergraduate work toward the kinesiology master’s degree. See the section on “Master of Science Degree” below for further information.

Graduate Degree Programs
To obtain materials for application and for any additional information, address inquiries to the graduate staff assistant of the Department of Kinesiology and Applied Physiology. Entering graduate students must have an undergraduate preparation equivalent to the basic core curriculum requirements in kinesiology at the University of Colorado or departmental approval of their academic preparation for graduate study.

A mentor from the department graduate faculty must be obtained before application to the Ph.D. program can be completed. To secure a mentor, potential applicants need to submit the following materials to the department: a letter identifying possible faculty mentor(s) and detailing the applicant reasons for pursuing a doctoral degree; a transcript (unofficial versions are acceptable) from the applicant primary undergraduate institution; and a curriculum vita. The materials will be reviewed by the department in consultation with potential mentors. Potential applicants will be notified as to whether they should submit a formal application.

All graduate applicants must have an introductory statistics or research design course as a basic core requirement. In addition, students should have the knowledge base that would be obtained by completing the following courses: KAPH 4540 (Biomechanics), KAPH 4650 (Physiological Kinesiology), KAPH 4720 (Sensorimotor Neuroscience), and KAPH 4750 (Psychological Kinesiology). Satisfactory scores on the Graduate Record Examination tests also are required for admission to the department graduate program for regular or provisional degree status. These scores should be submitted at the time of application for admission to pursue a graduate degree.

Deficiencies. If the undergraduate preparation of a prospective graduate student is not adequate, the student may be allowed to pursue graduate study with the understanding that certain deficiencies must be completed. The nature and extent of these deficiencies are determined by the graduate coordinator and the graduate committee of the department.

Deficiencies in any area of the undergraduate major may be met by completing approved course work in the subject or by satisfactory examination. Courses taken to meet deficiencies may not be counted toward the master’s degree. All entering graduate students with deficiencies must satisfy at least one deficiency per semester until all deficiencies are satisfied. Graduate courses taken before removing deficiencies may be accepted for graduate degree credit only if prior approval of the graduate coordinator has been granted.

Master of Science Degree
Master’s candidates entering the graduate program may select plan I (thesis—30 credit hours, including 4-6 thesis hours) or plan II (nonthesis—30 credit hours including 3-credit hour research project) for the degree program. Once admitted to the program, each candidate is assigned to a graduate faculty member for advising. The initial meeting between the student and his or her academic advisor occurs as part of the orientation meeting scheduled each fall for incoming students. During their first academic year in the program, students should identify a graduate faculty member who will serve as their scholarly mentor for the development of a thesis or research project. The scholarly mentor assists the student in deciding upon the thesis and nonthesis options based upon a careful examination of the candidate academic record, his/her professional interests, and the availability of departmental resources. The comprehensive exam for thesis option candidates consists of an oral defense of the candidate thesis that integrates the course work completed for the degree as well as the research question under investigation. Nonthesis candidates are required to complete a research project that has been designed in consultation with the student advisor and complete a comprehensive exam. For these individuals, the comprehensive exam consists of an evaluation of the results of the research project as well as course work completed for the degree.

Basic Requirements. The following are required of all students for the master’s of science degree: KAPH 5100 Colloquium in Kinesiology and KAPH 5800 Advanced Statistics and Research in Kinesiology, a minimum cumulative GPA of 3.00 in all graduate work undertaken, satisfactory performance on the comprehensive exam, and completion of the requirements for advanced degrees as stipulated by the Graduate School. For students enrolled in plan I, KAPH 6950 Master’s Thesis is required; for students enrolled in plan II, KAPH 6840 Research Project is required.

Comprehensive Examination. All candidates are required to complete an oral examination covering the thesis or research project, as well as course work leading to the degree.

Doctoral Degree
Basic Requirements. Doctoral students must complete 30 credit hours of course work at or above the 5000 level and 30 semester hours of dissertation research (KAPH 8990). The following are required of all doctoral degree students: KAPH 5100 Colloquium in Kinesiology; KAPH 5800 Advanced Statistics and Research in Kinesiology; KAPH 6830 Professional Skills for the Research Scientist; satisfactory completion of the department preliminary review; and satisfactory completion of both the comprehensive and final examinations.

Advisory Committee. Within the student first semester, he or she should select an advi-
sor who will serve as chair of the student advisory committee. The advisory committee consists of the student advisor, a faculty member in the student interest area, and either the department graduate coordinator or the department chair. The committee assists the student in planning a doctoral program designed to develop a scholar in the student proposed area of expertise.

Preliminary Review. Following a doctoral student first academic year, usually consisting of 18-20 hours of course work designed to provide the student with an advanced foundation for graduate study in kinesiology, he or she completes the preliminary review process. This process is the responsibility of the student advisory committee. The preliminary evaluation includes an evaluation of the student academic status (GPA of at least 3.0 required), a detailed proposal of the student curriculum, written input from the student advisor, and other pertinent materials deemed necessary by the committee.

The outcome of the preliminary review process can be one of three judgments: pass, fail, or probation. A student who passes may continue to pursue the doctoral degree. A student who fails may not continue in the doctoral program. A student on probation must complete any deficiencies determined by his or her committee before continuing to pursue the doctoral degree. Regardless of the outcome, the committee submits a written report to the graduate coordinator for filing.

Comprehensive Examination. Once the academic course work has been completed, the doctoral student takes a comprehensive exam. For the exam, students are required to make an oral and written presentation of a hypothesis-based research plan in a well researched and documented subject area. The student is expected to provide a logical and literature-based defense of this research plan to the comprehensive exam committee. The written document shall contain, with the agreement of the committee, the following elements: scientific background, significance methods, and potential outcomes. Written documents should be limited to 20 pages. The membership of the committee (a minimum of five members, with at least one member from outside the department) is determined by the student advisory committee and submitted to the dean of the Graduate School for approval.

Students are given two opportunities to pass the comprehensive exam. The written portion of the exam is based upon the student course work and requires demonstration of broad-based knowledge in kinesiology. Specific areas to be evaluated are determined by the advisor and the student. All students must demonstrate a knowledge base in the core aspects of the curriculum.

Dissertation. Successful completion of the exam advances the student to doctoral candidate status, and the student may then begin a dissertation. All students must complete a formal written dissertation that conforms to the requirements established by the Graduate School at the University of Colorado at Boulder.

Final Examination. Following completion of the student dissertation, a final examination is scheduled. The exam consists of a written submission of the student dissertation work and an oral defense. The final examination committee consists of at least five members, one of whom must be from outside the department. Three of the members must be Boulder campus resident faculty.

LATIN AMERICAN STUDIES

The Latin American Studies Program is being discontinued. Students already enrolled in the program will continue to be served; however, no new students will be accepted. For further information contact the director of the program at 303-492-1698.

LESBIAN, GAY, BISEXUAL, AND TRANSGENDER STUDIES

The Lesbian, Gay, Bisexual, and Transgender Studies (LGBT) certificate program encourages students to think critically about the function of sexuality in the world around them. It asks philosophical questions such as why the social categories “homosexual” and “heterosexual” exist, and it asks historical questions about the specificity of lesbian, gay, bisexual and transgender lives.

Open to any student in the university, this interdisciplinary program consists of two required lower-division courses and a series of relevant courses in a number of different departments. Requiring 24 credit hours, the certificate is awarded upon completion of its requirements in addition to a bachelor’s degree in another field.

By developing an understanding of diverse sexual and gender identities, and the processes individuals move through in developing these identities, certificate program students apply the meaning and function of sexuality to a broad range of historical and contemporary institutions and societies.

For more information about the Lesbian, Gay, Bisexual, and Transgender Studies certificate program, contact the program director at 303-492-4834.

LINGUISTICS

Degrees B.A., M.A., Ph.D.

Linguistics is the study of all aspects of human language: how languages make it possible to transmit ideas and feelings; how we develop different styles and dialects; what will be required for computers to understand and produce spoken language; and how languages are used in everyday communication as well as in formal settings. Linguists try to figure out what it is that skilled speakers know and do by observing the structure of languages, the way children learn language, slips of the tongue, conversations, storytelling, the acoustics of sound waves, and the way people brains react when they hear speech or read. Linguists also reconstruct prehistoric languages, and try to deduce the principles behind their evolution into the thousands of languages of the world today.

The major in linguistics is useful for careers involving cognitive science, computer science, psychology, international business, language teaching, advertising, publishing, law, and documentation. Double majors and minors are encouraged with language, computer science, psychology, communication, sociology, anthropology, international affairs, philosophy, and education.

The core of the major is a set of courses, taught in the Department of Linguistics, on the nature of language. In addition, the major requires language courses offered by other departments (except for fluent speakers of languages other than English).

The undergraduate degree in linguistics emphasizes knowledge and awareness of:

- the fundamental architecture of language in the domains of phonetics and phonology, morphology and syntax, and semantics and pragmatics;
- the general variety of structures by which diverse human languages realize this architecture;
- the main interactions between language, culture, and society, including the role of language as a cultural institution and the social functions of language diversity; and
- the approaches to the study of language that are used by a discipline other than linguistics.

In addition, students completing the degree in linguistics are expected to acquire the ability and skills to:

- demonstrate proficiency in a second language equivalent to the third-year university level;
- infer language structures from the analysis of data from unfamiliar languages; and
- give coherent general interpretations of common language phenomena in terms of language structure and language use.
Bachelor's Degree Program

Majors in linguistics must complete a total of 33 hours of study in general linguistics, including 9 in a natural language (for exceptions, see below). Language study is taken in other departments.

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below.

Required Courses Semester Hours
Complete the following courses in general linguistics with grades of C or better:
LING 2000 Introduction to Linguistics3
LING 3100 Language Sound Structures3
LING 3430 Semantics3
LING 4420 Morphology and Syntax3

Natural Language. Students must complete with a grade of C (2.00) or better a minimum of 9 credit hours of study of a natural language other than English (including signed languages used by deaf communities). At least 5 credit hours offered in satisfaction of this requirement must be at the 3000 level or above. The natural language requirement may be satisfied by examination or waived for foreign students whose native language is not English; in these cases, students must still meet the college minimum major requirement of 18 credit hours of upper-division course work and 30 credit hours overall in the major. Students who wish to have their language requirement waived must obtain the consent of the undergraduate advisor before registering for the fall term of the junior year.

Electives. A minimum of 9 elective hours must be completed with a grade of C (2.00) or better. Courses may be chosen from the following:
LING 1000 Language in U.S. Society
LING 2400 Language and Gender
LING 3005 Cognitive Science
LING 3220 American Indian Languages
LING 3500 Language/Public Interest
LING 3545 World Language Policies
LING 3810 Undergraduate Seminar (for 1 credit hour; may be repeated once for credit)
LING 4100 Perspectives on Language
LING 4220 Language and Mind
LING 4560 Language Development
LING 4610 English Structure for TESOL
LING 4800 Language and Culture
Other upper-division linguistics courses may also be chosen if available; graduate courses may be taken with permission of the department.

The department recommends that prospective majors complete LING 2000 and at least two 1000-level foreign language courses (in the same language) by the end of the sophomore year, unless the student foreign language proficiency is already advanced.

Students whose preparation in grammar is weak should take LING 1500 Basic Traditional Grammar prior to enrolling in LING 2000. Note that LING 1500 does not count towards the 33 total credit hours needed for the major. The fall semester of the junior year should include LING 3430, a 2000-level foreign language course, and a linguistics elective or LING 4420. It must also include LING 2000 if that was not taken earlier. The spring semester of the junior year should include LING 3100, a linguistics elective, and a further 2000-level foreign language course (if needed to prepare the student for the required upper-division foreign language hours).

Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here refers only to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in linguistics, students should meet the following requirements:

Declare linguistics as a major by the beginning of the second semester.

Complete two semesters of study of a natural (spoken or signed) language other than English by the end of the sophomore year (fourth semester) at the latest, continue study at the 2000 level during the junior year at the latest, and take 5 credit hours at the 3000 level during the senior year (seventh and eighth semesters) at the latest. The language requirement is waived for native speakers of a language other than English, but if it is waived, 6 additional upper-division credit hours in linguistics must be taken.

Take LING 2000 (required) and LING 1000 or LING 2400 (electives) during the freshman or sophomore years and one or both of LING 3430 or 4420 during the fall of the junior year.

Take LING 3100 and an upper-division linguistics elective in the spring of the junior year.

Take the remaining courses as needed during the junior or senior year.

Note: A linguistics major who has been excluded from any upper-division linguistics course due to enrollment limitations will be given first preference for a seat in that course the following year if the exclusion is made known to the department staff within two weeks after it occurs. No declared linguistics major who still needs LING 2000 for fall of the junior year and attempts to register for it during the regular registration period for continuing students (spring of the sophomore year) will be excluded from the course.

Minor Program

A minor is offered in linguistics. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school.

For further information consult the Web at www.colorado.edu/ArtsSciences/minors/minors.html.

Study Abroad

Language study and some courses in the major may be completed in university or university-affiliated study abroad programs, and such study is recommended. Students interested in doing part of their major work in a study abroad program should discuss the matter with their advisor before going abroad. For information on study abroad programs, consult the Office of International Education.

Graduation with Honors

The honors program in linguistics offers the opportunity for highly motivated undergraduates to undertake a deeper and more individualized study of linguistics than is provided by the regular B.A. curriculum. Linguistics majors with an overall grade point average of 3.30 or higher are eligible to participate in the program. Honors that may be earned are cum laude (with honors), magna cum laude (with high honors), and summa cum laude (with highest honors).

Students interested in pursuing departmental honors are encouraged to consult with the departmental undergraduate advisor by the beginning of their junior year to ensure that they will be able to meet the requirements for departmental honors before graduation.

Concurrent B.A./M.A. Degree Program

The department has a five-year concurrent bachelor’s and master’s degree program, which is recommended only for the most serious and able undergraduate students. For further information, see the undergraduate advisor in the spring of the sophomore year or during the first week of the fall semester of the junior year.

Graduate Degree Programs

Students wishing to pursue graduate work in linguistics should carefully read Requirements for Advanced Degrees in the Graduate School chapter of this catalog and the detailed degree requirements available from the departmental office. A brief summary of M.A. and Ph.D. requirements follow.

Prerequisites. Applicants should hold a recognized baccalaureate degree. They should have considerable knowledge of a language other than their native language. This knowledge may have been gained by formal study or by use of the language in a country, community, or institution where it is the usual means of communication. The department may require formal study of a foreign language by graduate students whose proficiency in this area is less than the equivalent
of the college junior level. GRE scores are required from United States residents; scores are also required from native speakers of English who wish to be considered for fellowship aid. TOEFL scores are normally required from foreign applicants.

Master's Degree

The master's degree calls for a minimum of three semesters of study, though four semesters is usual. Students must complete LING 5030 Linguistic Phonetics, LING 5410 Phonology, LING 5420 Morphology and Syntax, and LING 5430 Semantics and Pragmatics. The M.A. may be taken with a specialization in Teaching English as a Second Language (TESOL). Students who wish to earn the certificate in Teaching English to Speakers of East Asian Languages (TESEAL) also must complete LING 5610 Structure of English for TESOL. All others must complete LING 5570 Introduction to Diachronic Linguistics. The remaining courses are normally taken at the 5000-level or above. Students in plan I (thesis) must complete a total of 30 semester hours, including 4 to 6 thesis hours. Students in plan II (nonthesis) must complete a total of 30 semester hours of course work. All students must pass a comprehensive written examination covering general topics in linguistics plus the thesis topic if any. The additional courses in linguistics may include two courses offered by the University of Colorado at Denver School of Education: LLC 5810 Techniques of Teaching ESL and LLC 5910 Field Experience in Literacy and Language Teaching, which must be taken by concurrent registration.

Doctoral Degree

To be admitted to the Ph.D. program, students must have completed course work equivalent to LING 5030 Linguistic Phonetics, LING 5410 Phonology, LING 5420 Morphology and Syntax, LING 5430 Semantics and Pragmatics, LING 5570 Introduction to Diachronic Linguistics, and LING 5450 Introduction to Formal Syntax. Students who do not have this preparation will be initially admitted to the M.A. program and reconsidered for admission to the Ph.D. program when these requirements are close to completion. Students may be admitted to the Ph.D. program before finishing the M.A.

In addition to phonology, syntax, semantics, and pragmatics, the department offers specializations in conversation analysis, historical linguistics, typological comparison, Amerindian linguistics, African linguistics, psycholinguistics, neurolinguistics, language development, cognitive linguistics, and computational modeling of language knowledge. Students should select a specialization and begin their own research as early as possible.

Thirty-six hours of course work are normally required for the Ph.D. The five required core courses are LING 7420 Syntax 1; LING 7410 Phonology 1; LING 6510 Language Structures; a research methods course such as LING 7000 Methods of Typological Research; and one course chosen from the following: LING 6300 Sociolinguistics, LING 7560 Language Acquisition, or LING 7570 Advanced Diachronic Linguistics. The remaining seven courses may include up to four courses in other departments appropriate to the specialization. All Ph.D. students must demonstrate the ability to read linguistic literature in either French or German.

As a Ph.D. preliminary examination, students submit a data-based research paper at the beginning of the second year in the Ph.D. program. The University comprehensive examination requirement is completed in two steps: the completion of a synthesis paper or a synthesis examination, followed by the defense of a dissertation prospectus.

MATHEMATICS

Degrees: B.A., M.A., M.S., Ph.D.

The undergraduate degree in mathematics emphasizes knowledge and awareness of:
- basic real analysis of one variable;
- calculus of several variables and vector analysis;
- basic linear algebra and theory of vector spaces;
- the structure of mathematical proofs and definitions; and
- at least one additional specialized area of mathematics.

In addition, students completing a degree in mathematics are expected to acquire the ability and skills to:
- use techniques of differentiation and integration of one and several variables;
- solve problems using differentiation and integration;
- solve systems of linear equations;
- give direct proofs, proofs by contradiction, and proofs by induction;
- formulate definitions;
- read mathematics without supervision; and
- utilize mathematics.

Bachelor's Degree Program

The department of mathematics offers two plans for earning a B.A. in mathematics. For each plan students must complete the general requirements of the College of Arts and Sciences as well as the required courses listed below.

To earn an undergraduate degree in mathematics plans I and II, students must take Calculus 1, 2, and 3 plus 24 credit hours of courses numbered 3000 or above with 9 credit hours at the 4000-level or above, with a grade of C- or better and with 2.00 (C) average for all attempted work in mathematics. The 24 credit hours must be fulfilled by a minimum of eight courses.

Before receiving a bachelor's degree in mathematics, students must take a standardized major field achievement test administered by the Department of Mathematics.

Note: Any APPM course that is cross-listed as a MATH course is considered by the Department of Mathematics to be a mathematics course.

Mathematics Plan I

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus 1, 2, and 3</td>
<td>12-14</td>
</tr>
<tr>
<td>Mathematics or MATH 3200 Introduction to Topology</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3130 Introduction to Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3140 Abstract Algebra 1</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4310 Introduction to Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

A two-semester upper-division sequence approved by the Department of Mathematics and upper-division math electives | 12 |

Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in mathematics plan I, students should meet the following requirements:

Declare major by the beginning of the second semester.

Complete Calculus 1, 2, and 3, and either MATH 3000, 3200, or 3130 by the end of the fourth semester.

Complete either MATH 3000 or 3200 and MATH 3130, 3140, and at least two optional upper-division 3-credit mathematics courses by the end of the sixth semester.

Complete MATH 4310, at least three optional upper-division 3-credit mathematics courses, and have begun an approved two-semester upper-division sequence by the end of the seventh semester.

Complete a total of eight upper-division 3-credit mathematics courses including an approved two-semester upper-division sequence by the end of the eighth semester.

Note: At least three of the eight courses must be at the 4000 level.

Mathematics Plan II

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus 1, 2, and 3</td>
<td>12-14</td>
</tr>
<tr>
<td>MATH 3130 Introduction to Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4430 Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4650 Intermediate Numerical Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>
Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of "adequate progress" as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in mathematics, students should meet the following requirements:

Declare the major by the beginning of the second semester.
Complete Calculus 1, 2, and 3, and MATH 3130 by the end of the fourth semester.
Complete MATH 4430 and 4650; at least one of the following: MATH 4330, 4450, 4470, or 4510; and at least one additional 3-credit hour upper-division elective by the end of the sixth semester.
Complete at least three optional upper-division 3-credit mathematics courses and begin an approved two-semester upper-division sequence by the end of the seventh semester.
Complete a total of eight upper-division 3-credit mathematics courses, including an approved two-semester upper-division sequence by the end of the eighth semester.

Secondary Licensure

The program for obtaining a secondary teaching license is handled by the School of Education and this program has requirements in addition to those needed for a mathematics degree. Teacher licensure candidates should talk to an advisor in the School of Education.

Residency Requirement

For the B.A. degree in mathematics, all students must have completed at least 12 credit hours of upper-division mathematics courses, with grades of C (2.00) or better, taken in the College of Arts and Sciences on the Boulder campus. Additional courses transferred from other universities or from other campuses of the University of Colorado that are used to meet the minimum 24-hour upper-division requirement must be approved by the Department of Mathematics. Courses accepted as mathematics credit but excluded from the minimum 24-hour upper-division requirement still count in the 45 maximum hours allowed in mathematics.

Undergraduate students planning to do graduate work in mathematics should take MATH 3140, 4310, and 4320, as well as fulfill the arts and sciences language requirement with German, French, or Russian.

Minor Program

A minor is offered in mathematics. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For further information consult the Web at www.colorado.edu/Arts-Sciences/minors/minors.html.

Graduate Degree Programs

The Department of Mathematics offers programs leading to the degrees M.A. or Ph.D. in mathematics and M.S. in applied mathematics. Students interested in any of these programs should read carefully the material describing the university requirements in the Graduate School chapter of this catalog.

The prerequisite for graduate work in mathematics is at least 30 credit hours in mathematics, including two semesters of advanced calculus (undergraduate real analysis, beyond calculus), a semester of linear algebra, and a semester of either modern algebra or differential equations, with a grade of C or better.

GRE scores are required to be considered for financial support.

The basic requirements for the various degrees are summarized here, and full details are available in the department office. For fulfillment of all course requirements, mathematics courses must be numbered 5000 or higher excluding MATH 5800. No language is required of master’s students.

To earn an M.A. degree under the thesis plan, a student must complete 24 credit hours of graduate course work at the 5000-level or above, including two courses that are approved full-year courses, and 6 credit hours of thesis work. For the nonthesis plan, 30 credit hours of course work, 24 of which must be at the 5000-level or above, are required. Two of those courses must be approved full-year courses. No more than 6 credit hours of seminars or independent study may be included in the 30-hour requirement.

For the M.S. degree in applied mathematics, 30 credit hours of graduate course work, 24 of which must be at the 5000-level or above, are required. Of these, 6 to 12 credit hours must be in an approved minor program outside the mathematics department.

To earn an M.A. degree or an M.S. degree, a student must pass a master’s examination based on the particular program of the student.

Before being admitted to candidacy for the Ph.D. degree in mathematics, a student must pass examinations in real analysis, modern algebra, and a third topic chosen by the student and the student advisor. The basic requirements for a Ph.D. degree in mathematics are as follows: demonstrate reading knowledge of French, German, or Russian (see departmental requirement sheet for language options); demonstrate competence in a modern scientific programming language; complete at least 30 credit hours of graduate course work and 30 credit hours of thesis; prepare a written thesis that contains substantial original contributions to mathematics; and successfully complete a final examination.

MEDIEVAL AND EARLY MODERN STUDIES

To the Middle Ages, the modern world owes the preservation and transmission of Latin and Greek; the development of a host of vernaculars; the evolution of Judaism and Christianity, and the rise of Islam; the renewed study of Roman law; the growth of a mercantile class; the creation of musical notation; the erection of ecclesiastical monuments; the foundations of constitutional government; and the institution of universities. The early modern period inherited and elaborated all these institutions and inventions, adapting them to fit new conceptions of man (and woman), church, and state.

The Committee on Medieval and Early Modern Studies is founded on the convictions that the period from c. 400 to c. 1800, conceived in a global context, is a dynamic cultural continuum and ever-evolving system; that study of both periods in tandem sheds new light on each; and that the unity and diversity of the pre-modern world can only be understood and appreciated from an interdisciplinary perspective. Medieval and Early Modern Studies therefore crosses boundaries of period, nation, language, and discipline, and the committee prime function is to facilitate and encourage interdepartmental study and teaching.

Courses throughout the curriculum are available to students whose area of specialization within a given department is the medieval and/or early modern period(s) and who wish to broaden their knowledge of the cultures of the period. With the approval of the major department, a coherent group of these courses may be accepted as a related program of study and as part of the requirements for an undergraduate degree. For additional details concerning these courses, see departmental listings.

For further information, and to inquire about the undergraduate certificate program, consult Professor Claire Farago, Co-Director, Committee on Medieval and Early Modern Studies, Department of Fine Arts, 318 UCB, Boulder, CO 80309-0318 or Professor Katherine Eggert, Co-Director, Committee
on Medieval and Early Modern Studies, English Department, 226 UCB, Boulder, CO 80309-0226.

MOLECULAR, CELLULAR, AND DEVELOPMENTAL BIOLOGY

Degrees B.A., M.A., Ph.D.

The undergraduate degree in molecular, cellular, and developmental biology emphasizes knowledge and awareness of:

• the biological sciences in general and detailed understanding of currently important aspects of cellular biology, molecular biology, biochemistry, genetics, and developmental biology; and

• the relationship of the specialty area to broader areas of science and to society in general, including ethical issues raised by current biological research and by the rapid growth of biotechnology as an important shaping force for the future.

In addition, students completing the degree in molecular, cellular, and developmental biology are expected to acquire the ability and skills to:

• learn detailed laboratory procedures rapidly when the need arises;

• demonstrate a scientific vocabulary and an understanding of research methods that permits the comprehension of articles from current journals, extraction of pertinent information, and judgment of the quality of the work described;

• evaluate a biological problem, determine which aspects are understood, and apply basic research methods and techniques to the unknown aspects; and

• communicate scientific concepts and analytical arguments clearly and concisely, both orally and in writing.

Bachelor's Degree Program

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below.

Required Courses Semester Hours
MCDB 1150 Introduction to Molecular Biology and 1151 Introduction to Molecular Biology Laboratory (Note 1) 4
MCDB 2150 Principles of Genetics and MCDB 2151 Principles of Genetics Laboratory (Note 2) 4
MCDB 3120 Cell Biology and MCDB 3140 Cell Biology Laboratory 5
MCDB 3500 Molecular Biology (Note 3) 3
MCDB 4620 Vertebrate Developmental Biology and MCDB 4630 Vertebrate Developmental Biology Lab or MCDB 4650 Developmental Biology and MCDB 4660 Developmental Biology Laboratory 5
Upper-division electives in MCDB. Must include at least two lecture courses. MCDB 3330, 3351, and 4400 may not be used. One non-MCDB course from the following list may be counted as an MCDB elective: CHEM 4731 or 4761; EPOB 3090, 3400, 3700, 3720, or 4190; KAPH 4720; and PSYC 4052 or 4072. 9
CHEM 1111 and 1131 General Chemistry 1 and 2 or CHEM 1151 and 1171 Honors General Chemistry 1 and 2 10-12
CHEM 3311 and 3331 Organic Chemistry 1 and 2 and CHEM 3321 and 3341 Laboratory in Organic Chemistry 1 and 2 or CHEM 3351 and 3371 Organic Chemistry 1 and 2 for Chemistry Majors and CHEM 3361 and 3381 Laboratory in Organic Chemistry 1 and 2 for Chemistry Majors 10-12
PHYS 1110 and 1120 General Physics 1 and 2 and PHYS 1140 Experimental Physics or PHYS 2100 and 2200 General Physics 1 and 2, or PHYS 1110 and PHYS 2020 9-10
MATH 1300 Analytic Geometry and Calculus 1 (Note 4) 5
It is strongly recommended that MCDB majors consult with a departmental advisor before applying AP or CLEP credit. Students majoring in MCDB who transfer biology credit from other institutions also must consult a departmental advisor.

Curriculum Notes

1. Previously MCDB 1050 and 1070. EPOB 1220 and 1230 are acceptable but are not recommended.
2. MCDB 2150 or a comparable genetics course is a strict prerequisite for MCDB 3500. MCDB 1060 and 1080 or EPOB 1220 and 1240 are acceptable alternatives for students who also completed MCDB 3400.
3. Replaces MCDB 3400, which did not have a genetics prerequisite. MCDB 2150 or transferred genetics credit is a strict prerequisite for MCDB 3500.
4. APPM 1350 or MATH 1310 are acceptable alternatives.

Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in molecular, cellular, and developmental biology, students should meet the following requirements:

The MCDB major must be started in the first semester for a student to be eligible for guaranteed four-year graduation. Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below. Adequate progress is defined as cumulative completion of at least one-fourth of the required course work for the major during each academic year, including the following specific requirements:

Either general chemistry or the introductory MCDB sequence must be completed during the first year.

General chemistry and the introductory MCDB sequence must both be completed by the end of the second year.

Organic chemistry and the second-level sequence in MCDB (cell biology and molecular biology) must be completed by the end of the third year.

Animal Use Policy

Biology is the science of life, and a major in it must include some hands-on experience with living organisms to be complete. Exercises involving the use of living animals or animal tissues are included, therefore, in MCDB laboratory courses. Majors with objections on moral grounds may arrange to limit their participation in these exercises, although their educational experience is compromised by doing so.

Nonmajors may take MCDB biology lecture courses without the accompanying laboratory. Laboratory courses in which living vertebrate animals or tissues are used are identified both in the course description section of this catalog and in the Registration Handbook and Schedule of Courses. For additional information, please contact the department.

Graduate Degree Programs

Opportunities for graduate study and original research, leading to the Ph.D. degree, are available in a variety of areas.

Molecular Biology. Includes gene regulation, virology, nucleic acid-protein interactions, chromosome structure and function, chromosome replication, microbial diversity, human genome structure, RNA structure, and catalysis.

Cell Biology. Includes cytoskeleton, biophysical cytology, vacuole assembly, analysis of yeast spindle pole bodies and vertebrate centrosomes, synthesis and secretion of glycoproteins and polysaccharides, defense responses in plants, and 3D high resolution reconstruction, biogenesis of mitochondria and chloroplasts, energy metabolism, assembly of membrane protein complexes, cell cycle regulation and checkpoints, and signal transduction.

Developmental Biology. Covers mechanisms and regulation of morphogenesis and cell growth, genetic control of development, molecular genetics of embryogenesis, sex determination, raf proteins and vulval development, and programmed cell death in nematodes, molecular genetics of Drosophila neurobiology, developmental genetics of Drosophila and Caenorhabditis, neural development in mice, transgenic mice, and muscle development and function.

Entrance Requirements and Prerequisites.

The graduate program of the Department of Molecular, Cellular, and Developmental Biology is sufficiently flexible to accommodate stu-
dent with a wide range of training. Students with bachelor’s degrees in any of the biological, biochemical, or physical sciences are encouraged to apply. Background necessary for the program includes the equivalent of undergraduate courses in cell biology, developmental biology, genetics, organic chemistry, biochemistry, chemical thermodynamics, differential and integral calculus, and general physics. Students accepted with deficiencies may demonstrate mastery of the required areas by taking appropriate undergraduate courses, by passing advanced-standing examinations, or by successfully completing graduate-level courses that require the undergraduate courses as prerequisites. Students admitted generally have independent research experience.

Areas of Study. All students are expected to develop competence in five areas: biochemistry, genetics, cell structure and function, developmental systems and mechanisms, and current research techniques of experimental biology. Students also are expected to develop their abilities as independent investigators who identify important questions in biology and design experiments to address those questions.

Doctoral Program

Course of Study. The faculty of the department offers a variety of courses to help graduate students acquire knowledge in the various areas of study. Further, students are required to work in at least three different laboratories to broaden their education and to help them identify the field of greatest interest for their thesis work.

Examination Sequence. At the time of entrance an advisory committee examines each student background and interests and recommends any necessary remedial work.

A preliminary evaluation is held at the end of the student second semester in residence to determine eligibility for continued graduate study and to identify areas of weakness.

The comprehensive examination, which is normally scheduled during the second year, consists of two parts: a written research proposal and an oral examination designed to test the student ability to defend the proposal, the breadth and depth of knowledge in the field of concentration, and the ability to communicate information and engage in scientific discussion.

Language. The department does not have a language requirement.

Thesis. The principal elements in graduate training are defining a thesis problem, investigating this problem with a coherent piece of research that constitutes a substantial contribution to knowledge, and writing a report on this work in the form of a thesis submitted to a departmental committee for approval. After completion of the thesis, each candidate for the Ph.D. degree is required to take a final oral examination on the thesis and related topics, and to present a public seminar.

Teaching. Generally, each candidate for the Ph.D. degree does two semesters of apprentice teaching. This obligation is usually met during the student first year of graduate study.

Course Requirements. A minimum of 30 credit hours of courses numbered 5000 and above, plus 30 hours of doctoral thesis, are required. Specific courses depend on the student background and field of specialization.

Master’s Program. In view of the strong research orientation of the fields involved, the department does not accept applications from students seeking the M.A. as a terminal degree. The master’s of arts degree, either with a thesis (plan I) or without (plan II), is awarded under special circumstances. Candidates must pass the preliminary examination and a comprehensive final examination. For plan I a thesis based on original research must be submitted. Final determination of whether a student follows plan I or plan II is made by the department.

MUSEUM AND FIELD STUDIES

Degree ... M.S.

Museum courses listed in this catalog may be taken with the approval of the student major department and the course instructor, although no undergraduate major is offered in museum studies.

Graduate training in anthropology, art history, history, botany, entomology, paleontology, and zoology is provided under the direction of museum faculty in cooperation with cognate departments and the museum and field studies program. Areas of study include:

- Anthropological interpretation: southwestern archaeology and ethnology
- Plant taxonomy, evolution, and phyto geography
- Vertebrate paleontology and Cenozoic stratigraphy
- Biology of aquatic invertebrates
- Systematics and population biology of insects of the Rocky Mountain Region
- Plant and insect interaction

Museum assistantships, research support from the Walker Van Riper and William Henry Burt museum funds, and other financial assistance are available to selected students. Students interested in working toward advanced degrees in the above areas under the direction of museum faculty should write the University of Colorado Museum, University of Colorado at Boulder, 218 UCB, Boulder, CO 80309-0218, or e-mail mfsinfo@colorado.edu.

Graduate Degree Program

The University Museum offers a program leading to the terminal degree of Master of Science, Museum and Field Studies. Please see Interdisciplinary Programs in the Graduate School section of this catalog.

Applicants accepted for graduate work by museum faculty must be admitted to the Graduate School.

Courses offered by museum faculty through cooperating departments are listed below.

<table>
<thead>
<tr>
<th>Semester Hours</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 4840 Independent Study</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>ANTH 5840 Guided Study</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>ANTH 6950 Master’s Thesis</td>
<td>1-6</td>
<td></td>
</tr>
<tr>
<td>ANTH 7840 Independent Research</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>EPOB 4840 or 4870 Independent Study</td>
<td>1-6</td>
<td></td>
</tr>
<tr>
<td>EPOB 6950 Master’s Thesis</td>
<td>1-6</td>
<td></td>
</tr>
<tr>
<td>GEOL 4470 or 5470 Paleontology of the Lower Vertebrates</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>GEOL 4480 or 5480 Paleontology of the Higher Vertebrates</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>GEOL 5610 Mammalian Micropaleontology</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>GEOL 5620 Field Problems in Vertebrate Paleontology</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>GEOL 5700 through 5790 Geological Topics Seminar</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>GEOL 4840 through 4849 Independent Study in Geology</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>GEOL 5840 through 5851 Graduate Independent Study</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>GEOL 6950 Master’s Thesis</td>
<td>1-6</td>
<td></td>
</tr>
</tbody>
</table>

NEUROSCIENCES AND BEHAVIOR STUDIES

The neurosciences and behavior certificate program encourages undergraduate students interested in how the brain controls behavior to take courses in the basic sciences while providing the means to specialize in neuroscience and behavior. Since this subdiscipline of the biological sciences spans a number of departments at the university (e.g., EPO biology, kinesiology, psychology, and MCD biology), students are encouraged to obtain greater academic breadth through interdepartmental course selection.

To obtain the certificate, a student must satisfy the requirements of a major and the certificate program, and maintain a grade point average of 3.20 or better.

For more information, see the Web page at www.colorado.edu/NeurosciencesandBehavior.

PEACE AND CONFLICT STUDIES

Peace and Conflict Studies is an interdisciplinary field that students can approach from any discipline.

The certificate program in Peace and Conflict Studies (PACS) is designed for students who have an intellectual or moral commit-
ment to issues of conflict and peace at any level, from intrapersonal to global, with varying emphases on action and theory. The certificate is issued by the dean of Arts and Sciences, and is awarded in addition to a bachelor’s degree in another field.

The program is not a replacement for the core curriculum or the departmental major, but a way of enhancing students’ interdisciplinary education. Students work with PACS faculty advisors to design individual certificate programs.

The certificate program involves 24 hours of credit, including two courses specific to and offered by the Peace and Conflict Studies Program. Students select 9 credit hours from relevant courses in their major, together with 9 credit hours of relevant courses outside the major.

Students from any major in the university, not just arts and sciences, are eligible for the program. The two required courses for the certificate are PACS 2500 Introduction to Peace and Conflict Studies and PACS 4500 Senior Seminar in Peace and Conflict Studies. Some of the topics covered in the required courses are: conflict resolution, nonviolence, human rights, ethnonationalism and current conflicts, ecological security, and imaging sustainable futures.

Interested students should contact either Professor Ira Chernus at 303-492-6169 or Professor Paul Wehr at 303-492-2623 for further information about the program and participating faculty.

PHILOSOPHY

Degrees............................B.A., M.A., Ph.D.

The undergraduate degree in philosophy emphasizes knowledge and awareness of:

- some of the principal philosophical texts in the history of western philosophy, from its beginnings in Greece to the late 19th century;
- some of the main currents in 20th-century philosophy, including some acquaintance with contemporary philosophical issues and modes of inquiry;
- a single major author or a single philosophical movement; and
- elementary formal logic.

In addition, students completing the degree in philosophy are expected to acquire the ability and skills to:

- form reasoned opinions about the issues—moral, religious, political, etc.—that educated people debate;
- understand, analyze, and evaluate complex arguments and theories;
- distinguish between the main thrust of an argument or position and what is ancillary to it; and
- discover and critically examine the underlying presuppositions of major systems of ideas or programs for action;
- see important connections between different systems of ideas or programs for action;
- explain difficult ideas and concepts in an informed, effective, and coherent manner;
- develop a thesis and present a coherent argument for it;
- write a clear and coherent essay; and
- engage in rational and productive discussion of issues and arguments.

Bachelor's Degree Program

For the undergraduate degree in philosophy, students must take 33 to 45 credit hours in philosophy, earning 33 hours with a grade of C- or better in philosophy and 2.00 (C) average for all work attempted in philosophy. Also, students must take 18 hours of upper-division work in philosophy with a grade of C- or better. No more than 8 credit hours of independent study may count toward the minimum requirements. All students must complete a minimum of 12 credit hours of upper-division course work for the major on the CU-Boulder campus.

Students are advised to consult the current Registration Handbook and Schedule of Courses for the most accurate information on prerequisites, since these sometimes vary with instructors.

Courses may be taken in any order providing prerequisites, if any, are met. However, the department strongly recommends completion of PHIL 2440, PHIL 3000, PHIL 3010, and PHIL 3480 in the first year of the major program.

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below.

Required Courses

- **History (three courses)..........................9**
 - PHIL 3000 History of Ancient Philosophy
 - PHIL 3010 History of Modern Philosophy
 - PHIL 4010 Single Philosopher

- **Logic (one course)**
 - One of the following courses3
 - PHIL 2440 Symbolic Logic
 - PHIL 4440 Mathematical Logic

- **Philosophical Writing (one course)**
 - PHIL 3480 Critical Thinking and Writing in Philosophy (prereq. or coreq., PHIL 2440 Symbolic Logic)..........................3

Values

1. The following required course3
 - PHIL 3100 Ethical Theory (prereq. or coreq., PHIL 3480 Critical Thinking and Writing in Philosophy)

2. One of the following additional courses.....3
 - PHIL 2140 Environmental Justice
 - PHIL 2200 Major Social Theories
 - PHIL 3110 Feminist Practical Ethics
 - PHIL 3140 Environmental Ethics
 - PHIL 3160 Bioethics

Metaphysics and Epistemology (two courses)

1. The following required course3
 - PHIL 3340 Epistemology (prereq. or coreq., PHIL 2440 Symbolic Logic)

2. One of the following additional courses (recommended prereq., PHIL 3340).................3
 - PHIL 3600 Philosophy of Religion
 - PHIL 4300 Philosophy of Mind
 - PHIL 4360 Metaphysics
 - PHIL 4400 Philosophy of Science
 - PHIL 4490 Philosophy of Language

Electives

- (two courses) (includes all courses which are at the 2000 level or above, and are not taken to satisfy any of the above requirements) ...6

Note: The department offers topically oriented majors that are interdisciplinary in nature, including law and society, and values and social policy. These majors require two semesters in the history of philosophy, as well as a series of core courses that vary according to the topic. A student intending to complete a topical major in philosophy should see either the appropriate advisor in the area or the departmental undergraduate advisor as soon as possible.

Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in philosophy, students should meet the following requirements:

- Declare major by the beginning of the second semester.
- Complete an average of 6.7 credit hours of required philosophy courses in each of the next five semesters.
- Meet with the undergraduate advisor at the time the major is declared.
- Complete PHIL 2440, PHIL 3000, and PHIL 3010 by the end of the fifth semester of study.

Minor Program

A minor is offered in philosophy. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For further information consult the Web at www.colorado.edu/ArtsSciences/minors/minors.html.

Graduate Degree Programs

Applicants for admission to the Graduate School for work toward a master’s or doctoral degree with a major in philosophy are expected to have had 18 or more credit hours in undergraduate courses in the subject.
through its M.A. and Ph.D. programs, the department offers three areas of concentration in graduate study: ancient philosophy, contemporary metaphysics, and values and social policy.

Beyond the required course work and examinations for the Ph.D., a diversified faculty provides opportunity for a wide range of specialization in the dissertation project. The department makes available a limited number of teaching assistantships and assists with job placement. Descriptions of all degree programs are available from the Department of Philosophy.

Students wishing to pursue graduate work in philosophy should note requirements for advanced degrees in the Graduate School of the department of Philosophy.

Students completing the degree in physics are expected to acquire the ability and skills to:

• apply physical principles to new situations;
• construct and assemble experimental apparatus, conduct and analyze measurements of physical phenomena, analyze properly experimental uncertainty, and make meaningful comparisons between experiment and theory; and
• communicate results of scientific inquiries verbally and in writing.

Bachelor's Degree Programs

Three different plans are available to students in physics. Because there is some flexibility within each plan, the department encourages students to pursue their own interests in setting up their curriculum. The final responsibility for fulfilling the requirements for the degree rests with the student.

Students who have declared physics as a major are required to consult with the departmental advisor at least once per semester. Even if first-year students are only considering physics as a major, they are strongly encouraged to visit the departmental advisor and discuss the situation. Because most of the advanced physics courses have various prerequisites, failure to settle on an appropriate plan of study early in the college career can result in delay and complications later.

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below.

Plan I

Primarily for those planning graduate work in physics, this plan includes 45 credit hours of physics courses.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 1110 and 1120 General Physics 1 and 2</td>
<td>8</td>
</tr>
<tr>
<td>PHYS 1140 Experimental Physics 1</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 2140 Methods of Theoretical Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2150 Experimental Physics 2</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 2170 Foundations of Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3210 Analytical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3220 Quantum Mechanics and Atomic Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3310 and 3320 Principles of Electricity and Magnetism 1 and 2</td>
<td>8</td>
</tr>
<tr>
<td>PHYS 3330 Junior Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 4230 Thermodynamics and Statistical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 4410 Quantum Mechanics and Atomic Physics</td>
<td>3</td>
</tr>
<tr>
<td>Electives in physics (chosen from the departmental list)</td>
<td>minimum 9</td>
</tr>
</tbody>
</table>

In addition, the following nonphysics courses are required:

MATH 1300 Analytic Geometry and Calculus 1 or APPM 1350 Calculus 1 for Engineers 4-5
MATH 2300 Analytic Geometry and Calculus 2 or APPM 1360 Calculus 2 for Engineers 4-5
MATH 2400 Analytic Geometry and Calculus 3 or APPM 2350 Calculus 3 for Engineers 4-5
APPM 2360 Introduction to Linear Algebra and Differential Equations, or both MATH 3130 Introduction to Linear Algebra and MATH 4430 Ordinary Differential Equations 4-6
CHEM 1111 and 1131 General Chemistry 1 and 2 or CHEM 1151 and 1171 Honors General Chemistry 1 and 2 10-12

Courses in the interdisciplinary or applied physics subjects may not be double counted with the required 33 hours of physics courses. Interdisciplinary or applied physics courses must be approved by the physics department, either by the pre-approved existing list of courses in each discipline or by a physics department mentor on a course-by-course basis. It is therefore imperative that students in plan II be in close contact with the physics department advisor.

Plan II

For students desiring either an interdisciplinary or an applied physics program. The interdisciplinary program includes astrophysics, atmospheric physics, geophysics, or a combination of a physics major with work in another area such as applied mathematics, biophysics, chemical physics, environmental sciences, philosophy and history of science, or pre-medicine. The applied physics program includes biotechnology, optics, fluid dynamics, or electronic devices. For the interdisciplinary program, 33 hours of physics courses, plus 3 hours of physics electives, plus 12 hours of interdisciplinary courses are required. For the applied physics program, 33 hours of physics courses plus 15 hours of applied physics courses are required.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 1110 and 1120 General Physics 1 and 2</td>
<td>8</td>
</tr>
<tr>
<td>PHYS 1140 Experimental Physics 1</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 2140 Methods of Theoretical Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2150 Experimental Physics 2</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 2170 Foundations of Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3210 Analytical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3220 Quantum Mechanics and Atomic Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3310 and 3320 Principles of Electricity and Magnetism 1 and 2</td>
<td>8</td>
</tr>
<tr>
<td>PHYS 3330 Junior Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 4230 Thermodynamics and Statistical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>Electives in physics (chosen from the departmental list)</td>
<td>minimum 9</td>
</tr>
</tbody>
</table>

In addition, the following nonphysics courses are required:

MATH 1300 Analytic Geometry and Calculus 1 or APPM 1350 Calculus 1 for Engineers 4-5
MATH 2300 Analytic Geometry and Calculus 2 or APPM 1360 Calculus 2 for Engineers 4-5
MATH 2400 Analytic Geometry and Calculus 3 or APPM 2350 Calculus 3 for Engineers 4-5
APPM 2360 Introduction to Linear Algebra and Differential Equations, or both MATH 3130 Introduction to Linear Algebra and MATH 4430 Ordinary Differential Equations 4-6
CHEM 1111 and 1131 General Chemistry 1 and 2 or CHEM 1151 and 1171 Honors General Chemistry 1 and 2 10-12
Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of "adequate progress" as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in physics plans 1 and 2, students should meet the following requirements:

Declare a major in physics in the first semester of the freshman year.
Complete PHYS 1110, 1120, 1140, MATH 1300 or APPM 1350, and MATH 2300 or APPM 1360 during the freshman year.
Complete PHYS 2140, 2150, 2170, CHEM 1111 or 1151, CHEM 1131 or 1171, MATH 2400 or APPM 2350, and APPM 2360 during the sophomore year. Either MATH 3130 or 4430 can substitute for APPM 2360.
Complete PHYS 3210, 3220, 3310, 3320 and 3330 during the junior year.
Students must meet with the physics advisor before the beginning of the junior year and get the fifth-semester approval for completion plan (FSACP). In addition to completing PHYS 4230 and 4410, plan I students must get approval to complete 9 credit hours in physics electives. In addition to completing PHYS 4230, interdisciplinary plan II students must complete 3 credit hours of physics electives and 12 credit hours of interdisciplinary courses. Applied physics students must complete 15 credit hours of applied physics courses.

Notes:
- Early in the first semester of the senior year, the student must meet with the physics advisor to have the statement of major status (a part of the graduation package provided by the College of Arts and Sciences) filled in. This includes a plan for completing the requirements of the major during the senior year and must be signed by the student and the advisor. Further details concerning the execution of the guarantee can be obtained from the department.

Plan III

For students intending to become secondary school teachers, this plan involves a minimum of 29 credit hours of physics (certification may require 6 more upper-division physics hours) and a minimum of 35 hours in education courses. An education student advisor is available by appointment at 303-492-2559.

Required Courses
Semester Hours

<table>
<thead>
<tr>
<th>Course Requirement</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 3330 Junior Laboratory</td>
<td></td>
</tr>
<tr>
<td>ASTR 1030 Accelerated Introduction to Astronomy</td>
<td></td>
</tr>
</tbody>
</table>

In addition, the following non-physics courses are required:

<table>
<thead>
<tr>
<th>Course Requirement</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1111 and 1131 General Chemistry 1 and 2 or CHEM 1151 and 1171 Honors General Chemistry 1 and 2</td>
<td>10-12</td>
</tr>
<tr>
<td>MATH 1300 Analytic Geometry and Calculus 1 or APPM 1350 Calculus 1 for Engineers</td>
<td>4-5</td>
</tr>
<tr>
<td>MATH 2300 Analytic Geometry and Calculus 2 or APPM 1360 Calculus 2 for Engineers</td>
<td>4-5</td>
</tr>
<tr>
<td>MATH 2400 Analytic Geometry and Calculus 3 or APPM 2350 Calculus 3 for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>APPM 2360 Introduction to Linear Algebra and Differential Equations or both MATH 3130 Introduction to Linear Algebra and MATH 4430 Ordinary Differential Equations</td>
<td></td>
</tr>
</tbody>
</table>

Note: Recommended elective mathematics courses for students in this plan include MATH 3000 Introduction to Abstract Mathematics, MATH 3110 Introduction to Theory of Numbers, and MATH 3210 Euclidean and Non-Euclidean Geometries.

Special Requirements:

PLACE Basic Skills Assessment

Prior to or during the semester for which students are seeking admission to the Teacher Education Program, they must take the PLACE Basic Skills Assessment. A copy of the PLACE Registration Bulletin form is available in the Office of Teacher Education in Education 151. Students should read it carefully for specific information on the assessments and registration procedures. Students must successfully complete the Liberal Arts, Professional Knowledge, and Content Fields portions of this examination.

Liberal Arts

Humanities (i.e., from "Literature and the Arts" in the College of Arts and Sciences core curriculum).................6
Social sciences (i.e., from "Content Area Stud- ies" in the College of Arts and Sciences core curriculum, except "Literature and the Arts" and "Natural Sciences")6

Science

MATH 1300 Analytic Geometry and Calculus 1..5
Two courses (minimum of 3 semester hours) in each of biology, chemistry, earth science, and physics. The eight courses must include a course with attached laboratory work in three of the four subjects)
EDUC 4312 The Nature of Science and Science Education.......................3
Science course work taken in the past five years6

Education

EDUC 3013 Proseminar 1: Becoming a Teacher ..4
EDUC 3023 Proseminar 2: Schools, Culture, and Society4
EDUC 4112-3 Educational Psychology and Adolescent Development (or PSYC 4205)3
EDUC 4122-3 Principles and Methods of Secondary Education3

EDUC 4232 Language and Literacy Across the Curriculum3
EDUC 4382 Methods and Materials in Secondary Science (EDUC 4122 is a prerequisite and EDUC 4312 is a prerequisite or corequisite) 4
EDUC 4513 Proseminar 3: Education and Practice2
EDUC 4712 Student Teaching—Secondary (must be taken concurrently with EDUC 4513)12

Minor Program

A minor is offered in physics. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For further information consult the Web at www.colorado.edu/ArtsSciences/minors/minors.html.

Graduate Degree Programs

Graduate study and opportunities for basic research are offered in the areas of nuclear physics, theoretical physics, condensed matter physics, elementary particle physics, plasma physics, atomic and molecular physics, optical science and engineering, laser physics, gravitational physics, fundamental measurements, and liquid crystal science and technology.

Doctoral programs in chemical physics and geophysics are offered jointly with the Department of Chemistry and with the other departments that participate in the interdepartmental geophysics program. For information on these programs, see Interdepartmental Programs in the Graduate School chapter of this catalog.

Departmental Requirements

Students wishing to pursue graduate work in physics leading to candidacy for an advanced degree should carefully read the requirements for advanced degrees in the Graduate School chapter of this catalog. Following are special departmental requirements.

Master’s Degree

Prerequisites. Entering graduate students must have a thorough undergraduate preparation in physics, equivalent to an undergraduate physics major at a recognized college or university. This preparation includes courses in general physics, analytical mechanics, electricity and magnetism, thermodynamics, quantum mechanics, atomic physics, and mathematics through differential equations and complex variables.

Language. The department has no foreign language requirement.

Course Requirements. There are two separate plans for obtaining the master’s degree. Plan I includes a thesis (4 credit hours), PHYS 5210 Theoretical Mechanics, 5250 Introduction to Quantum Mechanics 1, and 7310 and 7320 Electromagnetic Theory along with electives (5 credit hours) and
mathematics (3 credit hours). The minimum requirement for the master’s degree is 30 credit hours. At least 24 hours must be completed at the 5000 level or above. This may include 4-6 thesis hours.

Plan II (without thesis) includes PHYS 5210, 5250, 7310, 7320, and 5260 Introduction to Quantum Mechanics 2 or 7550 Atomic and Molecular Spectra along with mathematics (6 credit hours) and electives (6 credit hours).

All courses must be graduate courses numbered 5000 or above. A maximum of 6 credit hours may be completed at the 3000 or 4000 level as approved by the physics graduate committee for plans I and II.

Qualifying Examination. The Graduate Record Examination aptitude tests and advanced test in physics are normally used in place of a qualifying examination, and this examination is normally taken before the time of entry into the Graduate School.

Comprehensive-Final Examination. After the other requirements for the master’s degree are completed, each master’s degree candidate must take a comprehensive-final examination. If the student is following plan I, in which a thesis is included, the final examination covers the thesis. The comprehensive-final examination is oral.

Doctoral Degree

Prerequisites. Same as for master’s degree, above.

Languages. The department has no requirement in foreign languages.

Qualifying Examination. Same as for master’s degree, above.

Comprehensive Examination. Parts I and II of the comprehensive examination will be attempted no later than the beginning of the spring semester of the second year of graduate work in physics. Part I is a written examination in two parts. Part II is an oral examination. Students who had physics graduate work elsewhere are required to take the comprehensive examination in the spring semester following the first semester of course work in this department. A student who has not had a substantial number of graduate courses due to having made up undergraduate deficiencies after admission to the graduate school may be allowed, by petition, to take the comprehensive examination up to one year later. Each portion of the comprehensive examination may be taken a second time, no more than one year after the first attempt.

The written part of the comprehensive examination is given in four sessions on the last Friday and Saturday before the start of spring and fall semester, and on the following Friday and Saturday. The comprehensive examination committee schedules each of the three-hour examinations.

The final (research) part of the comprehensive examination is taken early in the semester following passing parts I and II. The student presents a thesis prospectus to the thesis committee.

Course Requirements. A set of specific course requirements for the Ph.D. has been eliminated in order to increase the flexibility of the Ph.D. program. The total number of hours required for the Ph.D. in physics, however, is 30 (passed with a grade of B (3.00) or better), of which at least 27 must be 5000-level-or-above physics courses. The remainder must also be from that group or be approved by the graduate committee. Elimination of specific course requirements allows students who have a particularly strong background in one or more of the traditional core areas of physics to skip the appropriate courses in favor of additional physics electives. It is expected, however, that students with typical undergraduate preparation will take Quantum Mechanics 1 and 2 (PHYS 5250 and 5260), Electromagnetic Theory 1 and 2 (PHYS 7310 and 7320), Statistical Mechanics (PHYS 7230), and Theoretical Mechanics (PHYS 5210). Most students also find it necessary to take one or more mathematical physics courses. Quantum Mechanics 3 (PHYS 7270) is also considered essential material for Ph.D.-level physicists. In addition, at least 30 hours of dissertation credit are required.

Final Examination. The final examination is oral and covers the thesis.

POLITICAL SCIENCE

Degrees B.A., M.A., Ph.D.

The Department of Political Science offers instruction and research in the art and science of politics. Work within the department is organized around seven basic fields: American government and politics, comparative politics, international relations, public policy, law and politics, political philosophy, and empirical theory and methodology. Five centers of research activity are housed within the department: the Center for the Study of American Politics, the Center for Comparative Politics, the Center for International Relations, the Center for Public Policy Research, and the Keller First Amendment Center.

The department participates in the distributed studies program. Programs leading to the M.A. and Ph.D. degree are offered.

At the most general level, the goal of the undergraduate curriculum in political science at the University of Colorado at Boulder is to offer students the opportunity to develop an appreciation of politics and government and of the students’ roles within them.

The undergraduate degree in political science emphasizes knowledge and awareness of:

- the values and beliefs that constitute the western political tradition, and alternative ideologies and belief systems;
- the institutions and processes of the American political system and its strengths and weaknesses as we enter the 21st century;
- other political systems, both western and non-western, which are members of the world community, our allies and competitors in international relations, and through comparative analysis a source of insight into American society and politics;
- the patterns of interaction among members of the world community, the causes of war and peace, and the sources of international conflict and cooperation; and
- the domestic and international policy issues facing the United States and the world community, and the ability to make reasoned judgments—integrating facts and values, means and ends—regarding policies to address those problems.

In addition, students completing the degree in political science are expected to acquire the ability and skills to:

- evaluate conflicting arguments, assemble and present empirical evidence, and make reasoned conclusions from the evidence available; and
- communicate effectively, both orally and in written form.

Students interested in political science may want to consider the Smith Hall International Program. See Residential Academic Programs in this section of the catalog for more information.

Bachelor’s Degree Program

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below.

Required Courses

Students in the regular political science major must complete 36 credit hours in the department, of which 21 hours must be in upper-division courses. All 36 hours must be completed with grades of C- or better and an overall grade point average of 2.00. None of the required hours may be taken pass/fail.

Twelve hours are required from the following lower-division fields:

American
PSCI 1101 The American Political System 3
Comparative
PSCI 2012 Introduction to Comparative Politics 3
International
PSCI 2223 Introduction to International Relations 3
Theory
PSCI 2004 Survey of Western Political Thought 3
Complete 15 hours of the required 21 upper-
division hours from the following four
primary fields:
American ... 6
Comparative 3
International 6
Theory .. 3
Nine hours of political science elective credit
are required. Six of these hours must be upper
division.

Required courses in addition to political science
courses:
ECON 2010 Principles of Microeconomics 4
ECON 2020 Principles of Macroeconomics 4

All undergraduate transfer students majoring
in political science must accumulate a
minimum of 42 grade points (grade points
are equal to credit hours multiplied by letter
grade as expressed numerically on a four-
point scale) in upper-division political science
courses at the University of Colorado at Boul-
der in order to qualify for the B.A. degree.

Graduating in Four Years
Students should consult the Four-Year Guarantee Requirements in this chapter for
further information on eligibility for the four-year guarantee. The concept of “ade-
quate progress” as it is used here only refers to maintaining eligibility for the four-year
requirement; it is not a requirement for the
major. To maintain adequate progress in
political science, students should meet the
following requirements:
Declare major by the beginning of the second
semester.
Complete PSCI 1101 and two of the following
required courses by the end of the third
semester: PSCI 2012, 2223, or 2004.
Complete the remaining lower-division political
science course and the two ancillary courses,
ECON 2010 and 2020, by the end of the
fourth semester.
Complete 12 upper-division credit hours of poli-
tical science courses, including at least one
course in three of the following fields by the
end of the sixth semester: American, Compar-
avative, International Relations, and Theory.
Complete 12 credit hours of political science
courses, including at least 9 upper-division
credit hours and all remaining upper-division
field distribution requirements during the sev-
enth and eighth semesters.

Minor Program
A minor is offered in political science. Dec-
claration of a minor is open to any student
enrolled at CU-Boulder, regardless of col-
lege or school. For further information con-
sult the Web at www.colorado.edu/Arts
Sciences/minors/minors.html.

Graduate Degree Programs
Applications for the M.A. and Ph.D. de-
grees are accepted from qualified and moti-
ated students wishing to probe deeply into
the analysis of political life. Professional
courses in the graduate curriculum range
from problem definition in policy analysis
to the study of the global political economy.
The curriculum is structured to lead to the
Ph.D. degree and also offers several pro-
grams culminating in the M.A. degree. In
addition to the regular master’s degree in
political science, special focus is placed on
three professionally oriented M.A. degrees:
one oriented toward entry into the public
sector as a policy analyst; one that prepares
students for careers in global affairs; and a
dual degree in international affairs and law.

Students wishing to pursue graduate work
toward one of these degrees should read
carefully the Graduate School requirements
for admission and degrees in this catalog. In
addition they should write to the depart-
mental office for additional information on
graduate programs.

Departmental Admission Requirements
Applicants to the graduate program in
political science should normally present evi-
dence of at least 18 credit hours of course work
in political science, 9 of which should be at the
upper-division level. Applicants for the M.A.
in political science (public policy) should pre-
sent at least 9 hours of undergraduate political
science course work. In addition, the depart-
ment requires applicants to present quantita-
tive and verbal GRE scores that total at least
1100 and that show a score of at least 500 on
the verbal section. (Students applying for the
M.A. in international affairs and law may ful-
fill the entrance exam requirement with their
LSAT scores and proof of acceptance into the
University of Colorado School of Law.) Three
letters of recommendation, an undergraduate
grade point average of at least 3.00, official
transcripts, and a short essay detailing interests
and plans also are required to complete the ap-
plication packet. Foreign applicants may sup-
plement their application by presenting
TOEFL scores or other proof of English profi-
ciency. Students with especially strong records
(e.g., total GRE scores greater than 1250 and
an undergraduate GPA greater than 3.50) may
apply for direct admission to the Ph.D. pro-
gram. Applications should be filed with the
department by January 15. Decisions regard-
ing admission and financial aid are typically
done prior to the beginning of classes.

Graduate Minor in Political Science
Graduate students who choose to minor in
political science should consult the course
descriptions for 4000-level courses, since
minors but not majors are eligible to receive
credit for 4000-level courses.

Master of Arts in Political Science
Students desiring a graduate major in political
science should present 18 credit hours of un-
dergraduate work in the subject, 9 hours of
which must be in upper-division courses. Any
deficiencies must be made up before students
can be admitted as regular degree students and
the work involved is in addition to the mini-
mum hourly requirements for the degree.

Students shall concentrate in any one of
seven political science fields and take 3 credit
hours of work in regularly scheduled political
science seminars in each of three areas defined
as follows: American, including American
government and politics, public policy, law,
and politics; international political science,
including comparative politics and interna-
tional relations; and theory, including politi-
cal philosophy and empirical theory and
research methods.

Students are responsible for familiarizing
themselves with all degree requirements, some
of which are outlined in the Graduate School
chapter of this catalog. In brief, the degree re-
quirements include a minimum of 31 credit
hours of graduate credit, including at least 24
credit hours at the 5000 level or above (at least
15 credit hours of work must be in regularly
scheduled political science seminars), and 4
credit hours for the M.A. thesis. Students may
take up to 6 hours in political science graduate
research topics, and up to 6 hours in a cognate
discipline (senior undergraduate course, or
independent study), but not more than a total of
9 hours combined. The 9 credit hours may not be
substituted for required seminars. M.A. stu-
dents on assistantship are required to take
PSCI 5008 Teaching Political Science 1 and 2.

A thesis based on original investigation
and showing mature scholarship and critical
judgment, as well as familiarity with tools
and methods of research, is required.

Students select a faculty advisor from
among the regular members of the depart-
ment graduate faculty at the earliest possible
date, but no later than the end of the second
week of the second semester of residence. The
faculty advisor must have general competence
in the student primary field of emphasis and
serves as the first reader of the M.A. thesis.
The second reader, who likewise has general
competence in the topic of the M.A. thesis,
must be associated intimately with the thesis
from its inception and in no case after the stu-
dent begins writing. The completed draft of
the thesis must be in the hands of the second
and third readers at least four weeks prior to
the comprehensive-final examination.

Each candidate for a master’s degree is re-
quired to take a comprehensive-final examina-
tion after the other requirements for the degree
have been completed. This examination may
be given near the end of the last semester of
residence while the candidate is still taking required courses for the degree, provided satisfactory progress is being made in those courses. The examination is oral and lasts approximately two hours. It concentrates on the student field of emphasis as well as the M.A. thesis. The comprehensive-final examination committee has three members, including the faculty advisor (the chair) and the second reader of the thesis. At least two committee members must be chosen from among regular members of the graduate faculty of this department, in consultation with the faculty advisor; the third committee member may be a graduate faculty representative from a cognate discipline. Satisfaction of the examination requires the affirmative vote of each of the three committee members.

Master of Arts in Political Science (International Affairs)
The increased participation of the United States in world politics has opened a variety of new careers in international affairs. The master's program in international affairs of the Department of Political Science is designed to provide a well-rounded education in international affairs for students who are seeking careers of international service with the national government, with international organizations, with private business, with nongovernmental organizations, or in the fields of teaching and research. This M.A. program is also a logical step toward obtaining a Ph.D. in political science at the University of Colorado or elsewhere.

Degree requirements include a minimum of 30 credit hours of graduate credit, 24 of which must be at the 5000 level or above. Of the required 30 credit hours, students desiring an M.A. in political science (international affairs) must include, in addition to the required seminars, 12 credit hours of work in the international area and 9 of the 12 credit hours must be in the field of international relations. It is advisable for the student to include the international relations or seminar in the 9 hours in the field of international relations. If a student plan of study so indicates, and permission is granted by the student faculty advisor and the department chair, the student may substitute up to 6 hours of credit from another department for the 3 hours in each of the other two areas of study.

Each student in this program must pass a GSFLT proficiency test in a foreign language approved by the student advisors and/or present evidence of an advanced proficiency in social statistics or computer science. The latter proficiency may be achieved by obtaining a B or better in a sequence of courses to be identified by the student committee. A list of the course sequences that have been approved to meet this requirement is available in the departmental office. In exceptional cases, the graduate curriculum committee may accept other evidence that the student has acquired a good working knowledge of a foreign language or the advanced proficiency in social statistics or computer science.

Master of Arts in Political Science (Public Policy)
The goal of the M.A. program in public policy is to train professional policy analysts for nonacademic careers. The curriculum is designed to provide the analytical skills necessary to participate responsibly and effectively in the policy process. The M.A. in political science (public policy) may be taken concurrently with the interdisciplinary graduate certificate program in environmental policy.

This is an M.A. with thesis, requiring 33 credit hours. It includes 27 hours of course work, 2 hours in an applied research internship, and 4 hours of thesis credit. Completion of these requirements normally takes two years and at least one summer.

The core curriculum consists of four required seminars in policy analysis, introduction to data analysis, and context-sensitive methods. Specific courses in economics are not required, but there is a strong expectation that all students should be familiar with the tools of economic analysis, particularly in the policy area in which they are interested. The remaining 15 hours of electives should be used to develop additional analytical skills and/or a specialization in the student area of substantive interest. The certificate program in environmental policy provides one alternative for substantive specialization, drawing on courses in economics, philosophy, geography, and the law school. The internship is a supervised applied research project for a policy client, which should lead into the thesis project.

The thesis is a research report on a policy problem that provides concrete demonstration of the student analytical skills, intellectual perspective, and substantive knowledge. As a general rule, the policy thesis is somewhat shorter (but not less analytical) than a standard M.A. thesis.

Master of Arts in Law and International Affairs
A recent addition to the political science graduate program is the dual degree in international affairs and law. The School of Law and the Department of Political Science cooperate in a program under which students admitted to the master of international affairs program may take course work in both the School of Law and the Department of Political Science on a coordinated basis, leading to the degrees of juris doctor (J.D.) and master of international affairs (M.I.A.).

The J.D.-M.I.A. program is administered in each school, and to be eligible for the dual degree program, a person shall apply separately to be admitted to both the School of Law and the Department of Political Science programs, according to their application deadlines. The applicant must satisfy each school respective admissions procedures and standards. The applicant must submit a written application to enroll in the dual-degree program by the earlier of one month before beginning classes in the Department of Political Science, or one month before beginning classes in the second year of study in the School of Law. This requirement may be waived by agreement of both schools upon an applicant petition. Persons enrolled in other dual or joint degree programs at either school are ineligible for this program.

Persons applying for the dual-degree program are not required to take the Graduate Record Exam (GRE). If an applicant has not taken the GRE, the Department of Political Science will consider the applicant score on the Law School Admissions Test (LSAT) in determining whether the applicant should be admitted to the master of international affairs program.

Students enrolled in the dual-degree program may begin study under the program in either the Law School or the Graduate School, but will be entitled to the privileges of students enrolled in both, whether or not they are taking courses in both schools in any particular year. Over time, the formal enrollments will be distributed evenly between the SOL and the DPS. Students must be enrolled full time during the fall and/or spring terms. If the student is enrolled in course work in only one school, that school definition of full-time status shall govern. Failure to take sufficient hours shall be cause for determining that a student may no longer continue in the dual-degree program. Except for allowed credits, under the program each degree is earned independently under the same criteria as apply to other students in each school. See School of Law and M.A. in International Affairs for specific course work requirements.

Doctor of Philosophy
For the Ph.D., the Department of Political Science requires at least 41 hours of course work (with a grade of A or B) beyond the bachelor’s degree. Except for 3 credit hours that may be taken at the senior undergradu-
thesis hours, or those hours used to fulfill the language requirements.

The Ph.D. candidate must present three fields of competence. The first two, labeled the major field and second field, are to be the subject of the Ph.D. comprehensive examination. A minimum of two seminars must be presented in these fields. Additional course work is anticipated in the major and second fields. Competence in the third field may be demonstrated by completing two graduate seminars in that field with a GPA of 3.50 or higher, or through comprehensive examination. Furthermore, each student program shall include at least one seminar in each of the following three categories: American politics, public policy, and law and politics; international relations/comparative politics; and theory (political philosophy, empirical theory, and methodology).

Thirty-five hours must be taken in political science. Of this 35, 32 must be in regularly scheduled seminars. Not more than 6 hours of political science graduate research topics combined are allowed toward the degree. The maximum amount of work that may be transferred to this university for the Ph.D. is 21 semester hours.

First-Year Requirements. All graduate students in the Ph.D. program are required to take PSCI 5095 (Teaching Political Science 1 and 2) and three core field seminars. At least two of the core seminars must be in the fields of American politics, comparative politics, international relations, Theory, public policy, and law and politics. During the first year in residence, at least two core seminars must be completed. Also during the first year in residence, students enrolled in the Ph.D. program must take PSCI 5075 (Introduction to Professional Political Science) and PSCI 5085 (Introductory Data Analysis).

Qualifying Ph.D. Research Paper. Each Ph.D. student is required to select a topic that leads to the formulation, execution, and written presentation of a piece of original research. This research paper is expected to be of potentially publishable quality.

The research paper is read by the student three-person advisory committee, consisting of the student major advisor, a second major field reader, and a representative of the student second field of concentration. Following consideration of the written work, an oral examination is conducted by the advisory committee to test both the depth of the student research as well as the breadth of the student general training. Competence in core seminar materials is expected.

The oral examination committee is charged with the task of evaluating the potential of each Ph.D. student. Students whose work is deemed inadequate are asked to leave the program.

Students who have not previously earned a master’s degree in political science are eligible for a plan II M.A. upon completion of 32 hours of graduate course work. The awarding of the plan II M.A. is at the discretion of the examining committee. This decision is independent of the decision to encourage or discontinue the student in the Ph.D. program.

Advisory Committee. The role of the advisory committee is crucial; its function is to guide students through their degree programs. Students select a chair for the committee no later than the end of the second semester in residence. If a student does not select a chair during the time specified, the departmental chair will designate such a chair for the purpose of administration and advising.

The advisory committee consists of three regular faculty members in residence who are members of the political science graduate faculty and who each represent one of the student fields of concentration. The second and third members of the advisory committee are selected by the student with the approval of the chair of the committee within two weeks after the selection of the advisory chair. The advisory committee meets with the student at least once during each academic year to review the student progress and to assist in planning the student future course of study.

Research Competence. Each Ph.D. student must fulfill the research competence requirements as determined in conjunction with the advisory committee. At a minimum, this standard may be met by successful completion of a program of methodological or language study.

Methodological competence is demonstrated by completing PSCI 5095 or 7095 with a grade of B or better, or successfully completing other course work as approved by the GCC each year. Advanced competence requires completion of at least two advanced methods courses beyond PSCI 5085 or 7085.

Language competence is evidenced by completion of a fourth-semester college-level language course of 3 or more credit hours with a grade of B or better, high GSFLT scores for the language, high scores on another standardized examination recognized by University of Colorado language departments, or evidence of competence in the language. Advanced competence is demonstrated by completion of at least a fifth-semester language course or other work deemed appropriate by the advisory committee.

The competence requirement also may be met by demonstrating basic competence standards in both methodological and language skills (i.e., by completing PSCI 5095 or 7095 and fourth-semester foreign language skills).

Committees may set higher research competence standards for the student than those outlined above.

The competence standard must be communicated in writing to the Director of Graduate Studies by the end of the second year in residence. Both the principal advisor and the student must signify that they accept the committee determination of research competence standard. Required course work (or its surrogate) must be completed no later than the semester in which the Ph.D. comprehensive examination is taken.

Comprehensive Examination. The comprehensive examination serves to demonstrate that students have acquired the skills and knowledge necessary to function as independent scholars in political science generally and in their chosen fields of specialization. Broad knowledge is expected as well as a critical understanding of the literature and the ability to apply that understanding to the central, enduring questions of politics and government.

The exam is divided into three parts: the written, the oral, and the dissertation prospectus defense. For the purposes of the examination, political science is divided into seven fields of concentration: American government, law and politics, public policy, comparative politics, international relations, political philosophy, and empirical theory and methodology. Both the written and the oral parts of the comprehensive exam cover two fields chosen by the student and provide a rigorous, comprehensive test of the student knowledge of the specialization field and of the relationships among these fields as well as their location in a broad context, spanning comparative, philosophical, historical, and methodological issues.

Comprehensive examinations are administered once each semester. In the fall semester, the written examinations are normally given during the first week of November, and in the spring semester they are normally given during the first week of April. Oral examinations are scheduled individually, within three weeks of the completion of the written part of the examination and typically during the normal university examination period.

The written examination is constructed by the graduate committee and of the field examination committees. The written examination in each field is comprised of two sections of questions. Questions in the first section emphasize breadth of knowledge and integration, while those in the second section focus more on the student depth of knowledge on specific topics and issues in the field.
A passing grade on the written part of the exam indicates that the student is prepared to proceed to the oral examination, which may hinge in part on the elaboration and exploration of the material in the written examination. Students who fail the written exams are provided a single opportunity to retake them, and are given an explanation of the failure by the readers.

The oral part of the comprehensive examination is conducted by a five-member committee, normally consisting of the student advisory committee, the chair of which also chairs the examination committee, and the two-member examining committee from the student major field. In addition to general questions in all chosen fields, the oral examinations probe the written examination answers, providing students the opportunity to amplify, elaborate, and explain their answers. Final grades in each field are assigned by the majority vote of the oral examination committee. A final grade of pass, or fail is assigned following the orals. Failing a field in the oral examination may, at the discretion of the examining committee, involve retaking both the written and the oral examinations at the next administration of the exam, whether the failure was announced following the written or the oral part of the examination. If a student fails the oral exam, the chair of the advisory committee provides a written explanation to the student.

Dissertation Requirements and Final Examination. A dissertation based on original investigation and showing mature scholarship and critical judgment, as well as familiarity with tools and methods of research, is required. A candidate for the Ph.D. selects a dissertation topic in consultation with a dissertation advisor who is rostered in the student primary field of emphasis, a second reader who has general competence in the dissertation topic, and at least one additional faculty member rostered in the student primary field of interest. The dissertation advisor submits the topic, along with the names of the second reader and other faculty consulted in its selection, to the Director of Graduate Studies for approval. These steps must be completed at least eight months prior to the dissertation defense.

Once the dissertation has been accepted tentatively by the first two readers, a final oral examination is conducted by the dissertation committee. Approved by the dean of the Graduate School, the committee shall consist of not fewer than five representatives from those departments in which a student has worked, including at least one professor outside the political science department but who is a member of the University of Colorado graduate faculty.

The examination is open to the public. More than one dissenting vote from the committee disqualifies the candidate in the final examination.

PSYCHOLOGY

DegreesB.A., M.A., Ph.D.

Psychology is a biosocial science that studies behavior from both biological and social perspectives. The major and elective requirements are designed to achieve a broad understanding of the contents, concepts, and research methods of contemporary psychology in the context of a quality liberal arts education. Note that no terminal master’s degree is offered except for the concurrent B.A./M.A. program in cognitive psychology.

Students contemplating postgraduate education, either in professional or in graduate school, are encouraged to participate in the departmental honors program, which provides special opportunities for individualized attention.

CU-Boulder Department of Psychology has been ranked by the National Academy of Sciences as one of the best in the country with respect to the quality of the faculty and their scholarly productivity. All of these faculty members are involved in undergraduate instruction. Moreover, the department offers undergraduate a wide range of opportunities for involvement in research.

The undergraduate degree in psychology emphasizes knowledge and awareness of:

* the social and biological background of human nature;
* the research bases necessary for understanding and predicting behavioral outcomes;
* descriptive and inferential statistics, including measures of central tendency, variance, and correlation;
* psychology as a laboratory science and of the interplay between theory and research;
* possible practical applications of research knowledge;
* the influences of interactions between attributes of the social situation and psychological attributes of a person in generating human behavior and subjective experience;
* the development and amelioration of abnormal thoughts, feelings, and behavior;
* the mechanics of heredity, neural transmission, plasticity, development, and aging;
* a reasonable integrated historical overview of modern psychology, including the major subdivisions of the discipline and their interrelations;
* major ideas and scholars in the discipline subfields and the relationship of ideas from one area to another; and

* the ethical issues germane to research investigation raised by the applications and practice of psychology as a profession.

In addition, students completing the degree in psychology are expected to acquire the ability and skills to:

* evaluate critically research designs, results, and interpretations;
* design and carry out research on their own;
* know when to use basic statistical tests, to formulate hypotheses, collect and analyze data, draw conclusions, and clearly communicate research findings;
* assess the characteristics of social situations and measure the psychological attributes of individuals;
* use the primary literature of biological and developmental psychology to prepare a clear written summary of a research topic; and
* place current psychological concerns into an appropriate overarching conceptual framework that encompasses the entire field.

Bachelor's Degree Program

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below. These requirements apply to all psychology majors who declare their major after May 16, 1998. Those majors who declared before that date have the option of completing their major under either the old rules or the new rules.

Required Courses

Semester Hours

In order to graduate with a degree in psychology, the department requires that students fulfill the following course requirements. Additional explanatory notes are available in the department advising office, Muenzinger D243.

The department recommends taking PSYC 1001, 2012, 2145, and 2606 during the initial year of the major program, and 3101 by the end of the sophomore year.

One of the following:

- PSYC 1001 General Psychology.................4
- PSYC 2012 Biological Psychology.............3
- PSYC 2145 Cognition and Perception.........3
- PSYC 2606 Social Psychology..................3
- PSYC 3101 Statistics and Research Methods in Psychology ..4

Additional electives to bring total hours in psychology to at least 31, but not more than 45, of which at least 18 must be upper division. (Students are encouraged to use independent...
In order to graduate in psychology, all students are required to complete an assessment test. However, independent study hours are pass/fail credit only and cannot be used toward the 31 hours required for graduation.

In addition to the course requirements listed above, and the minimum of 31 hours in psychology, the student is required to pass one of the following natural science sequences with a grade of C- or better:

- CHEM 1011 and 1031 Environmental Chemistry 1 and 2
- CHEM 1051 and 1071 Introduction to Chemistry and Introduction to Organic and Biochemistry
- CHEM 1111 and 1071 General Chemistry 1 and Introduction to Organic and Biochemistry
- CHEM 1111 and 1131 General Chemistry 1 and 2
- EPOB 1210 and 1220 General Biology 1 and 2
- MATH 1300 and 2300 Analytical Geometry and Calculus 1 and 2
- MCD 1150 and 2150 Introduction to MCD Biology 1 and Principles of Genetics
- MCD 1150 and EPOB 1220 Introduction to MCD Biology 1 and General Biology 2
- PHYS 1110 and 1120 General Physics 1 and 2
- PHYS 2010 and 2020 General Physics 1 and 2

Any two of the following four courses may be substituted for EPOB 1210 and 1220 to count as a natural science sequence for the psychology major:

- EPOB 2050 Environmental Biology
- EPOB 2060 Cellular and Integrative Physiology
- EPOB 2070 Genetics and Developmental Biology
- EPOB 2080 Evolution and Biodiversity

Note: Transfer students must complete a minimum of 12 upper-division hours of psychology course work on the Boulder campus with a C- or better. Of those 12 hours, one laboratory and methods course and either PSYC 3102 or PSYC 3313 must be included.

In order to graduate in psychology, all students are required to complete an assessment test.

Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in psychology, students should meet the following requirements:

Declare the major by the beginning of the second semester.

Complete PSYC 1001, 2012, 2145, 2606, 3101, and the natural science sequence during the first two years of study.

Complete PSYC 3313 or 3102, the laboratory and methods course, and at least two upper-division PSYC electives during the junior (3rd) year. (If students are unable to enroll in these courses due to oversubscription during the junior year, they will have top enrollment priority the senior year.)

Complete remaining elective requirements during the senior year.

Concurrent B.A./M.A. Program with Specialization in Cognitive Psychology

A concurrent B.A./M.A. in psychology, with specialization in cognitive psychology, is offered. Both the B.A. and M.A. degree must be completed within a five-year period. In recent years, both basic and applied research in cognitive psychology have come to rely increasingly on related findings, theories, and methods in other cognitive science disciplines, including philosophy, computer science, and linguistics.

The purpose of this degree program is to provide training that prepares students either for continuing doctoral study in cognitive psychology or for technical careers involving cognitive psychology in government and industry. Students complete the requirements for an undergraduate major in psychology, an interdisciplinary undergraduate certificate in cognitive science, and a master’s degree in the cognitive psychology graduate training program. Because of the demanding nature of this program, only highly qualified students are admitted.

Graduate Degree Programs

Ph.D. Programs

Students are admitted for graduate studies leading to the Ph.D. in one of five fields: behavioral genetics, behavioral neuroscience (including learning and motivation), clinical, cognitive, and social psychology. Note that no terminal master’s degree program is offered. The behavioral genetics program focuses on the study of genetic contributions to individual differences in behavior. The fundamental tenet of the behavioral neuroscience program is that a complete understanding of behavior entails unraveling mechanisms and principles at any and all levels of organization (i.e., behavior, neuroanatomy, neurophysiology, neurochemistry). The major training goals of the clinical psychology program follow the Boulder model in that the preparation of scientist-practitioner is stressed. The cognitive psychology program includes course work and research in the following areas of cognition: problem solving, thinking, human learning and memory, judgment and decision making, language, artificial intelligence, reading, attention and performance, perception, and information processing. The program in social psychology trains students to conduct research, either applied or basic, in the fields of social cognition, self-concept development, close relationships, and health. Additional courses in the department offer graduate training in the knowledge, theory, and research methodology relating to cultural influences on behavior.

Requirements for the Ph.D. Degree

All students are admitted with the expectation that they will work toward the Ph.D. degree. Many students receive a master of arts degree in the course of working toward the Ph.D. Students who receive the Ph.D. degree must demonstrate that they are proficient in some broad subject of learning and that they can critically evaluate work in this field; furthermore, they must show the ability to work independently in their chosen field and must make an original contribution of significance to the advancement of knowledge.

In the first year of graduate study, all psychology graduate students enroll in a two-semester graduate statistical sequence. There is a first-year research requirement that starts the student on an active program of research. The student also must enroll in a sequence of courses designed to give exposure to various research topics and methods.

Before admission to candidacy for the Ph.D. degree, the student must pass a comprehensive examination in the field of concentration and related fields. This examination tests the student mastery of a broad field of knowledge, not merely the formal course work completed.

A variety of advanced research seminars are taught on a regular basis. Students are required to be enrolled in at least one substantive course in the department each semester until the comprehensive examinations have been successfully completed. Upon completing the comprehensives, students engage in the dissertation research, culminating in a public oral defense.

RELIGIOUS STUDIES

B.A., M.A.

The curriculum in religious studies includes the study of traditions such as Buddhism, Hinduism, Confucianism, Judaism, Islam, Christianity, and Native American and other traditional religions. The program examines topics such as ritual studies, peace studies, dance, religion and literature, women and religion, and religion and psychology.

The undergraduate degree in religious studies emphasizes knowledge and awareness of:

- the beliefs, practices, and institutions of Asian, Western, and Native American/traditional religious traditions;
- one major religious tradition in-depth; and
- different theoretical and methodological approaches to the study of religion.

In addition, students with a degree in religious studies are expected to acquire the ability and skills to:

- identify textual, performative, and artifactual data relevant to the study of religion;
• draw connections between different historical and/or cultural contexts of religion; and
• communicate data analysis and interpretation competently in written form.

Bachelor's Degree Program

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below.

Major Requirements

Students must complete at least 36 hours of religious studies courses, including at least three of the lower-division offerings (9 credit hours, preferably completed before upper-division work) and at least one course (at either the upper- or lower-division level) in each of the following four areas: western religions, Asian religions, Native American/ traditional religions, and thematic approaches to religion. At least 18 hours of upper-division work (including RLST 3830 and 4830) must be taken on the Boulder campus.

Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in religious studies, students should meet the following requirements:

• Declare the major at the beginning of the second semester of study.
• Complete two religious studies courses each semester.
• Take the senior seminar the last spring semester in residence.

Minor Program

A minor is offered in religious studies. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For further information consult the Web at www.colorado.edu/ArtsSciences/minors/minors.html.

Graduation with Honors

The honors program in religious studies offers the opportunity for highly motivated undergraduates to undertake a deeper and more individualized study than is provided by the regular B.A. curriculum and to earn an honors designation on their diploma. Religious studies majors with at least a 3.30 overall grade point average and 3.50 in the major are eligible to participate in the program. Honors that may be earned are cum laude (with honors), magna cum laude (with highest honors).

Students interested in pursuing departmental honors are encouraged to consult with the departmental undergraduate advisor by the beginning of their junior year.

Graduate Degree Program

Master's Degree

Admission Requirements.

A student who has not completed at least 12 credit hours (or the equivalent) of undergraduate academic course work directly related to the study of religion will be required to do remedial work to make up the deficit before beginning graduate study.

A student who has not completed at least 3 credit hours of undergraduate course work in western religion and 3 credit hours in Asian religion will be required to make up this deficit during the first year of graduate study by attaining a grade of B in course work at the 2000-3000-level or on an examination administered by the department before the semester in which course work begins. Remedial courses may not be counted toward the degree.

Minimum Degree Requirements.

The minimum requirement for the master's degree is 30 credit hours. At least 24 hours of graduate-level course work at the 5000 level or above, plus a thesis of at least 4 but no more than 6 credit hours must be completed. The course work must include RLST 6830 Approaches to the Study of Religion, at least two core seminars (RLST 6850) on topics in comparative religion, and at least one course in three different traditions or culture areas (including Western or Asian). In addition, a maximum of 3 credit hours outside the department may be completed at the 3000 or 4000 level at the discretion of the department, provided they are taught by a member of the graduate faculty. Up to 9 credit hours of course work may be taken outside the department or transferred from another accredited institution, consistent with the student special needs and interests. The student program of study must receive departmental approval.

The student must have a satisfactory reading knowledge of a language other than English, which will be employed in a significant way during the student course of study. An acceptable thesis must be written and, after approval of the final draft of the thesis, a comprehensive final examination must be passed. Students should consult the current version of the Graduate Student Handbook of the Department of Religious Studies for a comprehensive, detailed presentation.

Bachelor's Degree Program

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below. (A minimum of 36 credit hours in sociology is required for the degree. Of the 36 semester hours, 21 must be upper division with a minimum of 15 upper-division credit hours of course work in the major taken on the Boulder campus. All required major courses must be completed with a grade of C- or better.) The cumulative GPA required in sociology courses is 2.50.

Required Courses Semester Hours
SOCY 1001 Analyzing Society3
SOCY 2061 Introduction to Social Statistics3
SOCY 2001 Introduction to Sociological Theory or SOCY 3001 Classical Theory or SOCY 3011 Contemporary Theory3
SOCY 2061 Introduction to Social Statistics or SOCY 4061 Social Statistics3
SOCY 3301 Survey Methods or SOCY 3401 Field Methods3
Electives ..24

Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress”
as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in sociology, students should meet the following requirements:

Declare the major by the beginning of the second semester.
Complete SOCY 1001; 2001 or 3001 or 3011; and 6 credit hours of sociology electives by the end of the fourth semester.
Complete SOCY 2061 or 4061 and either 3301 or 3401 and 15 credit hours, with a minimum of 9 upper-division credit hours of sociology electives, by the end of the sixth semester.
Complete 24 credit hours, with a minimum of 18 credit hours of sociology electives, by the end of the eighth semester.

Graduate Degree Program

Students wishing to pursue graduate work in sociology leading to candidacy for an advanced degree should carefully read the requirements for advanced degrees in the Graduate School chapter of this catalog.

The following are additional requirements for admission to the graduate degree programs of the department:

1. A combined grade point average of at least 3.00 (B) for all courses in sociology undertaken as an undergraduate or graduate student prior to admission.
2. Satisfactory scores (as determined by the department) on the Graduate Record Examination, including both the verbal and quantitative sections.
3. Proficiency in statistics or registration in SOCY 4061.

The deadline for applications is January 1 for the academic year.

Master’s Degree

The department does not operate a graduate program leading to an M.A. degree. Doctoral students who wish to obtain an M.A. degree en route to the Ph.D. may do so by completing 24 credit hours of course work at or above the 5000 level, plus preparation and completion of 6 thesis hours. The M.A. thesis must be defended at an oral examination.

Doctoral Degree

The main requirements for the doctoral degree are:

1. A minimum of 45 credit hours at or above the 5000 level. At least 24 of these 45 hours must be taken in the sociology department at CU-Boulder.
2. The following required courses must be included in the 45 hour minimum: 6 hours of sociological theory (including SOCY 5001); 6 hours of research methods and statistics (SOCY 5021 and 5031); and two 1-hour proseminars (SOCY 6821 and 6831).
3. A student must have passed all first-year work with a 3.50 GPA and no grade lower than a B to continue into the second year.
4. A student must pass the comprehensive examination, having become eligible to take this examination only after having satisfied requirements 1, 2, and 3 above.
5. A student must write a Ph.D. dissertation and defend this dissertation in an oral examination.

A detailed description of the Ph.D. program is given in the graduate handbook available from the graduate secretary of the sociology department. All inquiries about graduate programs should be addressed to the Graduate Secretary, Department of Sociology, University of Colorado at Boulder, 327 UCB, Boulder, CO 80309-0327.

SPANISH AND PORTUGUESE

DegreesB.A., M.A., Ph.D.
The department has identified the following as educational outcomes for the two tracks within the Spanish major.
The undergraduate degree in Spanish language and literature emphasizes knowledge and awareness of:

- the fundamental outlines of the history of Spanish literature or of Spanish American literature;
- the major creative writers in either Spanish or Spanish American literature;
- basic critical methodologies in the study of poetry, drama, narrative fiction, and the essay; and
- the social and historical contexts in which particular literary traditions developed.

In addition, students completing the degree in Spanish language and literature are expected to acquire the ability and skills to:

- read sophisticated Spanish texts at a level at which literary analysis can be performed;
- write and speak Spanish sufficiently to participate in critical discussions and write critical essays;
- analyze and interpret literary texts in terms of themes, characters, structure, style, and overall textual strategies;
- relate analysis and interpretations of different texts to one another; and
- communicate such interpretations competently in written form in Spanish.

The undergraduate degree in international Spanish for the professions emphasizes knowledge and awareness of:

- modern business practices as applied to the Spanish-speaking world;
- the theories of economics, business law, and international trade and finance;
- fundamental business Spanish terminology;
- the cultural environment in which business is conducted in the Spanish-speaking world;
- basic business according to the canons of this discipline; and
- international relationships.

In addition, students completing the degree in international Spanish for the professions are expected to acquire the ability and skills to:

- read and interpret in cultural and business-related terms sophisticated Spanish texts concerning business transactions;
- write and speak Spanish sufficiently to communicate effectively on business-related issues, be involved in critical discussions, and write critical essays on the subject;
- analyze a particular business problem to place it in a relevant context and formulate an appropriate response; and
- adequately translate business-related documents.

Bachelor's Degree Programs

Students must complete the required courses of the College of Arts and Sciences and the required courses listed below. All Spanish majors are encouraged to consult with their designated departmental advisor before they register each semester.

Language and Literature Option

Required Courses Semester Hours
SPAN 3000 Advanced Spanish Language Skills, 4
SPAN 3100 Literary Analysis in Spanish, 3
SPAN 3120 Advanced Spanish Grammar, 1
SPAN 3150 Advanced Spanish Composition, 3
SPAN 3300 Advanced Spanish Composition, 3
SPAN 3400 Advanced Spanish Composition, 3
SPAN 3410 Advanced Spanish Composition, 3
SPAN 3500 Advanced Spanish Composition, 3
SPAN 3510 Advanced Spanish Composition, 3
SPAN 3520 Advanced Spanish Composition, 3
SPAN 3600 Advanced Spanish Composition, 3
SPAN 3700 Advanced Spanish Composition, 3
SPAN 3800 Advanced Spanish Composition, 3
SPAN 3900 Advanced Spanish Composition, 3
SPAN 4150 Advanced Spanish Composition, 3
SPAN 4160 Advanced Spanish Composition, 3
SPAN 4170 Advanced Spanish Composition, 3
SPAN 4180 Advanced Spanish Composition, 3

At least 9 credit hours in upper-division literature, culture, and/or language (may include the Hispanic linguistics requirement). At least 12 credit hours in courses at the 4000 level or above, with at least 9 credit hours devoted to literature (3 credit hours must come from either SPAN 4150 or 4160, and 3 credit hours must come from either SPAN 4170 or 4180). (Twelve credit hours may include the Hispanic linguistics requirement). At least 12 credit hours in the Department of Spanish and Portuguese, 6 credit hours in courses from outside the Spanish department in one of the following areas are required: courses listed in the Chicano Studies program; linguistics; upper-division courses in another foreign language or comparative literature; or Portuguese 2110 and 2120 or 2150.

Note: To fulfill the requirements for a Spanish major, students must complete 32 credit hours in courses at the 3000 level or above and at least 12 upper-division credits at CU-Boulder, 6 of which must be from the masterpiece courses listed previously (SPAN 4150 or 4160, and SPAN 4170 or 4180).
No more than 3 independent study credit hours may count toward the major.
No grade lower than C- in a Spanish course will be counted in the major requirement.

Students seeking teaching certification in Spanish must take SPAN 3050, 3120, and 3200 or 3210.

Students who want certification for teaching at the secondary level should note that the School of Education requires SPAN 4650 and 4660. Students who major in Spanish are expected to meet with their departmental advisor as early as possible. Failure to do so may delay graduation. Students considering entering graduate school for an advanced degree in Spanish, either at CU-Boulder or any other institution, should see a departmental advisor as early as possible.

Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in Spanish, students should consult with the department associate chair for undergraduate studies to obtain detailed guidelines.

International Spanish for the Professions Option

In cooperation with the College of Business and Administration, the department offers an interdisciplinary major in international Spanish for the professions. It offers students numerous career possibilities, both in government and private industry, at home and abroad. Those choosing this major are not able to enter Boulder graduate program in Spanish without fulfilling the requirements in the language and literature major. Only a limited number of students may enroll in the international Spanish for the professions major. Courses within the major normally are completed in the student junior and senior years. Declaration of the major should be completed as early as possible in the student academic career, but no later than the second semester of the sophomore year.

Note: Prerequisites for the program include sufficient Spanish to be admitted to 3000-level courses and ECON 2010 and 2020. SPAN 3030, 3040, 4060, and 4070 must be taken at CU-Boulder.

Required Courses Semester Hours

<table>
<thead>
<tr>
<th>Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Spanish Courses (15 credit hours) No substitutions permitted.</td>
<td></td>
</tr>
<tr>
<td>SPAN 3030 Professional Spanish for Business 1</td>
<td>3</td>
</tr>
<tr>
<td>SPAN 3040 Professional Spanish for Business 2</td>
<td>3</td>
</tr>
<tr>
<td>SPAN 3200 Spanish Culture or SPAN 3210 The Cultural Heritage of Latin America</td>
<td>3</td>
</tr>
<tr>
<td>SPAN 4060 Problems of Business Translation in Spanish 1</td>
<td>3</td>
</tr>
<tr>
<td>SPAN 4070 Problems of Business Translation in Spanish 2</td>
<td>3</td>
</tr>
<tr>
<td>Spanish Language Courses (17 credit hours)</td>
<td></td>
</tr>
<tr>
<td>SPAN 3000 Advanced Spanish Language Skills</td>
<td>5</td>
</tr>
<tr>
<td>SPAN 3100 Literary Analysis in Spanish 1</td>
<td>3</td>
</tr>
<tr>
<td>SPAN 3120 Advanced Spanish Grammar 1</td>
<td>3</td>
</tr>
<tr>
<td>Any SPAN 4000-level course</td>
<td>3</td>
</tr>
<tr>
<td>Elective (recommended: SPAN 3001, 3310, 3340, or 4930)</td>
<td>3</td>
</tr>
<tr>
<td>Courses in the College of Business and Administration (16 credit hours) No substitutions permitted.</td>
<td></td>
</tr>
<tr>
<td>Fall/Sophomore Year, or Junior Year</td>
<td></td>
</tr>
<tr>
<td>BCOR 2000 Accounting and Financial Analysis 1</td>
<td>4</td>
</tr>
<tr>
<td>Fall or Spring, Junior Year</td>
<td></td>
</tr>
<tr>
<td>BCOR 2050 Adding Value with Management and Marketing 1 (Prereq., ECON 2010 or 2020)</td>
<td>3</td>
</tr>
<tr>
<td>Fall or Spring, Senior Year</td>
<td></td>
</tr>
<tr>
<td>BCOR 3000 Business Law, Ethics, and Public Policy (formerly BSWL 3000)</td>
<td>3</td>
</tr>
<tr>
<td>ECON 3403 International Economics and Policy</td>
<td>3</td>
</tr>
<tr>
<td>BCOR 2150 Adding Value with Management and Marketing 2 (Prereq., BCOR 2050)</td>
<td>3</td>
</tr>
<tr>
<td>Note: These courses must be taken in sequence during the sophomore/junior and senior years as indicated, unless taken in summer school, at another University of Colorado campus, another university, or study abroad. Completion of the above sequence does not fulfill all requirements for a minor in the College of Business and Administration. Majors interested in this option must consult with their Spanish department advisor.</td>
<td></td>
</tr>
<tr>
<td>Area Courses (12 credit hours)</td>
<td></td>
</tr>
<tr>
<td>Six credit hours may be taken in lower-division courses.</td>
<td></td>
</tr>
<tr>
<td>Note: Some courses are not offered every semester.</td>
<td></td>
</tr>
<tr>
<td>ANTH 3110 Ethnography of Mexico and Central America</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 4220 Archaeology of Mexico and Central America</td>
<td>3</td>
</tr>
<tr>
<td>BCOR 1000 Business Computing Skills (formerly INF 2000)</td>
<td>3</td>
</tr>
<tr>
<td>CHST 1015 Introduction to Chicano Studies</td>
<td>3</td>
</tr>
<tr>
<td>CHST 1031 Chicano Fine Arts and Humanities</td>
<td>3</td>
</tr>
<tr>
<td>CHST 1044 Introduction to Chicano Literature</td>
<td>3</td>
</tr>
<tr>
<td>CHST 1273 The Contemporary Mexican American</td>
<td>3</td>
</tr>
<tr>
<td>CHST/CHST 2537 Chicano History</td>
<td>3</td>
</tr>
<tr>
<td>CHST 3023/SOCY 3022 Sociology of the Chicano and Mexican American</td>
<td>3</td>
</tr>
<tr>
<td>CHST/SOCY 3026 Women of Color—Chicanas in U.S. Society</td>
<td>3</td>
</tr>
<tr>
<td>CHST/WMST 3135 Chicana Feminisms and Knowledge</td>
<td>3</td>
</tr>
<tr>
<td>CHST 3153 Folklore, Mythology of Hispanic Southwest</td>
<td>3</td>
</tr>
<tr>
<td>CHST 3824 Contemporary Chicano, Chicana Writers</td>
<td>3</td>
</tr>
<tr>
<td>CHST/SPAN 4000 Hispanic and Native American Culture of the Southwest</td>
<td>3</td>
</tr>
<tr>
<td>CHST 4133/PSCI 4131 Latinos and the U.S. Political System</td>
<td>3</td>
</tr>
<tr>
<td>CHST 4303 The Chicano and the United States Social Systems</td>
<td>3</td>
</tr>
<tr>
<td>CHST 4681 Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 1200 Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 1210 Introduction to Programming 2</td>
<td>4</td>
</tr>
<tr>
<td>ECON 4111 Money and Banking Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4211 Economics of the Public Sector</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4252 Urban Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4413 International Trade</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4423 International Finance</td>
<td>3</td>
</tr>
<tr>
<td>EMUS 4892 Latin American Music</td>
<td>3</td>
</tr>
<tr>
<td>ETHN/SCS 1015 U.S. Race and Ethnic Relations</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 2002 Geographies of Global Change</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 3812 Mexico, Central America, and the Caribbean</td>
<td>3</td>
</tr>
<tr>
<td>HIST 1038 Introduction to Latin American History</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2537 Chicano History</td>
<td>3</td>
</tr>
<tr>
<td>HIST 3018 Seminar in Latin American History</td>
<td>3</td>
</tr>
<tr>
<td>HIST 3028 Lab in Latin American History</td>
<td>3</td>
</tr>
<tr>
<td>HIST 4118 History of Mexico to 1821</td>
<td>3</td>
</tr>
<tr>
<td>HIST 4128 The Emergence of Modern Mexico</td>
<td>3</td>
</tr>
<tr>
<td>HIST 4327 The American Southwest</td>
<td>3</td>
</tr>
<tr>
<td>LAMS 1000 Introduction to Latin American Studies</td>
<td>3</td>
</tr>
<tr>
<td>LAMS 4815 Senior Seminar in Latin American Studies</td>
<td>3</td>
</tr>
<tr>
<td>LING 3500 Language and the Public Interest</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1050, 1060, 1070 math modules</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1080, 1090, 1100 math modules</td>
<td>3</td>
</tr>
<tr>
<td>PSCI 3001 Government Regulation of Business</td>
<td>3</td>
</tr>
<tr>
<td>PSCI 3032 Latin American Political Systems</td>
<td>3</td>
</tr>
<tr>
<td>PSCI 3061 State Government and Politics</td>
<td>3</td>
</tr>
<tr>
<td>PSCI 3181 Public Administration</td>
<td>3</td>
</tr>
<tr>
<td>PSCI 3193 International Behavior</td>
<td>3</td>
</tr>
<tr>
<td>PSCI 3261 The Judicial System</td>
<td>3</td>
</tr>
<tr>
<td>PSCI 4122 The Military in Politics: Latin America and the United States</td>
<td>3</td>
</tr>
<tr>
<td>PSCI 4183 International Law</td>
<td>3</td>
</tr>
<tr>
<td>PSCI 4792 Issues on Latin American Politics</td>
<td>3</td>
</tr>
<tr>
<td>Note: The College of Arts and Sciences does not allow more than 45 credit hours in any one discipline to be counted toward the 120 credit hours required for a B.A. degree. This rule does not mean that a student may not take more than 45 credit hours in Spanish, but rather that one must have at least 75 credit hours in courses other than Spanish. PORT 2110 and 2120 or 2150 will be accepted as partially fulfilling upper-division courses in other foreign languages. No grade lower than a C- in a Spanish course will be counted in the major requirement.</td>
<td></td>
</tr>
<tr>
<td>Concurrent B.A./M.S.I.B.</td>
<td></td>
</tr>
</tbody>
</table>

This program is designed for exceptional students who wish to combine their B.A. in international Spanish for the professions with an M.S. in international business (M.S.I.B.) from the University of Colorado at Denver. Students are able to complete both degrees in five years, including two summer sessions, because 15 credit hours of the undergraduate major
can be used to waive the common body of knowledge requirement of the M.S. program.

Students who wish to pursue the joint degree will need to take the following undergraduate business courses:

Required Courses Semester Hours
BCOR 2000 Accounting and Financial Analysis 1 ..4
BCOR 2050 Adding Value with Management and Marketing ...3
BCOR 3000 Business Law, Ethics and Public Policy ...3
ECON 3403 International Economics and Policy ...3
BCOR 2010 Business Statistics3

Admission Procedures. Students apply for the M.S.I.B. program in their third year, by declaring their intention to the Spanish for the Professions advisor, submitting the standard M.S.I.B. application forms, and completing admissions requirements, which include the GMAT (Graduate Management Admissions Test). Students are notified of acceptance to the program before the start of their fourth year. Students must have at least a 3.00 GPA to be considered for admission.

Study Abroad

The department strongly recommends that all majors include some study in a Spanish-speaking country in their major program. The department co-sponsors with the University of Kansas a program in Santiago de Compostela, Spain. The university cooperates with full-year and semester programs in Argentina, Bolivia, Chile, Costa Rica, Dominican Republic, Ecuador, Mexico, Nicaragua, and Spain. There is also a program in Brazil for Portuguese speakers. Credit earned normally counts toward satisfaction of the major requirements, but the student should see the Associate Chair for Undergraduate Studies before enrolling in a foreign program to discuss transfer of credit. Credit for work done in special programs offered by foreign universities is evaluated on an individual basis. It should be noted that courses taken abroad and designated as Spanish are also subject to the 45-hour maximum rule of the College of Arts and Sciences.

Students interested in study abroad should see International Education in the first chapter of this catalog for more information.

Students who present transfer work or credit earned in CU study abroad programs to satisfy major requirements are expected to complete at least 12 upper-division credits, including at least 6 from the 4000-level masterpiece courses listed above, on the Boulder campus. As an exception, one of the masterpiece courses can be taken in the program at Santiago de Compostela, Spain.

Portuguese

Although no major in Portuguese is offered, language courses at the elementary and intermediate levels are available, as well as senior and graduate courses in Luso-Brazilian civilization and literature.

Graduate Degree Programs

Students wishing to pursue graduate work in Spanish leading to candidacy for advanced degree should read carefully requirements for advanced degrees in the Graduate School chapter of this catalog.

Master’s Degree

Language Requirement. Students must demonstrate, as early as possible and before taking the comprehensive examination, a communication knowledge (as defined by the Graduate School) of a foreign language other than Spanish. They also must be able to speak, read, and write English well.

Areas of Concentration. The M.A. in Spanish is offered in three areas of concentration: one with an emphasis on literature, one with an emphasis on linguistics, and one with an emphasis on education applied to Spanish teaching. (Contact the department for further information.)

Doctoral Degree

Residence Requirement. Ph.D. students must complete a minimum of one academic year in residence on the Boulder campus excluding summer) within the four years immediately preceding the date on which they present themselves for the Ph.D. comprehensive examination.

Language Requirement. The student must demonstrate as early as possible, but at least one full semester before taking the comprehensive examination, a communication knowledge (as defined by the Graduate School) of one foreign language and a reading knowledge of a second language in addition to Spanish. The languages are chosen by the student in consultation with the advisory committee.

Areas of Concentration. The Ph.D. in Spanish is offered in six literary periods of concentration: medieval, golden age, 18th- and/or 19th-century peninsular, 20th-century peninsular, colonial and 19th-century Spanish American, and 20th-century Spanish American. For further information on these options, please contact the department.

SPEECH, LANGUAGE, AND HEARING SCIENCES

Degrees B.A., M.A., Ph.D.

The undergraduate program in speech, language, and hearing sciences (SLHS) introduces concepts basic to human communication, and provides opportunities for students to acquire an understanding of normal and disordered speech, language, and hearing processes. The curriculum for the undergraduate degree in SLHS has been designed to fulfill the prerequisite requirements for entrance into accredited graduate programs in speech-language pathology and audiology, but also provides a strong academic foundation for students with other professional goals.

The undergraduate degree in speech, language, and hearing sciences emphasizes knowledge and awareness of:

• the anatomy of the speech and hearing mechanisms, as well as the processes of speech production, transmission, and reception;
• the development of language;
• scientific methods used in investigating speech/language/learning and hearing processes;
• the etiologies, manifestations, and treatments of the speech/language/learning and hearing disorders; and
• the role of the professional speech-language pathologist and audiologist, including the history and development of the profession, the scientific traditions of the discipline, and the ethical issues in providing service to individuals with communication disorders.

In addition, students completing the degree in speech, language, and hearing sciences are expected to acquire the ability and skills to:

• express themselves effectively both orally and in written scientific and clinical discipline-specific reports;
• critically evaluate literature in the discipline; and
• analyze the acoustic output of the speech production process auditorily and/or instrumentally.

Bachelor's Degree Program

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below.

Required Courses Semester Hours
Fall Semester
EPOB 3420 Human Anatomy ..3
Spring Semester
SLHS 4560 Language Development3
Junior Year
Fall Semester
SLHS 4522 Clinical Phonetics and Phonological Disorders ..2
Graduating in Four Years

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in speech, language, and hearing sciences, students should meet the following requirements:

Declare the major by the beginning of the second semester.
Complete the prerequisite biology courses (EPOB 1210 and 1220) before the fall of the junior year and complete Human Anatomy (EPOB 3420 or PSYC 2012 and 2022) by the fall of the junior year. This is the latest date that EPOB 3420 can be taken in order to meet prerequisites for junior and senior year SLHS courses.
Complete the required courses in the sequence listed above.

Graduate Degree Programs

The graduate curriculum in speech, language, and hearing sciences leads to either a master’s or a doctoral degree. The programs in speech-language pathology and audiology are accredited by the American Speech-Language-Hearing Association (ASHA) and the Colorado State Department of Education.

Prospective students should read requirements for advanced degrees in the Graduate School chapter of this catalog and request additional information from this department.

Master’s Degree

The master’s program in speech, language, and hearing sciences emphasizes both the scientific and theoretical bases as well as the clinical education of speech-language pathology and audiology. The program leads to certification by ASHA and licensure for the Colorado State Department of Education in speech-language pathology and/or audiology. Within departmental and ASHA guidelines, master’s students with a focus in audiology and speech-language pathology devise individualized programs of academic and clinical study that allow them to develop clinical specialities of their choosing. (Students in speech-language pathology may experience four out of seven possible clinical specialities in depth while completing requisite clinical and academic experience for ASHA certification.) Clinical assignments are initiated in the department on-site Speech, Language, and Hearing Center; later, student input is obtained in making off-campus clinical assignments in educational and medical settings.

Students with an undergraduate degree in speech-language pathology and audiology can expect to complete the program in two calendar years. Those without such a background are required to make up undergraduate deficiencies, which normally require at least an additional 28 credit hours of courses in speech, language, and hearing sciences and related disciplines. Students must meet standards for both academic and clinical competence, as well as professional conduct. Full-time graduate study is required. Students not seeking clinical certification may place major emphasis on speech-hearing science.

Doctoral Degree

The doctoral program is grounded in research and demands demonstrated expertise beyond the academic knowledge and clinical skills required for clinical certification in speech-language pathology and/or audiology. Supervisory, administrative, instructional, and research activities are provided to acquaint students with problems and concepts at a higher level of professional activity and responsibility.

Wide latitude prevails in planning individual programs. It is expected that students have some professional experience before entering the program, and that they have specific academic or professional goals in mind. Ph.D. candidates must take a four-course sequence in statistics and computer science and four core courses within Speech, Language, and Hearing Sciences (SLHS). Beyond that, student degree plans are individually prepared through the joint efforts of the student and an advisory committee.

THEATRE AND DANCE

Degrees in Theatre...B.A., B.F.A., M.A., Ph.D.

Degrees in Dance...........B.A., B.F.A., M.F.A.

The Department of Theatre and Dance offers undergraduate and graduate degrees in both theatre and dance. These programs combine traditional studies with practical training. Ambitious seasons of theatre productions and dance concerts feature student performers and student designers, directors, and choreographers. Guest artists of national and international fame often participate in curricular and extracurricular activities. Recent guests have included David Dorfman, Meredith Monk, Chuck Davis, Alan Sener, Dana Reitz, Jane Comfort and Co., and Liz Lerman in dance; Jim Moody, Holly Hughes, Alexander Galin, Marvin Carlson, and Anatoly Smelyansky in theatre.

Students interested in theatre and dance are urged to consult with an advisor in the appropriate field to obtain both advice and the most current information concerning program opportunities and expectations.

Bachelor’s Degree

Programs in Theatre

The undergraduate degrees in theatre emphasizes knowledge and awareness of:

• the major works of dramatic literature that are representative of the most important eras in the development of theatre and drama in the western world;
• the history of theatrical production—its styles, conventions, and socially related mores—from the ancient Greeks to the present time;
• the various means through which a theatrical concept is realized; and
• the aesthetic and intellectual relationship between theatre in its various 20th-century modes and contemporary society.

In addition, students completing a degree in theatre are expected to acquire the ability and skills to:

• analyze and interpret plays and literature with particular attention to acting and performance of literature, designing, directing, and/or playwriting and criticism;
• use, with safety and efficiency, the tools and equipment basic to theatre production technology;
• communicate to an audience through at least one of the components of theatrical art—acting, directing, designing, playwriting, or criticism; and
• function effectively as a member of a production team in the preparation of regularly scheduled public productions.

B.A. Degree in Theatre

The B.A. degree program in theatre requires 42 credit hours in theatre, 3 in dance, and 6 in dramatic literature outside the department. It is a broadly based program of theatre practice and study for the student who may wish to pursue in-depth studies in another area as well. It also serves as the core of studies for a
student who wishes to pursue further theatre training in one of the B.F.A. areas of concentration. A grade of C- or better is needed in each required course toward the B.A. degree.

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below.

Required Courses

Semester Hours

(The courses listed below should be taken during the first two years of study.)

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>THTR 1011 Development of Theatre 1</td>
<td>3</td>
</tr>
<tr>
<td>THTR 1003 or 2003 Beginning Acting</td>
<td>3</td>
</tr>
<tr>
<td>THTR 2005 Introduction to Technical Production 1 (Note 1)</td>
<td>3</td>
</tr>
<tr>
<td>THTR 2015 Introduction to Technical Production 1: Lab (Note 1)</td>
<td>3</td>
</tr>
<tr>
<td>THTR 2021 Development of Theatre 2</td>
<td>3</td>
</tr>
<tr>
<td>THTR 2025 Introduction to Technical Production 2</td>
<td>3</td>
</tr>
<tr>
<td>THTR 2043 Vocal and Physical Preparation or THTR 2085 History of Fashion (Note 2)</td>
<td>3</td>
</tr>
<tr>
<td>THTR 2045 Introduction to Costumes Laboratory (Note 4)</td>
<td>3</td>
</tr>
<tr>
<td>THTR 3031 Development of Theatre 3</td>
<td>3</td>
</tr>
<tr>
<td>THTR 3035 Theatre Practicum (2 semesters)</td>
<td>4</td>
</tr>
<tr>
<td>THTR 4085 Theatre Management or THTR 3071 Directing or THTR 4051 Playwriting</td>
<td>3</td>
</tr>
<tr>
<td>THTR 4021 Development of Theatre 4</td>
<td>3</td>
</tr>
<tr>
<td>Electives in theatre</td>
<td>6</td>
</tr>
<tr>
<td>Elective(s) in dance</td>
<td>3</td>
</tr>
<tr>
<td>Electives in dramatic literature, outside the Department of Theatre and Dance</td>
<td>6</td>
</tr>
</tbody>
</table>

Curriculum Notes:

1. THTR 2005 and 2015 must be taken concurrently.
2. Choices must be advisor approved; B.F.A.s do not have the same options as B.A.s.
3. B.F.A. students must elect to take all 6 credits in Shakespeare (ENGL 3563 and 3573).
4. THTR 2025 and 2045 must be taken concurrently.

Recommended sequence of courses during the initial year of theatre major program, B.A. and B.F.A.:

- THTR 1011 Development of Theatre 1
- THTR 2021 Development of Theatre 2
- THTR 2005 Introduction to Technical Production 1
- THTR 2025 Introduction to Technical Production 1 Laboratory
- THTR 2003 Beginning Acting
- THTR 2013 Performance of Literature

A student wishing to qualify for teaching certification should check in the department office for the requirements of this option.

Graduating in Four Years with a B.A. in Theatre

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress toward a B.A. in theatre, students should meet the following requirements:

- Declare a major in theatre by the beginning of the second semester of study.
- Complete THTR 1011, 1003 or 2003, 2005, 2015, 2025, 2043, and 2045 by the end of the fourth semester.
- Complete 3 lower-division credit hours and 5 upper-division credit hours, including one of the theatre practicum course sections (THTR 3035), by the end of the fifth semester.
- Complete 8 additional upper-division credit hours, including practicum requirements (THTR 3035) by the end of the sixth semester.
- Complete 6 additional upper-division credit hours, plus all 3 elective credit hours in dance by the end of the seventh semester.
- Complete remaining 3 upper-division credit hours by the end of the eighth semester.

B.F.A. Degree in Theatre

The B.F.A. degree program in theatre offers preprofessional training to a limited number of highly motivated and talented students aiming at professional careers. The B.F.A. student pursues one of three possible areas of concentration: performance, theatre design and technology, or musical theatre.

Admission is limited not only in terms of student capacity, but also to ensure the type of individual attention necessary for effective training. Interested students should identify themselves as early as possible.

Formal application to the musical theatre concentration should be made concurrent with application to the university. Auditions/interviews will be held at the regular spring auditions for the College of Music. Formal application to the performance and design/technology concentrations should be made at the beginning of the third semester.

A student may apply for all three areas of concentration, but can be admitted to only one. Counseling in advance is recommended. Admission is based on talent, academic record, motivation, and audition-interviews. Auditions are held each fall semester for the performance and design/technology concentrations, and each spring for the musical theatre concentration.

The college counts only 67 credit hours of THTR credits toward the total hours required for graduation. A grade of C- or higher is needed in each course required to fulfill the requirements of the B.F.A. degree.

In addition to the general College of Arts and Sciences requirements for the B.A. degree, requirements for the B.F.A. degree are as follows. (Courses taken as part of a student B.F.A. concentration cannot also be counted towards fulfillment of the B.A. electives.)

I. Concentration in Performance

64 credit hours are required in THTR, plus 12-13 in other disciplines. Students accepted into the performance concentration each year constitute an ensemble and as a group follow the required sequence of courses. Specific details about this sequence are available from the department. Students in this concentration must fulfill B.A. requirements in theatre and are required to audition for major season productions each semester.

Required Courses

Semester Hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>THTR 3013 Studio 1: Acting Process ..</td>
<td>4</td>
</tr>
<tr>
<td>THTR 3023 Studio 2: Acting Process ...</td>
<td>4</td>
</tr>
<tr>
<td>THTR 3043 Advanced Voice for the Stage</td>
<td>3</td>
</tr>
<tr>
<td>THTR 4013 Studio 3: Shakespeare ...</td>
<td>4</td>
</tr>
<tr>
<td>THTR 4083 Studio 4: Contemporary British and American Theatre</td>
<td>3</td>
</tr>
<tr>
<td>THTR 4093 Studio 5: Ibsen, Shaw, and Chekhov</td>
<td>4</td>
</tr>
<tr>
<td>Plus:</td>
<td></td>
</tr>
<tr>
<td>DNCE 1100 Beginning Ballet ..</td>
<td>1</td>
</tr>
<tr>
<td>DNCE 2500 African-American Dance ...</td>
<td>2</td>
</tr>
<tr>
<td>DNCE 4018 Performance Improvisation Techniques</td>
<td>2</td>
</tr>
<tr>
<td>Electives in DNCE ...</td>
<td>1-2</td>
</tr>
</tbody>
</table>

II. Concentration in Theatre Design and Technology

66 credit hours are required in THTR, plus 18 in other disciplines. Students in the design and technology concentration must fulfill B.A. requirements in theatre and should use the electives in the B.A. requirements to fulfill prerequisites for the following.

Required Courses

Semester Hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>THTR 3055 Stage Lighting Design 1 ...</td>
<td>3</td>
</tr>
<tr>
<td>THTR 4005 Costume Design 2 or THTR 4015 Scene Design 2 or THTR 4055 Lighting Design 2 ...</td>
<td>3</td>
</tr>
<tr>
<td>THTR 4035 Scene Painting or THTR 4025 Costume Construction or THTR 4135 Technical Direction 1 ...</td>
<td>3</td>
</tr>
<tr>
<td>THTR 4065 Advanced Design Projects (6 credits maximum)</td>
<td>3-6</td>
</tr>
<tr>
<td>THTR 4075 Advanced Technical Projects (6 credits maximum)</td>
<td>3-6</td>
</tr>
<tr>
<td>Electives in design and technical theatre sufficient to total 24 THTR hours beyond the 42 required for the B.A. degree</td>
<td>3-9</td>
</tr>
<tr>
<td>As advised, courses in other departments in drawing, painting, drafting, sculpture, and/or environmental design</td>
<td>9</td>
</tr>
</tbody>
</table>

III. Concentration in Musical Theatre

60 credit hours are required: 27 in THTR courses, 3 in DNCE courses, and 30 in the College of Music.

Required Courses

Semester Hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>THTR 1011 Development of Theatre 1: Classical</td>
<td>3</td>
</tr>
<tr>
<td>THTR 2003 Acting: Beginning ..</td>
<td>3</td>
</tr>
<tr>
<td>THTR 2005 Introduction to Technical Production 1 (Note 1)</td>
<td>3</td>
</tr>
<tr>
<td>THTR 2015 Introduction to Technical Production Lab</td>
<td>1</td>
</tr>
</tbody>
</table>
I. Performance Concentration
Upon acceptance to the performance concentration, students must meet immediately with a departmental advisor to confirm, in writing, specific courses to be completed within the remaining semesters of study. All B.F.A. performance majors must complete the following courses in the prescribed order: THTR 2043, 3013, 3023, 3043, 4013, 4083, 4093, DNCE 1100, 2400/1160, 4018, 4028, 2500. Students are also encouraged to complete EMUS 1184 (voice).

All students in this concentration must audition for all main stage departmental productions.

II. Theatre Design and Technology Concentration
Upon acceptance to the theatre design and technology concentration, students must meet immediately with a departmental advisor to confirm, in writing, specific courses to be completed within the remaining semesters of study. Students in this concentration must take THTR 2085, History of Fashion option, as well as complete a design course in their chosen area by the end of the sophomore year.

III. Musical Theatre Concentration
All potential B.F.A. musical theatre students must declare in writing, during the application process, their intention to audition. They must also audition at the regular spring auditions for the College of Music before matriculating. Students who are accepted to a major in the B.F.A. musical theatre concentration must declare their major immediately upon acceptance following the audition. They must also meet immediately with a departmental advisor to confirm, in writing, specific courses to be completed within the remaining semesters of study.

Minor Programs
Minor programs in theatre are offered. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For further information, consult the Web at www.colorado.edu/ArtsSciences/minors/minors.html.

Bachelor’s Degree Programs in Dance
The following areas of knowledge are central to the undergraduate degrees in dance:

- knowledge of the major works of dance literature that are representative of the most important eras in the development of dance in the western world;
- knowledge of the history of dance, from early eras to the present;
- knowledge of the various means through which a dance performance is realized; and
- knowledge of the aesthetic and intellectual relationship between dance and other disciplines in the 20th century.

In addition, students completing a degree in dance are expected to acquire the ability and skills to:
- analyze and evaluate dance as an art form with particular attention to at least one of the areas of dance, choreography, dance production, and criticism;
- understand and use the anatomy and physiology of the body so that choreography is creative and not damaging to the body;
- communicate to an audience through at least one of the components of modern dance—performance, choreography, or criticism; and
- function effectively as a member of a dance ensemble in the preparation of regularly scheduled public productions.

B.A. Degree in Dance
The B.A. degree program consists of 45 credit hours in dance and related fields, and is designed for students who desire a dance component as part of their liberal arts education. Students can pursue either a modern, ballet, or world dance and culture concentration. Please note that the modern and ballet concentrations are performance degrees and have technical proficiency standards. Through an audition process, modern dance students must be placed in the major modern courses and ballet students must take ballet courses at the low intermediate level or above. Other advanced technique classes and performance classes also require an audition for enrollment. The world dance and culture concentration is a non-performance degree and all levels of technique count towards the degree requirements. The concentration has some flexibility to tailor elective classes to accommodate the student’s area of interest.

All B.A. students must complete the general requirements of the College of Arts and Sciences. A grade of C- (1.70) or better in each course and a GPA of 2.00 in dance classes are required to fulfill the requirements of the B.A. degree. The following courses are required for the three B.A. concentrations.

I. Concentration in Modern Dance

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNCE 1005 Movement Awareness and Injury Prevention for the Dancer</td>
<td>3</td>
</tr>
<tr>
<td>DNCE 1029 Dance as a Universal Language</td>
<td>3</td>
</tr>
<tr>
<td>Ballet courses, any level</td>
<td>3</td>
</tr>
<tr>
<td>Dance technique electives</td>
<td>2</td>
</tr>
<tr>
<td>Jazz course, any level</td>
<td>1</td>
</tr>
<tr>
<td>DNCE 1900 Technique Practicum</td>
<td>2</td>
</tr>
<tr>
<td>DNCE 2500 African Dance 1, or DNCE 2510 African Dance 2</td>
<td>2</td>
</tr>
<tr>
<td>DNCE 2012 and 2022 Production 1 and 2</td>
<td>4</td>
</tr>
<tr>
<td>DNCE 2013 Dance Improvisation</td>
<td>2</td>
</tr>
</tbody>
</table>
III. Concentration in World Dance and Culture

DNCE 1000 Beginning Modern Dance, DNCE 1220 Beginning Modern Dance with Experience, DNCE 2040 Intermediate/Advanced Modern Dance, DNCE 2021 Beginning Modern Dance for Majors, DNCE 3041 Intermediate Modern Dance for Majors, or DNCE 4061 Advanced Modern Dance for Majors (Note 1) 2
DNCE 2033 Beginning Composition .. 3
DNCE 4015 Movement Analysis .. 3
DNCE 4016 Creative Dance for Children or DNCE 4036 Methods of Teaching Dance .. 3
DNCE 4017 History and Philosophy of Dance 2
DNCE 4027 Dance in the 20th Century 3
DNCE 4039 Jr. Project: Dance Internship 2
THTR 2025 Introduction to Technical Production 2
THTR 2045 Introduction to Costume Laboratory 1
THTR 4081 Senior Seminar .. 3

Please note: Students are placed at the appropriate level in many technique courses. Modern dance courses listed as nonmajor technique courses do not normally count toward the major.

II. Concentration in Ballet

DNCE 1005 Movement Awareness and Injury Prevention for the Dancer ... 3
DNCE 1029 Dance as a Universal Language 3
DNCE 1200 Beginning Jazz, DNCE 1220 Beginning Jazz with Experience, DNCE 1900 Technique Practicum, DNCE 2240 Intermediate Jazz, DNCE 2500 and 2510 African Dance 1 and 2, DNCE 3190 Ballet Practicum, DNCE 3601 Alexander Technique, DNCE 4013 Contact Improvisation, or DNCE 4260 Advanced Jazz 1 ... 4
DNCE 2012 and 2022 Production 1 and 2 4
DNCE 2013 Improvisation ... 2
DNCE 2014 Rhythmic Analysis and Accompaniment or DNCE 3024 Musical Resources ... 2
DNCE 2021 Beginning Modern Dance for Majors, DNCE 3041 Intermediate Modern Dance for Majors, or DNCE 4061 Advanced Modern Dance for Majors ... 4
DNCE 2033 Beginning Composition .. 3
DNCE 2140 Low Intermediate Ballet, DNCE 3160 Intermediate Ballet, or DNCE 4180 Advanced Ballet ... 6
DNCE 4016 Creative Dance for Children or DNCE 4036 Methods of Teaching Dance ... 3
DNCE 4017 History and Philosophy of Dance 3
DNCE 4038 Dance Repertory (Note 1) 3
DNCE 4128 Pointe and Variation (Note 1) 2
DNCE 4939 Jr. Project: Dance Internship 2
Dance electives ... 2
THTR 2025 Introduction to Technical Production 3
THTR 2045 Introduction to Costume Laboratory 1
THTR 4081 Senior Seminar .. 3

Please note: Students are admitted to many technique classes based on an audition.

Graduating in Four Years with a B.A. in Dance

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress toward a B.A. in dance, students should meet the following requirements:

I. Concentration in Modern Dance

Declare the major by the end of the second semester.

- Complete by the end of the sophomore year: 4 credit hours of modern dance technique at the major level (based on placement audition); 1 credit hour of ballet; 2 credit hours from DNCE 1900, 2500, or 2510; 1 credit hour of jazz; and 2 credit hours of technique electives at the appropriate time with the advice of the academic advisor.

- Complete during the junior and senior years: 2 credit hours of modern dance technique at the major level (based on placement audition); 2 credit hours of ballet; DNCE 2014 or 3024; DNCE 4015; DNCE 4016 or 4036; DNCE 4017; DNCE 4027; DNCE 4039; and THTR 4081 during the spring of the senior year.

Note: To receive sufficient upper-division credit, students must be sure that 4 credit hours in addition to the upper-division courses specified above are at the upper-division level. These may include technique hours as well as elective hours. If a student takes DNCE 3024 instead of DNCE 2014, only 2 additional upper-division credit hours are necessary.

II. Concentration in Ballet

Declare the major by the end of the second semester.

- Complete by the end of the sophomore year: 2 credit hours of modern dance technique at the major level (based on placement audition); 3 credit hours of DNCE 2140, 3160, or 4180 (DNCE 3160 and 4180 based on placement audition); 2 credit hours from DNCE 1200, 1220, 1900, 2240, 2500, 2510, 3190, 3601, 4013, or 4260 (DNCE 3190 and 4260 based on placement audition).

- Complete 2 credit hours of dance electives at the appropriate time with the advice of advisor.

- Complete during junior and senior years: 2 credit hours of modern dance technique at the major level (based on placement audition), 3 credit hours of DNCE 2140, 3160, or 4180 (DNCE 3160 and 4180 based on placement audition), and 6 credits in religious studies, anthropology, or ethnic studies.

- Complete during junior and senior years: DNCE 3024 or 3024; 4016, or 4036; 4017; 4038; and 4128 (taken 2 times, based on audition).

- Complete during senior year: DNCE 4939 and THTR 4081.

Note: To receive sufficient upper-division credit, students must have at least 3 credit hours of 3000- or 4000-level technique if they take DNCE 3024, or 5 credit hours of 3000- or 4000-level technique if they take DNCE 2014.

III. Concentration in World Dance and Culture

Declare the major by the end of the second semester.

- Complete by the end of the sophomore year: DNCE 1029; RLST 2200 and 2201; EMUS 2772 and 2773; and 3 credits from DNCE 1900, 2500, or 2510.

- Complete at the appropriate time with the advice of the academic advisor: 4 credits of dance technique electives; 3 upper-division credits of religious studies, anthropology, or ethnic studies electives; and 2 credits of DNCE 1000, 1020, 2040, 2021, 3041, or 4061.

- Complete during the junior and senior years: DNCE 3029; 4013; 4016 or 4036; 4017 or 4027; and 3 credits from DNCE 1900, 2500 or 2510; and 6 credits in religious studies.

- During the senior year complete THTR 4081.

Please note: Courses in anthropology or ethnic studies can be substituted for courses in religious studies with advisor approval.

B.F.A. Degree in Dance

The B.F.A. in dance is designed to meet the needs of highly talented students interested in preparing for a professional dance career while in an academic setting. The degree
requires 67 credit hours in dance and 16 hours in theatre. Admission is limited by faculty consent to ensure the type of individual attention necessary for effective training. Students should be advised that 9 or 10 semesters are often needed to complete the B.F.A. program. More than 120 hours may be needed for graduation.

Required Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNCE 1005</td>
<td>Movement Awareness and Injury Prevention for the Dancer</td>
<td>3</td>
</tr>
<tr>
<td>DNCE 1029</td>
<td>Dance as a Universal Language</td>
<td>3</td>
</tr>
<tr>
<td>DNCE 1900</td>
<td>Technique Practicum, DNCE 2500 African Dance 1, or DNCE 2510 African Dance 2</td>
<td>2</td>
</tr>
<tr>
<td>DNCE 2012</td>
<td>and 2022 Production 1 and 2</td>
<td>2</td>
</tr>
<tr>
<td>DNCE 2013</td>
<td>Dance Improvisation</td>
<td>2</td>
</tr>
<tr>
<td>DNCE 2014</td>
<td>Rhythmic Analysis and Accompaniment</td>
<td>2</td>
</tr>
<tr>
<td>DNCE 2021</td>
<td>Beginning Modern Dance for Majors, DNCE 3041 Intermediate Modern Dance for Majors, and DNCE 4061 Advanced Modern Dance</td>
<td>12</td>
</tr>
<tr>
<td>DNCE 3024</td>
<td>Musical Resources for Dance</td>
<td>2</td>
</tr>
<tr>
<td>DNCE 3043</td>
<td>Intermediate Dance Composition</td>
<td>2</td>
</tr>
<tr>
<td>DNCE 3050</td>
<td>Advanced Ballet</td>
<td>1</td>
</tr>
<tr>
<td>DNCE 3600</td>
<td>Alexander Technique</td>
<td>2</td>
</tr>
<tr>
<td>DNCE 4015</td>
<td>Movement Analysis</td>
<td>3</td>
</tr>
<tr>
<td>DNCE 4016</td>
<td>Creative Dance for Children or DNCE 4036 Methods of Teaching Dance</td>
<td>3</td>
</tr>
<tr>
<td>DNCE 4027</td>
<td>Dance in the 20th Century</td>
<td>3</td>
</tr>
<tr>
<td>DNCE 4038</td>
<td>Dance Repertory</td>
<td>3</td>
</tr>
<tr>
<td>DNCE 4053</td>
<td>Advanced Dance Composition</td>
<td>3</td>
</tr>
<tr>
<td>DNCE 4260</td>
<td>Advanced Jazz (Note 1)</td>
<td>1</td>
</tr>
<tr>
<td>DNCE 5052</td>
<td>Studio Concert</td>
<td>3</td>
</tr>
<tr>
<td>THTR 1003</td>
<td>Beginning Acting or 2003</td>
<td>2</td>
</tr>
<tr>
<td>THTR 2025</td>
<td>Introduction to Technical Production 2</td>
<td>3</td>
</tr>
<tr>
<td>THTR 2045</td>
<td>Introduction to Costume Lab</td>
<td>1</td>
</tr>
<tr>
<td>THTR 4029</td>
<td>Touring Theatre Dance</td>
<td>2</td>
</tr>
<tr>
<td>THTR 4081</td>
<td>Senior Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Curriculum Note:

1. Students are placed at the appropriate technique level based on audition.

Graduating in Four Years with a B.F.A. in Dance

Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of “adequate progress” as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress toward a B.F.A. in dance, students should meet the following requirements:

- Declare the B.F.A. by the end of the first semester with consent of dance faculty.
- Complete 6 credit hours of modern dance technique at the major level by the end of the sophomore year (based on placement audition): DNCE 1005, 1029, 2012, 2013, 2014, 2022, 2033, and 3 credit hours of DNCE 3160 or 4180 (based on placement audition), and THTR 2025 and 2045.
- Complete 2 credit hours of dance electives, 2 credits of technique electives; DNCE 1900, 2500, or 2510; 4260; 3601; THTR 1003 or 2003; and 4029 at the appropriate time with the advice of the academic advisor.
- Complete THTR 4081 in the spring of the senior year.
- Show choreographic work in the annual informal showcase in the freshman, sophomore, and junior years.
- Complete, during the junior and senior years, DNCE 3024, 3043, 4015, 4016 or 4036, 4027, 4038, 4053, 3 credit hours of DNCE 3160 or 4180 (based on placement audition), and 6 credit hours of DNCE 2021, 3041, or 4061 (based on placement audition).
- Complete DNCE 5052 Studio Concert, including presentation of choreography in a formal setting and submission of an evaluative paper during fall of the senior year.
- Maintain a 3.00 GPA overall and a 3.20 GPA in the major.
- Complete THTR 4081 in the spring of the senior year.
- Show choreographic work in the annual informal showcase in the freshman, sophomore, and junior years.
- Complete, during the junior and senior years, DNCE 3024, 3043, 4015, 4016 or 4036, 4027, 4038, 4053, 3 credit hours of DNCE 3160 or 4180 (based on placement audition), and 6 credit hours of DNCE 2021, 3041, or 4061 (based on placement audition).
- Complete DNCE 5052 Studio Concert, including presentation of choreography in a formal setting and submission of an evaluative paper during fall of the senior year.
- Maintain a 3.00 GPA overall and a 3.20 GPA in the major.
- Perform in at least one formal concert other than the B.F.A. concert.

Minor Programs

Minor programs in dance are offered. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For further information consult the Web at www.colorado.edu/ArtsSciences/minors/minors.html.

Graduate Degree Programs

The M.A. and Ph.D. degrees are offered in dance. The M.F.A. degree is offered in theatre. Students wishing to pursue graduate work in theatre and in dance should carefully read both requirements for advanced degrees in the Graduate School chapter of this catalog and the following departmental requirements. Students should note that departmental requirements are sometimes more comprehensive than those minimums established by the Graduate School.

Course Requirements.

M.A. Degree in Theatre

Complete 30 hours of coursework, including courses at the 5000 level or above. Four to six thesis credit hours may be counted toward the 30-hour requirement. At least 24 of the 30 hours must be at the 5000-level or above.

Ph.D. Degree in Theatre

Doctoral students in theatre are normally expected to earn 30 credit hours of course work beyond the master’s degree at the 5000-level or above. When approved by the student advisory committee, credits from other departments on campus may count, provided the course is taught by a member of the graduate faculty in that department.

Beyond the core courses, studies are determined by students and their advisory commit-
For ideas to flourish, they must be expressed thus content cannot be isolated from style. Ideas do not exist apart from language, and are discussed at every class meeting. Conducted as workshops: that is, student papers of analysis and argument. Most classes are conducted in the techniques of writing to trains students from all disciplines, schools, dance and music, research strategies, methods of choreography, readings in dance, seminars in core of courses including modern dance, ballet, demonstrated at the advanced level in modern dance and at the intermediate level in ballet.

M.F.A. Degree in Dance

Course Requirements. A minimum of 60 credit hours are required, at least 30 of which must be taken in dance at the 5000 level or above. At least 6 credit hours must be taken outside of dance in an approved allied field. The program can be individualized to emphasize choreography/performance, teaching, or body therapies. Contact the department for information. It is designed to accommodate recent B.A. or B.F.A. graduates and practicing professionals desiring a graduate degree.

The M.F.A. in dance is based on a required core of courses including modern dance, ballet, choreography, readings in dance, seminars in dance and music, research strategies, methods of teaching, and a creative project or thesis.

Project or Thesis. One year before completion of the thesis or project, a written proposal for a creative project or thesis must be presented and approved. Upon its completion, a defense of the project or thesis is required in an oral examination, which also requires a demonstration of the student knowledge of dance.

Technical Proficiency. For completion of the degree, technical proficiency must be demonstrated at the advanced level in modern dance and at the intermediate level in ballet.

Examination. A written comprehensive examination covering the student graduate studies must be taken and passed prior to the oral examination.

UNIVERSITY WRITING PROGRAM

The University Writing Program (UWRP) trains students from all disciplines, schools, and colleges in the techniques of writing analysis and argument. Most classes are conducted as workshops: that is, student papers are discussed at every class meeting.

The program promotes the principle that ideas do not exist apart from language, and thus content cannot be isolated from style. For ideas to flourish, they must be expressed clearly and gracefully, so that readers take pleasure in taking instruction.

The UWRP offers both lower-division and upper-division seminars. Certain courses fulfill the College of Arts and Sciences written communication requirement, and some also fulfill graduation requirements in other colleges. Students should check with their advisors to be sure that they are taking the right course to fulfill their requirements. Graduate courses offer professional training to students writing theses, articles, and grant proposals.

For information about specific classes and their instructors, students should consult the Registration Handbook and Schedule of Courses.

WESTERN AMERICAN STUDIES

The Center of the American West offers an undergraduate certificate program in Western American Studies for students who have an intellectual commitment to any of a broad range of issues and aspects of the American West, including history and literature, culture and society, and economic and environmental challenges facing Western communities. Courses involve students in an exploration of the past, an appreciation for traditional and contemporary stories and art in the region, and an understanding of Western landscapes, ecosystems, and the factors that affect them.

The certificate program is interdisciplinary, drawing on courses and expertise from over a dozen departments spanning the humanities, natural sciences, and social sciences. Course work may be taken concurrently with undergraduate studies. Students complete 24 credit hours of C- or better course work, of which a minimum of 15 are upper division and a minimum of 12 are from outside the student major. Contact the Center of the American West at 303-492-4879 for a current course list, information about participating faculty members, and further program details.

WOMEN’S STUDIES

Degree ... *B.A.*

Students may earn a bachelor of arts degree in women studies or may earn a women studies minor to supplement study in their major field.

Since 1974, the women studies program has offered an interdisciplinary program encompassing social sciences and humanities. Courses reflect the new scholarship on women: they focus on the interface of the public and private spheres of women lives; on the intersection of gender, race, ethnicity, and class; and on feminist studies of gender identity and theories of inequality.

The curriculum is multicultural, offering courses in women and development as well as global feminism. The program houses a library and sponsors colloquia, workshops, and other cultural and educational events.

An understanding of the ways gender is socially constructed and simultaneously mediated by other axes of power such as race/ethnicity, class, and sexuality develops the framework for this program.

The undergraduate degree in women studies emphasizes knowledge and awareness of:

- gender in national and global contexts;
- women participation in, contribution to, and transformation of areas of social life including culture, society, politics, economy, and religion;
- institutionalized discrimination and violence against women;
- historical forms of resistance and activism; and
- feminist research methods, including the relationship between theory and practice.

In addition, students completing the program in women studies are expected to acquire the ability and skills to:

- express ideas clearly in spoken form;
- analyze texts and information critically;
- articulate clearly complex ideas in written form; and
- participate in teamwork successfully.

Program Requirements

Students must complete the general requirements of the College of Arts and Sciences and the required courses listed below.

Required Courses

Semester Hours

Students must complete a minimum of 36 credit hours with grades of C- or better in women studies courses, a minimum of 18 credits of which must be upper division. These 36 credit hours should be distributed as follows:

I. Required Courses (15 hours)

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMST 2400 History of Women and Social Activism</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>WMST 2600 Gender, Race, and Class in Contemporary U.S. Society</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>WMST 3100 Feminist Theories</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>WMST 4800 Capstone Seminar</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

II. Global Studies (6 hours)

Choose two courses from the following:

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMST 3012 Women, Development, and Fertility</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>WMST 3500 Global Gender Issues</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>WMST 3672 Gender and Global Economy</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>WMST 3710 Topics in Global Studies</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>WMST 3730 Third World Women and the Politics of Development</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>WMST 4300 International Sex Trade</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

The program promotes the principle that ideas do not exist apart from language, and thus content cannot be isolated from style. For ideas to flourish, they must be expressed clearly and gracefully, so that readers take pleasure in taking instruction. The UWRP offers both lower-division and upper-division seminars. Certain courses fulfill the College of Arts and Sciences written communication requirement, and some also fulfill graduation requirements in other colleges. Students should check with their advisors to be sure that they are taking the right course to fulfill their requirements. Graduate courses offer professional training to students writing theses, articles, and grant proposals.

For information about specific classes and their instructors, students should consult the Registration Handbook and Schedule of Courses.
III. WMST Upper-Division Courses (9 hours)
Choose three courses from the following:
WMST 3200 Religion and Feminist Thought.................................3
WMST 3210 American Indian Women..3
WMST 3300 Women and the Legal System..3
WMST 3314 Violence Against Women and Girls.....................................3
WMST 3400 Gender, Culture, and Personality..3
WMST 3505 Historical and Contemporary Issues of Black Women.............3
WMST 3600 History of Latinas: Social Movements and Art Activism........3
WMST 3700 Topics in Women Studies..3
WMST 3710 Topics in Global Studies..3
WMST 3900 Asian-American Women..3
WMST 3930 Internship...3
WMST 4000 Senior Seminar..3
WMST 4636 Lesbian and Gay History: The Web at www.colorado.edu/ArtsSciences/college or school. For information, consult each semester's offerings.

IV. Electives (6 hours)
Elective hours may be satisfied by any WMST courses that are not applied to the above requirements or by WMST courses that are cross-listed with other departments.

Graduating in Four Years
Students should consult the Four-Year Guarantee Requirements in this chapter for further information on eligibility for the four-year guarantee. The concept of "adequate progress" as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in women's studies, students should meet the following requirements:
Declare major by the beginning of the second semester.
Complete WMST 2000 and 12 additional credit hours of major requirements by the end of the fourth semester.
Complete WMST 3100 and 27 total credit hours of major requirements by the end of the sixth semester.
Complete WMST 4800 and one additional 3-credit course of the major requirements by the end of the eighth semester.

Minor Program
A minor program in women's studies is offered. Declaration of a minor is open to any student enrolled at CU-Boulder, regardless of college or school. For information, consult the Web at www.colorado.edu/ArtsSciences/minors/minors.html.

COURSE DESCRIPTIONS
The following courses are offered in the College of Arts and Sciences on the Boulder campus. This listing does not constitute a guarantee or contract that any particular course will be offered during a given term.

For current information on times, days, and instructors of courses, students should consult each semester's Registration Handbook and Schedule of Courses. Many courses may be open to nonmajors. Students should check with individual departments for current policies.

Courses numbered in the 1000s and 2000s are intended for lower-division students; those in the 3000s and 4000s are for upper-division students. Courses numbered in the 5000s are primarily for graduate students, but in some cases may be open to qualified undergraduates. Normally, courses at the 6000, 7000, and 8000 level are open to graduate students only.

Courses are organized by subject matter within each department, and are generally listed numerically by last digit (courses ending in the number “0” are listed before courses ending in “1,” and so on). The number following the course number indicates the credit hours that can be earned in the course.

Abbreviations used in the course descriptions are as follows:
Prereq.—Prerequisite
Coreq.—Corequisite
Lab.—Laboratory
Lect.—Lecture
Rec.—Recitation
Sem.—Seminar

AMERICAN STUDIES
AMST 2000-3. Themes in American Culture 1. Enables students to explore various themes in pre-1865 American culture. Examines these themes, which vary each year, in their social context. Approved for arts and sciences core curriculum: United States context.
AMST 2010-3. Themes in American Culture 2. Enables students to explore various themes in post-1865 American culture. Examines these themes, which vary each year, in their social context. Approved for arts and sciences core curriculum: United States context.
AMST 2060-3. Topics in American Studies. Critically examines American identity and experiences, past and present, focusing on ethnicity, gender, popular culture, and political culture.
AMST 3509-3. American Art. Surveys American art and material culture from the pre-Colonial era to the present day. Considers cultural and artistic interaction, ethnic expressions, patronage, European and non-Western influences, and the struggle to develop a uniquely American artistic identity. Same as FINE 3509. Prereqs., FINE 1309 and 1409. Approved for arts and sciences core curriculum: United States context.
AMST 4321-3. Media Institutions and Economics. Introduces the institutions and practices of the media industries. Surveys the histories, structures, and activities of these organizations, and the contemporary issues surrounding them. Same as JOUR 4321.
AMST 4346-3. 20th-Century American Intellectual History. Addresses the impacts of political, social, and economic developments on ideas about democracy, science, race, gender, faith, the supposed mission of America, and the role of intellectuals in society. Same as HIST 4346.
AMST 4840 (1-3). Independent Study. May be repeated for a total of 7 credit hours.
AMST 4950-3. Seminar in American Studies. Prereq., AMST 2000 or 2010. May be repeated for a total of 6 credit hours.
AMST 4960-3. Seminar in American Studies. Prereq., AMST 2000 or 2010. May be repeated for a total of 6 credit hours.
AMST 4999 (1-3). Senior Honors Thesis. Open to qualified AMST majors only after successful completion of the research phase.

ANTHROPOLOGY
ANTH 1040-3. Principles of Anthropology
2. Surveys the world's major culture areas. Covers components of culture, such as subsistence, social organization, religion, and language. Offered through Continuing Education only. Meets MAPS requirement for social science: general.

ANTH 1100-3. Exploring a Non-Western Culture: The Tamils. Surveys the social and economic patterns, ideas and values, and aesthetic achievements of the Tamils, a Hindu people who live in South India and Sri Lanka. Approved for arts and sciences core curriculum: cultural and gender diversity.

ANTH 1110-3. Exploring a Non-Western Culture: Japan. Examines modern Japan in terms of cultural styles, social patterns, work practices, aesthetic traditions, ecological conditions, and historical events that shape it as both a non-Western culture and a modern industrial state. Approved for arts and sciences core curriculum: cultural and gender diversity.

ANTH 1120-3. Exploring a Non-Western Culture: Hopi and Navajo, Cultures in Conflict. Studies the evolution of Hopi and Navajo cultures and cultural interrelationships from the protohistoric through the contemporary period, using an integrated, holistic, and humanistic viewpoint. Principal goal is to instill an appreciation of non-Western cultural diversity in material adaptations, social patterns, ideas and values, and aesthetic achievements, thus recognizing a range of cultural solutions to common human problems. Same as AIST 1125. Approved for arts and sciences core curriculum: cultural and gender diversity.

ANTH 1130-3. Exploring a Non-Western Culture: Amazonian Tribal Peoples. Examines the Amazonian tribal cultures of South America, their histories, cultural attributes, and contemporary problems and dilemmas. Approved for arts and sciences core curriculum: cultural and gender diversity.

ANTH 1140-3. Exploring a Non-Western Culture: The Maya. Explores the culture of the Maya of Central America, emphasizing their material adaptations, social organizations, ideals and values, and artistic achievements in the past and the present. Approved for arts and sciences core curriculum: cultural and gender diversity.

ANTH 1150-3. Exploring a Non-Western Culture: Regional Cultures of Africa. Explores a small number of cultures in a specific subregion of Africa from an integrated holistic viewpoint, emphasizing material adaptations, social patterns, ideas and values, and aesthetic achievements. Same as BLST 1150. Approved for arts and sciences core curriculum: cultural and gender diversity.

ANTH 1160-3. The Ancient Egyptian Civilization. Emphasizes the origin of the Egyptian culture, its importance, and its impact on other cultures. In addition, the different points of view of various scholars are discussed with a comparative study of the ancient Egyptian culture and modern culture of Egypt and the Middle East. Approved for arts and sciences core curriculum: cultural and gender diversity.

ANTH 1180-3. Maritime People: Fishers and Seafarers. Explores important milestones in the development of human societies and cultures that live from the sea. Emphasizes the evolution of maritime adaptations associated with fishing and seafaring from more than 10,000 years ago through the present. Approved for arts and sciences core curriculum: historical context.

ANTH 2040-1. Laboratory in Physical Anthropology 2. Experiments and hands-on exercises designed to enhance understanding of the principles and concepts presented in ANTH 2020. One two-hour class per week. Coreq., ANTH 2020. Approved for arts and sciences core curriculum: natural science.

ANTH 2050-4. Honors—Human Origins 1. Explores how the following two major bodies of evidence for human evolution are used by physical anthropologists in search of human origins: humankind's close physical and behavioral similarity to other living species, particularly living primates, and the fossil record for human evolution. Students may not receive credit for both ANTH 2010 and 2050. Approved for arts and sciences core curriculum: natural science.

ANTH 2070-3. Bones, Bodies, and Disease. Detailed study of the human skeleton and introduction to techniques used to evaluate demographic variables. Applies techniques through evaluation of photographic images of an excellently preserved mummified skeletal population from ancient Nubia to reconstruct prehistoric patterns of adaptation and biocultural evolution. Recommended prerequisite, ANTH 2010. Offered through Continuing Education only.

ANTH 2080-3. Anthropology of Gender. Offers a comparative analysis of gender-based status and social roles. Covers both theoretical and applied ethnographic approaches, and examines a wide range of topics including sexuality, emotions, the division of labor by sex, and personhood. Prereq., ANTH 2100. Same as WMST 2080.

ANTH 2100-3. Frontiers of Cultural Anthropology. Covers current theories in cultural anthropology and discusses the nature of field work. Explores major schools of thought and actual field studies.

ANTH 2200-3. Introduction to Archaeology. Discusses history, basic concepts, techniques, and theoretical construction of archaeological field and laboratory investigations, as well as a general outline of world prehistory.

ANTH 2210-2. Laboratory Course in Archaeological Methods. Studies analytical methods in archaeological research including those employed both in the field and in the laboratory. Deals with practical exercises illustrating many of the theoretical principles covered in ANTH 2200. Coreq., ANTH 2200.

ANTH 2300-3. Civilization of the Ancient Near East. Discusses civilization of the Ancient Near East: Ancient Israel, Phoenicia, Syria, Jordan, Mesopotamia, Egypt and Nubia, Arabia, Asia Minor, and Persia. Origins of such cultures and their influence on other cultures are also discussed with comparative study between Ancient Middle East, Modern Middle East, and ancient and modern Western cultures. Scholarly points of view are mentioned in detail.

ANTH 3010-3. The Human Animal. Identifies genetic, anatomical, physiological, social, and behavioral characteristics humans share with other mammals and primates. Explores how these characteristics are influenced by modern culture. Prereqs., ANTH 2010 and 2020, or equivalent. Approved for arts and sciences core curriculum: natural science.

ANTH 3100-3. Africa: Peoples and Societies in Change. Examines culture and politics in Africa—scholarly works by anthropologists and historians, as well as novels, films, and journalistic accounts. Special attention is devoted to the ways in which various African cultures have creatively and resiliently responded to the slave trade, European colonialism, and post-colonialism.

ANTH 3110-3. Ethnography of Mexico and Central America. A broad overview, focusing on Mexico and Guatemala. Major topics include ethnography, indigenous and mestizo peoples, and contemporary problems and issues.

ANTH 3130-3. North American Indians: Traditional Cultures. Comprehensive survey of native cultures of America north of Mexico, including a review of their natural environments, prehistory, languages, and major institutions for various culture areas. Same as AIST 3135.

ANTH 3300-3. Elements of Religion. Explores universal components of religion, as inferred from religions of the world, primitive and civilized. Same as ETHN 3300.

ANTH 3800-3. Languages and People. Investigates roles that languages play in building new nations, in the spread of world religions, migration, and diffusion of writing systems and other customs throughout the world.

ANTH 4000-3. Quantitative Methods in Anthropology. Surveys ways of deriving meaning from anthropological data by numerical means, including but not confined to basic statistical procedures. Prereqs., ANTH 2010 and 2020. Same as ANTH 5000.

ANTH 4020-3. Explorations in Anthropology. Special topics in cultural and physical anthropology, as well as archaeology. Prereq., 15 hours of anthropology course work. May be repeated for a total of 6 credit hours; check with the department for semester offerings. Same as ANTH 5020.

ANTH 4060-3. Nutrition and Anthropology. Overview of the evolution of human diet and ecological and cultural factors shaping modern diets. Introduces fundamentals of nutrition and analysis of nutritional status. Analyzes ecological, social, and cultural factors leading to hunger and undernutrition, as well as biological and behavioral consequences of undernutrition. Prereqs., ANTH 2010 and 2020, or EPOB 1210 and 1220, or EPOB 1030 and 1040. Same as ANTH 5060.

ANTH 4110-3. Human Evolutionary Biology. Detailed consideration of the fossil evidence for human evolution. Covers the discovery of important fossils and interpretations; descriptive information about the fossils; and data and theory from Pleistocene studies relating to ecology, ecological and behavioral data on modern apes, and molecular studies that have bearing on the study of human evolution. Prereqs., ANTH 2010 and 2020, or EPOB 1210 and 1220. Same as ANTH 5110.

ANTH 4120-3. Advanced Physical Anthropology. Selected topics in physical anthropology emphasizing faculty specialties. Topics may include population genetics and its application to understanding modern human diversity, human population biology, and primate ecology and evolution. May be repeated for a total of 6 credit hours. Prereqs., ANTH 2010 and 2020, or EPOB 1210 and 1220. Same as ANTH 5120.

ANTH 4170-3. Primate Evolutionary Biology. Focuses on the fossil record of nonhomoi- noid primates. Special emphasis placed on delineating the origins of the order Primates, the origins of the primate semiorchids Strepsirrhini and Haplorhini, and the adaptations of extinct primates in light of our understanding of the modern primate adaptive radiations. Prereq., ANTH 2010 or EPOB 1210. Same as ANTH 5170.

ANTH 4180-3. Anthropological Perspectives: Contemporary Issues. Students read, discuss, and write critical evaluations of contemporary publications in anthropology. These and classroom lectures identify basic themes that inform major anthropological perspectives. Students then bring these perspectives to bear on issues currently facing the human species. May be repeated for a total of 6 credit hours. Prereqs., background knowledge of general areas in anthropology, upper-division standing, and instructor consent. Approved for arts and sciences core curriculum: critical thinking.

ANTH 4210-3. Southwestern Archaeology. Explores the prehistory of the American Southwest from the earliest entry of humans into the area to the Spanish entrada. Focuses on important themes in cultural development: the adoption of agricultural strategies, sedentism, population aggregation, population movement, and social complexity. Prereq., ANTH 2200. Same as ANTH 5210.

ANTH 4220-3. Archaeology of Mexico and Central America. Studies prehistoric and protohistoric cultures and areas of Mexico and Central America, including the Aztecs and Mayas. Prereq., ANTH 2200. Same as ANTH 5220.

ANTH 4230-3. Settlement Archaeology. Explores prehistoric human spatial use of the landscape including both the organization of communities and their distribution on a regional level. Considers prehistoric settlement data as well as inferences about ancient population, community organization, architecture, and land use. Prereq., ANTH 2200. Same as ANTH 5230.

ANTH 4330-3. Environmental Archaeology. Surveys archaeological approaches to ecology, economy, and landscape: glaciation, geomorphology, and other physical processes creating and affecting sites and regions; environmental reconstruction; theories of human-environment interaction; landscape formation by forager, agricultural, and complex societies; and ideologically structured landscapes. Prereq., ANTH 2200. Same as ANTH 5330.

ANTH 4340-3. Archaeological Method and Theory. Surveys archaeological theories and
methods within the context of the history of archaeology. Includes archaeological approaches to data recovery, analysis, and interpretation as well as an overview of cultural resources management and ethical issues in contemporary archaeology.

ANTH 4350 (2-6). Archaeological Field and Laboratory Research. Students participate in archaeological field research or conduct laboratory analysis of archaeological materials and data. Students work with faculty on archaeological research projects with a field or lab focus, depending on the project undertaken. May be repeated for a total of 6 credit hours. Prereq., instructor consent. Same as ANTH 5350.

ANTH 4360 (1-6). Field Methods in Primate Ecology. Intensive lectures and field training teaches the basics of primate ecological method and theory, and develops concepts and skills to formulate and implement independent field research projects. Offered abroad only. Prereqs., ANTH 3000 or EPOB 1210 and 1220; junior standing. Same as ANTH 5360.

ANTH 4380-3. Lithic Analysis and Replication. Uses diversity of approaches to the analysis of ancient stone tools, including fracture mechanics, lithic technology, materials, heat treatment, and functional analysis. Percussion and pressure-flaking experiments are performed. Prereq., ANTH 2200. Same as ANTH 5380.

ANTH 4390-3. Research Methods in Archaeology I. Method and theory of archaeology, emphasizing the interpretation of materials and data and the relationship of archaeology to other disciplines. Prereq., ANTH 2200. Same as ANTH 5390.

ANTH 4410-3. Archaeology of Ancient Near East. Emphasizes similarity and differences between the archaeological material of nations of the Middle East and the archaeological influences that were exchanged between such nations. Same as ANTH 5410.

ANTH 4420-3. Archaeology of Ancient Egypt. Archaeology of Ancient Egypt in light of recent excavations; the history of excavations of the different sites; and the art of Ancient Egypt through the end of its history. Same as ANTH 5420.

ANTH 4440-3. Egyptian Hieroglyphics 1. Studies the ancient Egyptian language to shed light on the history and cultures of Ancient Egypt. Involves reading and translating hieroglyphics into the English language. Same as ANTH 5440.

ANTH 4450-3. Egypt after the Pharaohs. Includes the history, religion, culture, and archaeology of the Egyptians after the Pharaohs during the Greco-Roman, Byzantine, and Arab Empires until modern times. Emphasizes the influence of the ancient Egyptians on culture. Different points of view of classical writers and modern scholars are explained and discussed in detail. Comparisons with modern culture of Egypt are made according to the different periods of the history of Egypt.

ANTH 4500-3. Cross-Cultural Aspects of Socioeconomic Development. Examines goals of international agencies that support development in underdeveloped countries. Anthropological perspective is provided for such issues as urban planning, health care and delivery, population control, rural development, and land reform. Same as ANTH 5500.

ANTH 4510-3. Applied Cultural Anthropology. Analysis of problems of cultural change due to contacts between people of different cultures. Same as ANTH 5510 and ETHN 4520.

ANTH 4520-3. Symbolic Anthropology. Explores anthropological approaches to the study of symbolic systems, including cosmology, myth, religion, ritual, and art, as well as everyday patterns of metaphor and the presentation of self. Theoretical issues include semiotics, psychoanalysis, structuralism, liminality, and critical theory. Prereq., ANTH 2200. Same as ANTH 5520. Approved for arts and sciences core curriculum: critical thinking.

ANTH 4530-3. Theoretical Foundations of Sociocultural Anthropology. Critically examines the pivotal schools of 20th-century social theory that have shaped modern sociocultural anthropology including the ideas of cultural evolutionism, Marxism, Durkheim, Weber, structuralism, postmodernism, and contemporary anthropological approaches. Includes primary readings and seminar-style discussion. Prereq., ANTH 2100 or instructor consent. Same as ANTH 5530.

ANTH 4560-3. North American Indian Acculturation. Comprehensive survey of changes in the native cultures of America north of Mexico caused by occupation of the continent by Old World populations, including a review of processes of contact, environmental changes, changes in major institutions, the nature of federal/state administration, the reservation system, and contemporary developments. Same as ANTH 5560 and AIST 4565. Approved for arts and sciences core curriculum: contemporary societies, or cultural and gender diversity.

ANTH 4570-3. Anthropology of Fishing. Examines fishing methods, peoples, societies, and cultures, emphasizing anthropology’s role in shaping fisheries management and development policy. Same as ANTH 5570.

ANTH 4580-3. The Holocaust. Focuses on the Holocaust during the Third Reich, which involved the murder of millions of people, including six million Jews. Reviews the Holocaust’s history, dynamics, and consequences as well as other genocides of the 20th century, using an anthropological approach.

ANTH 4600-3. Human Ecology: Cultural Aspects. Examines the relationships between environment and human behavior, emphasizing social organization. Special attention given to examining the extent to which the environment influences subsistence strategies, settlement patterns, social relationships among different groups, and family structure.

ANTH 4610-3. Medical Anthropology. Cultural factors determine states of health and illness in both Western and non-Western societies. The transition from traditional to modern status creates new problems including population growth, aging, changing patterns of morbidity, mortality and health care, and new socioeconomic consequences. Same as ANTH 5610.

ANTH 4710-3. Departmental Honors in Anthropology 1. Course work built around theme of research design as a means of integrating previous training in the field of anthropology as well as providing an opportunity to perform creative scientific investigations.

ANTH 4740-3. Peoples and Cultures of Brazil. Thematically surveys theoretical and ethnographic issues that have been important in understanding Brazil. Students are expected to read and write critically about textual and visual representations of Brazil presented in the course. Prereq., ANTH 2100; three or more cultural anthropology courses recommended. Approved for arts and sciences core curriculum: critical thinking.

ANTH 4750-3. Culture and Society in South Asia. Intensive analysis of major issues in anthropological research on South Asia (India, Pakistan, Bangladesh, Nepal, and Sri Lanka), including kinship, gender, marriage, caste system, religion and ritual, ethnic conflict, and social change. Prereq., ANTH 2100. Same as ANTH 5750.

ANTH 4760-3. Ethnography of Southeast Asia and Indonesia. Same as ANTH 5760.

ANTH 4800-3. Language and Culture. Same as LING 4800.
ANTH 4840 (1-6). Independent Study. For upper-division undergraduate students. May be repeated for a total of 6 credit hours.

ANTH 4910 (1-3). Teaching Anthropology. Practicum by special arrangement only in which students learn to teach anthropology by serving as recitation leaders or tutors in introductory courses or as small group leaders in advanced courses. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

ANTH 4930 (1-6). Anthropology Internship. Provides academically supervised opportunities for junior and senior anthropology majors and graduate students to work in public and private sectors on projects related to students' career goals. Relates classroom theory to practice. Requires at least 48 hours on the job per credit hour and evidence (paper, employer evaluation, work journal) of significant learning. May be repeated for a total of 9 credit hours. Prereqs., ANTH 2010, 2100, and 2200, junior standing, anthropology major with a minimum 3.25 GPA, and departmental consent. Same as ANTH 5930.

ANTH 5000-3. Quantitative Methods in Anthropology. Same as ANTH 4000.

ANTH 5020-3. Explorations in Anthropology. Same as ANTH 4020. May be repeated for a total of 6 credit hours.

ANTH 5060-3. Nutrition and Anthropology. Same as ANTH 4060.

ANTH 5080-3. Anthropological Genetics. Same as ANTH 4080.

ANTH 5110-3. Human Evolutionary Biology. Same as ANTH 4110.

ANTH 5120-3. Advanced Physical Anthropology. May be repeated for a total of 6 credit hours. Same as ANTH 4120.

ANTH 5130-3. Advanced Osteology. Detailed study of the human skeleton with special attention to health and demographic conditions in prehistoric cultures and the evaluation of physical characteristics and genetic relationships of prehistoric populations. Prereqs., ANTH 2010-2020.

ANTH 5170-3. Primate Evolutionary Biology. Same as ANTH 4170.

ANTH 5210-3. Southwestern Archaeology. Same as ANTH 4210.

ANTH 5220-3. Archaeology of Mexico and Central America. Same as ANTH 4220.

ANTH 5230-3. Settlement Archaeology. Same as ANTH 4230.

ANTH 5270-3. Plains Archaeology. Same as ANTH 4270.

ANTH 5300-3. Prehistoric Food Production. Explores the history of plant/animal domestication in the Americas, Near East, Asia, and Africa. Focuses on specific biological changes in domesticates and associated social changes. Theoretical explanations for this major transformation in human economies are sought.

ANTH 5330-3. Environmental Archaeology. Same as ANTH 4330.

ANTH 5340-3. Archaeological Method and Theory. Provides an advanced historical introduction to archaeological theory and methods. Designed to help students understand why certain issues have been and are important to the development of archaeology, especially American archaeology. Explores issues within the context of the history of anthropology and American society as a whole.

ANTH 5350 (2-6). Archaeological Field and Laboratory Research. Same as ANTH 4350. May be repeated for a total of 6 credit hours.

ANTH 5360 (1-6). Field Methods in Primate Ecology. Same as ANTH 4360.

ANTH 5380-3. Lithic Analysis and Replication. Same as ANTH 4380.

ANTH 5400-3. Research Methods in Archaeology 2. Focuses on the design of research, including constructing empirical arguments and testing them, data gathering, site formation processes, field strategies (archival resources, mapping, field survey, surface collecting/recording, excavation and preliminary analysis) and artifact analysis as it relates to research design.

ANTH 5410-3. Archaeology of Ancient Near East. Same as ANTH 4410.

ANTH 5420-3. Archaeology of Ancient Egypt. Same as ANTH 4420.

ANTH 5440-3. Egyptian Hieroglyphics 1. Same as ANTH 4440.

ANTH 5500-3. Cross-Cultural Aspects of Socioeconomic Development. Same as ANTH 4500.

ANTH 5510-3. Applied Cultural Anthropology. Same as ANTH 4510.

ANTH 5520-3. Symbolic Anthropology. Same as ANTH 4520.

ANTH 5530-3. Theoretical Foundations of Sociocultural Anthropology. Same as ANTH 4530.

ANTH 5570-3. Anthropology of Fishing. Same as ANTH 4570.

ANTH 5590-3. Urban Anthropology. Same as ANTH 4590.

ANTH 5600-3. Human Ecology: Cultural Aspects. Reviews and critically examines the major theoretical perspectives for understanding the relationship between human social behavior and the environment developed in the social sciences, especially anthropology, over the last 100 years.

ANTH 5610-3. Medical Anthropology. Same as ANTH 4610.

ANTH 5750-3. Culture and Society in South Asia. Same as ANTH 4750.

ANTH 5760-3. Ethnography of Southeast Asia and Indonesia. Same as ANTH 4760.

ANTH 5770-3. Core Course: Archaeology. Provides a guide-level overview of analytic issues relevant to all phases of archaeological research and of the diversity of theoretical perspectives within the field as a whole. This course is required for all first-year graduate students in anthropology. Prereq., graduate status in anthropology.

ANTH 5780-3. Core Course: Cultural Anthropology. Provides an intense, graduate-level introduction to the discipline of cultural anthropology, with an emphasis upon critically assessing those methods, theories, and works that have shaped the field from the 19th century to the present time. Prereq., graduate status in anthropology or instructor consent.

ANTH 5790-3. Core Course: Biological Anthropology. Discusses how biological anthropologists use evidence and concepts from evolutionary theory, human biology, and ecology to understand the evolution, diversification, and adaptation of human populations. Required of all first-year graduate students in anthropology. Prereq., graduate status in anthropology.

ANTH 5840 (1-6). Guided Study. Directed individual research based on a specific area of specialization. May be repeated for a total of 6 credit hours.

ANTH 5930 (1-6). Anthropology Internship. Same as ANTH 4930.

ANTH 6400-3. Advanced Seminar in Human Ecology. Challenges advanced graduate stu-
dents to understand and utilize the methods, theory, and research results of human ecology in the three subfields of anthropology: biological, cultural, and archaeological. Focuses on a particular topic or geographic area. Prereq., completion of graduate core courses and EPOB 3020, or instructor permission. Recommended prerequisite, completion of at least two courses from approved list of human ecology focus.

ANTH 6940-3. Candidate for Degree.

ANTH 6950 (1-6). Master’s Thesis.

ANTH 7000-3. Seminar: Current Research Topics. Discusses current research and theoretical issues in the field of cultural anthropology. May be repeated for a total of 6 credit hours.

ANTH 7010-3. Seminar: Current Theory in Cultural Anthropology. Addresses current theoretical perspectives in cultural anthropology and controversies surrounding them. Discusses science, history, interpretation, and postmodernism. Includes the relationship between theory and method as well as the production of ethnography. May be repeated for a total of 6 credit hours.

ANTH 7020-3. Seminar: Physical Anthropology. In-depth discussion of selected topics in physical anthropology with emphasis on recent research. May be repeated for a total of 6 credit hours.

ANTH 7030-3. Seminar: Archaeology. Intensive examination of selected theoretical or methodological topics in archaeology. Topics vary with current research emphasis. May be repeated for a total of 6 credit hours.

ANTH 7040-3. Seminar: Anthropological Linguistics. Examines the manner in which language is involved in power relations, gender roles, ethnic identity, and culture in the world’s societies. Also examines the relationship to cognition with the search for a universal human grammar. May be repeated for a total of 6 credit hours.

ANTH 7140-3. Seminar: Archaeology of Selected Areas. Considers archaeology of a specified area, either geographical or topical. Areas selected in accordance with current research interests. May be repeated for a total of 9 credit hours.

ANTH 7300-3. Seminar: Research Methods in Cultural Anthropology. May be repeated for a total of 6 credit hours.

ANTH 7400-3. Nation/Culture/Citizen. Explores the nature of ethnic conflict, nationalism, and cultural citizenship in different geographical/regional contexts. Also explores the way anthropologists have shifted from the theoretical study of homogeneous communities to transnational ones. Prereq., graduate standing with a defined regional/geographical interest.

ANTH 7620-3. Seminar: Ethnography and Cultural Theory. Explores how ethnographic writing has evolved over the past century to incorporate different forms of cross-cultural representation and to accommodate new theoretical paradigms. Includes ethnographic authority and reflexivity, as well as embedded theories and blurred genres of cultural research.

ANTH 7840 (1-6). Independent Research. Research aimed at developing a solution to an originally conceived research problem. May be repeated for a total of 6 credit hours.

ANTH 8990 (1-10). Doctoral Dissertation. All doctoral students must register for no fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of this catalog.

APPLIED MATHEMATICS

APPM 1350-4. Calculus 1 for Engineers. Studies selected topics in analytical geometry and calculus: rates of change of functions, limits, derivatives of algebraic and transcendental functions, applications of derivatives, and integration. Note: GEEN 1530, a 1-credit lab, is available for students who would like more practice working calculus problems in a group learning environment. Students may not receive credit for APPM 1350 and MATH 1081, 1300, or 1310. Prereqs., two years of high school algebra, one year of geometry, and one-half year of trigonometry or approval of faculty advisor. Approved for arts and sciences core curriculum: quantitative reasoning and mathematical skills.

APPM 1360-4. Calculus 2 for Engineers. Continuation of APPM 1350. Focuses on applications of the definite integral, methods of integration, improper integrals, Taylor’s theorem, and infinite series. Students may not receive credit for APPM 1360 and MATH 1320, 2300, or 2310. Prereqs., APPM 1350 or MATH 1300, with a grade of C- or better.

APPM 1400 (1-2). Applied Mathematics: The Next Generation. Provides undergraduates the opportunity to learn, apply, and integrate their calculus knowledge with computational problems arising in a variety of settings. Prereq., APPM 1350; recommended coreq., APPM 1360.

APPM 2350-4. Calculus 3 for Engineers. Covers multivariable calculus, vector analysis, and theorems of Gauss, Green, and Stokes. Students may not receive credit for APPM 2350 and MATH 2400, or APPM 2350 and MATH 2420. Prereq., APPM 1360 or MATH 2300, with a grade of C- or better.

APPM 2360-4. Introduction to Linear Algebra and Differential Equations. Introduces ordinary differential equations, systems of linear equations, matrices, determinants, vector spaces, linear transformations, and systems of linear differential equations. No credit is awarded to students already having credit in both MATH 3130 and 4430, both APPM 3310 and MATH 4430, or APPM 2380. Prereq., APPM 1360 or MATH 2300, with a grade of C- or better.

APPM 2380-4. Introduction to Ordinary Differential Equations. Studies basic concepts of ordinary differential equations and solutions of first order, linear, and systems of differential equations. Advanced topics include series solutions and boundary value problems. Also studies numerical techniques with some laboratory experience. Prereq., APPM 2350 or MATH 2400, with a grade of C- or better. Students may not receive credit for both APPM 2360 and 2380.

APPM 2450-1. Calculus 3: Computer Lab. Covers selected topics in analytic geometry and calculus with a focus on symbolic computation using Mathematica, Maple, or Matlab. Enrollment controlled by applied mathematics faculty. Recommended prereq., APPM 1360 or MATH 2300; coreq., APPM 2350.

APPM 2460-1. Differential Equations: Computer Lab. Selected topics include differential equations and linear algebra, with a focus on symbolic computation using Mathematica, Maple, or Matlab. Enrollment controlled by applied mathematics faculty. Recommended prereq., APPM 1360 or MATH 2300; coreq., APPM 2360.

APPM 2750-4. JAVA 2 Training and Mathematical Algorithms. Designed for students familiar with object-oriented concepts. Students use graphics context to create applications and applets, identify the key features of JAVA classes, and embrace other JAVA technology. Taught in the context of mathematical algorithms from calculus. Prereqs., APPM 1350, and understanding of object-oriented principles. Recommended prereq., C or C++. Coreq., APPM 1360.

APPM 3010-3. An Introduction to Nonlinear Systems: Chaos. Aims at both majors and minors in the physical sciences. Provides students with an introduction to classes of tools that are useful in the analysis of nonlinear systems. Prereqs., APPM 1360 and 2360.

APPM 3050-3. An Introduction to Numerical and Symbolic Computation. Designed to teach some principles of computational and
applied mathematics using computational tools such as Matlab or Mathematica. Prereq., APPM 1360 and 2360.

APPM 3170-3. Discrete Applied Mathematics. Emphasizes applications of graph theory to computer science, engineering, operations research, social sciences, and biology, depending on student interests. Topics include the basic properties of graphs and digraphs, and their matrix representations. Relates graph properties to their applications; for example, graph coloring problems are related to scheduling problems, n-cubes to logic circuits and the architecture of parallel processors, Hamilton circuits to gray codes and the traveling salesman problem, covering problems to assignment problems, etc. Prereq. or coreq., APPM 3310.

APPM 3310-3. Matrix Methods and Applications. Introduces linear algebra and matrices, with an emphasis on applications, including methods to solve systems of linear algebraic and linear ordinary differential equations. Discusses computational algorithms that implement these methods. Some applications in operations research may be included as time permits. Students may not receive credit for both MATH 3130 and APPM 3310. Prereq., APPM 2350.

APPM 3570-3. Applied Probability. Studies axioms, counting formulas, conditional probability, independence, random variables, continuous and discrete distribution, expectation, moment generating functions, law of large numbers, central limit theorem, Poisson process, and multivariate Gaussian distribution. Students may not receive credit for both APPM 3570 and ENSE 3810 or for both APPM 3570 and MATH 4510. Prereq., APPM 2350 or MATH 2400.

APPM 4120-3. Introduction to Operations Research. Studies linear and nonlinear programming, the simplex method, duality sensitivity, transportation and network flow problems, some constrained and unconstrained optimization theory, and the Kuhn-Tucker conditions, as time permits. Prereq., APPM 3310 or MATH 3130. Same as APPM 5120 and MATH 4120.

APPM 4380-3. Modeling in Applied Mathematics. Exposition of a variety of mathematical models arising in the physical and biological sciences. Models may be taken from applications in classical and celestial mechanics, fluid dynamics, traffic flow, population dynamics, economics, and elsewhere. Prereqs., APPM 2360 and 3310.

APPM 4540-3. Introduction to Time Series. Single and multivariable regression, forecasting using regression models, time series models, and modeling with MA, AR, ARMA, and ARIMA models, forecasting with time series models, and spectral analysis. Prereqs., APPM 3570 or MATH 4510, and APPM 4520 or MATH 4520. Same as APPM 5540 and MATH 4540.

APPM 4560-3. Markov Processes, Queues, and Monte Carlo Simulations. Brief review of conditional probability and expectation followed by a study of Markov chains, both discrete and continuous time. Queuing theory, terminology, and single queue systems are studied with some introduction to networks of queues. Uses Monte Carlo simulation of random variables throughout the semester to gain insight into the processes under study. Prereq., APPM 3570. Same as APPM 5560.

APPM 4580-3. Statistical Methods for Data Analysis. Combines statistical methods with practical applications and computer software. Develops commonly used statistical models such as analysis of variance as well as linear and logistic regression. The statistical models are implemented and interpreted in the context of actual data sets using available statistical software.

Prereq., APPM 4570 or any course in statistics. Same as APPM 5580.

APPM 4650-3. Intermediate Numerical Analysis 1. Focuses on numerical solution of nonlinear equations, interpolation, numerical integration, numerical solution of linear systems, and matrix eigenvalue problems. Stresses significant computer applications and software. Prereqs., APPM 3310 or MATH 3130, and knowledge of a programming language. Same as MATH 4650.

APPM 4720-3. Open Topics in Applied Mathematics. Provides a vehicle for the development and presentation of new topics that may be incorporated into the core courses in applied mathematics. Prereqs., APPM 4350, 4360, 4650, and 4660 or equivalent, or instructor consent. Same as APPM 5720.

APPM 4840 (1-3). Reading and Research in Applied Mathematics. Introduces undergraduate students to the research foci of the Department of Applied Mathematics. Prereq., either APPM 3310 or MATH 3130. Recommended prereq., a course in ordinary or partial differential equations.

APPM 4950-3. Seminar in Applied Mathematics. Introduces undergraduate students to the research foci of the Department of Applied Mathematics and is a capstone experience for majors. Prereq., either APPM 3310 or MATH 3130. Recommended prereq., a course in ordinary or partial differential equations.

APPM 5070-1. Applied Statistics for High School Teachers. A fast-paced intensive course in statistics designed for high school mathematics teachers. Covers selected topics from probability and statistics, including random variables, central limit theorem, sampling design, regression, and interference. Uses technological tools, including MINITAB and SPSS, to analyze real-world statistical problems. Prereq., undergrad-
uate course in probability and statistics. Offered through Continuing Education only.

APPM 5120-3. Introduction to Operations Research. Same as APPM 4120 and MATH 5120.

APPM 5430-3. Methods in Applied Mathematics: Applications of Complex Variables. Reviews basic ideas of complex analysis, including solutions of ODEs and PDEs of physical interest via complex analysis; conformal mapping, including Schwarz-Christoffel transformations and generalizations; computational methods; Riemann-Hilbert problems; and topics in asymptotic methods. Prereq., APPM 4360 or 5360, or instructor consent.

APPM 5440-3. Applied Analysis 1. Discusses the elements of basic real and complex analysis, Banach spaces, LP spaces, and many relevant inequalities. Includes applications of existence and uniqueness of solutions to various types of ordinary differential equations, partial differential equations, and integral equations. Prereq., MATH 4310 and 4320, or equivalent; MATH 3130 or equivalent; or instructor consent.

APPM 5460-3. Methods in Applied Mathematics: Dynamical Systems and Differential Equations and Chaos. Introduces the theory and applications of dynamical systems through solutions to differential equations. Covers existence and uniqueness theory, local stability properties, qualitative analysis, global phase portraits, perturbation theory, and bifurcation theory. Special topics may include Melnikov methods, averaging methods, bifurcations to chaos, and Hamiltonian systems. Prereq., undergraduate courses equivalent to APPM 2360, 3310, and MATH 4310.

APPM 5520-3. Introduction to Mathematical Statistics. Prereq., one semester calculus-based probability. Same as APPM 4520 and MATH 5520.

APPM 5540-3. Introduction to Time Series. Same as APPM 4540 and MATH 5540.

APPM 5560-3. Markov Processes, Queues, and Monte Carlo Simulations. Same as APPM 4560.

APPM 5720-3. Open Topics in Applied Mathematics. Same as APPM 4720.

APPM 6520-3. Mathematical Statistics. Emphasizes mathematical theory of statistics. Topics include distribution theory, estimation and testing of hypotheses, multivariate analysis, and nonparametric inference, all with emphasis on theory. Prereq., APPM 5520 or MATH 5520. Same as MATH 6520.

APPM 6540-3. Time Series Analysis. Focuses on basic properties, linear extrapolation, and filtering of stationary random functions. Also looks at spectral and cross-spectral analysis, estimation of the power spectrum using computers, nonstationary time series, and comparison of various computer programs. Prereq., MATH 4510 or APPM 4560 or instructor consent. Same as MATH 6540.

APPM 6550-3. Introduction to Stochastic Processes. Systematic study of Markov chains and some of the simpler Markov processes including renewal theory, limit theorems for Markov chains, branching processes, queuing theory, birth and death processes, and Brownian motion. Applications to physical and biological sciences. Prereq., MATH 4310 and MATH 4510, or APPM 4560, or instructor consent. Same as MATH 6550.

APPM 6900 (1-3). Independent Study.

APPM 6950 (1-6). Master’s Thesis. May be repeated for a total of 12 credit hours.

APPM 7100-3. Dynamical Systems. Covers dynamical systems defined by mappings and differential equations. Also covers Hamiltonian mechanics, action-angle variables, results from KAM and bifurcation theory, phase plane analysis, Melnikov theory, strange attractors, chaos, etc. Prereqs., APPM 5440 and 5460 or equivalent; and PHYS 5210 or equivalent; or instructor consent.

APPM 7300-3. Nonlinear Waves and Integrable Equations. Includes basic results associated with nonlinear dispersive wave systems, first-order nonlinear wave equations, nonlinear dispersive wave equations, solutions, and the methods of the inverse scattering transform. Prereqs., APPM 5470 and 5480, PHYS 5210, or instructor consent.

APPM 7400 (1-3). Topics in Applied Mathematics. Provides a vehicle for the development and presentation of new topics with the potential of being incorporated into the core courses in applied mathematics. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

APPM 7900 (1-3). Reading and Research in Applied Mathematics. Introduces graduate students to research focuses of the Department of Applied Mathematics. Prereq., instructor consent.

APPM 8000-1. Colloquium in Applied Mathematics. Introduces graduate students to the research focuses of the Department of Applied Mathematics. Prereq., instructor consent.

APPM 8100-1. Seminar in Nonlinear Equations. Introduces advanced topics and research
in dynamical systems, nonlinear waves, and integrable systems.

APPM 8990 (1-10). Doctoral Dissertation. All doctoral students must register for no fewer than 30 hours of dissertation credit as part of the requirements for the degree. No more than 10 credit hours may be taken in any one semester.

ARTS AND SCIENCES

Writing
ARSC 1000-4. Expository Writing. Helps students develop their abilities to do college-level reading, writing, and thinking. Students are asked to read critically, then construct written responses that are revised and crafted into more formal essays and position papers. Offered through the Student Academic Services Center. Prereq., instructor consent.

ARSC 1080 (3-4). College Writing and Research. Helps students develop the ability to do college-level reading, writing, and thinking. Students begin with short position papers synthesizing course readings with personal observations and experiences, and move on to create more complex arguments informed by independent library research. Approved for arts and sciences core curriculum: written communication.

ARSC 1100 (3-4). Advanced Expository Writing. Continuation of the writing skills addressed in ARSC 1000. The advanced course requires students to create longer papers informed by independent library research and containing more complex, multi-layered arguments. Offered through the Student Academic Services Center. Prereq., ARSC 1000 or program coordinator consent. Meets MAPS requirement for English. Approved for arts and sciences core curriculum: written communication.

ARSC 1150-3. Writing in Arts and Sciences. Emphasizes the development of effective writing skills with instruction provided in expository and analytical writing. Reviews basic elements of grammar, syntax, and composition as needed. Meets MAPS requirement for English. Approved for arts and sciences core curriculum: written communication.

ARSC 3100-3. Multicultural Perspective and Academic Discourse. Emphasizes advanced critical thinking/analytical skills in a process-oriented, portfolio-assessed format. Investigates how race, class, sexual orientation, and gender affect academic discourse through multicultural readings and research. Offered through the Student Academic Services Center. Prereq., lower-division writing course, or equivalent. Approved for arts and sciences core curriculum: written communication.

Minority Arts and Sciences Program (MASP)
ARSC 1400-1. MASP Coseminar—CHEM 1 and 2. Designed to supplement and strengthen student experiences in chemistry. Allows particularly gifted students an opportunity to extend their understanding of the subjects and to explore possible careers in science. May be repeated for a total of 2 credit hours.

ARSC 1420-1. MASP Coseminar—Introduction to EPO Biology. Designed to supplement and strengthen student experiences in biology. Allows particularly gifted students an opportunity to extend their understanding of the subjects and to explore possible careers in science. May be repeated for a total of 2 credit hours.

ARSC 1440-1. MASP Coseminar—Mathematics. Offers an unusual and essential opportunity for students to receive small-group enrichment and reinforcement. Supplements and strengthens student experiences in mathematics, allowing particularly gifted students an opportunity to extend their understanding of the subject in a supportive environment, and to explore possible careers in science. May be repeated for a total of 2 credit hours.

ARSC 1460-1. MASP Coseminar—Introduction to MCD Biology. Designed to supplement and strengthen student experiences in biology. Allows particularly gifted students an opportunity to extend their understanding of the subjects and to explore possible careers in science. May be repeated for a total of 2 credit hours.

ARSC 1480-1. MASP Seminar—Exploration of Public Discourse through the Social Sciences. Fosters an appreciation of the humanities and social sciences. Readings, discussions, cooperative learning exercises, and outside activities illustrate the interconnections between different bodies of knowledge. Emphasizes relationships between the humanities/social sciences and the “real world.”

ARSC 1490-1. MASP Seminar—Activating the Humanities and Social Sciences. Building on ARSC 1480, seeks to enhance students’ knowledge and appreciation of the humanities and social sciences. Readings, discussions, cooperative learning exercises, workshopping papers and presentations, guest speakers, and outside activities are designed to enhance both students’ appreciation of the subject matter and their performance in regular courses. Emphasizes actively using knowledge of humanities and social sciences in a variety of ways. Prereq., ARSC 1480.

ARSC 2400-1. MASP Coseminar—Organic Chemistry. Supplements and strengthens student experiences in organic chemistry. Allows gifted students an opportunity to extend their understanding of the subjects and to explore possible careers in science. May be repeated for a total of 2 credit hours.

ARSC 2470-1. MASP Coseminar—Physics 1 and 2. Designed to supplement and strengthen student experiences in physics. Allows particularly gifted students an opportunity to extend their understanding of the subjects and to explore possible careers in science. May be repeated for a total of 2 credit hours.

Special Curricula
ARSC 1200-3. Topics in Arts and Sciences.

ARSC 1300-2. American Indians in Higher Education: Leadership and Community Building 1. Part 1 of an interdisciplinary course that examines the issues that arise for American Indian college students and the role of leadership development, community building, and career awareness in facilitating American Indian student retention.

ARSC 1310-2. American Indians in Higher Education: Leadership and Community Building 2. Part 2 of an interdisciplinary course that examines the issues that arise for American Indian college students and the role of leadership development, community building, and career awareness in facilitating American Indian student retention.

ARSC 1500-1. Environmental Sciences Seminar. May be repeated for a total of 2 credit hours.

ARSC 1510-1. Environmental Sciences Seminar. May be repeated for a total of 2 credit hours.

ARSC 1600-1. The University of Colorado Experience. Provides an effective transition to the university by giving students a solid base for developing scholarship, citizenship, decision making, and involvement in their university community. Topics include academic and campus resources, safety, health, and diversity.

ARSC 2110-4. Physical Science of the Earth System. Covers basic concepts of physics and chemistry, taught in the context of Earth and space science. Small class size and emphasis on student investigations, labs and field work, and active learning make this course particularly appropriate for future K-6 teachers. Prereq., two high school science courses (college prep level). Same as GEOL 2110. Approved for arts and sciences core curriculum: natural sciences.

ARSC 2274-3. Peer Counseling. Overview of the field of paraprofessional counseling. Introduces students to counseling theory and techniques. Students study the philosophy of a liberal arts education as well as policies and requirements of the College of Arts and Sciences.

ARSC 3700 (3-5). McNair Seminar: Research Design. Multidisciplinary course guiding critical thinking as students design a formal investigation. Includes compiling an annotated bibliography, composing a literature review, and presenting and writing a prospectus. Students revise the prospectus, creating a proposal for funding the research. Prereq., admission to McNair Program (junior standing, minimum GPA of 2.50, and strong interest in graduate school).

ARSC 3935 (1-6). Internship. May be repeated for a total of 6 credit hours.

ARSC 4000-3. Multimedia Applications in Foreign/Second Language Education. Focuses on knowledge and skills in accessing, evaluating, and integrating technology-assisted, mediated material in the teaching and learning of foreign languages. Also focuses on hands-on design and production of instructional software for foreign languages. Recommended prereq., a language-teaching methodology course. Same as ARSC 5000.

ARSC 4030-4. Comparative Environmental Policies: Ethics, Law, and Social Science. Taught in Italy by faculty from several different disciplines and continents. Compares environmental policies in Europe, the United States, and Australia from the perspective of ethics, law, and the social sciences. Prereq., at least 12 hours in ECON, ENVS, PHIL, PSCI, or LAWS. Same as ARSC 5030.

ARSC 4040-3. Arts and Sciences Special Topics. Same as ARSC 5040.

ARSC 4700 (3-5). McNair Seminar: Research Practices and Procedures. Within the range of scholarly modes, student researchers examine discipline-specific rationales for evidence and analysis. Lecturers distinguish popular concepts of investigation from scholarly research. Students learn to take care describing and discussing methods, findings, interpretations, assertions, and conclusions. Prereq., admission to McNair Program (junior standing, minimum GPA of 2.50, and strong interest in graduate school).

ARSC 4909 (2-6). Senior Thesis for Individually Structured Major.

Graduate-Level Courses

ARSC 5000-3. Multimedia Applications in Foreign/Second Language Education. Same as ARSC 4000.

ARSC 5010-3. Environmental and Natural Resources Policy. Focuses on the integration of disciplinary perspectives in the formation and appraisal of public policy dealing with the use and protection of natural resources and the environment. Research emphasis; specific topics vary. Required for the environmental policy certificate. Prereq., instructor consent. Same as ARSC 7010.

ARSC 5020-3. Policy Responses to Global Change. Focuses on the integration of disciplinary perspectives in the design and appraisal of policy responses to the cluster of issues involved in global change. Research emphasis; specific topics vary. Required for the environmental policy certificate. Prereq., instructor consent. Same as ARSC 7020.

ARSC 5040-3. Arts and Sciences Special Topics. Same as ARSC 4040.

ARSC 5050-3. Graduate Seminar on Applied Behavior Science 1. The first part of a two-semester sequence designed to introduce graduate students in the social sciences to interdisciplinary theory, concepts, and methods as applied to important social problems. Prereq., completion of first year of graduate work in a social science department.

ARSC 5060-3. Graduate Seminar on Applied Behavior Science 2. The second part of a two-semester sequence designed to introduce graduate students in the social sciences to interdisciplinary theory, concepts, and methods as applied to important social problems. Prereq., completion of first year of graduate work in a social science department, and ARSC 5050.

ARSC 7010-3. Environmental and Natural Resources Policy. Same as ARSC 5010.

ASIAN STUDIES

ASIA 1000-4. Introduction to South and Southeast Asian Civilizations. Interdisciplinary survey course, emphasizing cultural developments in the Indian subcontinent that influenced Indonesia and mainland Southeast Asia. Foundation course required for the Asian Studies major.

ASIA 4830-3. Senior Thesis in Asian Studies. Studies an approved East Asian topic, following guidelines established by the program director. Undertaken either as an independent study with an Asian studies faculty member or as part of a seminar course approved by the Asian studies faculty representative in the student’s disciplinary option.

ASTROPHYSICAL AND PLANETARY SCIENCES

ASTR 1010-4. Introductory Astronomy 1. Introduces principles of modern astronomy for nonscience majors, summarizing our present knowledge about the Earth, moon, planets, Sun, and origin of life. Similar to ASTR 1110, but with additional recitation and lab experience. Also similar to ASTR 1030. Requires nighttime observing sessions at Sommers-Bausch Observatory. Some sessions are at the Fiske Planetarium. Meets MAPS requirement for natural science: non-lab. Approved for arts and sciences core curriculum: natural science.

ASTR 1020-3. Introductory Astronomy 2. Introduces principles of modern astronomy for nonscience majors, summarizing our present knowledge about the Sun, stars, birth and death of stars, neutron stars, black holes, galaxies, quasars, and the organization and origins of the universe. Similar to ASTR 1120, but with sequence link to ASTR 1010. Also similar to ASTR 1040. Prereq., ASTR 1010 or 1110. Offers nighttime observing sessions at Sommers-Bausch Observatory. Some sessions are at the Fiske Planetarium. Approved for arts and sciences core curriculum: natural science.

ASTR 1030-4. Accelerated Introductory Astronomy 1. Covers principles of modern astronomy summarizing our present knowledge about the Earth, moon, planets, sun, and origin of life. Similar to ASTR 1010 and 1110 but taught at a higher intellectual level including a significant amount of quantitative analysis. Requires nighttime observing sessions at Sommers-Bausch Observatory. Some sessions are at the Fiske Planetarium. Prereq., algebra (MATH 1000, 1010, 1020, 1030, and 1040, or equivalent). Required in ASTR minor. Approved for arts and sciences core curriculum: natural science.

ASTR 1040-4. Accelerated Introductory Astronomy 2. Covers principles of modern astronomy summarizing our present knowledge about the sun, stars, birth and death of stars, neutron stars, black holes, galaxies, quasars, and the organization and origins of the universe. Similar to ASTR 1020 and 1120 but taught at a higher intellectual level including a significant amount of quantitative analysis. Offers opportunities to attend nighttime observing sessions at Sommers-Bausch Observatory. Some sessions are at the Fiske Planetarium. Prereq., algebra (MATH 1010 through 1040 or equivalent) and ASTR 1030. Required in ASTR minor. Approved for arts and sciences core curriculum: natural science.

ASTR 1110-3. General Astronomy: The Solar System. Examines principles of modern astronomy for nonscience majors, summarizing our present knowledge about the Earth, moon, planets, Sun, and origin of life. Similar to ASTR 1010, without lab and recitation. Also similar to ASTR 1030. ASTR 1110 and 1120 may be taken in either order. Offers opportunities to attend nighttime observing sessions at Sommers-Bausch Observatory. Some sessions
are at the Fiske Planetarium. Meets MAPS requirement for natural science: non-lab. Approved for arts and sciences core curriculum: natural science.

ASTR 1120-3. General Astronomy: Stars and Galaxies. Examines principles of modern astronomy for non-science majors, summarizing our present knowledge about the Sun, stars, neutron stars, black holes, interstellar gas, galaxies, quasars, and the structure and origins of the universe. Similar to ASTR 1020, without sequence link to ASTR 1010. Also similar to ASTR 1040. ASTR 1110 and 1120 can be taken in either order. Offers opportunities to attend nighttime observing sessions at Sommers-Bausch Observatory. Some sessions are at the Fiske Planetarium. Approved for arts and sciences core curriculum: natural science.

ASTR 2000-3. Ancient Astronomies of the World. Documents the numerous ways in which observational astronomy and cosmology have been features of ancient cultures. Includes naked eye astronomy, archaeo-astronomy, ethno-astronomy, concepts of time, calendrics, cosmogony, and cosmology. Approved for arts and sciences core curriculum: natural science, or cultural and gender diversity.

ASTR 2010-3. Modern Cosmology—Origin and Structure of the Universe. A nonmathematical introduction to modern cosmology for non-science majors. Covers the Big Bang; the age, size, and structure of the universe; and the origin of the elements and of stars, galaxies, the solar system, and life. Approved for arts and sciences core curriculum: natural science.

ASTR 2020-3. Introduction to Space Astronomy. Discusses reasons for making astronomical observations from space, scientific goals, practical requirements for placing instruments in space, politics of starting new programs, and selected missions. Prereq., ASTR 1010 or 1020 or 1110 or 1120. Approved for arts and sciences core curriculum: natural science.

ASTR 2030-3. Black Holes. Black holes are one of the most bizarre phenomena of nature. Course introduces students to the predicted properties of black holes, astronomical evidence for their existence and formation, and modern ideas about space, time and gravity. Approved for the arts and sciences core curriculum: natural science.

ASTR 2840 (1-3). Independent Study. May be repeated for a total of 7 credit hours. Prereq., instructor consent.

ASTR 3010-4. Observations and Instrumentation 1. Lab course in astronomical observing and instrumentation. Hands-on exercises include obtaining and analyzing multi-wavelength data, basic optical design and instrumentation, and statistical analysis of data, with emphasis on imaging applications. Some night observing sessions are required. Prereqs., PHYS 1110 and 1120, and algebra (MATH 1000, 1010, 1020, 1030, 1040, or equivalent). Recommended prereqs., ASTR 1010 and 1020; 1110 and 1120 or 1030 and 1040.

ASTR 3020-4. Observations and Instrumentation 2. Lab course in observing and instrumentation. Hands-on exercises include obtaining and analyzing multi-wavelength data, optical design and instrumentation, and statistical analysis, with emphasis on spectroscopy. Some night observing sessions are required. Prereqs., PHYS 1110 and 1120, ASTR 3010. Recommended prereqs., ASTR 1010 and 1020; 1110 and 1120 or 1030 and 1040.

ASTR 3060-3. Introduction to Space Experimentation. Provides a systems perspective of space exploration for students in all disciplines. Surveys the scientific and technical research that can be accomplished from space and the engineering principles and tools needed to make that research possible. Prereqs., one semester of calculus (MATH 1080, 1090, and 1100; MATH 1300; or APPM 1350) and one year of general physics (PHYS 2010 and 2020, or PHYS 1110 and 1120). Same as ASEN 3060. Approved for arts and sciences core curriculum: natural science.

ASTR 3220-3. Intermediate Astronomy: Stars and Galaxies. Pursues topics in modern astronomy outside the solar system. Topics vary but often include stars, black holes, galaxies, quasars, and cosmology. Introduces nonmathematical (simple algebra only) but physical concepts. Prereq., ASTR 1020, 1040, or 1120. Approved for arts and sciences core curriculum: natural science.

ASTR 3300-3. Extraterrestrial Life. Discusses the scientific basis for the possible existence of extraterrestrial life. Includes origin and evolution of life on Earth; possibility of life elsewhere in the solar system; including Mars; and the possibility of life on planets around other stars. Prereq., one-year sequence in a physical science. Same as GEOL 3300.

ASTR 3720-3. Planets and Their Atmospheres. Explores the physics and chemistry of the atmospheres of Mars, Venus, Jupiter, Saturn, and Titan. Examines evolution of the atmospheres of Earth, Venus, and Mars, and the escape of gases from the Galilean satellites, Titan, and Mars. Also looks at orbital characteristics of planets, moons, and comets. Uses recent results of space exploration. Prereqs., PHYS 1110 and 1120, and either MATH 1300 and 2300 or APPM 1350 and 1360. Elective for APS minor. Same as ATOC 3720.

ASTR 3730-3. Cosmology and Relativity. Special and general relativity as applied to astrophysics, cosmological models, observational cosmology, experimental relativity, and the early universe. Prereqs., PHYS 1110 and 1120, and either MATH 1300 and 2300, or APPM 1350 and 1360. Elective for APS minor.

ASTR 3750-3. Planets, Moons, and Rings. Approaches the physics of planets, emphasizing their surfaces, satellites, and rings. Topics include formation and evolution of planetary surfaces, history of the terrestrial planets, and dynamics of planetary rings. Both ASTR 3720 and ASTR 3750 may be taken for credit in any order. Prereqs., PHYS 1110 and 1120, and calculus (MATH 1300 and 2300, or APPM 1350 and 1360). Elective for APS minor.

ASTR 3830-3. Astrophysics 2—Galactic and Extragalactic. ASTR 3730 and 3830 provide a year-long introduction to physical processes, observations, and current research methods in stellar, interstellar, galactic, and extragalactic astrophysics, with astronomical applications of gravity, radiation processes, spectroscopy, gas dynamics, and plasma physics. Prereqs., PHYS 1110 and 1120, calculus (MATH 1300 and 2300 or APPM 1350 and 1360), and ASTR 3730. Elective for APS minor.

ASTR 4010-3. Astrophysical Research Seminar. Offers an intensive seminar on the science and methods of astrophysical research. In-class work presents theoretical background and an overview of ongoing research at CU; students also work on individual research projects in an area of specialization. Prereqs., two semesters of calculus, two semesters of physics, and a major in either math, physics, or engineering.

ASTR 4800-3. Space Science: Practice and Policy. Exposes students to current controversies in science that illustrate the scientific method and the interplay of observation, theory, and science policy. Students research and debate both sides of the issues, which include strategies and spinoffs of space exploration, funding of science, big vs. small science, and scientific heresy and fraud. Prereqs., ASTR 1110 and 1120, or ASTR 1010 and 1020, or
PHYS 1110 and 1120, or PHYS 2010 and 2020. Approved for the arts and sciences core curriculum: critical thinking.

ASTR 4810-3. Science and Pseudo-Science in Astronomy. Stimulates students to critically distinguish science and pseudo-science astronomical concepts. Discusses some current astronomical controversies, as well as pseudo-scientific topics. Prereqs., ASTR 1110 and 1120, or ASTR 1010 and 1020, or PHYS 1110 and 1120, or PHYS 2010 and 2020. Approved for arts and sciences core curriculum: critical thinking.

ASTR 4840 (1-3). Independent Study. May be repeated for a total of 7 credit hours. Prereq., instructor consent.

ASTR 4841 (1-3). Independent Study. May be repeated for a total of 7 credit hours.

ASTR 5120-3. Internal Processes 2. A second-semester continuation of ASTR 5110. Introduces graduate students in astrophysics and planetary sciences to radiative transfer in continuum and line, fluid dynamics of compressible gases, flows in gravity, shock waves, and MHD, with application to stars, planets, and gas in space. Prereq., ASTR 5110.

ASTR 5140-3. Astrophysical and Space Plasmas. Teaches magnetohydrodynamics and a few related areas of plasma physics applied to space and astrophysical systems, including planetary magnetospheres and ionospheres, stars, and interstellar gas in galaxies. Prereq., graduate standing in APS or physics. Same as PHYS 5141.

ASTR 5250-3. Planetary Aeronomy. Focuses on basic physics of the processes that occur in the upper atmosphere between 80 km and several Earth radii. Includes photodissociation, diffusion, and thermal conductivity of the thermosphere. Also covers structure and composition of the D, E, and F regions of the ionosphere, and escape of gases from the exosphere.

ASTR 5300-3. Introduction to Magnetospheres. Introduces solar and stellar winds, and planetary and stellar magnetospheres. acquaints students with the guiding center theory for particle motion, magnetospheric topology, convection, radiation belts, magnetic storms and substorms, and auroras.

ASTR 5400-3. Introduction to Fluid Dynamics. Covers equations of fluid motion relevant to planetary atmospheres and oceans, as well as stellar atmospheres; effects of rotation and viscosity; and vorticity dynamics, boundary layers, and wave motions. Introduces instability theory, nonlinear equilibration, and computational methods in fluid dynamics. Same as ATOC 5400.

ASTR 5410-3. Fluid Instabilities, Waves, and Turbulence. Involves linear and nonlinear analyses of small-scale waves and instabilities in stratified fluids, with effects of rotation. Studies internal gravity and acoustic waves with terrestrial, planetary, and astrophysical applications. Also studies thermal and double-diffusive convection, homogeneous and stratified shear flow instabilities. Examines these topics from the onset of small amplitude disturbances to their nonlinear development and equilibration. Prereq., ASTR 5400 or ATOC 5400. Same as ATOC 5410.

ASTR 5440-3. Mathematical Methods. Presents an applied mathematics course designed to provide the necessary analytical and numerical background for courses in astrophysics, plasma physics, fluid dynamics, electromagnetism, and radiation transfer. Topics include integration techniques, linear and nonlinear differential equations, WKB and Fourier transform methods, adiabatic invariants, partial differential equations, integral equations, and integrodifferential equations. Draws illustrative examples from the areas of physics listed above. Same as ATOC 5540.

ASTR 5560-3. Radiative Processes in Planetary Atmospheres. Applies radiative transfer theory to problems in planetary atmospheres, with primary emphasis on the Earth’s atmosphere; principles of atomic and molecular spectroscopy; infrared band representation; absorption and emission of atmospheric gases; radiation flux and flux divergence computations; radiative transfer and fluid motions; additional applications such as the greenhouse effect; and inversion methods and climate models. Same as ATOC 5560. Prereq. or coreq., ATOC 5525 or ASTR 5110. Recommended prereq., ATOC 5235.

ASTR 5580-3. Planetary Surfaces and Interiors. Examines processes operating on the surfaces of solid planets and in their interiors. Emphasizes spacecraft observations, their interpretation, the relationship to similar processes on Earth, the relationship between planetary surfaces and interiors, and the integrated geologic histories of the terrestrial plan-
ets and satellites. Prereq., graduate standing in physical sciences or instructor consent. Same as GEOL 5800.

ASTR 5810-3. Planetary Atmospheres. Covers the structure, composition, and dynamics of planetary atmospheres. Includes the origin of planetary atmospheres, chemistry and cloud physics, greenhouse effects, climate, and the evolution of planetary atmospheres—past and future. Prereq., graduate standing in physical sciences or instructor consent. Same as ASTR 5810 and GEOL 5810.

ASTR 5820-3. Origin and Evolution of Planetary Systems. Considers the origin and evolution of planetary systems, including proto-planetary disks, condensation in the solar nebula, composition of meteorites, planetary accretion, comets, asteroids, planetary rings, and extrasolar planets. Applies celestial mechanics to the dynamical evolution of solar system bodies. Prereq., graduate standing in physical sciences or instructor consent. Same as GEOL/ATOC 5820.

ASTR 5830-3. Topics in Planetary Science. Examines current topics in planetary science, based on recent discoveries, spacecraft observations, and other developments. Focuses on a specific topic each time the course is offered, such as Mars, Venus, Galilean satellites, exobiology, comets, or extrasolar planets. May be taken twice for credit. Prereq., graduate standing in physical sciences or instructor consent. Same as ASTR 5830 and GEOL 5830.

ASTR 5835-1. Seminar in Planetary Science. Studies current research on a topic in planetary science. Students and faculty give presentations. Subjects may vary each semester. May be repeated for a total of 4 credit hours to meet candidacy requirements. Prereq., graduate standing or instructor consent, and undergraduate physics. Same as ASTR 5835 and GEOL 5835.

ASTR 5920 (1-6). Reading and Research in Astrophysical and Planetary Sciences. May be repeated for a total of 7 credit hours. Prereq., instructor consent.

ASTR 6000-1. Seminar in Astrophysics. Studies current research and research literature on an astrophysical topic. Students and faculty give presentations. Subjects vary each semester. May be repeated for a total of 4 credit hours to meet candidacy requirements. Prereq., graduate standing or instructor consent.

ASTR 6010-1. Seminar in Astrophysics. Offers a graduate seminar on a research topic related to a semester’s core astrophysics course. Explores research literature. May be repeated with ASTR 6000 for a total of 4 credit hours to meet candidacy requirements. Prereq., graduate standing or instructor consent.

ASTR 6610-3. Earth and Planetary Physics 1. Examines mechanics of deformable materials, with applications to earthquake processes. Introduces seismic wave theory. Other topics include inversion of seismic data for the structure, composition, and state of the interior of the Earth. Same as GEOL 6610 and PHYS 6610.

ASTR 6620-3. Earth and Planetary Physics 2. Covers space and surface geodetic techniques as well as potential theory. Other topics are the definition and geophysical interpretation of the geoid and of surface gravity anomalies; isostasy; post-glacial rebound; and tides and the rotation of the Earth. Same as GEOL 6620 and PHYS 6620.

ASTR 6630-3. Earth and Planetary Physics 3. Examines the solar system, emphasizing theories of its origin and meteorites. Highlights distribution of radioactive materials, age dating, heat flow through continents and the ocean floor, internal temperature distribution in the Earth, and mantle convection. Also covers the origin of the oceans and atmosphere. Same as GEOL 6630 and PHYS 6630.

ASTR 6650 (1-3). Seminar in Geophysics. Advanced seminar studies in geophysical subjects for graduate students. Same as GEOL 6650 and PHYS 6650.

ASTR 6940 (1-3). Master’s Degree Candidate.

ASTR 6950 (1-6). Master’s Thesis.

ASTR 7160-3. Intermediate Plasma Physics. Prereq., PHYS 5150 or instructor consent. Same as PHYS 7160.

ASTR 7500 (1-3). Special Topics in Astrophysical and Planetary Sciences. Acquaints students with current research in astrophysical and planetary sciences. (Topics vary each semester.) May be repeated for a total of 9 credit hours.

ASTR 7920 (1-6). Reading and Research in Astrophysical and Planetary Sciences. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

ASTR 8990 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of this catalog.

ATMOSPHERIC AND OCEANIC SCIENCES

ATOC 1050-3. Weather and the Atmosphere. Introduces principles of modern meteorology for non-science majors, with emphasis on scientific and human issues associated with severe weather events. Includes description, methods of prediction, and impacts of blizzards, hurricanes, thunderstorms, tornadoes, lightning, floods, and firestorms. Approved for arts and sciences core curriculum: natural science.

ATOC 1070-1. Weather and the Atmosphere Laboratory. Optional laboratory for ATOC 1050. Laboratory experiments illustrate fundamentals of meteorology. Covers collection, analysis, and discussion of data related to local weather. Uses computers for retrieval and interpretation of weather data from Colorado and across the U.S. Prereq. or coreq., ATOC 1050 or instructor consent. Approved for arts and sciences core curriculum: natural science.

ATOC 3180-3. Aviation Meteorology. Familiarizes students with a wide range of meteorologic and air travel: rudiments of aerodynamics; aircraft stability and control; atmospheric circulation, vertical motion, turbulence, and wind shear; fronts, clouds, and storms. Prereq., ATOC 1050 or equivalent. Approved for arts and sciences core curriculum: natural science.

ATOC 3300-3. Analysis of Climate and Weather Observations. Discusses instruments, techniques, and statistical methods used in atmospheric observations. Covers issues of data accuracy and analysis of weather maps. Provides application to temperature and precipitation records, weather forecasting, and climate change trends. Uses computers to access data sets and process data. Prereqs., ATOC 1050 or ATOC 3600/GEOL 3601, or GEOL 1001; and a statistics course. Same as GEOL 3301. Approved for arts and sciences core curriculum: natural science.

ATOC 3500-3. Air Chemistry and Pollution. Composition of the atmosphere. Sources of gaseous and particulate pollutants: their chemistry, transport, and removal from the atmosphere. Applies general principles to acid rain, smog, and stratospheric ozone depletion. Prereq., two semesters chemistry. Approved for arts and sciences core curriculum: natural science.
ATOC 3600-3. Principles of Climate. Describes the basic components of the climate system: the atmosphere, ocean, cryosphere, and lithosphere. Investigates the basic physical processes that determine climate and link the components of the climate system. Covers the hydrological cycle and its role in climate, climate stability, and global change. Includes forecasting climate and its application and human dimensions. Includes discussion, debate, and critical reading of textual materials. Students may not receive credit for both ATOC 4800 and ATOC 5000. Prereq., senior standing. Same as GEOS 3601 and ENVS 3600. Approved for arts and sciences core curriculum: natural science.

ATOC 3720-3. Planets and Their Atmospheres. Covers the physics and chemistry of the atmospheres of Mars, Venus, Jupiter, Saturn, and Titan; the evolution of the atmospheres of Earth, Venus, and Mars; the escape of gases from the Galilean satellites, Titan, and Mars; the orbital characteristics of planets, moons, and comets; and recent results of space exploration. Prereq., one year of physics and one year of calculus. Same as ASTR 3720.

ATOC 4215-3. Oceanography. Introduces descriptive and dynamical physical oceanography, focusing on the nature and dynamics of ocean currents and their role in the distribution of heat and other aspects of ocean physics related to the Earth's climate. Dynamical material limited to mathematical descriptions of oceanic physical systems. Prereq., senior standing. Same as ATOC 5215 and ASEN 4215.

ATOC 4710-3. Introduction to Atmospheric Physics. Covers structure and physical processes occurring in the Earth's atmosphere; thermodynamics and stability of moist air; cloud physics, precipitation, and thunderstorms; solar and thermal radiation; the global energy balance; and effects of clouds, aerosols, and greenhouse gases on the climate. Prereq., senior standing. Same as ATOC 5710.

ATOC 4800-3. Policy Implications of Climate Controversies. Examines controversial issues related to the environment, including climate change. Covers scientific theories and the intersection between science and governmental policy. Includes discussion, debate, and critical reading of textual materials. Students may not receive credit for both ATOC 4800 and ATOC 5000. Prereq., ATOC 1060 or 3600. Approved for arts and sciences core curriculum: critical thinking.

ATOC 4900 (1-3). Independent Study. Prereq., instructor consent. May be repeated for a maximum of 6 credit hours.

ATOC 4950 (1-3). Honors Thesis. Students work independently on a research topic under the guidance of a faculty member. A written thesis and an oral presentation of the work are required. Registration by arrangement and with consent of faculty mentor. Prereq., junior or senior standing, and minimum 3.00 GPA.

ATOC 5000-3. Critical Issues in Climate and the Environment. Discusses current issues such as ozone depletion, global warming, and air quality for graduate students in nonscience fields. Provides the scientific background necessary to understand, follow scientific developments, and critically evaluate these issues. Students may not receive credit for both ATOC 4800 and ATOC 5000.

ATOC 5060-3. Dynamics of the Atmosphere. Large-scale motions in a stratified rotating atmosphere. Quasi-geostrophic flow, barotropic and baroclinic instabilities, cyclogenesis, global circulations, and boundary layer processes. Ageostrophic motions including Kelvin waves, internal gravity waves, and the theory of frontogenesis are also considered. Prereq., ATOC 5225 and 5400, or equivalents. PAOS graduate core course.

ATOC 5061-3. Dynamics of Oceans. Theory of the large-scale wind-driven and thermostatic circulations in the oceans. Models of boundary currents, western intensification, ventilation, equatorial surface and undercurrents, ocean waves, and eddies. Prereq., ATOC 5400 and 5060, or equivalents. PAOS graduate core course.

ATOC 5151-3. Atmospheric Chemistry. Basic kinetics and photochemistry of atmospheric species. Stratospheric chemistry with emphasis on processes controlling ozone abundance. Tropospheric chemistry focusing on photochemical smog, acid deposition, oxidation capacity of the atmosphere, and global climate change. Prereq., graduating standing or instructor consent. PAOS graduate core course. Same as CHEM 5151.

ATOC 5215-3. Oceanography. Same as ATOC 4215 and ASEN 4215.

ATOC 5225-3. Thermodynamics of Atmospheres and Oceans. Examines the thermodynamics of water in the Earth's atmosphere including the formation of clouds and cloud physics and the impact on global climate. The thermodynamics of oceans and sea ice are also examined. Prereq., consent. PAOS graduate thermodynamics course. Same as ASEN 5225.

ATOC 5235-3. Remote Sensing of Atmospheres and Oceans. Examines fundamentals of radiative transfer; extinction and scattering-based passive remote sensing; emission-based passive remote sensing; principles of active remote sensing; multi-sensor and multi-wave-length approaches to satellite remote sensing; and future satellite systems and validation programs. Prereq., ASEN/ATOCS 5225, PAOS graduate core course. Same as ATOC 5235.

ATOC 5400-3. Introduction to Fluid Dynamics. Covers equations of fluid motion relevant to planetary atmospheres and oceans, and stellar atmospheres; effects of rotation and viscosity; and vorticity dynamics, boundary layers, and wave motions. Introduces instability theory, nonlinear equilibration, and computational methods in fluid dynamics. PAOS graduate core course. Same as ASTR 5400.

ATOC 5410-3. Fluid Instabilities, Waves, and Turbulence. Nonlinear waves and instabilities; wave-mean and wave-wave interactions, resonant triads; secondary instability and transition to turbulence; diagnosis, modeling, and parameterization of turbulent flows in geophysics and astrophysics. Prereq., ASTR 5120, ATOC 5060, or 5400. Same as ASTR 5410.

ATOC 5560-3. Radiative Processes in Planetary Atmospheres. Application of radiative transfer theory to problems in planetary atmospheres, with primary emphasis on the Earth's atmosphere: principles of atomic and molecular spectroscopy; infrared band representation; absorption and emission of atmospheric gases; radiation flux and flux divergence computations; radiative transfer and fluid motions; additional applications such as the greenhouse effect, inversion methods, and climate models. Prereq. or coreq., ATOC 5225 or ASTR 5110; ATOC 5235 recommended. PAOS graduate core course. Same as ASTR 5560.

ATOC 5600-3. Physics and Chemistry of Clouds and Aerosols. Clouds and aerosols are ubiquitous in planetary atmospheres, where they impact climate, atmospheric chemistry, remote sensing, and weather. Applies basic mi-
crophysical, radiative, and chemical processes affecting particles to issues in current literature. Prereq., ATOC 5151, or 5225, or 5810, or instructor consent. PAOS graduate core course.

ATOC 5710-3. Introduction to Atmospheric Physics. Covers structure and physical processes occurring in the Earth’s atmosphere; thermodynamics and stability of moist air; cloud physics and precipitation; solar and thermal radiation; global energy balance; and effects of clouds, aerosols, and greenhouse gases on the climate. Prereq., one year of calculus and one year of physics with calculus. Same as ATOC 4710.

ATOC 5720-3. Introduction to Atmospheric Dynamics. Covers dynamics of the Earth’s atmosphere, basic properties and laws governing atmosphere motion, geostrophic flow and vorticity, sea breezes and mountain lee waves, mid-latitude synoptic scale weather systems, and tropical cyclones. Prereq., one year of calculus and one year of physics with calculus. Same as ATOC 4720.

ATOC 5810-3. Planetary Atmospheres. Covers the structure, composition, and dynamics of planetary atmospheres. Also includes origin of planetary atmospheres, chemistry and cloud physics, greenhouse effects, climate, and the evolution of planetary atmospheres past and future. Prereq., graduate standing in a physical science, or instructor consent. Same as ASTR/GEOL 5810. PAOS graduate core course.

ATOC 5820-3. Origin and Evolution of Planetary Systems. Includes protoplanetary disks, condensation in the solar nebula, composition of meteorites, planetary accretion, comets and asteroids, planetary rings, and extrasolar planets. Applies celestial mechanics to the orbital evolution of solar system bodies. Prereq., graduate standing in a physical science, or instructor consent. Same as ASTR 5820 and GEOL 5820.

ATOC 5830-3. Topics in Planetary Science. Covers current topics in planetary science based on recent discoveries, spacecraft observations, or other developments. Focuses on a specific topic such as Mars, Venus, Galilean satellites, exobiology, comets, and extrasolar planets. May be repeated for a total of 6 credit hours, provided the topics vary. Prereq., graduate standing in physical sciences, or instructor consent. Same as ASTR 5830 and GEOL 5830.

ATOC 5835-1. Seminar in Planetary Science. Studies current research on a topic in planetary science. Subjects may vary each semester. May be repeated for a total of 4 credit hours to meet candidacy requirements. Prereq., graduate standing or instructor consent. Same as ASTR 5835 and GEOL 5835.

ATOC 5900 (1-6). Independent Study. Prereq., instructor consent.

ATOC 5960-3. Theories of Climate and Climate Variability. Critical review of current theories of climatic variability based on analysis of different physical processes affecting climate. Same as GEOG 5961.

ATOC 6020-1. Seminar in Atmospheric and Oceanic Sciences. Studies an area of current research in the atmospheric and oceanic sciences. Students read selected papers from the literature. Students and faculty give presentations and participate in discussions. May be repeated for a total of 6 credit hours. Prereq., graduate standing and instructor consent.

ATOC 6100-3. Predicting Weather and Climate. Discusses background theory and procedures used in weather and climate prediction on a variety of space and time scales. Includes the forecasting of weather on time scales of days; error growth in numerical models; prediction of El Niño and monsoon variability; and prediction of the impact of anthropogenic influences on climate. Consists of lectures and a weekly laboratory. Prereq., ATOC 5060, 5061, or instructor consent.

ATOC 6940 (1-3). Master’s Degree Candidate.

ATOC 6950. Master’s Thesis (1-6).

ATOC 7500 (1-3). Special Topics in Atmospheric and Oceanic Sciences. Acquaints students with current research in atmospheres, oceans, and climate. (Topics may vary each semester.) May be repeated for a total of 9 credit hours.

ATOC 8990 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of this catalog.

BIBLIOGRAPHY

BIBL 3900 (1-3). Independent Library Research. In-depth library research project. For upper-division students. Arranged with instructor consent.

BIBL 4900 (1-3). Independent Library Research. In-depth library research project. For upper-division students. Arranged with instructor consent.

BILOGICAL SCIENCES

See Environmental, Population, and Organismic Biology; Molecular, Cellular, and Developmental Biology; and Kinesiology and Applied Physiology.

CENTRAL AND EAST EUROPEAN STUDIES

CEES 1000-3. Introduction to Central and East European Studies. Examines major themes in the history of Russia and East-Central Europe since the early modern era. Introduces the literature and arts of the region and presents current political, social, and economic issues. Same as HIST 1002. Approved for arts and sciences core curriculum: historical context.

CHEMISTRY AND BIOCHEMISTRY

CHEM 1011-3. Environmental Chemistry 1. Lect. Introduces basic principles of chemistry with applications to current environmental issues including toxic chemicals, air and water pollution, energy sources and their environmental impact, and climate change resulting from the greenhouse effect. No credit given for CHEM 1011 if students already have credit in any chemistry course numbered 1051 or higher. Approved for arts and sciences core curriculum: natural science.

CHEM 1021-4. Introductory Chemistry. Lect., rec., and lab. For students with no high school chemistry or a very weak chemistry background. Remedies a natural science deficiency in MAPS and prepares students for CHEM 1111. CHEM 1021 does not count toward fulfillment of the natural science core requirement. No credit is given for CHEM 1021 if students already have credit for any other college-level chemistry course. Prereq., one year of high school algebra or concurrent enrollment in MATH 1150 or MATH 1000, 1010, and 1020.

CHEM 1031-4. Environmental Chemistry 2. Lect., rec., and lab. Applications of chemical principles to current environmental issues including acid rain, stratospheric ozone depletion, the Antarctic ozone hole, solar energy conversion and fuel cells, and the environmental consequences of nuclear war. Laboratory experience is included. No credit given for CHEM 1031 if students already have credit in any college-level chemistry course numbered 1071 or higher. Prereq., CHEM 1011 with a grade of C- or higher. Approved for arts and sciences core curriculum: natural science.

CHEM 1071-4. Introduction to Organic and Biochemistry. Lect., rec., and lab. Essential
topics in organic and biochemistry. CHEM 1111 and 1071 complete the chemistry requirement for kinesiology students. Prereq., CHEM 1051, 1111, or 1151. CHEM 1071 does not replace CHEM 1131 or 1171 as a prereq. for CHEM 3311 or 3351. Approved for arts and sciences core curriculum: natural science.

CHEM 1111-5. General Chemistry 1. Lect., rec., and lab. Introductory college-level chemistry course for students who have taken high school chemistry and whose academic plans require advanced work in chemistry. Includes stoichiometry, gases, liquids and solids, atomic structure and chemical bonding, thermodynamics, and an introduction to chemical equilibrium. Prereq., one year of high school chemistry or satisfactory performance in CHEM 1001 or 1021; high school algebra. Not recommended for students with grades below B- in CHEM 1001 or 1021. Not open to students in the College of Engineering and Applied Science except by special arrangement. Students may receive credit for only one of CHEM 1111, 1151, and 1211. Approved for arts and sciences core curriculum: natural science.

CHEM 1131-5. General Chemistry 2. Lect., rec., and lab. Continuation of CHEM 1111. For students who intend to take advanced chemistry courses. Subject areas include acids and bases, solubility and complex ion equilibria, transition metal chemistry, chemical kinetics, electrochemistry, and nuclear chemistry. Prereq., CHEM 1111 or equivalent, with a grade of C or higher. Students may receive credit for only one of CHEM 1131 and 1171. Approved for arts and sciences core curriculum: natural science.

CHEM 1151-6. Honors General Chemistry 1. Lect., rec., and lab. Principles of chemistry and their applications are covered in a comprehensive manner (honors level) in this low-enrollment freshman course. Lectures include topics not covered in CHEM 1111 and 1131. The laboratory experience is more extensive; therefore, the CHEM 1151 and 1171 sequence is highly recommended for well-prepared students who intend to major in chemistry, chemical engineering, physics, molecular biology, or related areas. Prereq., one year of high school chemistry, four years of high school math and/or a high score on the SAT or ACT mathematics examination, and one year of high school physics. Students may receive credit for only one of CHEM 1111, 1151, and 1211. Approved for arts and sciences core curriculum: natural science.

CHEM 1171-6. Honors General Chemistry 2. Lect., rec., and lab. Continuation of CHEM 1151. Students may receive credit for only one of CHEM 1131 and 1171. Prereq., CHEM 1151 with grade of C- or higher. Approved for arts and sciences core curriculum: natural science.

CHEM 1211-3. General Chemistry for Engineers. Lect. A one-semester course designed to meet the general chemistry requirement for engineering students. Topics include stoichiometry; thermodynamics; gases, liquids and solids; equilibrium; acids and bases; bonding concepts; kinetics; reactions; and materials science. Examples and problems illustrate the application of chemistry to engineering subdisciplines. Prereq., enrollment in the College of Engineering and Applied Science; one year of high school chemistry or satisfactory performance in CHEM 1001 or 1021; and high school algebra. Not recommended for students with grades below B- in CHEM 1001 or 1021. Students may receive credit for only one of CHEM 1111, 1151, and 1211. Coreq., CHEM 1221.

CHEM 3211-3. Advanced Environmental Chemistry 1. Discusses the structure of organic molecules and the partitioning and reactivity of organic compounds in the environment. Prereq., CHEM 1111 and 1131, or 1151 and 1171 with a grade of C- or higher.

CHEM 3231-3. Advanced Environmental Chemistry 2. Discusses methods used to analyze and quantify environmental contaminants, atmospheric chemistry, and energy use. Prereq., CHEM 1111 and 1131 or 1151 and 1171 with a grade of C- or higher, and CHEM 3211 or 3351 and 3371 with a grade of C or higher.

CHEM 3311-4. Organic Chemistry 1. Lect. and rec. Intended primarily for nonmajors. Topics include structure and reactions of alkanes, alkenes, alkynes, alcohols, ethers, aldehydes, ketones, and alkyl halides; nomenclature of organic compounds; stereochemistry; reaction mechanisms. Students may receive credit for only one of CHEM 3311 and 3351. Prereq., CHEM 1111 or 1171 with a grade of C- or higher; coreq., CHEM 3311 or 3351.

CHEM 3321-1. Laboratory in Organic Chemistry 1. Lab. For biochemistry and non-chemistry majors. Instruction in experimental techniques of modern organic chemistry emphasizing reactions involving alcohols, ketones, carboxylic acids, and their derivatives. Multistep syntheses are also introduced. Prereq., CHEM 3321 or 3361 with a grade of C- or higher; coreq., CHEM 3331 or 3371.

CHEM 3331-4. Organic Chemistry 1 for Chemistry and Biochemistry Majors. Lect. and rec. Topics include structure and reactions of alkanes, alkenes, alcohols, ethers, aldehydes, ketones, and alkyl halides. Explores stereochemical modeling and the identification of organic unknowns. Prereq., CHEM 1131 or 1171 or equivalent with a grade of C- or higher; coreq., CHEM 3351 or 3311. Students may receive credit for only one of CHEM 3311 and 3351. Prereq., CHEM 1131 or 1171 with a grade of C- or higher; coreq., CHEM 3361 or 3321.

CHEM 3361-2. Laboratory in Organic Chemistry 1 for Chemistry Majors. Required course for chemistry majors. Instruction in experimental techniques of modern organic chemistry emphasizing chemical separations and reactions of alkanes, alkenes, ketones, and alkyl halides. Students may receive credit for only one of CHEM 3361 and 3321.

CHEM 3371-4. Organic Chemistry 2 for Chemistry and Biochemistry Majors. Lect. and rec. Topics include structure and reactions of carboxylic acids and derivatives, aromatic compounds, and amines; introduction to the chemistry of heterocycles, carbohydrates, and amino acids; nomenclature of organic compounds; reaction mechanisms. Students may receive credit for only one of CHEM 3331 and 3371. Prereq., CHEM 3351 or 3311 and CHEM 3361 or 3321 with grades of C- or higher; prereq. or coreq., CHEM 3381 or 3341.

CHEM 3381-2. Laboratory in Organic Chemistry 2 for Chemistry Majors. Lab. Required course for chemistry majors. Instruction in experimental techniques of modern organic chemistry, emphasizing reactions involving alcohols, ketones, carboxylic acids, aromatic compounds, and their derivatives. Multistep syntheses are also introduced. Prereq., CHEM 3361 or 3321 and CHEM
CHEM 4011-3. Modern Inorganic Chemistry. Lect. Required course for chemistry majors. Introduces modern inorganic chemistry for undergraduates. Includes atomic structure, chemical periodicity, structure and bonding in molecules and crystals, reaction mechanisms, chemistry of selected main group and transition elements, and emphasis on catalysts, materials, bioinorganic, and organometallic systems. Prereq., CHEM 4411 or 4511.

CHEM 4021-3. Inorganic Laboratory. One lect. and two-three-hour labs per week. Instruction in experimental techniques of modern inorganic chemistry. Includes syntheses and spectroscopic characterizations of transition metal and main group compounds, experience in manipulation of air sensitive compounds, and techniques involving unusual conditions of pressure or temperature. Prereq., CHEM 4011.

CHEM 4181-4. Instrumental Analysis. Lect. and lab. Theory and practice of instrumental methods of chemical analysis covered, including atomic and molecular spectroscopy, gas and liquid chromatography, mass spectrometry, and electrochemistry. Lab provides an opportunity for hands-on experience with common analytical methods. Prereq., CHEM 4411 or 4511. Approved for arts and sciences core curriculum: critical thinking.

CHEM 4191-3. Chemistry and Biochemistry of the Biosphere. Lect. Specific topics include soil and water chemistry, environmental fate of chemicals, biochemical toxicology, use of pesticides in agriculture, heavy metals in the environment, acid mine drainage, plastics, and remediation. Prereq., CHEM 3331 or CHEM 3371, or instructor consent; biochemistry or inorganic chemistry strongly recommended. Same as CHEM 5191.

CHEM 4411-3. Physical Chemistry with Biochemistry Applications 1. Lect. Introduces thermodynamics and kinetics, emphasizing macromolecule and biochemical applications. Includes thermodynamics, chemical and physical equilibria, solution chemistry, transport properties, multiple site binding phenomena, and the rates of chemical and biochemical reactions. Alternative to CHEM 4511. Designed for biochemistry and biology majors. Prereq., CHEM 3311 or 3351, MATH 2400 or APPM 2350, and PHYS 1110 or 2010, or instructor consent. Prereq. or coreq., PHYS 1120 or 2020. Same as CHEM 5411. Students may receive credit for only one of CHEM 4411, 4511, and 5431.

CHEM 4431-3. Physical Chemistry with Biochemistry Applications 2. Lect. Principles of physical chemistry (second semester) for students in the biological sciences. Topics include quantum mechanics, chemical bonds, principles of spectroscopy, statistical mechanics, and transport processes with application to biological systems. Mathematical background (integral and differential calculus including partial differentiation) required. Prereqs., CHEM 4411 or 4511, and MATH 2400 or APPM 2350, and PHYS 1120 or 2020. Students may receive credit for only one of CHEM 4411, 4511, and 5431.

CHEM 4511-3. Physical Chemistry 1. Lect. Chemical thermodynamics and kinetics. Includes study of laws of thermodynamics, thermochemistry, entropy, free energy, chemical potential, chemical equilibria, and the rates and mechanisms of chemical reactions. Prereqs., CHEM 3311 or 3351, MATH 2400 or APPM 2350, and PHYS 1110, or instructor consent. Coreq., PHYS 1120. Students may receive credit for only one of CHEM 4511, 4411, and 5411.

CHEM 4531-3. Physical Chemistry 2. Lect. Introduces the quantum theory of atoms, molecules and chemical bonding, and statistical thermodynamics. Includes principles of quantum mechanics and their application to atomic structure, molecular spectroscopy, symmetry properties, and the determination of molecular structure. Also includes principles of statistical mechanics and their applications to properties of gases, liquids, and solids. Prereqs., CHEM 4411 or 4511 and PHYS 1120 or 2020. Students may receive credit for only one of CHEM 4531, 4431, and 5431.

CHEM 4541-2. Physical Chemistry Laboratory. One lect. and one three-hour lab per week. Instruction in experimental techniques of modern physical chemistry emphasizing experiments illustrating fundamental principles of chemical thermodynamics, quantum chemistry, statistical mechanics, and chemical kinetics. Prereq., CHEM 4411 or 4511 or equivalent course in thermodynamics. Not open to chemistry majors.

CHEM 4561-3. Experimental Physical Chemistry. One lect. and two-three-hour labs per week. Instruction in experimental techniques of modern physical chemistry, emphasizing experiments illustrating fundamental principles of chemical thermodynamics, quantum chemistry, statistical mechanics, and chemical kinetics. For chemistry majors. Prereq., CHEM 4411 or 4511 or equivalent course in thermodynamics. Prereq. or coreq., CHEM 4431 or 4531.

CHEM 4711-3. General Biochemistry 1. Lect. Topics include structure, conformation, and properties of proteins, nucleic acids, carbohydrates, and membranes; enzyme mechanisms, kinetics, and regulation; intermediary metabolism; energetics and metabolic control; electron transport and oxidative phosphorylation. Prereq., CHEM 3331 or CHEM 3371. Same as CHEM 5711.

CHEM 4731-3. General Biochemistry 2. Lect. Continuation of CHEM 4711. Metabolism of carbohydrates, lipids, amino acids, and nucleic acids; photosynthesis; biosynthesis and function of macromolecules including DNA, RNA, and proteins; biochemistry of subcellular systems; and special topics. Prereq., CHEM 4711. Same as CHEM 5731.

CHEM 4761-4. Biochemistry Laboratory. Two five-hour periods per week. The first hour of each period is lecture; the remainder is laboratory. Introduces modern biochemical techniques. Topics include enzymology, spectroscopy, affinity chromatography, radiotracers, recombinant DNA, and molecular cloning. Prereq., CHEM 4711; CHEM 4731 or MCDB 3500 highly recommended. Approved for arts and sciences core curriculum: critical thinking.

CHEM 4901 (1-6). Independent Study in Chemistry and Biochemistry. For undergraduate study. May be repeated for a total of 8 credit hours. Prereq., instructor consent.

CHEM 5011-3. Advanced Inorganic Chemistry 1. Lect. Inorganic chemistry based on principles of binding, structure, reaction mechanisms, and modern synthetic methods. Chemistry and general properties of representative and transition elements and their compounds. Prereqs., CHEM 4011 and 4531, or graduate standing.

CHEM 5151-3. Atmospheric Chemistry. Lect. Basic kinetics and photochemistry of atmospheric species. Stratospheric chemistry with emphasis on processes controlling ozone abundance. Tropospheric chemistry focusing on photochemical smog, acid deposition, oxidative capacity of the atmosphere, and global climate change. Prereq., graduate standing or instructor consent. Same as ATOC 5151.

CHEM 5161-3. Analytical Spectroscopy. Lect. Special topics in spectrochemical analysis, including atomic and molecular spectroscopy, laser analytical methods, electron spectroscopy, surface analytical methods, and their applications to environmental, atmospheric, and bioanalytical problems. Prereq., undergraduate physical chemistry or instructor consent.

CHEM 5171-3. Electroanalytical Chemistry. Lect. Establishes a background for understanding electrochemical systems through a review of the relevant thermodynamic, kinetic, and electronic principles. Compares classical and modern electrochemical methods of analysis. Several special topics are dis-
pass discussed in depth. Prereq., undergraduate physical chemistry or instructor consent.

CHEM 5411-3. Physical Chemistry with Biochemistry Applications 1. Lect. Introduces thermodynamics and kinetics, emphasizing macromolecules and biochemical applications. Intended for biology graduate students. Not open to students in chemistry or other physical sciences. Prereqs., three semesters of calculus, one year of physics, and instructor consent or graduate standing. Same as CHEM 4411. Students may receive credit for only one of CHEM 5411, 4411, and 4511.

CHEM 5431-3. Physical Chemistry with Biochemistry Applications 2. Lect. Principles of physical chemistry (second semester) for graduate students in biology. Not open to students of chemistry or the physical sciences. Prereqs., graduate standing and CHEM 5411, or instructor consent. Same as CHEM 4431. Students may receive credit for only one of CHEM 5431, 4431, and 4531.

CHEM 5541-3. Chemical Dynamics. Lect. Discussion of mechanism and rate of chemical reactions from a fundamental point of view. Discusses nature of collision and develops concepts of cross section and rate constant. Theories of elementary bimolecular and decay processes are critically examined. Prereq., undergraduate physical chemistry.

CHEM 5561-3. Methods of Molecular Biophysics. Discusses techniques used to determine structure, function, and dynamics of macromolecules, including optical spectroscopy, magnetic resonance, diffraction, and scanning microscopy. Approved for credit toward molecular biophysics certificate. Prereq., one year physical chemistry, or quantum mechanics with graduate standing, or instructor consent.

CHEM 5581-3. Introductory Quantum Chemistry. Lect. Basic principles and techniques of quantum mechanics with applications to questions of chemical interest. Quantum dynamics of atoms, molecules, and spin; electronic structure of atoms and molecules. Prereqs., two semesters of physical chemistry and graduate standing, or instructor consent.

CHEM 5591-3. Advanced Molecular Spectroscopy. Lect. Rotational, vibrational, and electronic spectra of molecules, and their interpretation in terms of the quantum theory of molecular structure. Prereqs., two semesters of physical chemistry and graduate standing, or instructor consent.

CHEM 5661-3. Advanced Environmental Chemistry 2. Discusses the methods used to analyze and quantify environmental contaminants, atmospheric chemistry, and energy use. Prereq., one year of physical chemistry or quantum mechanics, one year of biology, and graduate standing, or instructor consent.

CHEM 5731-3. General Biochemistry 2. Same lectures as CHEM 4731. Course work includes library studies and report preparations. Not open to undergraduates. Prereqs., CHEM 5711 and graduate standing, or instructor consent.

CHEM 5771-5. Advanced General Biochemistry 1. Lect. In-depth analysis of DNA structure and replication, RNA synthesis and processing, protein synthesis, enzyme function and mechanism, protein structure, protein dynamics, and physical chemistry of macromolecules. Intended as a comprehensive treatment of areas central to modern biochemistry for entering graduate students. Prereqs., CHEM 4731 or equivalent, and graduate standing, or instructor consent.

CHEM 5776-1. Scientific Ethics and Responsible Conduct in Research. Advanced discussion of topics in scientific ethics, including requirements for responsible conduct of research, case histories of fraud, research misconduct, ethical misconduct, and development of professional values and ethical standards. Prereqs., CHEM 5771 or MCDB 5210 taken concurrently, and instructor consent. Same as MCDB 5776.

CHEM 5781-5. Advanced General Biochemistry 2. Lect. Detailed consideration of contemporary topics in biochemistry, including protein structure (primary, secondary, tertiary, and quaternary), methods of structure determination and prediction, protein folding (kinetics, thermodynamics, denaturation, and renaturation), and protein dynamics (internal motions and methods of analysis). Prereq., CHEM 5771 or instructor consent.

CHEM 5801-3. Advanced Signal Transduction and Cell Cycle Regulation. Advanced discussion of current research and literature in signal transduction, including ligands, receptors, and intracellular signaling pathways, as well as control of transcription, chromatin structure, DNA replication, mitosis, and cell cycle progression. Recommended prereqs., CHEM 5771 and 5781, MCDB 5210 or MCDB 5220, and with graduate student standing.

CHEM 5811-3. Advanced Methods in Protein Sequencing and Analysis. Advanced discussion of current methods in protein sequencing, sequence analysis, and posttranslational modifications, emphasizing techniques of mass spectrometry, use of protein databases, sequence alignment and motifs, structure prediction, and modeling of signaling pathways. Prereq., instructor consent. Recommended prereqs., CHEM 5771, CHEM 5781, MCDB 5210, and graduate standing.

CHEM 5821-1. Special Topics in Signaling and Cell Regulation. Reviews and evaluates literature on subjects of current interest in signal transduction transcription, cell cycle pro-
gression, and cell regulation. Primarily for graduate level presentation of special topics by students, faculty, and research staff. May be repeated for a total of 5 credit hours. Prereq., graduate standing and instructor consent.

CHEM 6001-1. Seminar: Inorganic Chemistry. Student, faculty, and guest presentations and discussions of current research in inorganic chemistry and related topics (transition element and main group element compound properties, inorganic compound in biological, industrial, and materials applications). Required of all inorganic chemistry graduate students. Credit deferred until presentation of satisfactory seminar. Prereq., graduate standing or instructor consent.

CHEM 6021 (1-3). Special Topics in Inorganic Chemistry. Lect. Subjects of current interest in inorganic chemistry. Primarily used for graduate-level presentations of special topics by visiting and resident faculty. Variable class schedule. May be repeated for a total of 7 credit hours. Prereq., graduate standing or instructor consent.

CHEM 6101-1. Seminar: Analytical Chemistry. Student, faculty, and guest presentations and discussions of current research in analytical chemistry. Required of all analytical chemistry graduate students. Credit deferred until presentation of satisfactory seminar. Prereq., graduate standing or instructor consent.

CHEM 6111 (1-3). Special Topics in Analytical Chemistry. Lect. Subjects of current interest in analytical chemistry. Used for graduate-level presentations of special topics by visiting and resident faculty. Variable class schedule. May be repeated for a total of 7 credit hours. Prereq., graduate standing or instructor consent.

CHEM 6301-1. Seminar in Organic Chemistry. Discussions principally concerned with recent literature in organic chemistry. Required of all organic chemistry graduate students. Prereq., graduate standing or instructor consent.

CHEM 6311(1-3). Special Topics in Synthetic Organic Chemistry. Selected topics in synthetic organic chemistry, encompassing both methods and/or total synthesis of complex molecules. Prereq., CHEM 5311 and graduate standing, or instructor consent.

CHEM 6321 (1-3). Special Topics in Physical Organic Chemistry. Selected topics in physical organic chemistry, which may include photochemistry, carbene chemistry, free radical chemistry, molecular orbital methods, organic materials, or gas phase ion chemistry. Prereq., CHEM 5321 and graduate standing, or instructor consent.

CHEM 6411 (1-3). Advanced Topics in Physical Chemistry. May be repeated for a total of 7 credit hours. Prereq., graduate standing or instructor consent.

CHEM 6601-1. Biochemistry Seminar. Required of all biochemistry graduate students. Credit is deferred until presentation of satisfactory seminar. Prereq., graduate standing or instructor consent.

CHEM 6711, 6731 (3-6). Advanced Topics in Biochemistry. Detailed study of current literature relative to one main topic is undertaken each semester. Topics covered on a rotating basis include enzyme kinetics and mechanisms; lipids and lipoproteins; chemistry and enzymology of nucleic acids; biochemistry of nucleic acids in eukaryotic cells; and protein chemistry. Presentations include faculty lectures and student reports. Credit for one semester is 3 hours. May be repeated for a total of 12 hours credit. Prereq., one year of biochemistry courses, graduate standing, and instructor consent.

CHEM 6801-0. Departmental Research Seminar. Lectures by visiting scientists and occasionally by staff members and graduate students on topics of current research. Meets once a week and is required for all graduate students in chemistry. Prereq., graduate standing or instructor consent.

CHEM 6901 (1-6). Special Topics in Chemistry. May be repeated for a total of 30 credit hours. Prereq., graduate standing or instructor consent.

CHEM 6941-3. Master’s Candidate.

CHEM 6951 (1-6). Master’s Thesis.

CHEM 7011-2. Seminar: Synthetic Chemistry of Nonmetal Compounds. Informal talks and discussion of current research in areas of synthetic and structural nonmetal inorganic chemistry. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7021-2. Seminar: Structural Inorganic Chemistry. Current research in the area of structural inorganic chemistry. Concerns topics related to electronic and molecular structure of transition metal complexes. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7141-1. Seminar: Spectroscopy at Dielectric Interfaces. Focuses on current research results and relevant literature in the areas of Raman spectroscopy, interfacial reactions/interactions, fluorescence spectroscopy, and photoacoustic spectroscopy. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7161-1. Seminar: Heterogenous Atmospheric Chemistry. Topics in atmospheric chemistry emphasizing the structure and reactivity of atmospheric particulates. Presentations on current research and critical evaluations of recent literature. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7221-1. Seminar: Photochemistry and Free Radical Chemistry. Current research in areas of organic free radical chemistry, photochemistry, and related topics are presented and discussed. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7231-1. Seminar: Reactive Intermediates. Application of contemporary ideas of chemical physics to organic molecules. Special attention to structures and bonding in organic ions and radicals. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7241-1. Seminar: Synthetic Organic Chemistry. Series of seminars on directed total synthesis. Emphasizes modern synthetic methodology and applications to total synthesis of natural products. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7271-1. Seminar: Picosecond Dynamics of Reactions. Includes development and application of picosecond laser spectroscopy to organic and organometallic reactions. Emphasizes relationship between current
theoretical developments and experiments. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7291-1. Seminar: Physical Organic Chemistry. Modern experimental techniques and theoretical models in physical organic chemistry are discussed in relation to the development of new materials, such as molecular size “tinker-toys” to the development of novel photochemical systems and their spectroscopies. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7301-1. Seminar: Synthetic and Mechanistic Chemistry. Discusses particularly the synthesis of complex organic molecules and the mechanism of re-agents used in organic synthesis. Includes a study of transition metal mediated organic reactions. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7421-1. Seminar: Negative Ion Chemistry. Chemistry of negative ions; experimental methods and designs; laser spectroscopy of ions; theoretical methods; reactive dynamics of ions in the gas phase. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7441-2. Research Seminar in Theoretical Chemistry. Studies theoretical description of molecular dynamics as related to rate processes. Focuses on chemical reactions in liquids, absorption-desorption on surfaces, nucleation reactions, and energy flow in molecules. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7451-2. Seminar in Reaction Dynamics. Studies experiments and theory in modern reaction dynamics, energy transfer, and photodissociation; experimental techniques, critique of recently published literature, and current work. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7461-1. Gas Phase Ion Chemistry. Studies gas phase ion chemistry relevant to thermochemical measurements and atmospheric, interstellar, and biomedical applications.

CHEM 7481-2. Seminar: Molecular Spectroscopy and Photochemistry. Consists of discussion and presentation of current research in spectroscopy and photochemistry of organic as well as organometallic systems. Reviews state of the art techniques available for the theoretical and experimental characterization of excited states. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7491-1. Seminar: Molecular Vibrational Dynamics. Topics pertaining to vibrational dynamics of small molecules are discussed, with particular emphasis upon IR laser spectroscopy, vander Waals clusters, vibrational induced dipole moments, and pre-dissociation. Discussion of current research and recently published literature. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7501-1. Seminar: Theoretical Molecular Dynamics. Variety of topics in theoretical chemical physics, emphasizing dynamics of molecules in dissipative environments or in radiation fields. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7511-1. Seminar: Reaction Dynamics in Condensed Phases. Studies elementary steps in chemical reactions and their observation by ultrafast spectroscopy. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7521-1. Seminar: Atmospheric Kinetics and Photochemistry. Discusses laboratory studies of degradation mechanisms. Applies these studies to atmospheric phenomena such as global warming and stratospheric ozone loss. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7531-1. Seminar: Surface Chemistry. Topics in surface science with focus on materials processing and environmental interfaces. Emphasizes kinetic phenomena important in semiconductor fabrication and heterogeneous chemistry on environmental surfaces such as ice and silica. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7541-1. Seminar: Atmospheric Trace Gases and Climate Change. Measurements of the changing chemical composition of the Earth’s atmosphere. Theories of biogeochemical cycles and climate change. Fate and interactions of trace gases in the atmosphere. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7601-2. Seminar: Nucleic Acid Chemistry. Topics in various aspects of current research; emphasizes student readings and presentations. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7651-2. Seminar: Environmental Chemistry. Topics in various aspects of current biochemical and environmental research. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7681-1. Seminar: Molecular Genetics of Signaling in Yeast. Seminar in molecular and genetic analysis of signaling pathways and their interaction with proteolytic pathways in the yeast *Saccharomyces cerevisiae*. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7691-1. Seminar: Protein Dynamics and the Mechanism of Sensory Proteins. Discusses recent results and current literature in the areas of the mechanism of sensory proteins, internal motions of proteins, and protein folding. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7701-1. Seminar: Enzyme Mechanisms and Kinetics. Studies experimental approaches to understand the mechanisms of enzymatic catalysis. Techniques include steady-state and pre-steady-state kinetics, isotope trapping and partitioning, inhibition by substrate analogues, and covalent modification of proteins. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7711-1. Seminar: Protein Structure and Function. Topics include synthesis and characterization of RNA, RNA’s structure and function relationships, and the role of RNA in biological reactions. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7721-1. Seminar: RNA Structure and Function. Topics include synthesis and characterization of RNA, RNA’s structure and function relationships, and the role of RNA in biological reactions. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7751-1. Seminar: Protein Structure and Function. Topics include synthesis and characterization of RNA, RNA’s structure and function relationships, and the role of RNA in biological reactions. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7761-1. Seminar: Eukaryotic Transcriptional Regulation. The regulation of transcription by RNA Polymerase II from human promoters. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

CHEM 7771-1. Structural Biology of Signal Transduction and Transcription. Structural studies of protein complexes in signal transduction and transcriptional regulation using X-ray crystallography, other spectroscopic methods, and biochemical methods. Prereq., graduate standing or instructor consent.
CHEM 8991 (1-10). Doctoral Dissertation. All doctoral students must register for 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of this catalog.

CLASSICS

General Classics

No Greek or Latin Required

CLAS 1010-3. The Study of Words. Studies English words of Latin and Greek origin, focusing on etymological meaning by analysis of component parts (prefixes, bases, suffixes) and on the ways in which words have changed and developed semantically.

CLAS 1100-3. Greek Mythology. Covers the Greek myths as documents of early human religious experience and imagination, the source of Greek culture, and part of the fabric of Western cultural tradition. Of particular interest to students of literature and the arts, psychology, anthropology, and history. Approved for arts and sciences core curriculum: literature and the arts.

CLAS 1110-3. Masterpieces of Greek Literature in Translation. Surveys Greek authors whose works have most influenced Western thought: Homer, Aeschylus, Sophocles, Euripides, Aristophanes, and Plato. Approved for arts and sciences core curriculum: literature and the arts.

CLAS 1120-3. Masterpieces of Roman Literature in Translation. Surveys ideas and culture of the Romans through a study of representative literature: comedy, tragedy, history, philosophy, oratory, the novel, lyric, epic, and didactic poetry. Approved for arts and sciences core curriculum: literature and the arts.

CLAS 1140-3. Roman Civilization. Surveys the outstanding achievements of Roman culture as reflected in literature, philosophy and art, private and official religion, and political thought. Approved for arts and sciences core curriculum: historical context.

CLAS 2020-3. Science in the Ancient World. Covers the development of scientific modes of thought, theory, and research from mythological origins (e.g., Hesiod’s poetry) through pre-Socratic philosophers. Culminates in theories and research of Plato and Aristotle, including the Roman Empire. Students read original sources in translation. Approved for arts and sciences core curriculum: historical context.

CLAS 2100-3. Women in Ancient Greece. Examines evidence of art, archaeology, and literature of Greek antiquity from a contemporary feminist point of view. Focuses on women’s roles in art, literature, and daily life. Same as WMST 2100. Approved for arts and sciences core curriculum: cultural and gender diversity.

CLAS 2110-3. Women in Ancient Rome. Uses art, archaeology, and literature to study, from a contemporary feminist point of view, the status of women in works of Roman art and literature, the development of attitudes expressed toward them, and their daily life. Same as WMST 2110. Approved for arts and sciences core curriculum: cultural and gender diversity.

CLAS 2610-3. Paganism to Christianity. Offers a cultural history of Greek and Roman religion. Students read ancient texts in translation and use evidence from archaeology to reconstruct the shift from paganism to Christianity in antiquity. Same as PHIL 2610. Approved for arts and sciences core curriculum: ideals and values.

CLAS 3330-3. Ancient Athletics. Examines the role of athletics and recreation in Classical Greece, Rome, and the Roman Empire (especially Constantinople) with special emphasis upon religious and political significance (e.g., of the Olympic Games) and philosophical speculations on athletics by Plato, Aristotle, and others.

CLAS 3820-3. Greek and Roman Antiquity in Music from 1600 to Present. Explores the influence of Greek and Roman mythology and history on various genres of music since 1600. Explains the context and meaning of ancient themes and their use by composers from the Renaissance to the present. Recommended prereq., CLAS 1100. Same as HUMN 3820.

CLAS 4040-3. Seminar in Classical Antiquity. Examines an advanced topic in classical language, literature, history, philosophy, art, or culture. Combines the techniques of philology with a critical approach to the literary and material legacy of the past. Prereq., second year proficiency in Latin and/or Greek. Approved for arts and sciences core curriculum: critical thinking.

CLAS 4110-3. Greek and Roman Epic. Students read in English translation the major epics of Greco-Roman antiquity such as the Iliad, Odyssey, Argonautica, Aeneid, and Meta morphoses. Topics discussed may include the nature of classical epic, its relation to the novel, and its legacy. Same as CLAS 5110. Approved for arts and sciences core curriculum: literature and the arts.

CLAS 4840 (1-4). Independent Study. May be repeated for a total of 7 credit hours.

CLAS 5110-3. Greek and Roman Epic. Same as CLAS 4110.

CLAS 5120-3. Greek and Roman Tragedy. Same as CLAS 4120.

CLAS 5130-3. Greek and Roman Comedy. Same as CLAS 4130.

CLAS 5800-3. Philosophy of Plato. Same as PHIL 5080.

CLAS 5810-3. Philosophy of Aristotle. Same as PHIL 5081.

CLAS 5840 (1-3). Graduate Independent Study. May be repeated for a total of 7 credit hours.

CLAS 6940 (1-3). Master’s Degree Candidate. Approved for a total of 7 credit hours.

CLAS 7840 (1-3). Graduate Independent Study. May be repeated for a total of 7 credit hours.

Ancient History

CLAS 1041-3. War and Society in Ancient Greece. Studies Greek warfare in its cultural, social, and economic contexts, in the light of anthropological comparisons and modern theories. Same as HIST 1041.

CLAS 1051-3. The World of the Ancient Greeks. Presents a survey of the emergence, the major accomplishments, the failures, and the decline of the ancient Greeks, from the Bronze Age civilizations of the Minoans and Mycenaeans through the Hellenistic Age (c. 2,000–30 b.c.). Same as HIST 1051. Approved for arts and sciences core curriculum: historical context.

CLAS 1061-3. The Rise and Fall of Ancient Rome. Presents a survey of the rise of ancient Rome in the eighth century b.c. to its “fall” in the fifth century A.D. Emphasizes political institutions, foreign policy, leading personalities, and unique cultural accomplishments. Same as HIST 1061. Approved for arts and sciences core curriculum: historical context.

CLAS 4021-3. Athens and Greek Democracy. Studies Greek history from 800 b.c. (the rise of the city-state) to 323 b.c. (the death of Alexander the Great). Emphasizes the development of democracy in Athens. Readings are in the primary sources. Same as CLAS 5021 and HIST 4021.

CLAS 4031-3. Alexander and the Hellenistic World. Focuses first on the careers of Philip of Macedon and his son Alexander and second on the Hellenistic Age, especially its culture, from Alexander’s death (323 b.c.) to the defeat of
CLAS 4013-3. Topics in Greek Prose. Same as CLAS 4013. May be repeated for a total of 9 credit hours.

CLAS 5023-3. Topics in Greek Poetry. Same as CLAS 4023. May be repeated for a total of 9 credit hours.

CLAS 5093-3. Survey of Greek Literature. Same as CLAS 4093.

CLAS 5803-3. Accelerated Classical Greek 1. Beginning course for graduate students. Grammar survey; intensive reading. No previous knowledge of Greek required.

CLAS 5813-4 Accelerated Classical Greek 2. Continuation of CLAS 5803. For graduate students. Prereq., CLAS 5803.

CLAS 6003-3. Graduate Reading. Author or topic to be specified in Registration Handbook and Schedule of Courses. May be repeated for a total of 9 credit hours for different topics.

CLAS 6843 (1-3). Graduate Independent Study. May be repeated for a total of 7 credit hours.

CLAS 7013-3. Graduate Seminar in Greek Literature. May be repeated for a total of 7 credit hours.

Latin
Students must receive a grade of C- or better in order to enroll in the next level of a foreign language. Students will not receive credit for a lower level course in foreign language instruction taken after credit has been given for a higher level course in the same language sequence. For example, students will not receive credit for CLAS 1013 if it is taken after they have passed CLAS 1023.

CLAS 1013-4. Beginning Latin 1. For students with no previous knowledge of Latin. Introduces basic grammar and vocabulary. May be repeated for a total of 9 credit hours.

CLAS 2114-4. Intermediate Latin 1. Introduces basic grammar and vocabulary. For students with no previous knowledge of Latin.

CLAS 2124-4. Intermediate Latin 2. Continues the presentation of grammar, incorporates review of fundamentals, and introduces reading of literature. For students with previous experience of Latin. Prereq., CLAS 1014 or equivalent.

CLAS 2124-4. Intermediate Latin 2. Selections from Virgil’s Aeneid with attention to literary form and context as well as advanced grammar and syntax.

CLAS 3014-3. Introduction to Latin Prose. Author or topic to be specified in Registration Handbook and Schedule of Courses (e.g., Cicero, Livy, Pliny). May be repeated for a total of 9 credit hours for different topics.
CLAS 3024-3. Introduction to Poetry. Author or topic to be specified in Registration Handbook and Schedule of Courses (e.g., Virgil, Ovid, Catullus, Horace). May be repeated for a total of 9 credit hours for different topics.

CLAS 4014-3. Topics in Latin Prose. Author or topic to be specified in Registration Handbook and Schedule of Courses (e.g., Roman Historians, Roman Epistolography, Cicero, Roman Novel). May be repeated for a total of 9 credit hours for different topics. Prereq., CLAS 3014 and 3024, or equivalent. Same as CLAS 5014.

CLAS 4044-3. Topics in Latin Poetry. Author or topic to be specified in Registration Handbook and Schedule of Courses (e.g., Roman Elegy, Neronian Poetry, Lucretius, Roman Satire). May be repeated for a total of 9 credit hours on different topics. Prereq., CLAS 3014 and 3024, or equivalent. Same as CLAS 5044.

CLAS 4094-3. Survey of Latin Literature. Covers Latin literary history from the beginning to the early Empire. Students read select texts of major authors in poetry and prose. Prereqs., CLAS 3014 and 3024, or equivalent. Same as CLAS 5094.

CLAS 4824-3. Latin Teaching Methods: Open Topics. Covers specialized topics in Latin pedagogy to be specified in the Registration Handbook and Schedule of Courses. Same as CLAS 5824.

CLAS 4844 (1-3). Independent Study. May be repeated for a total of 7 credit hours.

CLAS 5014-3. Topics in Latin Prose. Same as CLAS 4014. May be repeated for a total of 9 credit hours for different topics.

CLAS 5024-3. Latin Prose Composition. Same as CLAS 4024.

CLAS 5044-3. Topics in Latin Poetry. Same as CLAS 4044.

CLAS 5404-3. Special Project: Teaching. Required of master’s candidates (teaching of Latin option). Trains students to prepare classroom-ready materials which are then tested in the students’ own classroom. Prereq., fulfillment of the remaining requirements for M.A. (teaching of Latin) or 27 hours of graduate work in classics.

CLAS 5824-3. Latin Teaching Methods: Open Topics. Same as CLAS 4824.

CLAS 6004-3. Graduate Reading. Author or topic to be specified in the Registration Handbook and Schedule of Courses. May be repeated for a total of 9 credit hours for different topics.

CLAS 6844 (1-3). Graduate Independent Study. May be repeated for a total of 7 credit hours.

CLAS 7014-3. Graduate Seminar in Latin Literature. May be repeated for a total of 7 credit hours.

Honors

Art and Archaeology

CLAS 1009-3. Introduction to Greek Art and Archaeology. Discusses the major prehistoric and classical sites in Greece; presents the artifacts, such as frescoes, pottery, figurines, of each cultural period and discusses related theories and interpretations. Same as FINE 1009. Approved for arts and sciences core curriculum: literature and the arts.

CLAS 1019-3. Introduction to Roman Art and Architecture. Introduces the major monuments and sites of Rome and the Roman Empire in their historical, social, and geographical contexts. Explores the production and visual messages of Roman buildings, sculpture, paintings, mosaics, and urban planning. Same as FINE 1019. Approved for arts and sciences core curriculum: literature and the arts.

CLAS 4079-3. Roman Art and Archaeology. Covers a millennium of development in Roman art and architecture, from the foundation of Rome (753 B.C.) to Constantine (A.D. 306–337). Geographical scope includes far-flung imperial provinces as well as the Italian homeland. Same as CLAS 5079 and FINE 4079.

CLAS 4119 and FINE 5119. COMM 1300-3. Public Speaking. Covers theory and skills of speaking in various public settings. Treats fundamental principles from rhetorical and communication theory and applies them to oral presentations. Required for majors.

COMM 1600-3. Interaction Skills. Covers basic theories, concepts, and characteristics that underlie face-to-face interactions in interpersonal, small group, and organizational settings. Activities stress the development of both task and relational skills in these settings. Required for majors.

COMM 2210-3. Perspectives on Human Communication. Surveys communication in...
a variety of contexts and applications. Topics include basic concepts and general models of communication, ethics, language and nonverbal communication, personal relationships, group decision making, organizational communication, and impact of technological developments on communication. Meets MAPS requirement for social science: general. Approved for arts and sciences core curriculum: contemporary societies. Required for majors.

COMM 2360-3. Campaigns and Revolutions. Provides a broad overview of significant rhetorical events in colonial and U.S. history, including the rhetorical themes, traditions, and orators that shaped American politics and culture.

COMM 2400-3. Communication and Society. Examines how aspects of talk (turn-taking, speech acts, narratives, dialect, stance indicators) link with identities (ethnic and racial, age, gender, work-related, and personal). Considers how communication is central to constructing who people are. Examines social controversies related to talk and identities. Approved for arts and sciences core curriculum: contemporary societies.

COMM 2500-3. Interpersonal Communication. Focuses on basic processes in face-to-face interaction, including verbal and nonverbal messages, coordination in conversation, messages about self and other, and communication in personal relationships. Emphasizes theory and concepts rather than skills.

COMM 2600-3. Organizational Communication. Provides a communicatively based definition of formal organization and deals with individual-organizational relationships. Addresses such topics as organizational theory, organizational culture, power, technology, decision making, teamwork, leadership, diversity, gender, socialization, and ethics.

COMM 3300-3. Rhetorical Foundations of Communication. Introduces humanistic communication concepts from rhetorical theories of contemporary and earlier periods; discusses application of these concepts for communication analysis; and considers the implications of rhetorical practice and analysis for social interaction. Recommended prereqs., COMM 1300 and 3310.

COMM 3310-3. Principles and Practices of Argumentation. Focuses on principles of argument, the process of critical decision making, and uses and limitations of logic and evidence. Contemporary issues (personal, social, political, or philosophical) are analyzed and debated. Required for majors. Prereq., COMM 1300. Students who have credit for COMM 2310 will not receive credit for 3310.

COMM 3360-3. Rhetorical Criticism. Applies key concepts from rhetorical theory to the analysis of specific speeches, written texts, and social situations within the humanistic tradition. Students read a variety of types of criticism and are encouraged to develop their own strategies for critical analysis. Recommended prereq., COMM 3300.

COMM 4000-3. Special Topics. Analyzes special interest areas of communication research and practice. Course format is lecture, discussion, investigative analysis, and practical application. May be taken twice for credit on different topics. Prereqs., COMM 1300, 1600, and 2210.

COMM 4220-3. Senior Seminar: Functions of Communication. Topical seminar on the functions of communication across interpersonal, organizational, and public contexts. Reviews current research and theory on topics such as communication and conflict, persuasion, and ethical dimensions of communication practices. May be taken twice for credit on different topics. Prereqs., COMM 1300, 1600, and 2210. Same as COMM 5220.

COMM 4300-3. Senior Seminar: Rhetoric. Reviews current research and theory on topics such as rhetoric and publics, rhetoric as an interpretive social science, and rhetoric of social movements and political campaigns. May be taken twice for credit on different topics. Prereqs., COMM 1300, 1600, and 2210. Recommended prereqs., COMM 3300 and 3360. Same as COMM 5300.

COMM 4400-3. Senior Seminar: Communication Codes. Topical seminar on dialogic and nonverbal communication codes. Reviews current research and theory on such topics as relationship between verbal and nonverbal codes, discourse processes, and cultural differences in the communication process. May be repeated for a total of 6 credit hours. Prereqs., COMM 1300, 1600, and 2210. Recommended prereq., COMM 2400.

COMM 4510-3. Senior Seminar: Interpersonal Communication. Reviews current research and theory on topics such as communication and organizational decision making, organizational culture, gender relations, communication technology, and power and control in organizations. May be repeated for a total of 6 credit hours. Prereqs., COMM 1300, 1600, and 2210. Recommended prereq., COMM 2600. Same as COMM 5510.

COMM 4600-3. Senior Seminar: Organizational Communication. Reviews current research and theory on topics such as communication and organizational decision making, organizational culture, gender relations, communication technology, and power and control in organizations. May be repeated for a total of 6 credit hours. Prereqs., COMM 1300, 1600, and 2210. Recommended prereq., COMM 2600. Same as COMM 5600.

COMM 4840 (1-6). Undergraduate Independent Study. Note: the 6-hour limit in the major applies to any combination of independent study and internship credit. This course does not count toward the 33 credit hours required for the major. Prereq., COMM 1300, 1600, and 2210, and senior standing. Recommended prereq., COMM 3250 or 3360.

COMM 4930 (1-6). Senior Internship. For majors only. Studies are pursued in communication-related work experience projects that generally require 45-75 hours on the job per credit hour and evidence (journal, paper, employer evaluation) of significant learning. Prereqs., COMM major status, 72 hours of overall course work and 18 hours of communication course work completed, 2.5 overall GPA, and a faculty sponsor. Note: The 6-hour limit in the major applies to any combination of independent study and internship credit. Typical internships earn 3 hours of credit for a semester of work. This course does not count toward the 33 hours required for the major.

COMM 4950 (1-6). Senior Thesis—Honors. For exceptional communication majors who wish to graduate with department honors and receive credit for writing an honors thesis. Prereqs., overall GPA of 3.35 or better, a COMM GPA of 3.50 or better, and section 800 of COMM 3100.

COMM 5210-3. Communication Theory. Critical overview of leading theoretical traditions in communication studies. Gives attention to metatheoretical issues, including epistemological foundations, the structure of communication theory as a field, and reflexivity between communication theory and cultural practice. Prereq., graduate standing or instructor consent.

COMM 5220-3. Functions of Communication Seminar. May be taken twice for credit
on different topics. Prereq., graduate standing or instructor consent. Same as COMM 4220.

COMM 5300-3. Seminar: Rhetoric. May be taken twice for credit on different topics. Prereq., graduate standing or instructor consent. Same as COMM 5300.

COMM 5510-3. Seminar: Interpersonal Communication. May be taken twice for credit on different topics. Prereq., graduate standing or instructor consent. Same as COMM 5510.

COMM 5600-3. Seminar: Organizational Communication. May be taken twice for credit on different topics. Prereq., graduate standing or instructor consent. Same as COMM 5600.

COMM 6010-3. Communication Research and Theory. Provides an integrative overview of areas of study in the Ph.D. program, including theoretical and communication theory, interpersonal, and organizational communication. Required for doctoral students in communication. Prereq., graduate standing or instructor consent.

COMM 6020-3. Quantitative Research Methods. Introduces students to the practice of empirical research: conceptualization and critique of research projects; reliability and validity; and statistical reasoning and methods of analysis. Prereq., graduate standing or instructor consent.

COMM 6030-3. Interpretive Research Methods. Introduces students to a range of interpretive and critical approaches to inquiry. Focuses on philosophical issues undergirding research, as well as specifics of ethnographic observation, interviewing, and methods of textual analysis. Prereq., graduate standing or instructor consent.

COMM 6200-3. Seminar: Selected Topics. Designed to facilitate understanding of current and past theory on a selected topic in communication and to develop new theory on that topic. May be taken up to three times for credit on different topics. Prereq., graduate standing or instructor consent.

COMM 6300-3. Advanced Readings in Organizational Communication. Graduate-level survey of traditional and contemporary readings in organizational communication. Treats theory, research, and application from a variety of perspectives. Prereq., graduate standing or instructor consent.

COMM 6400-3. Advanced Readings in Interpersonal Communication. Graduate-level survey course of advanced readings in interpersonal communication. Focuses on historical and contemporary works, with emphasis on theory and research. Prereq., graduate standing or instructor consent.

COMM 6500-3. Advanced Readings in Rhetoric. Graduate-level survey of classical and contemporary readings in rhetoric. Prereq., graduate standing or instructor consent.

COMM 6840 (1-3). Master’s Independent Study.

COMM 6940 (1-3). Master’s Degree Candidate.

COMM 6950 (1-6). Master’s Thesis.

COMM 8840 (1-6). Doctoral Independent Study. May be repeated for a total of 7 credit hours.

COMM 8990 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of this catalog.

COMMUNICATION DISORDERS AND SPEECH SCIENCE

COMPARATIVE LITERATURE AND HUMANITIES

Humanities

HUMN 1010-6. Introduction to Humanities 1. Six meetings a week (three discussion classes and three lecture-demonstrations in art and music). Provides an analytical and comparative study of works in literature, music, and visual arts from Aegean to Baroque eras. Emphasizes structure, content, and style in specific examples. Approved for arts and sciences core curriculum: historical context, or literature and the arts.

HUMN 1020-6. Introduction to Humanities 2. Examines from Baroque to contemporary styles in literature, music, and visual arts. Emphasizes the cultural context in which art was created. Approved for arts and sciences core curriculum: historical context, or literature and the arts.

HUMN 2000-3. Topics in Humanities. Provides a transition from the introductory courses to the upper-division courses. Introduces the various technical and contextual methods and topics encountered in the department’s comparative, interdisciplinary upper-division courses, including cultural studies, rhetoric, translation, hermeneutics, world/image studies, etc. Prereq., HUMN 1010 or 1020.

HUMN 2133-3. The Dramatic Arts in Great Britain. Examines drama from an interdisciplinary point of view. The basis of the course is six live performances, four in London and two in Stratford. These productions are examined in comparison to versions of the same or a similar narrative in art, music, and literature and in reference to physical locations in and around London. Offered abroad only. Prereq., instructor consent.

HUMN 3015-3. Jung, Film, and Literature. Studies the basic themes of C.G. Jung’s archetypal psychology (shadow, anima/animus, character typology, and individuation). Critically analyzes selected films and literary texts of the Modern period. Prereq., humanities major or Farrand student and instructor consent. Same as FILM 3015.

HUMN 3033-3. The Comic Sense. Offers an interdisciplinary approach to comedy, examining art, music, literature, and film from different periods. Comic theory interlaced with the study of particular works.

HUMN 3043-3. The Tragic Sense. Studies some of the great tragic works of art, music, and literature from the Greeks to the 20th century. Tragic theory is invoked as an aid to interpretation.

HUMN 3065-3. Feminist Theory/Women’s Art. Focuses on several key issues in feminist thought through the analysis of women’s art (literature, film, visual art, performance) and theory. Approved for arts and sciences core curriculum: cultural and gender diversity, or literature and the arts.

HUMN 3092-3. Studies in Humanities. Students should check with the department for specific semester topics. May be repeated for a total of 12 credit hours, provided the topics vary.

HUMN 3093-3. Topics in Humanities. Students should check with the department for specific semester topics. May be repeated for a total of 12 credit hours, provided the topics vary.

HUMN 3145-3. African America in the Arts. Explores interrelationships in the arts of African Americans, learning to recognize and appreciate the African-American contribution to American culture as a whole. Students also learn to think critically and avoid oversimplification when dealing with racism and stereotyping. Prereq., HUMN 2000 or junior/senior standing. Approved for arts and sciences core curriculum: cultural and gender diversity or United States context.

HUMN 3440-3. Literature and Medicine. Offers readings and discussion of the works of Anton Chekhov, William Carlos Williams, Oliver Sacks, and other physician-writers to explore the physician-patient relationship, ethical problems in medicine, death and dying, and other topics in medicine. Taught by a physician from the CU School of Medicine. Approved for arts and sciences core curriculum: literature and the arts, or ideals and values.
HUMAN 3505-3. The Enlightenment: Tolerance and Emancipation. Examines the Enlightenment belief in reason and the common humanity of all individuals and cultures. Emphasizes arguments for and against freedom of religion, abolition of slavery, and emancipation of women in 18th-century European and American literature and thought. Same as GRMN 3505. Approved for arts and sciences core curriculum: ideals and values.

HUMAN 3820-3. Greek and Roman Antiquity in Music, 1600 to Present. Explores the influence of Greek and Roman mythology and history on various genres of music since 1600. Examines the context and meaning of ancient themes and their use by composers from the Renaissance to the present. Recommended prereq., CLAS 1100. Same as CLAS 3820.

HUMAN 3930 (1-6). Humanities Internship. Students gain academic credit and professional experience working in museums, galleries, arts administration, and publishing. They work 3 to 18 hours per week with their professional supervisor and meet regularly with a faculty advisor who determines the reading and writing requirements. Prereq., junior standing and interview with faculty advisor.

HUMAN 4004-3. Film Theory. A philosophical attempt to define the nature of cinema. An intensive seminar, involving a great deal of reading in classic and contemporary film theory. Requires a working knowledge of silent film history. Same as FILM 4004. Approved for arts and sciences core curriculum: critical thinking.

HUMAN 4032-3. Comparative Study of Modern Poetry. An interdisciplinary and comparative course on modern poetry combining the traditional analytical study of poetic texts and the practice of writing creatively. Authors studied include Apollinaire, Garcia Lorca, Neruda, Mistral, Rilke, Bachmann, Eliot, Pound, Stevens, Lowell, Merwin, and Rich. Prereqs., HUMAN 1010 or 1020 or equivalent; creative writing experience desirable.

HUMAN 4042-3. Early Modernism. Interdisciplinary period course examining some of the major artists and issues that informed the beginnings of modernism from the mid-19th to the early 20th century. Artists studied include Dostoevsky, Baudelaire, Nietzsche, Van Gogh, and Kafka. Prereq., HUMAN 2000 or junior/senior standing.

HUMAN 4092-3. Period Studies. May be repeated for a total of 9 credit hours. Students should check with the department for specific semester offerings. Prereq., HUMAN 2000 or junior/senior standing.

HUMAN 4093-3. Studies in Humanities. May be repeated for a total of 9 credit hours. Students should check with the department for specific semester offerings. Prereq., HUMAN 2000 or junior/senior standing.

HUMAN 4133-3. The Dramatic Arts. Interdisciplinary course that examines and compares various forms of the dramatization of narrative: written texts, audiotapes, videotapes, film, and live performance. Compares different versions of the same narrative or theme, especially if different media are used and different time periods are involved. Prereq., HUMAN 2000 or junior/senior standing.

HUMAN 4135-3. Art and Psychoanalysis. Explores psychoanalytic theory as it relates to our understanding of literature, film, and other arts. After becoming familiar with some essential Freudian notions (repression, narcissism, ego/libido, dream work, etc.), students apply these ideas to works by several artists (e.g., Flaubert, James, Kafka, Hoffmann, and Hitchcock). Prereq., HUMAN 2000 or junior/senior standing.

HUMAN 4160-3. Myth in the Arts. Studies representative myths in the arts, music, and literature of ancient and modern worlds. Prereq., HUMAN 1010 or 1020, CLAS 1100, or junior/senior standing.

HUMAN 4500-2. Reading the Orient: French Literature and Exoticism. Examines representations of the non-western world in French literature from the 16th century to the present. Includes Imperialism, sexuality, the relationship between literature and the visual arts, and the role of post-colonial literature in the canon. Works include texts by Montaigne, Flaubert, Baudelaire, Levi-Strauss, Aime Cesaire, and Edward Said, and paintings by Delacroix, Moreau, and Redon. Taught in English. Prereqs., FREN 3100, 3110, and 3120 or HUMAN 1020, or instructor consent. Same as FREN 4500. Approved for arts and sciences core curriculum: cultural and gender diversity, or literature and the arts.

HUMAN 4502-3. Nietzsche: Literature and Values. Emphasis is placed on Nietzsche's major writings spanning the years 1872-1888, with particular attention to the critique of Western values. A systematic exploration of doctrines, concepts, and ideas leading to the values of creativity. Same as GRMN 4502. Approved for arts and sciences core curriculum: ideals and values.

HUMAN 4504-3. Goethe's Faust. Systematic study of the Faust motif in Western literature, with major emphasis on Faust I and II by Goethe. Same as GRMN 4504. Approved for arts and sciences core curriculum: literature and the arts.

HUMAN 4522-3. The Art of Courty Love: The Culture of the Medieval Troubadours. Comparative, interdisciplinary study of the poetry, music, art, customs, beliefs, and practices of the culture surrounding the medieval Provencal troubadours. Draws from sources including literary texts, music, illuminated manuscripts, and films. Prereq., HUMAN 2000 or junior/senior standing. Same as FREN 4130 and ITAL 4130.

HUMAN 4555-3. The Arts of Interpretation. Introduces various hermeneutical methodologies (literary/philosophical criticism, biblical exegesis, art history, etc.) with which to examine the question of interpretation. Methodologies are studied in close conjunction with particular works of art. Prereq., HUMAN 2000 or junior/senior standing. Approved for arts and sciences core curriculum: critical thinking.

HUMAN 4821-3. 20th-Century Russian Literature and Art. Interdisciplinary course emphasizing the influence of art in 20th-century Russian literature. Follows the changing cul-
turtle landscape from the time when Russia was in the vanguard of modern European literature to the gradual cultural relaxation that culminated in perestroika and glasnost. Same as RUSS 4821. Approved for arts and sciences core curriculum: literature and the arts.

HUMN 4825-3. Law and Literature. Explores law as theme and structure in literary texts from different periods, plus readings in legal materials.

HUMN 4835-3. Literature and Social Violence. Theoretical understanding of heightened awareness arising from literary and sociological investigations of contemporary sources of social violence (gang culture, racism, domestic violence) are combined with the concrete knowledge offered by an internship in a social service agency. Optional internship credit available. Approved for arts and sciences core curriculum: contemporary societies.

HUMN 4840 (1-3). Independent Study. May be repeated for a total of 6 credit hours.

Comparative Literature

The following course titles represent broad areas and general topics which, together, constitute a program of inquiry in the discipline of comparative literature. In any given semester, selected courses are listed with specific topic and instructor in the Registration Handbook and Schedule of Courses. Please contact the Comparative Literature Program for more detailed plans.

COML 5000 (1-3). Proseminar. Introduces basic issues in comparative literature and basic problems in literary history. Provides an overview of history and rationale of the discipline, traditional areas of research, and recent developments. Prereq., graduate standing or instructor consent. With director's approval, may be repeated for a total of 7 hours.

COML 5350-3. Studies in Prose Narrative. Examines both short and long narrative prose fiction from a variety of periods and from diverse national literatures. Focuses on issues of defining genre and on the origins and significance of narrative prose within its cultural context. May be repeated once for credit. Prereq., graduate standing or instructor consent.

COML 5360-3. Studies in Drama. Covers selected drama topics using a comparative approach. May be repeated once for credit. Same as COML 7360 and THTR 5041. Prereq., graduate standing or instructor consent.

COML 5370-3. Studies in Poetry. Explores topics and problems in rhetoric and poetic practice from antiquity to the present day. May be repeated once for credit. Prereq., graduate standing or instructor consent.

COML 5410-3. Theory and Practice of Literary Translation. After reviewing theories and practices of literary translation in their histori-cal, linguistic, and cultural dimensions, students translate a substantial piece from a significant literary work in their chosen foreign language, and provide a detailed commentary on the process. Prereq., graduate standing or instructor consent and advanced knowledge of one ancient or modern language.

COML 5610-3. Introduction to Literary Theory. Covers major trends in 20th-century critical thinking. May be repeated once for credit. Prereq., graduate standing or instructor consent.

COML 5620-3. History of Literary Criticism 1. Prereq., graduate standing or instructor consent.

COML 5630-3. History of Literary Criticism 2. Selection of Renaissance Enlightenment, and post-Enlightenment works of literary criticism and theory. Prereq., graduate standing or instructor consent.

COML 5660-3. Themes, Motifs, and Characters. May be repeated once for credit. Prereq., graduate standing or instructor consent.

COML 5830-3. Topics in Literature and History.

COML 5840 (1-3). Independent Study. May be repeated for a total of 7 credit hours.

COML 6040 (1-3). Seminar: A Selected Topic. May be repeated for a total of 7 hours. Prereq., graduate standing or instructor consent.

COML 6840 through 6890 (1-3). Independent Study. May be repeated for a total of 7 credit hours.

COML 6940 (1-3). Candidate for Degree.

COML 6950 (1-6). Master's Thesis.

COML 6970-3. Colloquium in Comparative Literature.

COML 7840 (1-3). Independent Study. May be repeated for a total of 7 credit hours.

COML 8990 (1-10). Doctoral Dissertation.

EAST ASIAN LANGUAGES AND CIVILIZATIONS

Chinese

Students must receive a grade of C- or better in order to enroll in the next level of a foreign language. Students will not receive credit for a lower-level course in foreign language instruction taken after credit has been given for a higher-level course in the same language sequence. For example, students will not receive credit for CHIN 1010 if it is taken after they have passed CHIN 2110.

CHIN 1010-5. Beginning Chinese 1. Introduces modern Chinese (Mandarin), emphasizing speaking as well as reading and writing. Students learn both traditional full-form char-
acters and the simplified versions used in mainland China.

CHIN 1020-5. Beginning Chinese 2. Continuation of CHIN 1010. Prereq., CHIN 1010 or equivalent.

CHIN 2110-5. Intermediate Chinese 1. Emphasizes reading, speaking, and writing modern Chinese, including continued study of both full-form and simplified characters. Introduces dictionaries, principles of character formation and classification, and the phonetic writing system (zhu-yin fa-hao). Prereq., CHIN 1020 or equivalent. Meets MAPS requirement for a foreign language.

CHIN 2120-5. Intermediate Chinese 2. Continuation of CHIN 2110. Prereq., CHIN 2110 or equivalent.

CHIN 3120-5. Advanced Chinese 2. Continuation of CHIN 3110. Prereq., CHIN 3110 or equivalent.

CHIN 4110-3. Advanced Readings in Modern Chinese 1. Surveys a wide variety of 20th-century written materials, including texts from literature, the social sciences, religion, and cultural history. Focuses on content and style with extensive discussion and frequent written assignments in Chinese. Conducted in Chinese. Prereq., CHIN 3120 or instructor consent.

CHIN 4120-3. Advanced Readings in Modern Chinese 2. Continuation of CHIN 4110. Prereq., CHIN 4110 or instructor consent.

CHIN 4210-4. Introduction to Classical Chinese. Introduces the classical language based on texts from the pre-Han and Han periods. Stresses precise knowledge of grammatical principles and exactitude in translation—the basis for all further work in classical Chinese. Prereq., CHIN 2120.

CHIN 4220-4. Readings in Classical Chinese. Close reading of selected texts of ancient and medieval literature. Readings are mainly in prose; some poetry is introduced. Emphasizes a disciplined, philological approach to the texts, with proper attention to diction, tone, and nuance. Prereq., CHIN 4210, or instructor consent.

CHIN 4300-3. Open Topics: Readings in Chinese Literature. Studies selected texts on a particular topic taught by regular or visiting faculty. Topics change each term; course may
be repeated for credit once. Prereq., junior standing or instructor consent.

CHIN 4750-3. Taoism. Covers historical development and influence of Taoist tradition in Chinese culture, focusing on classical philosophical Taoism, religious Taoism, and neo-Taoism. Prereq., 6 credit hours of religious studies at any level or instructor consent. Same as CHIN 5750 and RLST 4750.

CHIN 4900 (1-3). Independent Study. May be repeated for a total of 6 credit hours.

CHIN 5010-3. Sinological Methods. Provides training in research methods for graduate work in sinology. Weekly exercises require students to use standard bibliographic sources and tools, such as lei-shu, tsung-shu, dictionari-ies, dynastic histories, geographical treatises, gazetteers, and private historiography. Prereq., CHIN 4220 or equivalent.

CHIN 5020-3. Methods of Teaching Chinese. An overview of pedagogical theory and methods for the teaching of Chinese as a second language, including issues of presentation, interaction, and evaluation. Prereq., graduate standing or instructor consent.

CHIN 5040-3. History of the Chinese Language. Focuses on the changes in Chinese in the last two thousand years. Examines what type of language Chinese was and what type of language it is now. Prereq., CHIN 4210.

CHIN 5060-3. Topics in Chinese Linguistics. Examines topics in Chinese dialectology, discourse analysis, historical linguistics, phonetics, and syntax (both synchronically and diachronically). Topics vary from year to year. May be repeated three times for credit. Prereq., CHIN 4120 or equivalent.

CHIN 5110-3. History of Sinology. Surveys the history of Sinology from its formation as a self-conscious scholarly discipline. Focuses on significant works and contributions of the field’s greatest practitioners. Prereq., graduate standing or instructor consent.

CHIN 5120-3. History of Literature through the 9th Century. Surveys, with readings in primary and secondary sources, major landmarks in various areas of ancient and medieval literature. Focuses on the classic and most influential works of the Chou through T’ang dynasties. Gives attention to matters of historical fact and actuality as well as to textual and interpretive history. Prereq., graduate standing or instructor consent.

CHIN 5150-3. Theory and Practice of Literary Translation. Covers strategies for handling a variety of texts and genres as well as professional standards and ethics. Prereq., graduate standing or instructor consent.

CHIN 5210-3. Ancient Prose. Studies selected pre-imperial and Han prose texts important in their own time and for the influence they exercised on the later development of Chinese literary history. Focuses on works such as the Lun yu, Meng tsu, Chuang tsu, Hua-yu-shu, Shih chi, Han shu, and Lun heng. Texts and selections vary from year to year. May be repeated for a total of 6 credit hours. Prereq., CHIN 4220 or equivalent.

CHIN 5220-3. Ancient Poetry. Studies selected pre-imperial and Han poetic works important in their own time and for the influence they exercised on the later development of Chinese literary history. Focuses on the Shih ching and the Chu’ ts’u, as well as the fu and shih of Han writers. Texts and selections vary from year to year. May be repeated for a total of 6 credit hours. Prereq., CHIN 4220 or equivalent.

CHIN 5280-3. Topics in Ancient Literature. Examines a specific problem or issue in ancient literature, e.g., early Chinese views and formulations of language’s relationship to reality, or the commentary tradition and the emergence of allegorical and metaphysical approaches to interpreting texts. Topics vary from year to year. May be repeated for a total of 6 credit hours. Prereq., CHIN 4220 or equivalent.

CHIN 5410-3. Medieval Prose. Explores selected Six Dynasties and T’ang prose works, emphasizing major writers and texts. Covers works written in both parallel prose and the ku-uen (“old style”) form. Individual writers include Wang Hsi-chih, Tao Ch’ien, Li Hua, Han Yu, Liu Tsung-yüan, and Liu Yü-hsi. In addition, selected works from the anecdotal records are read. Texts and selections vary from year to year. May be repeated for a total of 6 credit hours. Prereq., CHIN 4220 or equivalent.

CHIN 5420-3. Medieval Poetry. Explores selected vernacular and classical fiction of the Ming and Ch’ing periods. Normally focuses on long novels such as Hsi-yu chi, San-kuo yen-i, Shui-hu chuan, Chin Ping Mei, as well as short fiction by Feng Meng-lung and Ling Meng-ch’u. Texts and selections vary from year to year. May be repeated for a total of 6 credit hours. Prereq., CHIN 4220 or equivalent.

CHIN 5680-3. Topics in Early Modern Literature. Examines a specific problem or issue in early modern literature, e.g., the relationships among religion, folklore, and early fiction; the issue of genre and traditional fiction; the role of elite versus popular cultures in the composition of fiction; and the relationship of the state and censorship and the southern philosophical schools to the publication of fiction. Topics vary from year to year. May be repeated for a total of 6 credit hours. Prereq., CHIN 4220 or equivalent.

CHIN 5750-3. Taoism. Same as CHIN 4750 and RLST 5750.

CHIN 5810-3. Modern Literature. Examines selected texts in various genres of Chinese literature from the May Fourth period (beginning ca. 1917) to the establishment of the People’s Republic of China (1949). Focuses on major and influential works produced in this fertile period of experimentation with Western, modernist types of literature. Texts and selections vary from year to year. May be repeated for a total of 6 credit hours. Prereq., CHIN 4120 or equivalent.
CHIN 5820-3. Contemporary Literature. Examines selected texts in various genres of Chinese literature from 1949 (the establishment of the People’s Republic of China) to the present. Focuses on major works from the very different literary worlds of Taiwan and mainland China. Texts and selections vary from year to year. May be repeated for a total of 6 credit hours. Prereq., CHIN 4120 or equivalent.

CHIN 5880-3. Topics in 20th-Century Literature. Examines a specific problem or issue in 20th-century literature, e.g., feminist fiction in China, modernism in fiction and poetry, and the role of literary criticism in modern literature. Topics vary from year to year. May be repeated for a total of 6 credit hours. Prereq., CHIN 4120 or equivalent.

CHIN 5900 (1-3). Independent Study. May be repeated for a total of 6 credit hours.

CHIN 6900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.

CHIN 6940 (1-3). Master’s Degree Candidate.

CHIN 6950 (1-6). Master’s Thesis.

Chinese Courses in English

The following courses require no knowledge of Chinese.

CHIN 1051-3. Masterpieces of Chinese Literature in Translation. Surveys Chinese thought and culture through careful reading and discussion of selected masterworks of Chinese literature in acceptable translation. Texts include significant works of poetry and fiction, and philosophical and historical writings from various eras. Taught in English. Approved for arts and sciences core curriculum: literature and the arts.

CHIN 2441-3. Film and the Dynamics of Chinese Culture. Through studying a group of Chinese films in light of modern Chinese history and literature, students examine a series of cultural dilemmas and issues in 20th-century China and develop skills in analyzing literary and filmic texts. Approved for arts and sciences core curriculum: literature and the arts.

CHIN 3311-3. The Tao and the World in Medieval China. An interdisciplinary examination of Chinese culture from the third to the 10th centuries A.D., encompassing the intellectual and religious ferment of the Period of Division and the literary and artistic achievements of the glorious T’ang dynasty. Studies personal aspects of the world inhabited and created by medieval Chinese civilization, particularly relations with Taoism, Buddhism, natural history, court politics, and celestial and imaginative realms. Taught in English. Recommended prereq., EALC 1011 or CHIN 1051.

CHIN 3321-3. Culture and Literature of Ancient China. Focuses on the religious, cultural, philosophical, and literary aspects of ancient Chinese civilization (ca. 1500 B.C. to 220 A.D.). Special attention is paid to founding features and important works that influence later developments in Chinese culture. All readings are in English. Recommended prereq., EALC 1011 or CHIN 1051.

CHIN 3331-3. Culture and Literature of Late Imperial China. The late imperial period was marked by growth of great metropolitan areas, expanded urban entertainments, and an extensive popular culture. This course focuses on the literature and artifacts of this urban culture as well as the hegemonic culture of the state and of traditional social codes and their literary manifestations. Also considers growing contacts with the West and the transition to the modern period. All readings are in English. Recommended prereq., EALC 1011 or CHIN 1051.

CHIN 3341-3. Modern Chinese Literature in Translation. Surveys modern/contemporary Chinese literature in translation. Selected stories, novels, and poems are read and discussed in class. Short critical papers and final exam are required. Recommended prereq., EALC 1011 or CHIN 1051.

CHIN 3351-3. Reality and Dream in Traditional Chinese Fiction. Explores how early Chinese fiction offers a means of synthesizing societal values, culture, and intellectual developments in premodern China. Special attention is given to The Story of the Stone (also known as Dream of the Red Chamber), the masterpiece novel of the Ch’ing dynasty (1644-1911), as well as classical Chinese tales from the third to the 10th century and selected vernacular stories written in the Ming (1368-1644). Considers various approaches to literary analysis and interpretation. Taught in English. Prereq., junior standing or instructor consent. Approved for arts and sciences core curriculum: literature and the arts.

CHIN 3361-3. Women and the Supernatural in Chinese Literature. Explores the relationship between the worlds of women and the supernatural in Chinese literature, from ancient to modern times. Focuses on selected significant works of classical and vernacular fiction, religious texts, and poetry (read in acceptable translations). Studies the variety of ways in which the folklore of the feminine is shaped and recast in different verbal creations and in different periods. Taught in English. Prereq., junior standing or instructor consent.

CHIN 3441-3. Chinese Language and Society. Deals with major linguistic characteristics of Chinese as a medium of communication. Discusses complex linguistic processing of social status and empathy relationships, for example, with reference to the structure of Chinese society and political system. Prereq., CHIN 2120.

East Asian Languages and Civilizations

EALC 1011-4. Introduction to Traditional East Asian Civilizations. Introduces the history, literature, religion, and art of both China and Japan before major contact with the western world. Approved for arts and sciences core curriculum: cultural and gender diversity.

EALC 1021-4. East Asian Civilizations: Modern Period. An interdisciplinary introduction to the cultures of modern China and Japan. Politics, social relations, arts, literature, religion, and material culture are studied in terms of significant cultural themes in each national tradition. Covers the early modern period (17th century) through the present, emphasizing the nature of contemporary East Asian culture. Approved for arts and sciences core curriculum: cultural and gender diversity.

EALC 4911-3, 4912-3, 4913-3, and 4914-3. Practicum in Asian Languages 1, 2, 3, and 4. Introduces elementary or intermediate Chinese or Japanese language and culture and East Asian language pedagogy. Designed for students in TEASEL track (Teaching English to Speakers of East Asian Languages) through EALC or Linguistics; open to others by permission. Courses must be taken in sequence. Prereq., department approval. Same as EALC 5911, 5912, 5913, and 5914.

EALC 4930 (1-6). Internship. Selected students are matched with supervised internships in business, public and private service organizations, and educational institutions. Internships focus on opportunities to apply language and cultural skills. Students meet regularly with instructor and supervisor; keep a journal, and submit a final paper. Prereq., JEPS 2120 or CHIN 2120. Recommended prereq., JEPS 3120 or CHIN 3120.

EALC 5911-3, 5912-3, 5913-3, and 5914-3. Practicum in Asian Languages 1, 2, 3, and 4. Same as EALC 4911, 4912, 4913, and 4914.

EALC 5950-1. Perspectives on East Asian Languages. Read and discuss issues in constrastive linguistics, cultural differences, linguistic analysis, and methodological issues related to the teaching of English to speakers of East Asian languages. May be repeated for a total of 6 credit hours.

Japanese

Students must receive a grade of C- or better in order to enroll in the next level of a foreign language. Students will not receive credit for a lower-level course in foreign language instruction taken after credit has been given for a higher-level course.
in the same language sequence. For example, students will not receive credit for JPNS 1010 if it is taken after they have passed JPNS 2110.

JPNS 4030-3. Japanese Syntax. Deals with syntactic phenomena from five areas of Japanese grammar that cause the most difficulty for learners. Their characteristics are explored in forms and discoursal function which go beyond the explanations in basic, prescriptive grammars of Japanese. Prereq., JPNS 3120 or 4120, or instructor consent.

JPNS 4110-3. Advanced Readings in Modern Japanese 1. Surveys a wide variety of material written in modern Japanese, including texts from literature, the social sciences, religion, and cultural history. Emphasizes content and style. Texts and selections vary from year to year. May be taken for credit twice. Prereq., JPNS 3120.

JPNS 4300-3. Open Topics: Readings in Japanese Literature. Examines selected texts on a particular topic taught by regular or visiting faculty. Topics change each term; course may be repeated for a total of 6 credit hours. Prereq., instructor consent.

JPNS 4900 (1-3). Independent Study. May be repeated for a total of 6 credit hours.

JPNS 5010-3. Bibliography and Research Methods. Introduces research materials on Japan in Japanese and western languages, including bibliographic tools, style sheets, and library resources. Overview of secondary sources and publication outlets/methods of disseminating research. Prereq., graduate standing or instructor consent.

JPNS 5050-3. Japanese Sociolinguistics. Surveys past achievements and current research concerns of Japanese sociolinguists in areas such as speech varieties, language behavior and attitude, and linguistic contact and change as well as their guiding theories and central fieldwork methods. Prereq., graduate standing or instructor consent.

JPNS 5060-3. Advanced Japanese Syntax. Examines controversial syntactic topics that have inspired a variety of explanations. Alternative linguistic explanations are sought within the framework of an analytical investigation from the viewpoint of language dynamics. May be repeated for a total of 6 credit hours. Prereq., JPNS 4030 or instructor consent.

JPNS 5150-3. Japanese Literary Translation. Explores theories and practice of translation of literary texts as applied to Japanese–English translation; strategies for handling a variety of texts; and professional standards and ethics. May be repeated for a total of 6 credit hours. Prereq., graduate standing or instructor consent.

JPNS 5210-3. Classical Prose Literature. Examines selected prose works and authors from the Classical, or Heian, period (784–1185). Texts may include selections from diaries, tale literature, and zuihitsu such as Izumi Shikibu, Genji Monogatari, and Makura no Soshi. Texts and selections vary from year to year. May be taken for credit twice. Prereq., two semesters of classical Japanese language.

JPNS 5220-3. Waka, Renga, and Haiku. Studies the three most important poetic forms in Japanese literary history. Emphasizes the reading and analysis of selected texts and authors which best represent these genres. Readings include selections from the first eight imperial poetry anthologies (hachidaishu), famous renga sequences (“Minase Sangin Hyakuin,” for example), and the haiku of Basho. Texts and selections vary from year to year. May be repeated for a total of 6 credit hours. Prereq., two semesters of classical Japanese language.

JPNS 5280 (1-3). Topics in Classical Japanese Literature. Studies a specific problem or issue in classical (eighth through 12th century) Japanese literature, e.g., the development of specifically Japanese theories of literature or the concept of genre in the Japanese tradition. Topics vary from year to year. May be repeated for a total of 6 credit hours.

JPNS 5410-3. Medieval Prose Literature. Focuses on selected prose works and authors from the Medieval, or Kamakura and Muromachi, periods (1185–1600). Texts may include selections from a variety of war tales, histories, courtly fiction, diaries, memoirs, short prose narratives (otogi-zoshi), Noh plays, and Buddhist literature such as Heike Monogatari, Tousazagatari, Izayoi Nikki, Tsurezuregusa, and Shasekihara. Texts and selections vary from year to year. May be taken for credit twice. Prereq., two semesters of classical Japanese language.
JPNS 5420-3. Japanese Buddhism and Literature. Studies selected works from the Japanese literary tradition in which Buddhism plays a significant thematic role. Focuses on texts such as the Nibon Ronkyo, Buddhist poetry (shakkyo-ka) from the imperial poetry anthologies, Heike Monogatari, Hojoki, the poetry of Saigyo and Basho, and selected Noh plays. Texts and selections vary from year to year. May be repeated for a total of 6 credit hours. Prereq., two semesters of classical Japanese language.

JPNS 5480 (1-3). Topics in Medieval Literature. Focuses on a specific problem or issue in medieval literature, e.g., the spread of literary composition beyond the court. Topics vary from year to year. May be repeated for a total of 6 credit hours.

JPNS 5610-3. Japanese Dramatic Literature. Examines major writers and texts of the no, kyogen, kabuki, and bunraku theaters, including the plays and critical writings of such authors as Kani Kiyotsugu, Zemi Motokiyo, Konparu Zenchiku, and Chikamatsu Monzaemon. Texts and secondary readings vary from year to year. May be repeated for a total of 6 credit hours. Prereq., two semesters of classical Japanese language.

JPNS 5810-3. Modern Japanese Literature. Studies selected texts in Japanese literature from the Meiji Restoration (1868) to the end of the Pacific War. Surveys various literary genres, emphasizing the development of the modern novel as an aspect of Japan’s response to western cultural forms. The unique cultural politics of each of the periods—Meiji, Taisho, and Showa—are illuminated through the filter of both canonical and more marginal(ized) texts. Specific selections vary from year to year. May be repeated for a total of 6 credit hours.

JPNS 5820-3. Contemporary Japanese Literature. Covers developments in Japanese prose fiction, from the end of the Pacific War in 1945 to the present. Late modern texts of writers such as Mishima Yukio, Kawabata Yasunari, Enchi Fumiko, and Tanizaki Jun’ichiro (generally taken to represent “modern Japanese literature”) are read in the light of works by more recent writers (and critics) such as Oe Kenzaburo, Yoshimoto Takaaki, Murakami Haruki, and Yamada Eimi. May be repeated for a total of 6 credit hours.

JPNS 5830-3. Readings in Medieval and Contemporary Japanese Literature and Culture. Examines central issues in Japanese culture and society since the Meiji Restoration (1868) through selected readings of the works of major writers in the fields of literature, anthropology, feminism, political science, and religion, among others. Provides a broad context for cultural studies in modern and contemporary Japan by positioning the most important commentators within their historical and social situations. May be taken for credit twice.

JPNS 5835 (1-3). Topics in Modern Literature and Culture. Focuses on a specific problem or issue in modern or contemporary literature or culture, e.g., transwar literary nationalism. Topics vary from year to year. May be repeated for a total of 6 credit hours.

JPNS 5900 (1-3). Independent Study. May be repeated for a total of 6 credit hours.

JPNS 6900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.

JPNS 6940 (1-3). Japanese Master's Degree Candidate.

JPNS 6950 (1-6). Japanese Master’s Thesis.

Japanese Courses in English

ECON 1000-4. Introduction to Economics. Introduces an economic way of thinking, emphasizing its critical importance in cases where people want to make themselves as well off as possible, but can’t have everything they want. Focuses on how economic thought affects all choices. Topics include scarcity, decision-making, and markets. Students may not receive credit for ECON 1000 or 1001 if they have received credit for ECON 2010 or 2011 or 2020 or 2021. Meets MAPS requirement for social science: general. Approved for arts and sciences core curriculum: contemporary societies.

ECON 1001-3. Introduction to Economics: Kittredge Honors. Introduces an economic way of thinking, focusing on how economic thought affects all choices. Topics include scarcity, decision-making, and markets. Students may not receive credit for ECON 1001 if they have received credit for ECON 1000, 1010, or 2020. Approved for arts and sciences core curriculum: contemporary societies.

ECON 2020 (3-4). Principles of Microeconomics. Examines basic concepts of microeconomics, or the behavior and interactions of individuals, firms, and government. Topics include determining economic problems, how consumers and businesses make decisions, how markets work and how they fail, and how government actions affect markets. Students may not receive credit for ECON 2010 and 2011 if they have received credit for ECON 1000 or 1001. Meets MAPS requirement for social science: general. Approved for arts and sciences core curriculum: contemporary societies.

ECON 2010 (3-4). Principles of Microeconomics: Kittredge Honors. Same as ECON 2010. Students may not receive credit for ECON 2011 if they have received credit for ECON 1000, 1001, or 2010. Approved for arts and sciences core curriculum: contemporary societies.

ECON 2020 (3-4). Principles of Macroeconomics. Provides an overview of the economy,
examining the flows of resources and outputs and the factors determining the levels of income and prices. Explores policy problems of inflation, unemployment, and economic growth. May be taken before ECON 2010. Students may not receive credit for ECON 2020 if they have received credit for ECON 2021, 1000, or 1001. Meets MAPS requirement for social science: general. Approved for arts and sciences core curriculum: contemporary societies.

ECON 2021-3. Principles of Macroeconomics: Kittredge Honors. Same as ECON 2010. Students may not receive credit for ECON 2021 if they have received credit for ECON 2020 or 1000. Approved for arts and sciences core curriculum: contemporary societies.

ECON 3070-3. Intermediate Microeconomic Theory. Explores theory and application of models of consumer choice, firm and market organization, and general equilibrium. Extensions include intertemporal decisions, decisions under uncertainty, externalities, and strategic interaction. Prereqs., ECON 1000 or 2010 and ECON 1078 and 1088 or equivalent.

ECON 3080-3. Intermediate Macroeconomic Theory. Examines theories of aggregate economic activity including the determination of income, employment, and prices, as well as economic growth and fluctuations. Explores macroeconomic policies in both closed and open economy models. ECON 3070 and 3080 may be taken in any order; there is no recommended sequence. Prereqs., ECON 1000 or 2020 and ECON 1078 and 1088, or equivalent.

ECON 4070-3. Topics of Microeconomics. Studies utility maximization under uncertainty, risk, game theory, moral hazard, and adverse selection. Applications include insurance markets and the theory of contracts. Prereqs., ECON 3070 and 4808 or equivalent, or instructor consent.

ECON 6070-3. Applied Microeconomic Theory. Develops competence in techniques of applied micro theory for those going into policy and problem-solving jobs. Also useful to undergraduates considering graduate study in economics. Topics include estimating demand, cost, and production functions; operational models of production; processes from industry/agriculture; capital theory; and benefit-cost analysis. Prereqs., ECON 3070 and 4808.

ECON 6080-3. Applied Macroeconomic Theory. Develops competence in techniques of applied macro theory. Topics include theoretical and empirical work on consumption, investment, money demand and supply, and open economy macroeconomic models. Also covers different expectations models, the policy ineffectiveness proposition, and policy credibility. Prereqs., ECON 3080 and 4808.

Money and Banking

ECON 8121-3. Advanced Monetary Theory. Presents major ideas and issues in development of contemporary monetary and financial economics. Prereq., ECON 6111 or 7020.

ECON 8131-3. Contemporary Monetary Theory and Policy. Explores contemporary issues and debates in monetary and financial economics. Prereq., ECON 6111 or 7020.

Public Economics

ECON 4211-3. Economics of the Public Sector. Focuses on taxation and public expenditures. Topics include economic rationale for government action, economic theory of government behavior, and effects of government policies on allocation of resources and distribution of income. Prereq., ECON 3070.

ECON 6211-3. Public Economics. Covers principles of taxation and public expenditures. Specific topics include the incidence of taxes, the allocative effect of taxes, public goods, externalities, voting, bureaucratic behavior, and cost-benefit analysis. Prereqs., ECON 6070 and 6080.

ECON 8221-3. Public Economics: Topics in Public Expenditures and Taxation. Explores advanced topics in public economics such as decentralization, state and local government, program analysis, taxation, international tax issues, political economy issues, and market failure. Prereqs., ECON 6211 or 7010 and 8211.

ECON 8231-3. Local Public Economics. Examines subnational governments and systems of governments, the effects of inter-governmental competition, appropriate tax and expenditure responsibilities, and variations in governing institutions. Covers congestible public goods, Tiebout mechanisms, and tax capitalization. Prereq., ECON 6211 or 7010.

Urban and Regional Economics

ECON 4252-3. Urban Economics. Analyzes the level, distribution, stability, and growth of income and employment in urban regions. Examines topics of urban poverty, housing, land use, transportation, and local public services with special reference to economic efficiency and social progress. Prereq., ECON 3070.

ECON 4292-3. Migration, Urbanization, and Development. Examines historical and current patterns of national settlement system development. Focuses on quantitative analysis of problems associated with population growth and decline, urbanization, and economic structural change in more developed and less developed countries. Prereq., instructor consent. Same as GEOG 4292.

ECON 8252-3. Seminar: Urban and Regional Economics 1. Covers basic theories in spatial location of economic activity and land use and survey techniques developed to analyze, measure, and predict regional and urban structure and growth, such as economic base studies, regional social accounts, and input-output analysis. Prereq., ECON 6070 or 7010.

ECON 8262-3. Topics in Urban and Regional Economics. Investigates various theoretical topics in urban and regional economics and focuses on policy issues. Involves student research and presentations. Prereq., ECON 6070 or 7010.
International Trade and Finance

ECON 3403-3. International Economics and Policy. Examines national and supranational policies that affect the international economy, with attention to trade barriers, economic nationalism and regionalism, international political economy, and international transmission of economic perturbations. Open to nonmajors only. Prereq., ECON 1000, or 2010 and 2020. Approved for arts and sciences core curriculum: contemporary societies.

ECON 4413-3. International Trade. Focuses on theories of international trade and its impacts on economic welfare. Analyses commercial policy, including tariffs, non-tariff barriers, retaliation, regional integration, and factor migration. Prereq., ECON 3070.

ECON 4423-3. International Finance. Covers balance of payments; foreign exchange market, income, trade and capital flows; asset markets adjustment mechanisms; stabilization policies in an open economy; and problems of international monetary systems. Prereq., ECON 3080.

ECON 4433-3. Economics of the Pacific Area. Analyzes economic interrelationships in the Pacific Area, emphasizing the United States, Japan, China, and Asian nations. Considers aspects of economic conflict, growth, and commercial policy. Prereq., ECON 3403, 4413, or 4423.

ECON 6413-3. International Trade. Discusses theories of international trade and its impacts on economic welfare. Analyses commercial policy, including tariffs, non-tariff barriers, retaliation, regional integration, and factor migration. Prereqs., ECON 6070 and 6080.

ECON 6423-3. International Monetary Economics. Covers balance of payments; foreign exchange market, income, trade, and capital flows; asset market adjustment mechanisms; stabilization policies in an open economy; and problems of international monetary systems. Prereqs., ECON 6070 and 6080.

ECON 6433-3. Computational Economic Equilibrium Analysis. Provides graduate students in economics with the mathematical and computing knowledge required for building and analyzing large-scale numerical equilibrium models. Topics include applications in public finance, trade, and environmental economics. Prereqs., ECON 6070 or 6080.

ECON 8323-3. Continuities and Changes in the Modern World Economy. Introduces globalization and democratization from an interdisciplinary perspective. Examines major changes to the global political economy and explores implications for local, national, regional, and international political and economic processes. Same as PSCI 7223.

ECON 8333-3. Globalization and Democratization: An Introduction. Introduces research on globalization and democratization from an interdisciplinary perspective. Examines ongoing interdisciplinary research on the global political economy. Students learn about ongoing research, critique current efforts, and design their own research project. Same as PSCI 7333.

ECON 8423-3. Seminar: International Finance. Highlights foreign exchange markets, past and current international monetary mechanisms, and processes of adjustment. Examines the role of international financial markets for the behavior of consumption, investment, saving, and production. Also considers international transmission of business cycles. Prereq., ECON 6423 or 7020.

ECON 8433-3. Seminar: Topics in Money and International Economics. Explores advanced work in various aspects of international economics, such as empirical trade analysis, public choice, and interactions between real and monetary phenomena in the world economy. Prereq., ECON 6413, 6423, 8413, or 8423.

Economic History and Economic Development

ECON 1524-3. Economic History of the United States. Surveys economic aspects of U.S. history from the colonial period to the present. Approved for arts and sciences core curriculum: United States context.

ECON 4524-3. Economic History of the United States. Focuses on evolution of modern economic growth and development in the U.S. from colonial times to the present, emphasizing institutional change. Prereq., ECON 1000 or 2020, and 3070. Approved for arts and sciences core curriculum: United States context.

ECON 4774-3. Economic Reform in Developing Countries. Explores competing paradigms of economic development, emphasizing the confrontation between the structuralist/ dirigiste paradigm and the neoclassical public choice paradigm. Analyzes economic reforms underway in developing countries, including stabilization policy and structural adjustment. Also explores political reforms, including the pluralist revolution and the design of a constitutional framework in developing societies. Prereqs., ECON 1000, or 2010 and 2020.

ECON 4784-3. Economic Development. Explores empirical, theoretical, and policy issues in economic development. Examines topics with reference to the developing countries: income distribution and poverty, demographic change, labor force employment and migration, human capital, physical capital, natural resources and the environment, industrial structure, international trade, and finance. Prereqs., ECON 1000, or 2010 and 2020.

ECON 6774-3. Economic Reform in Developing Countries. Covered stabilization policy and structural adjustment. Specific topics include Orthodox stabilization policies (fiscal, monetary, and exchange rate policies); heterodox stabilization policies (price, wage, and interest controls); trade liberalization; financial liberalization; privatization and deregulation. Prereqs., ECON 6070 and 6080.

ECON 8534-3. Economic History of North America. Examines North America’s past from the perspective of economics. Topics include growth and welfare in the colonial period; staple products, agricultural development, and the emerging industrialism in the antebellum period; transformation of the North American economy to 1914; the interwar years and the Great Depression; and economic integration since 1945. Prereqs., ECON 6070 and 6080, or ECON 7010.

ECON 8764-3. History of Economic Development. Covers in historical perspective the causes of economic development including why some areas develop faster than others and why development occurs more rapidly in some eras than others. Prereqs., ECON 6070 and 6080, or ECON 7010. Same as HIST 7214.

ECON 8774-3. Seminar in Transition Economies. Focuses on the problems encountered in countries evolving from planned to market economies. Emphasizes applications of new and traditional models of economic growth and analysis of problems unique to formerly planned economies. Prereqs., ECON 6774 or 7010.

ECON 8784-3. Economic Development. Explores empirical, theoretical, and policy issues in economic development. Examines political economy, income distribution and poverty, demographic change, labor force employment and migration, human capital, physical capital, natural resources and the environment, industrial structure, international trade and finance, stabilization policy, and structural adjustment. Prereq., ECON 6774 or 7010.

Natural Resources and Environmental Economics

ECON 3535-3. Natural Resource Economics. Integrates economic analysis with life science aspects of natural resource systems to develop social policies for use of natural resources. Studies economists' approaches to resources policy analysis and applies them to energy, forestry, fisheries, mineral, and water systems. For non-majors. Students may not receive credit for both ECON 3535 and 4535. Prereq., ECON 1000 or 2010. Approved for arts and sciences core curriculum: contemporary societies.

ECON 3545-3. Environmental Economics. Highlights causes of excessive environmental pollution and tools for controlling it through economic analysis, values of preservation, and distribution of costs and benefits from environmental protection programs. For non-majors. Students may not receive credit for both ECON 3545 and 4545. Prereq., ECON 1000 or 2010. Approved for arts and sciences core curriculum: contemporary societies.

ECON 4535-3. Natural Resource Economics. Analyzes problems associated with socially optimal use of renewable and nonrenewable natural resources over time. Emphasizes problems of common property resources, irreversibility of development, and preservation of natural areas. Students may not receive credit for both ECON 3535 and 4535. Prereq., ECON 3070 and 4808.

ECON 4545-3. Environmental Economics. Aquaints students with effects of economic growth on the environment. Applies economic theory of external diseconomies, cost-benefit analysis, program budgeting, and welfare economics to problems of the physical environment. Students may not receive credit for both ECON 3545 and 4545. Prereq., ECON 3070 and 4808.

ECON 6535-3. Resources and Environment. Studies the economics of resource and environmental problems. Topics include benefit-cost analysis, microeconomic foundations of optimal static and intertemporal usage of both renewable and nonrenewable natural resources, and philosophical issues. Prereqs., ECON 6070 and 6080.

ECON 6555-3. Water Resources Development and Management: Technology, Economics, Institutions. Offers a multidisciplinary exploration of the engineering, economic, and institutional principles involved in water system development and management. Provides a background in basic hydrology, economics, water law, and institutions. Same as CVEN 5393. Prereqs., ECON 3070 or equivalent.

ECON 8535-3. Seminar: Natural Resources. Analyzes problems associated with socially optimal use of renewable and nonrenewable natural resources over time. Describes problems of common property resources, irreversible forms of development, and preservation of natural areas. Prereqs., ECON 6535 and 6070, or ECON 7010.

ECON 8545-3. Seminar: Environmental Economics. Familiarizes students with theory of externalities: alternative policies for environmental management, taxes, subsidies, standards, pollution rights; industry and regional models; macroimpacts of environmental policies; transboundary problems; and preservation/development. Prereqs., ECON 6535 and 6808, or ECON 7010.

Labor and Human Resources

ECON 4606-3. Introduction to Demography. Covers issues relating to the causes and consequences of population growth and decline and examines the determinants of an individual's decisions about child bearing, marriage, divorce, migration, labor supply, and investments in education and health. Analyzes how these decisions affect an individual's economic well-being and studies the family as the institution within which many of these decisions are made. Prereq., ECON 3070.

ECON 4616-3. Labor Economics. Examines the influence of markets, unions, and government on labor allocation and remuneration. Analyzes human capital, discrimination, mobility and migration, productivity, unemployment, and inflation. Compares outcomes under competition with those in a world marked by shared market power and bargaining. Prereq., ECON 3070.

ECON 4626-3. The Economics of Inequality and Discrimination. Examines the unique insights available through economic analysis regarding the causes, mechanisms, and consequences of inequality and discrimination. Examines the extent of inequality, the varieties and extents of discrimination, and explores the economic models that suggest explanations. Prereq., ECON 3070. Approved for arts and sciences core curriculum: cultural and gender diversity.

ECON 8666-3. Economic Demography. Investigates economic determinants and consequences of demographic behavior in developing and developed countries. Issues include fertility and female labor supply interactions, the demographic transition, the effect of population growth on income distribution, family investments in children, and intergenerational mobility. Prereqs., ECON 3070 and 3080.

ECON 8676-3. Seminar: Labor Economics 1. Focuses on the demand side of labor markets. Topics include standard static and dynamic models of labor demand, labor market discrimination, composition of compensation, labor hierarchies within enterprises, unionization, efficient contracts and macroeconomics of labor markets. Prereq., ECON 6070 or 7010.

ECON 8686-3. Seminar: Labor Economics 2. Focuses on special topics in labor economics: dynamic theories of labor supply, employment, and unemployment; labor supply in a household framework; and labor market activity and income distribution. Explores both theoretical models and empirical tests in each area. Prereq., ECON 6070 or 7010.

Industrial Organization

ECON 4697-3. Industrial Organization and Regulation. Explores neoclassical theory of the firm, the determinants of industrial structure, and the purposes and institutions of public policy to control or maintain a competitive environment. Recommended preparation, ECON 4808. Prereqs., ECON 1000, or 2010 and 2020, and 3070. Approved for arts and sciences core curriculum: United States context.

ECON 6697-3. Industrial Organization and Regulation. Explores theory and application of economic models of industrial organization, emphasizing neoclassical and game theoretic models of markets range from competitive to collusive. Also examines the laws and regulations that affect business in the U.S. Prereq., ECON 6070 and 6080.

ECON 8747-3. Industrial Organization Theory. Highlights economics of regulation of industry and markets, industry studies, and the application of lab methods to industrial organization. Prereq., ECON 6697 or 7010.

ECON 8757-3. Industrial Organization and Public Policy. Addresses the theory of interaction of firms within markets and industries, emphasizing importance of the number, relative size of firms, market institution, firm strategies, and nature of consumer demand. Examines neoclassical and game theoretic models, empirical industry studies, and laboratory tests of theoretical models and policies. Prereq., ECON 6697 or 7010.

Quantitative Economics

include algebra, graphs, functions, and probability. Includes many "real-world" examples and some illustrative computer assignments. Approved for arts and sciences core curriculum: quantitative reasoning and mathematical skills.

ECON 3818-4. Introduction to Statistics with Computer Applications. Introduces statistical methods and their applications in quantitative economic analysis. Prereq., ECON 1000, or 2010 and 2020; and ECON 1078 and 1088, or equivalent.

ECON 4808-3. Introduction to Mathematical Economics. Introduces the use of mathematics in economics. Topics include vectors and matrices, differential calculus, and optimization theory, with economic applications. Prereq., ECON 1000, or 2010 and 2020; and ECON 1078 and 1088 or equivalent.

ECON 4818-3. Introduction to Econometrics. Provides undergraduate economics majors with an introduction to econometric theory and practice. Develops the multiple regression model and problems encountered in its application in lecture and individual applied projects. Prereq., ECON 3818.

ECON 4838-3. Microcomputer Applications in Economics. Addresses innovative uses of personal computers in economic analysis and model building techniques. Acquaints students with economic models through individualized, computer-generated exercises. Topics include input-output analysis, linear programming, nonlinear approximation, and simulation. Prereqs., ECON 1088 or MATH 1300, and ECON 3070.

ECON 6808-3. Introduction to Quantitative Economics. Topics include multivariable optimization problems with and without constraints, simple difference and differential equations, stability, introduction to linear and nonlinear programming, and calculus of variations. Prereq., ECON 4808.

ECON 6818-3. Econometric Methods and Application. Offers a master’s-level introduction to econometric theory and practice. Develops the multiple regression model and problems encountered in its application in lecture and individual applied projects. Prereq., ECON 3818 or equivalent.

ECON 6828-3. Applied Time Series Analysis (Box-Jenkins) and Forecasting. Introduces first-year graduate students to time series approach of model building and forecasting. Basic topics are autoregressive integrated moving average models, nonstationarity and co-integration, vector autoregressions, and the evaluation of forecasts from such models. Emphasizes applied computer assignments. Prereq., ECON 4808.

ECON 8808-3. Seminar: Mathematical Economics—Statics. Studies general equilibrium theory and other topics in microeconomic theory, including the theory of decision making under uncertainty. Also focuses on game theory. Prereq., ECON 6808.

ECON 8838-3. Seminar: Econometrics 2. Teaches advanced econometric theory. Topics include asymptotic theory, maximum likelihood estimation, limited dependent variables analysis, and other frontier areas of econometrics such as the method of moment estimation and semiparametric and nonparametric estimation procedures. Prereq., ECON 8828.

Independent Study and Other Courses

ECON 4309-3. Economics Honors Seminar 1. Open only to qualified seniors. For information consult the department’s director of honors. Approved for arts and sciences core curriculum: critical thinking.

ECON 4339-3. Economics Honors Seminar 2. Open only to qualified seniors. For information consult the department’s director of honors. This course does not count toward major requirements. Prereq., ECON 4309.

ECON 4909 (1-3). Independent Study. Offered only to students with a GPA of 3.00 or better. May be repeated for a total of 3 credit hours. Prereq., ECON 1000 or 2010 and 2020; instructor and department consent also required.

ECON 4939 (2-6). Internship/Seminar. Offers students the opportunity to integrate theoretical concepts of economics with practical experience in economics-related institutions. The theoretical portion arises from seminars and readings, the practical from activities in organizations related to the economics field. A maximum of 3 credit hours will count toward major requirements. Prereq., ECON 3070 and 3080; junior or senior major standing; and instructor consent.

ECON 4999-3. Economics in Action: A Capstone Course. Encourages students to read about economic topics, to think about and research them in economics terms, and to improve their ability in writing and critical thinking. Prereq., ECON 1000, or 2010 and 2020, and junior or senior standing. May not be taken more than once for credit. Approved for arts and sciences core curriculum: critical thinking.

ECON 6209-3. Research Methods in Economics. Trains graduate students in scientific methodology and research in economics. Culminates in a research project that normally leads directly to thesis work. Prereq., ECON 6070, 6080, 6808, and 6818.

ECON 6909 (1-3). Independent Study. May be repeated for a total of 7 credit hours. Prereq., instructor and department consent.

ECON 6949 (1-3). Master’s Candidate.

ECON 6959 (4-6). Master’s Thesis.

ECON 8209-3. Economics Research Methods Workshop 1. Assists students starting their doctoral thesis by discussing methodology and evaluation of economic research. Presents and discusses student research proposals. Prereq., two ECON courses at the 8000-level.

ECON 8219-3. Economics Research Methods Workshop 2. Continuation of ECON 8209. Assists students starting their doctoral thesis by discussing relevant economic research. Presents and discusses research papers. Prereq., two ECON courses at the 8000-level.

ECON 8909 (1-3). Independent Study. May be repeated for a total of 7 credit hours. Prereq., instructor and department consent.

ECON 8999 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of this catalog.
ENGLISH

Course numbers are grouped by the last digit under a subheading that relates to a specific field of study. Questions regarding the courses should be directed to the English Undergraduate Studies Office in Helens 111.

General Literature and Language

ENGL 1010-3. Critical Analysis 2: Prose. A basic skills course designed to equip the student to handle the English major. Emphasizes critical writing and the acquisition of basic techniques and vocabulary of literary criticism through close attention to varieties of prose language. Required only for students who declared the major prior to summer 1999. Students may not receive credit for both ENGL 1010 and ENGL 2000. Restricted to English majors only.

ENGL 1200-3. Introduction to Fiction. Emphasizes reading and analysis of short stories and novels.

ENGL 1260-3. Introduction to Women’s Literature. Introduces literature by women in England and America. Covers both poetry and fiction and varying historical periods. Acquaints students with the contribution of women writers to the English literary tradition and investigates the nature of this contribution. Same as WMST 1260. Approved for arts and sciences core curriculum: cultural and gender diversity.

ENGL 1300-3. Introduction to Drama. Offers reading and analysis of plays.

ENGL 1400-3. Introduction to Poetry. Offers reading and analysis of poetry.

ENGL 1500-3. Masterpieces of British Literature. Introduces students to a range of major works of British literature, including at least one play by Shakespeare, a pre-20th-century English novel, and works by Chaucer and/or Milton. Approved for arts and sciences core curriculum: literature and the arts.

ENGL 1600-3. Masterpieces of American Literature. Enhances student understanding of the American literary and artistic heritage through an intensive study of a few centrally significant texts, emphasizing works written before the 20th century. Approved for arts and sciences core curriculum: literature and the arts.

ENGL 1800-3. American Ethnic Literatures. Introduces significant fiction by ethnic Americans. Explores both the literary and the cultural elements that distinguish work by these writers. Emphasizes materials from Native American, African American, and Chicano traditions. Same as ETHN 1800. Approved for arts and sciences core curriculum: cultural and gender diversity.

ENGL 1840 (1-3). Independent Study, Lower Division. Creative Writing. May be repeated for a total of 8 credit hours.

ENGL 1850 (1-3). Independent Study, Lower Division. Literature/Language. May be repeated for a total of 8 credit hours.

ENGL 2000-3. Literary Analysis. Provides a basic skills course designed to equip students to handle the English major. Emphasizes critical writing and the acquisition of basic techniques and vocabulary of literary criticism through close attention to poetic and prose language. Required for students who declared the major summer 1999 and thereafter. Students may not receive credit for both ENGL 1010 and ENGL 2000. Restricted to English majors only.

ENGL 2010-3. Introduction to Literary Theory. Introduces students to a wide range of critical theories that English majors need to know. Covers major movements in modern literary/critical theory, from MatthewArnold through new criticism to contemporary post-modern frameworks. Required for all English majors. Restricted to English majors only.

ENGL 3000-3. Shakespeare for Nonmajors. Introduces students to Shakespeare’s major works—the histories, comedies, and tragedies. May include the non-dramatic poetry as well. Prereq., sophomore standing. Approved for arts and sciences core curriculum: literature and the arts.

ENGL 3800-3. Computer Applications in Language and Literature. Surveys major successful applications of computer technology to the analysis of literary texts. Prereq., sophomore standing.

ENGL 3910 (1-3). Computer Practicum. Provides direct experience in using the computer as a tool of literary study: to analyze, to edit, and to make a concordance of a limited number of literary texts. Emphasizes use of machine analyses to formulate and test critical perspectives about the texts. Requires several critical papers. Prereq., sophomore standing.

ENGL 3930 (1-3). Internship. Provides academically supervised opportunity for upper-division students to work in public or private organizations on projects related to students’ career goals and to relate classroom theory to practice. May be repeated for a total of 6 credit hours. Prereq., junior standing and instructor consent.

ENGL 3940 (1-3). Service Learning Practicum. Under faculty supervision, students participate in a service project correlated with the academic subject. May be repeated for a total of 6 credit hours.

ENGL 4100-3. The English Language. Outlines history of the language, including a brief survey of sound changes affecting modern English, history of grammatical forms, and the vocabulary. Assumes elementary knowledge of English grammar. Prereq., junior standing.

ENGL 4200-3. Contemplation/Poetry/Self. Focuses on contemplative practices across several spiritual traditions: ecstatic poetry, poetry that describes mystical status, and historic and contemporary ideas of self as articulated in eastern and western philosophy, psychology, and literature. Prereq., junior standing. Same as WMST 4200.

ENGL 4250-3. Modern Novel. Close study of masterpieces by such novelists as Proust, Joyce, Woolf, Lawrence, Mann, Kafka, and Faulkner. Prereq., junior standing.

ENGL 4360-3. Modern Drama. Explores continental, British, and American drama since Ibsen. Prereq., junior standing.

ENGL 4460-3. Modern Poetry. Selects works of British and American poets from 1900 to the present. Prereq., junior standing.

ENGL 4820-3. Honors Seminar. Prepares prospective honors students to write honors theses. Focuses on sharpening the skills needed to write a successful thesis, including research techniques and the ability to evaluate and respond to secondary materials. May not be repeated. Prereq., instructor consent. Restricted to junior and senior English majors.

ENGL 4840 (1-3). Independent Study, Upper Division. Creative writing. May be repeated for a total of 8 credit hours.

ENGL 4850 (1-3). Independent Study, Upper Division. Literature/language. May be repeated for a total of 8 credit hours.

Undergraduate Writing

ENGL 1191-3. Introduction to Creative Writing. Introduces techniques of fiction and poetry. Student work is scrutinized by the instructor and discussed in a workshop atmosphere by other students. Not open to graduate students. May not be taken concurrently with ENGL 2021 or 2051. Not to be repeated.

ENGL 2021-3. Introductory Poetry Workshop. Introductory course in poetry writing. Prereq., completion of ENGL 1191 with a grade of B- or better, or equivalent transfer course work. May be repeated for a total of 9 credit hours.

ENGL 2051-3. Introductory Fiction Workshop. Introductory course in fiction writing. Prereq., completion of ENGL 1191 with a grade of B- or better, or equivalent transfer course work. May be repeated for a total of 9 credit hours.

ENGL 2612-3. Introduction to Western European Literature 1. Close study of literary classics of Western civilization: the Odyssey or Iliad, Greek drama, and several books of the Bible. May be repeated for a total of 9 credit hours.

ENGL 3012-3. Intermediate Poetry Workshop. Intermediate course in poetry writing. Prereq., CRW major or instructor consent based on submission of manuscript (five to seven poems). May be repeated for a total of 9 credit hours.

ENGL 3021-3. Intermediate Poetry Workshop. Intermediate course in poetry writing. Prereq., CRW major or instructor consent based on submission of manuscript (five to seven poems). May be repeated for a total of 9 credit hours.

ENGL 3051-3. Intermediate Fiction Workshop. Intermediate course in fiction writing. Prereq., CRW major or instructor consent based on submission of manuscript (one short story). May be repeated for a total of 9 credit hours.

ENGL 3061-3. Literary Publishing: Why and How. Surveys the recent history and purposes of literary publishing and teaches its methods and practices, from editing to the art of non-fiction prose. In addition to lectures and class discussion, offers optimal hands-on experience with university-affiliated publications.

ENGL 3071-3. The Practice of Publishing. Surveys the history and technical evolution of book and journal publishing and equips students with a working knowledge of contemporary publishing practices. In addition to lectures and class discussion, offers optimal hands-on experience with university publications.

ENGL 3081-3. Intermediate Nonfiction Workshop. Discussion and practical criticism of student work and discussion of relevant works of literary nonfiction. Prereq., CRW major or instructor consent based on submission of manuscript. May be repeated for a total of 9 credit hours.

ENGL 3151-3. Advanced Composition: Style. Advanced course in poetry writing. Prereq., CRW major or instructor consent based on submission of manuscript (five to seven poems). May be repeated for a total of 9 credit hours.

ENGL 4021-3. Advanced Poetry Workshop. Advanced course in poetry writing. Prereq., CRW major or instructor consent based on submission of manuscript (one short story). May be repeated for a total of 9 credit hours.

ENGL 4051-3. Advanced Fiction Workshop. Advanced course in fiction writing. Prereq., CRW major or instructor consent based on submission of manuscript (one short story). May be repeated for a total of 9 credit hours.

ENGL 4071-3. Scriptwriting Workshop. Designed to give students practical criticism of their script writing and technical format requirements. Either stage plays or screenplays are studied, as announced. Prereq., CRW major or instructor consent based on submission of manuscript. May be repeated for a total of 9 credit hours. Same as ENGL 5289.

ENGL 4081-3. Playwriting. Prereq., CRW major or instructor consent based on submission of manuscript. May be repeated for a total of 9 credit hours.

ENGL 4222-3. Foundations of British and American Literature. Studies major texts of medieval and Renaissance writers who fundamentally influenced the course of English writing. Ordinarily deals with Chaucer, Shakespeare, and Milton, though other classical, medieval, and Renaissance authors may be substituted.

ENGL 4673-3. Anglo-Saxon Language and Literature. Introduces Anglo-Saxon (Old English) language and literature. Emphasizes rapid acquisition of a reading knowledge of the language. Prose readings are followed by highlights of the shorter poetry (Wanderer, Seafarer, Battle of Maldon, etc.). Prereq., junior standing.

ENGL 5563-3. Shakespeare 1. Shakespeare’s works through 1600. Restricted to English, humanities, and theatre majors only. Prereq., junior standing.

ENGL 5573-3. Shakespeare 2. Shakespeare’s works after 1600. Restricted to English, humanities, and theatre majors only. Prereq., junior standing.

ENGL 5602-3. The Bible as Literature. Close introduction to Chaucer’s Canterbury Tales. Short introduction to Middle English precedes study of the poetry. Restricted to English and humanities majors only. Prereq., sophomore standing.

ENGL 5643-3. Chaucer: The Canterbury Tales. Short introduction to Middle English precedes study of the poetry. Restricted to English and humanities majors only. Prereq., sophomore standing.
ENGL 4006-3. Literature and Psychology. Critically applies basic concepts of psychology to world literature. Prereq., junior standing.

ENGL 4016-3. Literature and Psychopathology. Studies major psychological disorders as they are given dramatic and descriptive treatment by literary artists in poems, plays, short stories, and novels. Emphasis is primarily descriptive; some attention is paid to contemporary views of etiology. Prereq., junior standing.

ENGL 4286-3. Folklore 2. Upper-level studies of folk groups, events, texts, and contexts as they reflect traditional "knowing"—folk perceptions and teachings about the structure and purpose of the universe. Prereq., ENGL 3226 and junior standing.

Advanced Theory, Genre Studies, and Popular Culture

ENGL 3116-3. Topics in Advanced Theory. Studies special topics in theory; specially designed for English majors. Topics vary each semester. May be repeated for a total of 6 credit hours for different topics. Prereq., sophomore standing.

ENGL 3117-3. Folklore 1. Emphasizes formal study of folk traditions—including tales, songs, games, customs, beliefs, and crafts—within a theoretical framework, using examples from several cultures. Prereq., sophomore standing.

ENGL 3246-3. Topics in Popular Culture. Studies special topics in popular culture; specially designed for English majors. Topics vary each semester. May be repeated for a total of 6 credit hours for different topics. Prereq., sophomore standing.

ENGL 3856-3. Topics in Genre Studies. Studies special topics in genre studies; specially designed for English majors. Topics vary each semester. May be repeated for a total of 6 credit hours for different topics. Prereq., sophomore standing.

ENGL 3976-3. Literature to 1900. Extensive study of particular periods and movements in American literature. Restricted to English and humanities majors only. Prereq., junior standing.
ENGL 3377-3. Topics in Multicultural Literature. Studies special topics in multicultural literature; specially designed for English majors. Topics vary each semester. May be repeated for a total of 6 credit hours for different topics. Prereq., sophomore standing.

ENGL 4277-3. Topics in Women’s Literature. Focuses on areas of research interest in the study of women’s literature, such as selected themes or critical issues. Students are expected to contribute original research to the topic under consideration. Prereq., junior standing. Same as WMST 4277.

ENGL 4287-3. Studies in Lesbian, Gay, Bisexual, and Transgender Literature. Examines selected British, American, and French literary representations of lesbian and gay identity from the early 16th century to the present. Discusses the changing status of homosexuality as a literary and cultural topos, including how same-sex desire is defined, and the rhetorical and ideological difficulties involved in its representation. Specific topics vary each semester. Prereq. junior standing. Same as LGBT 4287.

Critical Studies in English

ENGL 4038-3. Critical Thinking in English Studies. Concerned with developments in the study of literature that have significantly influenced our conception of the theoretical bases for study and expanded our understanding of appropriate subject matter. May not be repeated. Restricted to English and humanities majors only. Prereq., junior standing. Approved for arts and sciences core curriculum: critical thinking.

ENGL 4728-3. Seminar: Topics in English. Studies such topics as heroism in 18th-century literature, eros and violence, South African women writers, politics and religion in 16th-century literature, and American humor. Topics will vary with instructor. May not be repeated. Prereq., junior standing.

Graduate Courses

ENGL 5009-3. Critical Analysis: Introduction to Medieval and Renaissance Studies. Provides exercises in the close reading and interpretation of poetic, prose, and dramatic writing before 1700. Introduces conventional and technical vocabularies and problems of grammar, vocabulary, and interpretation. Studies samples from the full range of periods, with attention to historical conventions. May not be repeated for credit.

ENGL 5019-3. Survey of Contemporary Literary Theory. Introduces the range and variety of critical and theoretical thought in contemporary literary studies. Students are introduced to such methodologies as "new criticism," structuralism and post-structuralism, psychoanalysis, reader-response criticism, gender studies, Marxist criticism, multicultural and postcolonial theory, and postmodernism.

ENGL 5029, 5039, 5049-3. Literature of the British Isles: Pre-1790. Studies special topics in Medieval, Renaissance, or eighteenth-century literature. Topics vary each semester. May be repeated for a total of 9 credit hours.

ENGL 5059, 5069, 5079-3. Literature of the British Isles: 1790-1900. Studies special topics in Romantic or Victorian literature. Topics vary each semester. May be repeated for a total of 9 credit hours.

ENGL 5109, 5119, 5129-3. Literature of the United States: Pre-1900. Topics vary each semester. May be repeated for a total of 9 credit hours.

ENGL 5139, 5149, 5159-3. Twentieth-Century Anglophone Literature. Studies special topics in modern and contemporary literature in English from around the world. Topics vary each semester. May be repeated for a total of 9 credit hours.

ENGL 5169, 5179, 5189-3. Multicultural Literature. Studies special topics that deal with some aspect(s) of multiculturalism in the Anglophone tradition, e.g. Black, Hispanic, Native American, African, Caribbean, Jewish-American, Anglo-Irish, and Anglo-Indian literatures. May include some attention to theories of ethnicity and minority discourse. Topics vary each semester. May be repeated for a total of 9 credit hours.

ENGL 5209-3. Studies in the Novel. In-depth analyses of novels that are significant in mainstream traditions or that display major departures. May be repeated for a total of 9 credit hours.

ENGL 5219, 5229-3. Fiction Workshop. Designed to give students practical criticism of their fiction and to develop a sense of critical standards. Admission by submission of manuscript and/or instructor consent. May be repeated for a total of 9 credit hours.

ENGL 5259-3. Nonfiction Workshop. Class meetings are spent in discussion and practical criticism of student work and in discussion of relevant works of nonfiction. Admission by submission of a manuscript and/or instructor consent. May be repeated for a total of 9 credit hours.

ENGL 5269-3. Publishing Workshop. Provides practical experience in the editorial, design, and business procedures of the publishing industry. May be repeated for a total of 9 credit hours.

ENGL 5279-3. Studies in Poetry. Covers poetry, mainly American, written since World War II. May be repeated for a total of 9 credit hours.

ENGL 5289-3. Scriptwriting Workshop. Designed to give students practical criticism of their script writing and technical format requirements. Either stage plays or screenplays are studied, as announced. Admission by submission of manuscript and/or permission of instructor. May be repeated for a total of 9 credit hours. Same as ENGL 4071.

ENGL 5299-3. Studies in Fiction. Covers fiction, mainly American, written since World War II.

ENGL 5309-3. Playwriting. Admission by submission of manuscript and/or instructor consent.

ENGL 5529, 5549, 5559-3. Studies in Special Topics. Studies special topics that focus on a theme, genre, or theoretical issue not limited to a specific period or national tradition. Topics vary each semester. May be repeated for a total of 9 credit hours.

ENGL 5669 and 5679-3. Readings in Literature. Topics vary each semester. May be repeated for a total of 9 credit hours.

ENGL 5849 (1-6). Independent Study (Graduate Level 1). Independent investigation of topics of specific interest to individual students. Students wishing to enroll in independent study must petition the Director of Graduate Studies prior to the beginning of the semester. May be repeated for a total of 6 credit hours.

ENGL 5869 (1-3). Tutorial in Creative Writing. May be repeated for a total of 7 credit hours.

ENGL 6949 (1-3). Master’s Degree Candidate.

ENGL 6959 (1-6). Master’s Thesis.

ENGL 7109-3. Advanced Literary Studies. Intensive study of specialized topics in English, American, and other Anglophone literatures. Topics vary each semester. May be repeated for a total of 9 credit hours.

ENGL 7489-3. Advanced Literary Theory. Advanced and intensive study in a theoretical methodology or methodologies. Topics vary each semester. May be repeated for a total of 9 credit hours.
ENGL 7849 (1-3). Independent Study (Graduate Level 2). May be repeated for a total of 7 credit hours.

ENGL 7859-1. Introduction to Ph.D. Research and Professional Development. Skills course designed to equip mid-level or advanced graduate students with rudiments of practical research skills and techniques (bibliography, history of the book, codicology, manuscripts, databases, WWW, and Internet) and orientation to possible future in the profession.

ENGL 7889-3. Interdisciplinary Seminar in British Studies. Exposes students to methodologies of current work in English, history, theatre, and art history. With a different focus each semester, the seminar may be repeated for a total of 3 credit hours. Same as HIST 7183.

ENGL 8999 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of this catalog.

ENVIRONMENTAL, POPULATION, AND ORGANISTIC BIOLOGY

The Department of Environmental, Population, and Organismic (EPOB) Biology offers a major's fundamentals sequence (EPOB 2050, 2060, 2070, and 2080) and two general biology sequences. EPOB 1210 and 1220 are lecture-only courses intended for science majors who are not EPOB majors. A year of high school chemistry is presumed. Accompanying laboratories (EPOB 1230 and 1240) are also available. EPOB 1030 and 1040 are designed for non-science majors; an accompanying laboratory (EPOB 1050) is available.

Students with scores of 4 or 5 on the AP biology test receive 8 hours of credit and are exempt from EPOB 1210-1240. Students who score in the 66th percentile or higher on the CLEP test in biology receive 6 hours of credit and are exempt from EPOB 1210 and 1220 or 2050 and 2060. Credit for EPOB 1210 and 1230 can substitute for MCDB 1150 and 1151, but not for MCDB 2150 and 2151. EPOB majors with transfer credit in biology from other institutions and/or advanced placement credits must consult the EPOB undergraduate advising and resource center for proper placement.

EPOB 1050-1. Biology: A Human Approach Laboratory. One two-hour lab per week. Experiments and exercises relating to concepts presented in EPOB 1030 and 1040 Biology: A Human Approach 1 and 2. Recommended for non-science majors. This course uses animals and/or animal tissues. Meets MAPS requirement for natural science with lab, when taken with EPOB 1030. Approved for arts and sciences core curriculum: natural science laboratory.

EPOB 1230-1. General Biology Laboratory 1. One three-hour lab per week. Conducts experiments and exercises to provide an extension of basic concepts and scientific approaches presented in the general biology lecture course. Prereq. or coreq., EPOB 1210 or equivalent. Recommended for science majors who are not EPOB majors. This course uses animals and/or animal tissues. Meets MAPS requirement for natural science with lab, when taken with EPOB 1210. Approved for arts and sciences core curriculum: natural science.

EPOB 1240-1. General Biology Laboratory 2. One three-hour lab per week. Examines diversity, physiology, and ecology of whole organisms. Provides direct experience with experimental procedures, identification of organisms, and report preparation. Prereq. or coreq., EPOB 1220 or equivalent. Recommended for science majors who are not EPOB majors. This course uses animals and/or animal tissues. Approved for arts and sciences core curriculum: natural science.

EPOB 1300 (1-3). Topics in Biological Sciences. Designed to cover special topics in biology for freshmen or nonmajors. Introduces scientific methods and principles in biology, as well as issues of current interest in biology. Does not count toward the major in EPOB.

EPOB 1840 (1-6). Independent Study (Freshman). May be repeated for a total of 6 credit hours.

EPOB 1950-3. Introduction to Scientific Writing. Reviews writing skills with emphasis on those most important to scientific writing. Focuses on analysis and argument with attention to organization, data presentation, and style; essay and research paper writing; and reading comprehension. May not be used for credit toward the EPOB major. Meets MAPS requirement for written communication. Approved for arts and sciences core curriculum: written communication.

EPOB 2010 (1-3). Environmental Issues and Biology. Lect. The natural environment is currently stressed by a variety of human actions. Examines the nature of these environmental problems and their impact on living organisms, both human and nonhuman species. Prereq., EPOB 1210 or equivalent.

EPOB 2050-4. Environmental Biology. Lect. and lab. Introduces biology as a discipline, focusing on patterns and processes in populations (including behavioral interactions), biotic communities, landscapes, ecosystems, and the biosphere; conservation ecology is a recurrent theme. Laboratories focus on techniques of ecology and field biology and introduce laboratory and research skills used throughout the EPOB majors’ core. Labs use animals and/or animal tissues. Intended for freshman EPOB majors. Similar to EPOB 1220 and 2650. Approved for arts and sciences core curriculum: natural science.

EPOB 2060-4. Cellular and Integrative Physiology. Lect. and lab. Covers the biology of plants and animals at molecular, cellular, and organismal levels of integration, emphasizing the complementarity of structure and function and mechanisms of homeostasis. Laboratories emphasize skills and techniques useful in advanced courses in biology and in independent research. Labs use animals and/or animal tissues. Intended for freshman EPOB majors. Similar to EPOB 1220 and 2660. Prereq., EPOB 2050. Approved for arts and sciences core curriculum: natural science.

EPOB 2070-4. Genetics: Molecules to Populations. Lect. and rec. Covers principles of genetics and developmental biology at levels of molecules, cellular organelles, and individuals; asexual and sexual life cycles; and heredity. Recitations allow discussion of genetics problems and implications of genetic principles, and provide demonstrations and simulations of genetic processes. Demonstrations may use animals and/or animal tissues. Intended for sophomore EPOB majors. Prereqs., EPOB 1210–
1240, or 2050 and 2060. Approved for arts and sciences core curriculum: natural science.

EPOB 2080-4. Evolutionary Biology. Lect. and rec. Covers principles of organic evolution; origins and history of life; population genetics, microevolutionary change, and macroevolution; and principles of systematic biology. Laboratories include computer-based simulations and phylogenetic analysis, as well as a survey of biodiversity. Labs use animals and/or animal tissues. Intended for sophomores EPOB majors. Prereqs., EPOB 2050, 2060, and 2070. Approved for arts and sciences core curriculum: natural science.

EPOB 2110-1. Environmental Issues and Biology 2. The natural environment is currently stressed by a variety of human actions. Examines the nature of these environmental problems and their impact on living organisms, both human and nonhuman species. Prereq., introductory biology course.

EPOB 2500-4. Introduction to Horticulture. Lecture and lab. Covers the principles and techniques of plant science applied to cultivated plants. Emphasizes basic plant biology, aspects of the culture environment as variable, and the tools and technology utilized in culture, regulation, propagation, and protection. Includes a brief survey of the industries related to cultivated plants. Prereqs., EPOB 1210–1240, EPOB 2050 and 2060, or equivalent.

EPOB 2590-3. Plants and Society. Acquaints students with plants that are both essential to and desirable for human survival, well-being, and quality of life. Topics include plants and world cultures, food plants, commercial products (beverages, extracts, herbs and spices, etc.), cosmetics, textiles, wood products, medicinal plants, psychoactive plants, plant use in horticulture and landscape architecture, wood products, musical instruments, etc.

EPOB 2650-5. Honors Environmental Biology. Lect., lab, and rec. Honors section of first of 4-course sequence for EPOB majors. Examines the principles of ecology, emphasizing patterns and processes at various levels of biological organization. Scope is global, but examples often come from local environment. Laboratory emphasizes techniques of field biology and skills useful throughout EPOB core. Assumes dedicated students who are well prepared for college-level science. Similar to EPOB 1220 and 2050. Prereqs., one year high school chemistry, one year high school biology, and consent of honors program. Approved for arts and sciences core curriculum: natural science.

EPOB 2660-5. Honors Cellular and Integrative Physiology. Lect., lab, and rec. Honors section of second of 4-course core sequence for EPOB majors. Explores the biology of plants and animals at molecular, cellular, and organismic levels of integration, emphasizing the complementarity of structure and function and mechanisms of homeostasis. Laboratories emphasize skills and techniques useful in advanced courses in biology and in independent research. Labs use animals and/or animal tissues. Intended for freshmen EPOB majors. Prereqs., EPOB 2050 and consent of honors program. Similar to EPOB 1210 and 2060. Approved for arts and sciences core curriculum: natural science.

EPOB 2670-5. Honors Genetics: Molecules to Populations. Lect., rec., and co-seminar. Honors section of third course of four-course fundamentals sequence for majors. Covers transmission of hereditary information, molecular structure and function of genetic material, and applications of these principles to development, behavior, population genetics, genetic engineering, and public health. Rec. emphasizes problem solving and case studies and includes group discussion of societal implications of genetic information. Honors co-seminar covers specific topics in more depth. Prereqs., EPOB 1210–1240, EPOB 2050 and 2060, or MCDB 1150. Similar to EPOB 2070 and 3200.

EPOB 2680-5. Honors Evolutionary Biology. Lect., rec., and co-seminar. Honors section of fourth course of four-course fundamentals sequence for majors. Emphasizes the fundamental evolutionary concepts that provide explanations for the diversification of life on Earth. Specific topics include the evidence for evolution, adaptation by natural selection, speciation, systematics, and macroevolutionary patterns and processes. In recitations, students explore selected topics in depth. Honors co-seminar covers more advanced topics. Prereqs., EPOB 1210–1240, or EPOB 2050 and 2060, and EPOB 2070. Similar to EPOB 2080.

EPOB 2840 (1-6). Independent Study (Sophomore). May be repeated for a total of 6 credit hours.

EPOB 3020-3. Principles of Ecology. Lect. Explores principles relating to ecosystem structure and function, properties and interactions of populations, adaptations and environmental influences, and organization and development of terrestrial and aquatic ecosystems. Prereqs., EPOB 1210 and 1220 or equivalent. Not intended for EPOB majors. EPOB 2050 and 3020 cannot both be counted toward EPOB major.

EPOB 3090-3. Introduction to Neurobiology. Lect. Covers action potential generation, synaptic transmission, and neuronal integration in terms of the neurophysiology and biophysics of single nerve cells. Introduces information processing by neural circuits and neuronal changes underlying selected behavioral modifications. Restricted to students with 60 to 180 predicted, cumulative hours. Prereqs., EPOB 1210–1240, or EPOB 2050 and 2060; CHEM 1111; and CHEM 1131 or 1071.

EPOB 3150-3. Introduction to Tropical Conservation Biology. This intensive five-week course (first summer session) is held partly on the Boulder campus (two weeks) and partly in Puerto Rico (three weeks). Emphasizes practical aspects of conservation biology, especially as they pertain to the tropical regions of the world. Prereqs., one year of introductory biology (EPOB 1030, 1040, 1050; or EPOB 1210–1240; or EPOB 2050 and 2060). Approved for arts and sciences core curriculum: natural science.

EPOB 3155-3. Population and Community Ecology. Covers the principles of ecology that relate to niche, population growth, metapopulations, population interactions (within and between trophic levels), community structure and development, landscape ecology, and species diversity. Prereqs., EPOB 2050, 2060, 2070, and 2080.

EPOB 3160-3. Paleoecology. Lecture and field trips. Studies the history of modern biotic communities; background of climatic history as setting for contemporary studies of evolution, genetics, and ecology; the myth of stable tropical biotas; ecotonal instability in North America; extinction of large mammals; and reasons behind why environmental planning ignores historical perspective. Prereqs., EPOB 1210–1240, or EPOB 2050 and 2060, or equivalent.

EPOB 3170 (3-4). Arctic and Alpine Ecology. Lecture and field trips. Focuses on the biology of arctic and alpine environments, limiting physical factors (such as geomorphology and climatic history), and human interaction with cold-stressed environments, especially the arctic. Prereqs., EPOB 1210 and 1220, or 2050 and 2060, or equivalent; or GEOL 1010, or GEOG 1092.

EPOB 3175-1. Arctic and Alpine Ecology Lab. Weekend (one-day) field trips into the Rocky Mountains to examine alpine ecosystems and treeline relative to global change, with visits to Denver’s natural history museum and CU’s herbarium/plant lab for experiential learning connected to EPOB 3170. Recommended prereqs., EPOB 1210–1220, or EPOB 2050 and 2060. Coreq., EPOB 3170.

EPOB 3190-3. Tropical Marine Ecology. Lect. Examines the biology and ecology of marine ecosystems, emphasizing those occurring in tropical regions such as coral reefs. Studies how
these ecosystems are changing and the future impact of human stress on the marine environment. Prereqs., EPOB 1210–1240, or 2050 and 2060, or equivalent. Approved for arts and sciences core curriculum: natural science.

EPOB 3240-4. Animal Behavior. Lecture and recitation. Topics include basic concepts and history, methods of study, ethical issues, neurobiology and behavior, the development of behavior, predator-prey relationships, communication, aggression and dominance, mating systems, cognitive ethology, and parental care. When possible, life-history strategies, the evolution of behavior, and behavioral ecology are stressed. Prereqs., EPOB 1210–1240, or 2050 and 2060, or PSYC 1001, or ANTH 2020, or equivalent.

EPOB 3400-4. Microbiology. Lecture and lab. Surveys distinguishing characteristics of microorganisms based on structural-functional relationships, taxonomy, growth, and physical-chemical agents of control including antibiotics, metabolism, and genetics. Introduces applied microbiology emphasizing infectious diseases, basic concepts of immunology, and microbial ecology. Prereqs., EPOB 1210 through 1240, or 2050 and 2060, or equivalent. This course uses animals and/or animal tissues.

EPOB 3420-5. Introduction to Human Anatomy. Lecture and lab. Introduces basic concepts of human anatomy. Prereqs., EPOB 1210–1240, or 2050 and 2060, or equivalent. This course uses animals and/or animal tissues and human cadavers.

EPOB 3430-5. Human Physiology. Lecture, lab, and recitation. Introduces human physiology, primarily for students in allied health programs. Prereqs., EPOB 1210–1240 or 2050 and 2060, or equivalent, and CHEM 1071, 1131, or 1171; EPOB 3420 strongly recommended. This course uses animals and/or animal tissues and human cadavers.

EPOB 3470-3. History of Biology. Lect. Surveys major themes in the development of biological theory from ancient times to present, emphasizing complimentary roles of observation, experiment, and technical innovation, and influence of general cultural environment on scientific advance. Prereqs., EPOB 1210–1240, or EPOB 2050 and 2060, or equivalent.

EPOB 3500-4. Plant Kingdom. Lecture and lab. Surveys plant types emphasizing diagnostic features of plants in general and major taxa in particular. Focuses on identity, morphology, anatomy, reproduction, ecology, geography, evolution, fossil record, and economic use of taxa. Prereqs., EPOB 1210-1240; or EPOB 2080 and one of EPOB 2050, 2060, or 2070; or equivalent.

EPOB 3510-4. Plant Anatomy and Development. Lecture and lab. Introduces structures of seed plants, especially angiosperms, and developmental history of these structures. Studies cell types, and their location and function in plant tissues and organs. The laboratory provides an opportunity to examine plant tissues and to prepare tissues for examination by the light microscope. Stresses role of plant structures in the living plant. Prereqs., EPOB 1210–1240, or 2050 and 2060, or equivalent.

EPOB 3520-4. Plant Systematics. Lecture and lab. Studies the principles and techniques of modern systematics of organisms, illustrated with examples from the plant kingdom, usually the angiosperms. Framework of course is evolutionary and ecological, as well as taxonomic. Prereqs., EPOB 1210–1240, or 2050 and 2060, or 2070 and 2080, or equivalent.

EPOB 3530-5. Essentials of Plant Physiology. Lecture and lab. Explores mechanisms of plant functioning and how such functioning relates to the performance of the plant under different environmental conditions. Phenomena include water relations, growth and development, and metabolic processes including photosynthesis, respiration, and responses to stress. Prereqs., EPOB 1210–1240, or EPOB 2050 and 2060, or equivalent.

EPOB 3530-3. Parasitology. Lecture and lab. Surveys animal parasites, including life histories; emphasizes parasites of humans. Prereqs., EPOB 1210–1240, or EPOB 2050 and 2060, or equivalent. This course uses animals and/or animal tissues.

EPOB 3560-3. Embryology. Lect. Analyzes embryonic development in animals in an experimental setting. Topics covered include gametogenesis, fertilization, cleavage, gastrulation, cytodifferentiation, morphogenesis, and organogenesis. Students may receive credit for only one of EPOB 3560, MCDB 4620, and MCDB 4650. Prereqs., EPOB 1210, 1220, and 3200, or 2060 and 2070, or equivalent. Coreq., EPOB 3660.

EPOB 3660-2. Developmental Biology Laboratory. Lab for EPOB 3560 and MCDB 4650. Studies live and prepared embryos from a variety of organisms, including amphibia, chick, nematodes, and fruit flies. Topics include descriptive and experimental embryology, developmental genetics, and molecular biology methods applied to developing systems. Prereqs., EPOB 2060 and 2070, or EPOB 3200 or MCDB 2150. Coreq., EPOB 3560 or MCDB 4650. Same as MCDB 4660. This course uses animals and/or animal tissues.

EPOB 3700-5. Comparative Animal Physiology. Lecture, lab, and recitation. Introduces principles of animal physiology and responses to environmental change. Prereqs., EPOB 1210–1240, or EPOB 2050 and 2060, or equivalent. This course uses animals and/or animal tissues.

EPOB 3720-5. Comparative Vertebrate Anatomy. Lecture and lab. Introduces major components of the vertebrate body and how they are organized into a whole organism, emphasizing function, evolution, and diversity of these basic features. Laboratories involve dissection of representative groups and demonstrations. Prereqs., EPOB 1210–1240, or EPOB 2050 and 2060, or equivalent. This course uses animals and/or animal tissues.

EPOB 3770-4. Vertebrate Zoology. Lecture, lab, and field trips. Studies the natural history of the major groups of living vertebrates, including their origin and evolution, behavior, ecology, anatomy, and physiology. Prereqs., EPOB 1210–1240, or EPOB 2050 and 2060, or equivalent. This course uses animal and/or animal tissues.

EPOB 3840 (1-6). Independent Study (Junior). May be repeated for a total of 6 credit hours.

EPOB 3870 (1-6). Independent Research (Junior). May be repeated for a total of 6 credit hours.

EPOB 3930 (1-6). Internship. Provides an academically supervised opportunity for upper-division students to work in public or private organizations. Projects are usually related to students’ career goals. Each project has both academic and work components. May be repeated for a total of 6 credit hours. Pass/fail only.

EPOB 3940-3. Argument in Scientific Writing. Emphasizes argumentative strategies used in scientific writing. Reviews essential writing skills to prepare students for academic and professional communication. Restricted to juniors and seniors. No biology credit for EPOB majors. Approved for arts and sciences core curriculum: written communication.

EPOB 4010 (1-2). Teaching Biology. Provides an opportunity to assist in teaching of specific laboratory section in EPO Biology under direct faculty supervision. Students must make arrangements with the faculty member responsible for the course in which they plan to assist. May be repeated for a total of 4 credit hours. Cannot be used to fulfill requirement for 6 credits of EPO Biology course work at the 4000 level.

EPOB 4020-3. Stream Biology. Offers a geological, physical, chemical, and biological study of flowing water with special reference to streams and rivers as ecosystems. A laboratory course is offered (see EPOB 4150). Prereq., EPOB 2050 and 2060, or EPOB 3020. Same as EPOB 5020.
EPOB 4030-3. Limnology. Examines the ecology of inland waters, including a detailed consideration of physical, chemical, and biological properties of freshwater ecosystems: origins and major characteristics of lakes and streams, survey of chemical and nutrient cycles in freshwater habitats, and survey of biotic composition of freshwater environments. Important themes in modern fresh-water ecology are considered, including energy flow, trophic structure, eutrophication, and management of freshwater ecosystems. Prereq., EPOB 2050 and 2060 or EPOB 3020. Same as EPOB 5030.

EPOB 4040-3. Conservation Biology. Applies principles of population ecology, population genetics, biogeography, animal behavior, and paleobiology to the maintenance of global biodiversity and natural systems. Resulting theory is then applied to conservation policy and management techniques. Prereq., EPOB 2050 and 2060 or EPOB 3020. Same as EPOB 5040 and ENV 4040.

EPOB 4045-3. Medical Ecology and Environmental Health. Concerns the ecology, evolution, and environmental relationships of disease. Emphasizes zoonotic infections, i.e., animal diseases transmissible to humans, such as encephalitis and Lyme disease; and environmental factors in chronic diseases. Prereqs., EPOB 1210–1240, EPOB 2050 and 2060, or equivalent. Same as EPOB 5045.

EPOB 4050-3. Vegetation Description and Analysis. Covers quantitative methods of vegetation science including sampling, classification, field description, gradient analysis, mapping, history of vegetation science, vegetation communities of Colorado, and applications of GIS and remote sensing. Emphasizes vegetation spatial and temporal patterns in relationship to environmental factors. Recommended prereqs., EPOB 3520 and 4410. Same as EPOB 5050.

EPOB 4090-2. Coral Reef Ecology. Two-week, fall-semester course beginning after Christmas. Includes one week of lectures in Boulder and one week of field studies on one of the most complex and beautiful ecosystems in the world, the Caribbean reefs at Cozumel, Mexico. Prereqs., EPOB 2050 and 2060, or EPOB 3020, and SCUBA certification.

EPOB 4100-3, 4110-3. Advanced Ecology. Studies specific aspects of ecology, emphasizing faculty specialties. May be repeated for a total of 7 credit hours. Same as EPOB 5150. Prereqs., EPOB 2050 and 2060, or EPOB 3020. Same as EPOB 5150 and 5110. Courses may use animals and/or animal tissues.

EPOB 4150 (1-2). Techniques in Ecology. Emphasizes application of modern ecological techniques, such as stream biology, aquatic biology, environmental measurement and control, and techniques in geo-ecology. May be repeated for a total of 7 credit hours. Same as EPOB 5150. Prereqs., EPOB 2050 and 2060, or EPOB 3020.

EPOB 4160-3. Introduction to Biogeochemistry. Covers fundamentals of biogeochemical cycling, emphasizing water, carbon, and nutrient dynamics in terrestrial ecosystems; chemical interactions of atmosphere, biosphere, lithosphere, and hydrosphere; and natural and human-managed environments. Prereqs., GEOL 3320 or EPOB 4170 or EPOB 4360, and CHEM 1011 or higher. Same as ENVS 4160 and GEOL 4160.

EPOB 4165-3. Landscape Ecology. Examines distribution patterns of communities and ecosystems, and ecological processes that affect those patterns over time. Considers spatial and temporal scales in ecological analyses is required to understand and predict response to broad-scale environmental change. Prereqs., EPOB 2050 and 2060, or EPOB 3020, or equivalent. Same as EPOB 5165.

EPOB 4170-3. Ecosystem Ecology. Focuses on concepts and approaches to studying ecosystem processes, including primary and secondary production, energy flows, and elemental cycles. Gives attention to biotic and abiotic controls on biogeochemical cycles and the potential for anthropogenic changes in ecosystem processes. Prereqs., EPOB 2050 and 2060, or EPOB 3020. Same as EPOB 5170.

EPOB 4180-3. Ecological Perspectives on Global Change. Discusses evolutionary and recent geological history of modern environmental problems, using natural changes in climate, biotic diversity, drought, desertification, flood, forest destruction, etc., to show the range and frequency of such events as a perspective on modern reports. Prereq., minimum 14 hours of EPOB course work, including EPOB 3020 or 2070. Approved for arts and sciences core curriculum: critical thinking.

EPOB 4240-3. Advanced Topics in Animal Behavior. Covers special areas of ethology such as sociobiology, animal communication, cognitive ethology, human ethology, moral and ethical issues. Prereq., EPOB 3240. Same as EPOB 5240. Approved for arts and sciences core curriculum: critical thinking.

EPOB 4270-3. Population Genetics and Evolution. Focuses on evolutionary mechanisms influencing levels of genetic variation within populations and the differentiation of populations. Examples are from natural populations, laboratory experiments, and simulation studies. Special topics include overdominance, sexual selection, and mechanisms of speciation. Prereqs., EPOB 2070 and 2080, or EPOB 3200. Same as EPOB 5270. Approved for arts and sciences core curriculum: critical thinking.

EPOB 4290-3. Molecular Systematics and Evolution. Reviews principles and theoretical foundations of molecular evolution and molecular systematics. Emphasizes hypothesis testing and using various methods of analysis for interpreting molecular variation in nature. Prereqs., EPOB 2080 or 3250, or instructor consent. Same as EPOB 5290.

EPOB 4350 (1-4). Biological Field Studies. Stresses broad areas of biology and employs field approaches. Prereqs., EPOB 1210–1240, EPOB 2050 and 2060, or equivalent. May be repeated for a total of 4 credit hours. Same as EPOB 5350. This course uses animals and/or animal tissues.

EPOB 4360-3. Microbial Ecology. Lecture and lab. Explores microbial approaches and solutions to environmental problem areas in which microorganisms play favorable or unfavorable roles: in biodeterioration control in soil, water and waste management, current pollution problems, resource recovery, energy production, ecological control of pests, and biotechnology. Prereqs., EPOB 1210–1240, EPOB 2050 and 2060, or equivalent. Same as EPOB 5360. This course uses animals and/or animal tissues.

EPOB 4380-3. Respiratory Adaptations to the Environment. Investigates the evolutionary development of respiratory gas exchange systems, including the physical properties of gases and their exchange in burrows, water, high altitudes, and space, and models of how respiratory mechanisms have evolved in these environments. Prereq., EPOB 3430 or 3700. Same as EPOB 5380. Approved for arts and sciences core curriculum: critical thinking.

EPOB 4410-4. Biometry. Lecture and lab. Offers a demanding, problems-oriented methods course in statistical inference procedures, assumptions, limitations, and applications emphasizing techniques appropriate to realistic biological problems. Includes data file management using interactive computing techniques. Prereqs., EPOB 1210–1240, EPOB 2050 and 2060, or equivalent. Same as EPOB 5410.

EPOB 4440-3. Mammalian Endocrinology. Introduces mammalian endocrine system. Course provides a thorough analysis and inte-
EPOB 4660 (1-5). Special Topics. Familiarizes students with specialized areas of biology. May be repeated for a total of 9 credit hours. Prereqs., EPOB 1210–1240, EPOB 2050 and 2060, or equivalent. Same as EPOB 5460.

EPOB 4700 (1-4). Special Topics Lab. Special topics in biology laboratory. May be repeated for a total of 7 credit hours. Same as EPOB 5470.

EPOB 4520-3. Plants of Colorado. Lecture, lab, and field trips. Systematic survey of Colorado plants including algae, fungi, lichens, mosses, ferns, gymnosperms, and flowering plants. Plant collections are required. Prereqs., EPOB 1210–1240, EPOB 2050 and 2060, or equivalent. Same as EPOB 5470.

EPOB 4530-4. Biology of Fungi. Lecture and lab. Introduces fungi as one of the largest and most diverse groups of living organisms. A multifaceted microbiological approach to mycology, providing essential information on the life cycles, genetics, physiology, and ecology of fungi. Discusses the traditional and novel ways in which fungi are exploited by humans. Prereqs., EPOB 1210–1240, EPOB 2050 and 2060 or equivalent, CHEM 1111 and 1131, and EPOB 2070 or 3400; or instructor consent. Same as EPOB 5530.

EPOB 4550 (2-4). Advanced Botany. Covers special areas of botany including courses in al-gology, mycology, lichenology, palynology, evolution and ecology of domesticated plants, advanced classification of flowering plants, plant ecology, plants of Colorado, developmental plant anatomy, and Cenozoic paleobotany. Prereqs., EPOB 2050 and 2060, or EPOB 3020. May be repeated for a total of 4 credit hours. Same as EPOB 5550.

EPOB 4570-3. Advanced Plant Physiology. Critical evaluation of various concepts underlying the functioning of plants, including current controversial topics. Emphasizes the responses of plants to various environmental factors. Prereqs., EPOB 3530 or EPOB 4080. Same as EPOB 5570. Approved for arts and sciences core curriculum: critical thinking.

EPOB 4580 (2-4). Advanced Topics in Plant Physiology. Studies special areas of plant physiological processes such as growth, development, photosynthesis, respiration, water relations, etc. Topics vary from year to year. Prereqs., EPOB 1210–1240, or EPOB 2050 and 2060, or equivalent, and one of the following: EPOB 3500, 3510, 3520, or 3530. May be repeated for a total of 7 credit hours. Same as EPOB 5580.

EPOB 4630 (2-6). Field Techniques in Environmental Science. Field and laboratory methods for assessing the abiotic and biotic environment. Emphasizes field techniques in climatology, surveying soils, hydrology, geomorphology, plant and animal ecology, and environmental law. Evaluation by written module reports and maps. Instructor consent required. Prereqs., EPOB 2050 and 2060, or EPOB 3020. Same as EPOB 5630. This course may use animals and/or animal tissues.

EPOB 4640 (2-4). Field Plant Studies. Field-oriented course offered at irregular intervals during the academic year or during summer sessions. May include field botany and plants of Colorado. May be repeated for a total of 7 credit hours. Same as EPOB 5640.

EPOB 4650-4. Invertebrate Zoology. Lecture and lab. Offers a broad study of the biology of the most diverse group of organisms on Earth. Areas include ecology, physiology, evolution, and morphology of aquatic and terrestrial forms. Prereqs., EPOB 1210–1240, EPOB 2050 and 2060, or equivalent. Same as EPOB 5650. Recommended coreq., EPOB 4650/5650. This course uses animals and/or animal tissues.

EPOB 4660-4. Insect Biology. Lecture and lab. Introduces evolution, ecology, physiology, and behavior of insects. Emphasizes how insects have solved problems, such as maintaining water balance or finding food, that are shared by all animals but for which there may be unique solutions among the insects. Agricultural and human health problems relative to entomology are discussed. Prereqs., EPOB 1210–1240, or EPOB 2050 and 2060, or equivalent. Same as EPOB 5660. This course uses animals and/or animal tissues.

EPOB 4670 (2-4). Advanced Invertebrate Biology. Specific taxa and/or special aspects of invertebrate biology. Topics offered include insect taxonomy, aquatic invertebrate zoology, biology of social insects, benthic and Auf-wuchs ecology. May be repeated for a total of 7 credit hours. Prereqs., EPOB 1210–1240, or EPOB 2050 and 2060, or equivalent. Same as EPOB 5670. This course uses animals and/or animal tissues.

EPOB 4690 (1-6). Invertebrate Zoology Field Course. Intensive week-long course held during spring break at the CEDO marine biological station on the Sea of Cortez, Puerto Penasco, Mexico. Emphasis on natural history, collection, identification and morphology of marine intertidal invertebrates; and on quantitative techniques using transects to assess local species distributions. May be repeated for a total of 6 credit hours. Prereq. or coreq., EPOB 4650. Same as EPOB 5690.

EPOB 4700-5. Vertebrate Histology. Lecture and lab. Analyzes microscopic anatomy vertebrate tissues and prepares tissues for light microscopic examination. Especially useful to students of vertebrate anatomy, development, and physiology. Prereq., instructor consent. Recommended prereqs., EPOB 3660, 3700, or 3720. Same as EPOB 5700. This course uses animals and/or animal tissues.

EPOB 4710-3. Biology of Mollusks. Lecture and labs. Lectures deal with eight molluscan classes and their basic functional morphology, development, physiology, ecology, distribution, phylogeny, and evolution. Four labs for dissection and classification of snails and clams. Prereqs., EPOB 4650; or EPOB 1210–1240, or EPOB 2050 and 2060, or equivalent. Same as EPOB 5710. This course uses animals and/or animal tissues.

EPOB 4740-3. Biology of Amphibians and Reptiles. Comparative morphology, taxonomy, ecology, behavior, and geographic distribution of amphibians and reptiles. Prereqs., PSYC 1001 and 2012, or EPOB 1210–1240, or EPOB 2050 and 2060, or equivalent. Same as EPOB 5740 and PSYC 4740. This course uses animals and/or animal tissues.

EPOB 4750-3. Ornithology. Lecture, lab, and field trips. Origin, evolution, ecology, physical and behavioral characteristics, and taxonomy of orders and families of birds of North America; field work with local species emphasizing avian ecology. Prereqs., EPOB 2050 and 2060, or EPOB 3020. Same as EPOB 5750. This course uses animals and/or animal tissues.

EPOB 4760-3. Mammalogy. Lecture, lab, and field studies. Origin, evolution, diversity, ecology, and zoogeography of mammals; field and laboratory emphasis on Coloradan species. Prereqs., EPOB 2050 and 2060, or EPOB 3020. Same as EPOB 5760. This course uses animals and/or animal tissues.

EPOB 4800-3. Critical Thinking in Biology. Different sections of this course fulfill the arts and sciences core curriculum requirement in critical thinking. Consult the EPOB department office for current listings. Different course sections may be repeated for a total of 6 credit hours on different topics. Restricted to students with 75 to 180 predicated cumulative hours. Prereq., minimum of 14 hours EPOB course work. Same as EPOB 5800. Approved for arts and sciences core curriculum: critical thinking.

EPOB 4840 (1-6). Independent Study (Senior). May be repeated for a total of 6 credit hours.

EPOB 4860 (1-2). Critical Thinking in Biology Lab. Same as EPOB 5860.

EPOB 4870 (1-6). Independent Research (Senior). May be repeated for a total of 6 credit hours.
EPOB 5030-3. Limnology. Same as EPOB 4030.
EPOB 5050-3. Vegetation Description and Analysis. Same as EPOB 4050.
EPOB 5100, 5110 (2-4). Advanced Ecology. Same as EPOB 4100, 4110.
EPOB 5150. (1-2). Techniques in Ecology. May be repeated for a total of 7 credit hours. Coreq., EPOB 5020. Same as EPOB 4150.
EPOB 5165-3. Landscape Ecology. Same as EPOB 4165.
EPOB 5170-3. Ecosystem Ecology. Same as EPOB 4170.
EPOB 5200-3. Developmental Neurobiology. Same as EPOB 4200.
EPOB 5240-3. Advanced Topics in Animal Behavior. Same as EPOB 4240.
EPOB 5310-3. Current Topics in Evolutionary Biology. Reviews research activities in the various fields of evolutionary biology, including population, community, behavioral, ecosystem, and landscape ecology, plus conservation biology and global change. Approved for graduate core curriculum in EPOB. Prereq., graduate standing in EPOB.
EPOB 5320-3. Current Topics in Evolutionary Biology: A Core Course. Examines major themes in contemporary evolutionary research: population genetics, natural selection and adaptation, molecular evolution, development and evolution, phylogenetic systematics, and macroevolution. Emphasizes recent primary literature and sophisticated mastery. Prereq., graduate standing in EPOB.
EPOB 5330-3. Current Topics in Integrative Physiology. Examines current research in neurobiology, endocrinology, metabolism, environmental physiology, and bioenergetics. Approved for graduate core curriculum in EPOB. Prereq., graduate standing in EPOB.
EPOB 5350 (1-4). Biological Field Studies. May be repeated for a total of 4 credit hours. Same as EPOB 4350.
EPOB 5460 (1-5). Special Topics. May be repeated for a total of 9 credit hours. Same as EPOB 4460.
EPOB 5470 (1-4). Special Topics Lab. Prereq., EPOB 3430 or 3700. May be repeated for a total of 7 credit hours. Same as EPOB 4470.
EPOB 5550 (2-4). Advanced Botany. May be repeated for a total of 7 credit hours. Same as EPOB 4550.
EPOB 5630 (2-6). Field Techniques in Environmental Science. Same as EPOB 4630.
EPOB 5650-4. Invertebrate Zoology. Same as EPOB 4650. Students are encouraged to enroll simultaneously in EPOB 4690/5690.
EPOB 5660-4. Insect Biology. Same as EPOB 4660.
EPOB 5670 (2-4). Advanced Invertebrate Biology. May be repeated for a total of 7 credit hours. Same as EPOB 4670.
EPOB 5690 (1-6). Invertebrate Zoology Field Course. May be repeated for a total of 6 credit hours. Same as EPOB 4690.
EPOB 5700-5. Vertebrate Histology. Same as EPOB 4700.
EPOB 5740-3. Biology of Amphibians and Reptiles. Same as EPOB 4740 and PSYC 5740.
EPOB 5750-3. Ornithology. Same as EPOB 4750.
EPOB 5760-4. Mammalogy. Same as EPOB 4760.
EPOB 5800-3. Critical Thinking in Biology. May be repeated for a total of 6 credit hours. Same as EPOB 4800.
EPOB 5820 (2-3). Graduate Writing Seminar. Enhances writing proficiency, using graduate writing projects to implement the course concepts. Offers understanding of conventions and strategies used in scientific writing to prepare students for academic and professional communication. Prereq., graduate standing and basic proficiency in English as a written language.
EPOB 5840 (1-6). Independent Study (Graduate). Instructor consent required. May be repeated for a total of 6 credit hours. Same as EPOB 7840.
EPOB 6000 (1-2). Seminar: Introduction to Biological Research. In-depth discussions on areas of biological research represented in EPO biology. Required of all first-year graduate students in EPO biology. May be repeated for a total of 4 credit hours.
EPOB 6100–6120 (1-3). Seminar in Environmental Biology. Open only to graduate students. Instructor consent required. May be repeated for a total of 7 credit hours.
EPOB 6200–6210 (1-3). Seminar in Population Biology. May be repeated for a total of 7 credit hours. EPOB 6210 is the same as EPOB 7210.
EPOB 6300–6330-2. Seminar in Organismic Biology. May be repeated for a total of 7 credit hours. Same as EPOB 7300-7330.
EPOB 6840 (1-6). Independent Research in Environmental Biology. May be repeated for a total of 6 credit hours. Prereq., instructor consent. Same as EPOB 8840.
EPOB 6940 (1-6). Master's Degree Candidate—Plan II. Prereq., instructor consent.
EPOB 6950 (1-6). Master's Thesis. May be repeated for a total of 7 credit hours. Prereq., instructor consent.
EPOB 7840 (1-6). Independent Study (Graduate). May be repeated for a total of 6 credit hours. Prereq., instructor consent. Same as EPOB 5840.
EPOB 8840 (1-6). Independent Research in Environmental Biology. May be repeated for a total of 6 credit hours. Prereq., instructor consent. Same as EPOB 6840.
EPOB 8990 (1-10). Doctoral Dissertation. Prereq., instructor consent.

ENVIRONMENTAL STUDIES

ENVS 1000-3. Introduction to Environmental Studies. Surveys environmental studies, examining ecological, socioeconomic, political, aesthetic, and technological factors that influence the quality of life on Earth. Required for ENVS majors.
ENVS 2840 (1-6). Independent Study. Students work with an approved faculty sponsor to explore a topic in greater depth and to pursue an interest that is not offered in the formal curriculum. May be repeated for a total of 8 hours. Prereq., ENVS 1000.
ENVS 3001-3. The Campus and the Biosphere. Introduces students to green design, industrial ecology, and life cycle analysis. Students use basic techniques of environmental auditing to analyze the CU-Boulder campus. Restricted to junior and senior ENVS majors. Prereq., any two-semester science sequence.
ENVS 3003-3. Race, Class, and Pollution Politics. Examines communities affected by major toxic contamination threats in the United States, evaluating race and class factors in levels of governmental and private sector responses and actions. Examines investigative research methods at case study sites to provide skills necessary for assessment of any environmental threat for protective action. Restricted to junior and senior ENVS majors. Approved as ETHN 3003.

ENVS 3020-3. Advanced Writing in Environmental Studies. Examines environmental topics and social issues through selected readings and daily writing assignments. Restricted to junior and senior ENVS majors. Approved for arts and sciences core curriculum: written communication.

ENVS 3520-3. Environmental Issues in Geosciences. Addresses current environmental problems in which an understanding of geology is needed. Topics include energy resources, climate modification, hydrology, waste disposal, and mining resources. Uses specific examples to illustrate restrictions imposed by nature and man on solutions to these problems. Prereq., a two-course sequence in any natural science. Approved for arts and sciences core curriculum: natural science. Same as GEOL 3520.

ENVS 3600-3. Principles of Climate. Describes the basic components of the climate system: the atmosphere, ocean, cryosphere, and lithosphere. Investigates the basic physical processes that determine climate and link the components of the climate system, including the hydrological cycle and its role in climate, climate stability, and global change. Covers forecasting climate, its applications, and human dimensions. Prereq.s., one semester of calculus and physics. Same as ATOC 3600 and GEOG 3601. Approved for arts and sciences core curriculum: natural science.

ENVS 3930-3. Internship. Relates classroom theory to practice. Provides academically supervised opportunities for environmental studies majors to work in public and private organizations on projects related to students’ career goals. May be repeated for a total of 6 credit hours.

ENVS 4040-3. Conservation Biology. Applies principles of population ecology, population genetics, biogeography, animal behavior, and paleobiology to the maintenance of biodiversity and natural systems. Applies the resulting theory to conservation policy and management techniques. Prereq., EPOB 3020. Same as EPOB 4040.

ENVS 4100, 4110-3. Topics in Environmental Policy. Covers a variety of topics not currently offered in the curriculum; offered depending on instructor availability and student demand. May be repeated for a total of 6 credit hours, provided the topics vary. Restricted to junior and senior ENVS majors.

ENVS 4120, 4130-3. Topics in Environmental Science. Offers a variety of topics not currently in the curriculum, depending on instructor availability and student demand. May be repeated for a total of 6 credit hours, provided the topics vary. Restricted to junior and senior ENVS majors.

ENVS 4160-3. Introduction to Biogeochemistry. Introduces fundamentals of biogeochemical cycling, emphasizing water, carbon, and nutrient dynamics in terrestrial ecosystems. Covers chemical interactions of atmosphere, biosphere, lithosphere, and hydrosphere, as well as natural and human-managed environments. Prereq.s., GEOL 3320, EPOB 4170, or EPOB 4360; and CHEM 1011 or higher. Same as GEOL/EPOB 4160.

ENVS 4201-3. Biometeorology. Introduces this interdisciplinary science, studying the interactions between atmospheric processes and living organisms (plants, animals, and humans). Discusses how organisms adapt to a changing environment. Uses a practical, problem-solving approach to explore these interactions. Prereq., GEOG 1001. Same as GEOG 4201.

ENVS 4800-3. Critical Thinking in Environmental Studies. Examines a specific environmental topic in depth, synthesizing information from complex and controversial issues. Different course sections present different topics. May be repeated for a total of 6 credit hours. Restricted to students with junior or senior status in Environmental Studies or Geography. Approved for arts and sciences core curriculum: critical thinking.

ENVS 4840 (1-6). Independent Study. May be repeated for a total of 8 credit hours. Prereq., ENVS 1000.

ENVS 4990-3. Senior Thesis. Supervised project involving original research. Open only to environmental studies majors with at least a 3.30 GPA. Thesis proposal must be accepted by honors chairman.

ETHNIC STUDIES

ETHN 1013-3. Ethnic Notions. Introduces first-year students to the study of contemporary issues in American society through the eyes of culturally diverse groups (Chicano/as, Afro-Americans, Asians, and Native Americans) as expressed in film, the ethnic press, music, TV programming, and other cultural representations produced by members of these groups.

ETHN 1800-3. American Ethnic Literatures. Introduces significant fiction by ethnic Americans. Explores both the literary and the cultural elements that distinguish work by these writers. Emphasizes materials from Native American, Afro-American and Chicano traditions. Same as ENGL 1800. Approved for arts and sciences core curriculum: cultural and gender diversity.

ETHN 2762-3. Survey of Post-Colonial Literature. Surveys the development of literatures in English in former British colonies. Topics include the spread and adaptation of English language literary forms in Asia, Africa, the Caribbean, and the “Far New World” (Australia and New Zealand). Students learn the causes of the dispersion and the motivations for the clearly different uses of English literary forms in the ex-colonies. Same as ENGL 2767.

ETHN 3000-3. Race, Class, and Gender. Examines the uses of race, sex and class as instruments of domination in Western society.

ETHN 3003-3. Race, Class, and Pollution Politics. Examines communities affected by major toxic contamination threats in the United States, evaluating race and class factors in levels of governmental and private sector responses and actions. Investigative research methods utilized at case study sites provide skills necessary for assessment of any environmental threat for protective action. Same as ENVS 3003.

ETHN 3013-3. Racist Ideology in American Life. Explores the origins and evolution of racism as a political and religious force in American life, beginning with Puritan ideology in colonial New England, proceeding through the era of Manifest Destiny, and ending in the present day. Special attention is paid to the history of organizations such as the Ku Klux Klan, and emergence of “Christian Identity” doctrine. Prereq.s., junior or senior standing, or instructor consent.

ETHN 3023-3. Principles and Practices of Multicultural Leadership Development. Explores collaborative decision-making, cultural competency, and community building. Students learn about current leadership theories and develop the conceptual and practical skills necessary for leadership in a multicultural society. Recommended prereq.s., one ETHN course.

as chosen by the instructor. May be repeated for a total of 6 credit hours on different topics.

ETHN 3300-3. Elements of Religion. Explores universal components of religion as inferred from primitive and civilized religions of the world. Same as ANTH 3300.

ETHN 3675-3. Fight the Power: People of Color and Social Movement Struggles. People of color the world over are struggling for sovereignty, independence, civil and human rights, food security, decent wages and working conditions, healthy housing, and freedom from environmental racism and other forms of imperialism. Course analyzes and brings alive these struggles. Prereq., junior/senior standing or instructor consent. Approved for arts and sciences core curriculum: cultural and gender diversity.

ETHN 3840 (1-3). Undergraduate Independent Study. Please consult the Department of Ethnic Studies for further information.

ETHN 4510-3. Research Practicum in Ethnic Studies. Research apprenticeship with emphasis on skill development. Students execute in library, field, or laboratory the research design developed in ETHN 3500. Restricted to ETHN majors. Prereqs., ETHN 3500, and junior or senior standing.

ETHN 4520-3. Applied Cultural Anthropology. Analyzes problems of cultural change due to contacts between people of different cultures. Same as ANTH 4510.

ETHN 4950-3. Senior Seminar in Ethnic Studies. Independent project summarizing the work done in ethnic studies. Requires a public presentation of the work executed. Restricted to ETHN majors. Prereqs., ETHN 4510, and junior or senior standing.

ETHN 4960-3. Honors Thesis I. Supervised project involving original research in the emerging field of ethnic studies. The thesis is submitted to the Honors Program of the College of Arts and Sciences and is orally defended. Restricted to ETHN majors. Prereqs., honors standing in the Department of Ethnic Studies, ETHN 4510, and senior standing.

ETHN 4970-3. Honors Thesis II. Restricted to ETHN majors. Prereqs., honors standing in the Department of Ethnic Studies, ETHN 4510, and senior standing.

Afroamerican Studies

BLST 1150-3. Regional Cultures of Africa. Explores a small number of cultures in a specific subregion of Africa from an integrated holistic viewpoint, emphasizing material adaptations, social patterns, ideas, and values and aesthetic achievements. Same as ANTH 1150. Approved for arts and sciences core curriculum: cultural and gender diversity.

BLST 2020-3. History of the Black Experience 1: From Slavery to Freedom. First of two courses detailing the Black experience in what will become the United States. Focuses on people, events, processes, and the several contexts within which these items have meaning. Begins with a recapitulation of the African experience and concludes with the official ending of Reconstruction in 1877. Approved for arts and sciences core curriculum: United States context.

BLST 2040-3. History of the Black Experience 2: Climbing Jacob’s Ladder. Second of a year-long course detailing the Black experience in the United States. Focuses on people, events, processes, and the several contexts within which these items have meaning. Begins with the end of Reconstruction in 1877 and continues to the present day. Recommended prereq., BLST 2020. Approved for arts and sciences core curriculum: United States context.

BLST 2100-3. Black Social and Political Thought. General introductory course designed to acquaint students with historical and contemporary thinking, writings, and speeches of Black people. Approved for arts and sciences core curriculum: cultural and gender diversity, or contemporary societies.

BLST 2100-3. African-American Dance 1. Explores the technique, rhythm, and movement style of African/African American dance. History, anthropology, ritual, games, and songs are included in the total cultural experience. Same as DNCE 2500.

BLST 2200-3. Survey of African-American Literature 2. Chronological study of African-American literature from the Depression writers to the present. Same as ENGL 2737.

BLST 3020-3. Selected Topics in Black Studies. Intensive examination of a particular topic, theme, issue, or problem concerning the Black presence, as chosen by the instructor. Sample offerings could include the Black family institution, the civil rights movement, and Martin Luther King, Jr. May be repeated for a total of 6 credit hours on different topics.

BLST 3101-3. Black Politics. Discusses elitism and Black powerlessness; Black interest groups; base, structure, and functions of Black political organizations; goals and political styles of Black politicians; community control; trends (radicalism and separatism vs. accommodation); and future of Black politics in the United States. Same as PSCI 3101. Approved for arts and sciences core curriculum: contemporary societies, or cultural and gender diversity.

BLST 3103-3. Blacks in the U.S. Educational System. Examines the history of the education of African Americans from early American history until current times. Covers primary, secondary, and higher education. Topics include education of Blacks before 1800, education of Blacks during the period of American slavery, and factors affecting today’s education gains. Also covers current research being conducted in higher education. Prereq., junior or senior standing.
BLST 3125-3. Black Religious Life in America. Emphasizes the four principal periods in the growth and expansion of the Black church: African traditional religion to the end of the American Civil War; development stage; traditional stage; and contemporary period. Same as RLST 3125. Approved for arts and sciences core curriculum: contemporary societies, or ideals and values.

BLST 3840 (1-3). Undergraduate Independent Study. May be repeated for a total of 7 credit hours.

BLST 4650-3. Contemporary Issues in Afro-American Studies. Variable topic that allows intensive coverage of a subject, theme, or issue in Afro-American studies. May be repeated for a total of 6 credit hours on different topics. Prereq., junior or senior standing.

BLST 4670-3. The Sixties: Critical Black Views. Reviews the ideas, events, persons, and organizations oriented to the quest for Black social justice in the decade of the Sixties. Prereq., junior or senior standing. Approved for arts and sciences core curriculum: critical thinking.

BLST 4692-3. Contemporary African-American Literature 1. Advanced study of works of prominent African-American novelists and poets of the traditional school, e.g., Wright, Gaines, Ellison, and Morrison. Works are studied in terms of their literary, intellectual, and political values. Restricted to those with junior or senior standing. Same as ENGL 4697.

BLST 4840 (1-3). Independent Study. Arranged with instructor consent. May be repeated for a total of 7 credit hours.

American Indian Studies

AIST 1125-3. Exploring a Non-Western Culture: Hopi and Navajo, Cultures in Conflict. Studies the evolution of Hopi and Navajo cultures and cultural interrelationships from the protohistoric through the contemporary period, using an integrated, holistic, and humanistic viewpoint. Principal goal is to instill an appreciation of non-Western cultural diversity in material adaptations, social patterns, ideas and values, and aesthetic achievements, thus recognizing a range of cultural solutions to common human problems. Same as ANTH 1120. Approved for arts and sciences core curriculum: cultural and gender diversity.

AIST 2000-3. Introduction to American Indian Studies: Precontact Native America. Explores the attainments of various American Indian civilizations in the period immediately prior to first contact with Europeans. Examines agriculture, architecture, governance and social organization, medicine, mathematics, and population. Approved for the arts and sciences core curriculum: cultural and gender diversity.

AIST 2015-3. Topical Issues in Native North America. Explores a series of issues including disposition of population, land and resource holdings, water rights, education, religious freedom, military obligations, the sociopolitical role of women, self-governance, and legal standing as these pertain to modern American Indian life. Approved for arts and sciences core curriculum: cultural and gender diversity or United States context.

AIST 2201-3. American Indians in Film. Examines images of American Indians in films. Films are analyzed and critiqued with a historical, social, and artistic contexts, and examined in terms of the impact their images have exerted upon audiences.

AIST 2700-3. American Indian Religious Traditions. Introduces religions of the peoples indigenous to the Americas. Concerns include ritual, mythology, and symbolism occurring throughout these cultures in such areas as art, architecture, cosmology, shamanism, sustenance modes, trade, and history. Approved for arts and sciences core curriculum: ideals and values, or cultural and gender diversity.

AIST 2712-3. Native American Literature. Surveys traditional and contemporary North American Native American literature, from traditional oral forms to contemporary genre literature to novel, short story, and poetry. Same as ENGL 2717.

AIST 3020-3. Special Topics in American Indian Studies. Examines a particular topic, theme, issue, or problem in American Indian Studies. May be repeated for a total of 6 credit hours on different topics.

AIST 3135-3. North American Indians: Traditional Cultures. Comprehensive survey of native cultures of America north of Mexico, including a review of their natural environments, prehistory, languages, and major institutions for the various culture areas. Same as ANTH 3130.

AIST 3400-3. Indian/Government Conflicts. Deals with historical events involving conflicts between the U.S. government and American Indians. Examples include the role of the FBI in the Pine Ridge Sioux Reservation (1972-76) or the 1864 massacre of the Cheyenne and Arapaho Indians in Colorado territory. Additional courses may relate to tribal governments. May be repeated for a total of 6 credit hours on different topics.

AIST 3840 (1-3). Undergraduate Independent Study. Please consult the Department of Ethnic Studies for further information. May be repeated for a total of 7 credit hours.

AIST 4565-3. North American Indian Acculturation. Comprehensive survey of changes in the native cultures of America north of Mexico caused by occupation of the continent of Old World populations, including a review of processes of contact, environmental changes, changes in major institutions, the nature of federal/state administration, the reservation system, and contemporary developments. Same as ANTH 4560. Approved for arts and sciences core curriculum: cultural and gender diversity, or contemporary societies.

AIST 4627-3. The Indian in American History: The Western Region. Explores the longevity and continuity of human history in North America by discussing pre-European social and cultural developments. By examining ways in which Indian societies west of the Mississippi River responded to Euro-Americans, the Indians’ role in western North American history is demonstrated. Same as HIST 4627.

Asian American Studies

AAST 1015-3. Introduction to Asian-American Studies. Examines the various factors that define minority groups and their positions in American society using Asian Americans as a case study. Emphasizes the perspectives and methodologies of the discipline of ethnic studies. Restricted to freshmen and sophomores. Approved for arts and sciences core curriculum: contemporary societies, or cultural and gender diversity.

AAST 1717-3. Introduction to Asian-American History. Introductory-level survey of social history of Asians in America from 19th century to the present. Focuses on delineating and explaining changes that Asian Americans, one of the most visible ethnic groups in our society, have undergone since their arrival in the United States. Same as HIST 1717. Approved for arts and sciences core curriculum: United States context.

AAST 3013-3. Asian/Pacific American Communities. Covers the concepts, methods, and theories commonly used in community research, as well as substantive information on selected Asian/Pacific American communities. Emphasizes the ethical/political dimensions of community studies. Approved for arts and sciences core curriculum: United States context, or contemporary societies.

AAST 3420-3. Selected Topics in Asian-American Studies. Intensive examination of a topic or issue affecting Asian Americans, such as the Japanese-American internment during World War II, or Asian-American social movements or community organizations. May be repeated for a total of 6 credit hours on different topics.

CHST 2742-3. Survey of Chicano Literature. Introduces Chicano literary studies, focusing on narrative works by major Chicano/a writers. Examines a diverse range of Chicano/a writing as it addresses recurring issues that underlie the many folkloric expressions of mysticism in the Hispanic Southwest. Focuses on traditional myths, storytelling, and the practice of curanderismo and shamanism. Approved for arts and sciences core curriculum: cultural and gender diversity.

CHST 3023-3. Sociology of the Chicano and Mexican Americans. Surveys contemporary sociological studies of Chicanos and theories used to understand and explain their status. Covers population growth, socioeconomic status, reverse discrimination, Chicana Feminism, and U.S.-Mexico relations. Same as SOCY 3022.

CHST 3303-3. Selected Topics in Chicano Studies. Intensive examination of a particular topic, theme, issue, or problem in Chicano studies as chosen by the instructor. May be repeated for a total of 6 credit hours on different topics.

CHST 3153-3. Folklore and Mythology of the Hispanic Southwest. Concerned with the indigenous and Christian syncretic beliefs that underlie the many folkloric expressions of mysticism in the Hispanic Southwest. Focuses on traditional myths, storytelling, and the practice of curanderismo and shamanism. Approved for arts and sciences core curriculum: cultural and gender diversity.

CHST 3824-3. Contemporary Chicano, Chicana Writers. Covers the most important Chicano writers of prose fiction of the past three decades. Considers progression of Chicano fiction from naturalism, realism, and romanticism, to post-modernism. Recommended prereq., CHST 1031 or 1044.

CHST 3905 (1-3). Independent Study. Instructor consent required. May be repeated for a total of 7 credit hours.

CHST 4000-3. Hispanic and Native American Culture of the Southwest. Lecture course on Mexican-American culture. Includes guest presentations by experts in such fields as geography, anthropology, history, fine arts, comparative literature, political science, and sociology. Same as SPAN 4000.

CHST 4128-3. The Emergence of Modern Mexico. The study of Mexican history continues with the establishment of independence in 1821. Examines the upheavals of the Mexican Revolution and culminates with recent events in Mexico. Same as HIST 4128.

CHST 4133-3. Latinos and the U.S. Political System. Analyzes the social, cultural, and economic factors that affect political behavior of Mexican Americans. Pays special attention
to Mexican-American cultural heritage and to relationships between Mexican Americans and Anglo Americans. Prereqs., CHST 1015, 2537, ETHN 2000, or PSCI 1101. Same as PSCI 4131. Approved for arts and sciences core curriculum: cultural and gender diversity.

CHST 4303-3. The Chicano and the United States Social Systems. Gives special attention to ways U.S. institutions (i.e., legal, economic, educational, governmental and social agencies) affect Chicanos. Discusses internal colonialism, institutional racism, assimilation and acculturation, and identity. Prereqs., CHST 1015, 2537, ETHN/SOCY 1015, or ETHN 2000.

CHST 4681-3. Special Topics. Examines a particular topic, theme, issue, or problem concerning Chicano studies. May be repeated for a total of 6 credit hours on different topics.

CHST 4905 (1-3). Independent Study. Instructor consent required. May be repeated for a total of 7 credit hours.

FARRAND RESIDENTIAL ACADEMIC PROGRAM

FARR 1000-1. Farrand Service-Learning Practicum: Special Topics. Offers a varying service-learning practicum experience as corequisite to a service-learning lecture course. Graded pass/fail and may be repeated for a total of 6 credit hours, provided the practica are different.

FARR 1513-1. The Individual and the Community. Examines the relationship between the individual and the community through films, both narrative and documentary. Focuses on the problems and possibilities of losing and/or promoting both community and individuality.

FARR 1561-1. Nonviolence for Everyday: Meditation and Other Healthy Habits. Focuses on the challenge of achieving nonviolence on a day-to-day basis by maintaining a peaceful, focused frame of mind. Explores ways to train the mind, including methods that may aid healing.

FARR 1562-3. Gandhi’s “Satyagraha”: Love in Action for Humans and Other Creatures. Class texts and films explore social justice and structural violence in regard to humans, animals, and the environment in the light of a Gandhian approach to these issues. Outreach work in the community is included.

FARR 1571-1. Taking Charge of Your Life. Helps students establish a balanced life through experiential projects enhancing self-awareness and self-esteem. Introduces ways to facilitate creative changes in themselves and others.

FARR 1595-1. Community Service: Personal Growth and Public Good. Provides an opportunity for students to engage in volunteer service. Provides support and guidance in reflecting on personal and sociological issues that derive from their experiences.

FARR 2400-3. Understanding Privilege and Oppression in Contemporary Society. Through a focus on race, class, sexual orientation, and physical ability, this course explores privilege, oppression, and empowerment in the United States. Through community service, students learn how oppression and privilege interact, and apply classroom learning to community experiences. Same as LDSP 2400. Approved for the arts and sciences core curriculum: culture and gender diversity or contemporary societies.

FARR 2820-3. Future of the Spaceship Earth. Examines major ecological, political, economic, cultural, legal, and ethical issues that will shape the future. Students consider how their decisions influence the future, and reflect on fundamental values and ideals underlying the search for solutions to these complex problems. Approved for the arts and sciences core curriculum: ideals and values.

FILM STUDIES

Production

FILM 2000-3. Beginning Filmmaking. Instructs students in making Super-8 films. Covers use of cameras and editing equipment, basic editing and splicing techniques, and analysis of pertinent films. May emphasize making personal, experimental films or making narrative sound films, according to instructor. Students need to purchase materials and rent the necessary equipment. The Film Studies Program maintains an equipment pool with modest rental fees for students needing equipment. Prereq., FILM 1502.

FILM 2300-3. Beginning/Intermediate Filmmaking. Covers basic camera, editing, and splicing techniques for Super-8 film. Equipment is available at the film studies office for a modest rental fee. May be repeated for a total of 6 credit hours.

FILM 2600-3. Intermediate Filmmaking, 16mm. Film production class in 16mm (emphasizing personal, experimental films) and in film studies (with a documentary and/or narrative orientation). Covers 16mm camera operation, splicing, editing, sound transfer and recording, and lab dynamics. Students are expected to make a film by the end of the semester. Students should expect to spend a few hundred dollars on equipment rental, film stock, and lab costs. May be repeated once for credit with departmental consent. Prereqs., FILM 1502 and 2000. Similar to FILM 3500.

FILM 3010 (1-3). Film Production Topics. Offers students both theoretical and practical experience in various specialized areas of cinematic production. Topics vary but include production in the documentary, fictional narrative, animation, computer animation, and experimental genres. May be repeated for a total of 6 credit hours. Prereq., FILM 2000.

FILM 3600-3. Digital Post-Production Techniques for Film and Video. Offers a highly technical lecture and lab course, including thorough workshops on the Media 100, the Avid MC Express (computer-based non-linear editing systems), Pro Tools III Digital Audio Mixing, and lectures on digital imaging with Adobe Photoshop and Aftereffects. Includes technical tests and studio/lab projects. Prereqs., FILM 1502, 2000, and 2600.

FILM 3900 (1-3). Independent Study (Production). May be repeated for a total of 6 credit hours.

FILM 3930 (1-6). Film Studies Internship. Provides an academically supervised opportunity for advanced-level students to work in public or private organizations on film projects. Relates classroom theory to practice. Students follow a written work plan and submit a final report. Prereqs., FILM 2600 with concurrent registration in FILM 3600, 6 hours of elective film studies courses, and instructor consent. A conjunct course is offered for critical studies students who are interested in job experiences when available in critical studies areas. May be repeated for a total of 6 credit hours.

FILM 4010 (1-3). Topics in Film Studies. Prepares students for 4000-level critical studies film courses. Subject matter varies each semester. May be repeated for a total of 6 credit hours, provided the topics are different.

FILM 4500-3. Advanced Filmmaking. Advanced training in 16mm camera operation, splicing, editing, sound transfer and recording, and conforming. Students are required to edit on the Steinbeck flatbed and produce a film that contains synch sound shot in double system. Course may be taken three times for credit to fulfill required course work and major requirements. Prereqs., FILM 2000, 2600, 3600, and instructor consent.

History

FILM 3051-4. Film History 1. Intensive introduction to film history and theory, from 1895 to 1935. Topics covered include the beginnings of still and motion picture photography, the growth of narrative and structural complexity from Lumière to Gance, the influence of Griffith, American silent comedy, Soviet theories of montage, German expressionist and street films, an overview of experimental and animated films, the transition to sound, and the beginning of film theory. Lectures, discussions, and research papers supplement complete screenings of such films as The Birth of a Nation, The Gold Rush, Greed, Bonaparte and the Revolution, Un Chien Andalou, The Man With a Movie Camera, Vampyr, and The Road to Glory. Prereq., FILM 1502.
FILM 3002-3. Documentary Film. Historical survey of the genre, from the silent film era to contemporary examples. May include autobiographical diary and propaganda films.

FILM 3022-3. Jung, Film, and Literature. Studies the basic themes of C.G. Jung’s archetypal psychology (shadow, anima/animus, character typology, and individuation). Applies topics as tools of critical analysis to selected films and literary texts of the modern period. Previously FILM 3015. Prereq., instructor consent. Same as HUMN 3015.

FILM 3902 (1-3). Independent Study (Reading). May be repeated for a total of 7 credit hours.

Topics

FILM 2003-3. Film Topics. Varying topics on important individuals, historical developments, groupings of films, film directors, critical and theoretical issues in film. May be repeated for a total of 9 credit hours, provided the topics are different.

FILM 2013-3. Film and the Quest for Truth. Concerns the subjectivity and relativism of truth. Focuses on how and why we pursue (or fail to pursue) the truths about ourselves and about the people and events around us, and how and why such truths are often elusive, fragmentary, and impermanent. Normally taught through Farrand Hall. Approved for the arts and sciences core curriculum: ideals and values.

FILM 3003-3. Major Film Directors. Focuses on the work of a single director or a group of related directors. Course content varies each semester. Consult the Registration Handbook and Schedule of Courses for specific topics. May be repeated for a total of 9 credit hours with departmental consent, but may be used for partial fulfillment of a college requirement only once. Occasionally cross-listed with ENGL 3762.

FILM 3013-3. Women and Film. Examines the representation of women both in mainstream movies and in women’s counter-cinema that resists traditional form, content, and spectator-text relationships of Hollywood models. Emphasizes work by key women filmmakers such as Margarethe Von Trotta, Lizzy Borden, and Yvonne Rainer, as well as readings in feminist film theory. Approved for arts and sciences core curriculum: cultural and gender diversity.

FILM 3503-3. German Film and Society 1. History and theory of Weimar and Nazi film with sociocultural emphasis. No prereqs. Taught in English. Same as GRMN 3503. FILM 3513-3. German Film and Society 2. Examines the history and theory of German cinema with a sociocultural emphasis. Emphasis is on post-war film. Taught in English. Same as GRMN 3513.

FILM 3563-3. Producing the Feature Film. Designed to give students a behind-the-scenes look at the way production in the entertainment industry is structured and works. Emphasizes the critical role the script plays in the production process. Students analyze story structure and components and production values of various feature scripts. Also focuses on roles, functions, and relationships of writer, producer, director, and editor; the budget process; and all phases in the production process. Screenings in conjunct with script analysis are featured. Offered through Continuing Education. FILM 3501 or 3563 may be used for partial fulfillment of major requirements.

FILM 4003-3. Film and Fiction. Explores similarities and differences between literature and film as narrative arts. Studies several novels, short stories, and plays and films made from them. Examines problems in point of view, manipulation of time, tone, structure, and setting.

Intensive and Small Courses

FILM 3504-3. Topics in German Film. Analyzes key issues in German culture as they are represented in film and other media, e.g., technology, architecture, women, and the Holocaust. Taught in English; may be repeated for a total of 6 credit hours provided the topics are different. Same as GRMN 3504.

FILM 4004-3. Film Theory. Offers a philosophical attempt to define the nature of cinema. An intensive seminar, the course involves a great deal of reading in classic and contemporary film theory, and requires a working knowledge of silent film history. Prereqs., FILM 3051, and FILM or FMST major with senior standing. Same as HUMM 4004. Approved for arts and sciences core curriculum: critical thinking.

FILM 4024-3. Advanced Research Seminar. Focuses on a specific topic, director, or genre chosen by the professor. Emphasizes research skills and critical thinking. With faculty guidance, students determine independent projects and present them to the class. Class participation is mandatory. Students submit a thorough paper in the course of study. Offered through Continuing Education. Same as GRMN 3513.

FILM 4026-3. Colloquium in Film Aesthetics. Seminar for the serious roundtable discussion and critique of film as an art form, emphasizing development of appropriate verbal and written language skills for description of film. May be repeated for a total of 6 credit hours. Same as FREN 4600.

Workshops

FILM 4005 (1-3). Screenwriting Workshop. Offers a creative workshop in which students...
write and rewrite several short screenplays as well as a treatment for a feature-length script. Examples from produced scripts are closely analyzed, with careful attention to aesthetics, mechanics, and business practices. May be repeated for a total of 6 credit hours. A sample of the student’s writing must be submitted before acceptance to the 3-hour class. Prereq., FILM major.

FINE ARTS

Foundations

FINE 1010-3. *Introduction to Art.* Presents creative activity conceptually and art history thematically with an interdisciplinary, experimental, and multicultural focus. Majors explore visual literacy and culture through presentations and student-centered projects that emphasize individual development. Prerequisite for most fine arts courses.

FINE 1300-3. *History of World Art 1.* Surveys major art styles from the Paleolithic period through the Renaissance, including European, Asian, and the Pre-Columbian/ Islamic World. Emphasizes comparison of Western and non-Western visual expressions as evidence of differing cultural orientations. Students may not receive credit for both FINE 1300 and FINE 1109. Approved for arts and sciences core curriculum: literature and the arts.

FINE 1400-3. *History of World Art 2.* Surveys major art styles from 1600 to the present including European, Asian, Islamic, the American, and tribal arts. Emphasizes comparison of Western and non-Western visual expressions as evidence of differing cultural orientations. Students may not receive credit for both FINE 1400 and FINE 1209. Approved for arts and sciences core curriculum: literature and the arts.

Photography

FINE 1171-3. *Photography 1.* Introduces techniques and concepts of photography as art. Emphasizes photography as a means to formal and expressive ends. May be repeated for a total of 12 hours. Prereq., FINE 3191 or 4161.

FINE 4161-3. *Photography 4.* Explores advanced techniques and concepts of photography as art. Emphasizes photography as a means to formal and expressive ends. May be repeated for a total of 12 hours. Prereq., FINE 3191.

FINE 4171-3. *New Directions in Photography.* Investigates the use of the photographic image in new, antique, or nonstandard ways including nonsilver, photocollage, various color processes, photolanguage, photoinstallations, electronic media, performance, film-making, electrostatic art (copy machine), photobooks, photocollage, and audio/visual art. May be repeated for a total of 9 credit hours. Course content changes each semester. Prereq., FINE 3191 or equivalent.

FINE 5161-3. *Graduate Photography Seminar.* May be repeated for a total of 18 credit hours.

FINE 5171-3. *New Directions in Photography.* Same as FINE 4171.

FINE 5181-3. *Graduate Photography Seminar.* May be repeated for a total of 18 credit hours.

FINE 5841 (1-3). *Graduate Independent Study—Film.* May be repeated for a total of 6 credit hours.

FINE 5901 (1-3). *Graduate Independent Study—Photography.* May be repeated for a total of 6 credit hours.

Painting/Drawing

FINE 1012-3. *Drawing 1.* Explores varied drawing techniques and media. Introduces concepts relevant to the understanding of drawing and the creative process. Prereqs., FINE 1010, and either FINE 1300 or 1400.

FINE 1212-3. *Painting 1.* Explores varied painting techniques. Introduces concepts relevant to the understanding of painting and the creative process. Prereqs., FINE 1010, and either FINE 1300 or 1400.

FINE 3002-3. *Drawing 3.* Continuation of *Drawing 2.* Offers creative possibilities in drawing and related media. Emphasizes experimentation and individual expression. Content varies by semester according to instructor; contact individual instructor for more information. May be repeated once. Prereq., FINE 2002.

FINE 3202-3. *Painting 3.* Continuation of *Painting 2.* Offers creative possibilities in painting and related media. Emphasizes experimentation and individual expression. Content varies by semester according to instructor; contact individual instructor for more information. May be repeated once. Prereq., FINE 2202.

FINE 3702-3. *Special Focus in Painting and Drawing.* Offers varied focus and special topics in painting, drawing, and related media to explore specialized directions and creative possibilities. Emphasizes experimentation. Content varies by semester; contact individual instructor for more information. May be repeated for a total of 6 credits. Prereqs., FINE 2002 or 2202. Recommended prereq., FINE 3002 or 3202.

FINE 3842 (1-3). *Undergraduate Independent Study—Painting.* Reserved for special projects in painting not offered in the curriculum. Requires a detailed proposal, instructor’s sponsorship, and departmental approval. May be repeated for a total of 6 credits. Prereqs., FINE 3002 and instructor consent.

FINE 3852 (1-3). *Undergraduate Independent Study—Drawing.* Reserved for special projects in drawing not offered in the curriculum. Requires a detailed proposal, instructor’s sponsorship, and departmental approval. May be repeated for a total of 6 credits. Prereqs., FINE 3002 and instructor consent.

FINE 4002-3. *Drawing 4.* Continuation of *Drawing 3.* Advanced studio class in drawing for creative expression and individual portfolio development. Emphasis varies by semester; contact individual instructor for more information. May be repeated for up to 12 credit hours. Prereq., FINE 3002.

FINE 4202-3. *Painting 4.* Continuation of *Painting 3.* Advanced studio class in painting for creative expression and individual portfolio development. Emphasis varies by semester; contact individual instructor for more information. May be repeated for up to 12 credit hours. Prereq., FINE 3202.

FINE 5202-3. *Graduate Painting.* May be repeated for a total of 18 credit hours.

FINE 5842 (1-3). *Graduate Independent Study—Drawing.* May be repeated for a total of 6 credit hours.

FINE 5852 (1-3). *Graduate Independent Study—Painting.* May be repeated for a total of 6 credit hours.

Printmaking

FINE 1003-3. *Printmaking Survey.* Emphasizes processes involved with both nonmultiple and multiple methods, including but not
limited to metal plate etching (intaglio), lithography, collagraph, woodcut, linoleum cut, xerox transfer, and monotype. Places equal emphasis on developing drawing skills and understanding design principles.

FINE 3403-3. Intaglio and Relief 1. Introduces the study and experimentation of intaglio and relief processes in black and white, color, and possible photoimagery. May be repeated once. Not available to freshmen.

FINE 3413-3. Lithography 1. Introduces the study of stone and metal plate lithography, emphasizing individual creative development in black and white and further development in color printing processes. May be repeated once. Not available to freshmen.

FINE 3423-3. Screen Printing 1. Introduces the study of silkscreen techniques, emphasizing creativity and individual development and experimentation in contemporary silkscreen processes. May be repeated once. Not available to freshmen.

FINE 3843 (1-3). Undergraduate Independent Study—Printmaking. Reserved for special projects in printmaking not offered in the curriculum. Requires a detailed proposal, instructor's sponsorship, and departmental approval. May be repeated for a total of 6 credit hours. Prereqs., level 1 in a related area.

FINE 4403-3. Intaglio and Relief 2. Continues the study and experimentation of intaglio and relief processes in black and white, color, and digital imagery, and non-toxic processes. May be repeated for a total of 12 credit hours. Prereqs., FINE 3403.

FINE 4413-3. Lithography 2. Continues the study of stone and metal plate lithography, emphasizing individual creative development in black and white and further development in color printing processes. In addition, digital imagery and non-toxic processes are emphasized as much as possible. May be repeated for a total of 12 credit hours. Prereqs., FINE 3403.

FINE 4423-3. Screen Printing 2. Introduces advanced screen printing technology, emphasizing individual creativity and the ability to resolve problems of two-dimensional form. May be repeated for a total of 12 credit hours. Prereqs., FINE 3423.

FINE 4443-3. Papermaking. Papermaking is the study of plant fibers and cellulose structure relating to the making of paper pulp as an art medium. Emphasizes creative use of the paper pulp as related to two- and three-dimension form. May be repeated for a total of 6 credit hours. Prereqs., FINE 3443.

FINE 4453-3. Monotype Printing. Monotype printing is unique and diverse in its methods of producing art. The process utilizes some of the best qualities of painting, printmaking, and drawing. Emphasizes creative individual development, along with processes inherent to this media. May be repeated once. Same as FINE 5453.

FINE 5403-3. Graduate Intaglio and Relief. May be repeated for a total of 18 credit hours. Prereqs., FINE 3403-3.

FINE 5413-3. Graduate Lithography. May be repeated for a total of 18 credit hours. Prereqs., FINE 3413-3.

FINE 5423-3. Graduate Screen Printing. May be repeated for a total of 18 credit hours. Prereqs., FINE 5423-3.

FINE 5453-3. Monotype Printing. Same as FINE 4453.

FINE 5843 (1-3). Graduate Independent Study—Printmaking. May be repeated for a total of 6 credit hours.

Sculpture

FINE 2504-3. Sculpture 2: Materials and Techniques. Explores a variety of materials, methods, and techniques and their application with reference to contemporary sculpture, i.e., moldmaking, welding, casting, vacuforming, photo techniques, and woodworking. May not be repeated. Prereqs., FINE 1514.

FINE 2524-3. Sculpture 2: Visual Thinking in Three-Dimensional Form. Explores ideas concerning the structure and nature of visual thinking and their relationship to the creative thought process. Also investigates form in terms of the organizing principles of three-dimensional design and its application to contemporary sculpture. Includes lecture and studio projects. May be repeated for a total of 6 credit hours. Prereqs., FINE 1514.

FINE 3514-3. Sculpture 3: Experiments 2. Explores individual concepts and ideas and their relationship to contemporary issues and aesthetics. A series of assignments are worked out with the instructor based on individual interest. Prereqs., FINE 3504.

FINE 3844 (1-3). Undergraduate Independent Study—Sculpture. Reserved for special projects in sculpture not offered in the curriculum. Requires a detailed proposal, instructor’s sponsorship, and departmental approval. May be repeated for a total of 6 credit hours. Prereqs., FINE 3504 and instructor consent.

FINE 4504-3. Sculpture 4. Individual studies in selected media. May be repeated for a total of 6 credit hours. Prereqs., FINE 3504 and 3514.

FINE 5504-3. Graduate Sculpture.

FINE 5514-3. Graduate Sculpture.

FINE 5844 (1-3). Graduate Independent Study—Sculpture. May be repeated for a total of 6 credit hours.

Ceramics

FINE 1875-3. Ceramics 1: Survey. Encompasses broad and fundamental uses of clay. Basic instruction and demonstration of throwing, hand building, and primitive clay forming methods. Investigates utility, function, and ceramics in the fine arts context. Slide presentations explore historical and contemporary attitudes involving ceramics. For non-art and art majors.

FINE 2085-3. Ceramics 2: Handbuilding. Introduces techniques of hand-built clay forms as they relate to function and nonfunction. Highlights various clay techniques, glazing, and firing procedures. Emphasizes ceramics in a fine arts context. Prereqs., FINE 1010, and either FINE 1300 or 1400.

FINE 2095-3. Ceramics 2: Wheelthrowing. Introduces techniques of wheel-thrown forms as they relate to function and nonfunction. Explores various glazing and firing methods. Prereqs., FINE 1010, and either FINE 1300 or 1400.

FINE 3085-3. Ceramics 3. Deals with further exploration of techniques approached in FINE 2085 and 2095. Students are encouraged to develop personal concentration in relation to medium. May be repeated once. Prereqs., FINE 2085 and 2095.

FINE 3845 (1-3). Undergraduate Independent Study—Ceramics. Reserved for special projects in ceramics not offered in the curriculum. Requires a detailed proposal, instructor’s sponsorship, and departmental approval. May be repeated for a total of 6 credits. Prereqs., FINE 3085 and instructor consent.

FINE 4085-3. Ceramics 4. Includes lectures, research, and experimentation in clay (wheel and hand construction techniques). May be repeated for a total of 12 credit hours. Prereqs., FINE 3085.

FINE 4095-3. Special Topics in Ceramics. Designed for students majoring in ceramics. May be repeated for a total of 9 credit hours. Prereqs., FINE 3085.

FINE 5075-3. Graduate Ceramics.

FINE 5085-3. Graduate Ceramics.

FINE 5095-3. Graduate Special Topics in Ceramics.
FINE 5845 (1-3). Graduate Independent Study—Ceramics. May be repeated for a total of 6 credit hours.

Media Arts

FINE 2126-3. Digital Art 1. An introductory course that uses the personal computer to create and process images in the visual arts. Prereqs., familiarity with computer basics, FINE 1010, and either FINE 1300 or 1400. Fine arts majors only.

FINE 3236-3. Electronic Arts Survey. Explores the development of video as an art form through tape screenings, readings, lectures, and discussions.

FINE 3906 (1-3). Undergraduate Independent Study—Video. May be repeated for a total of 6 credit hours.

FINE 4126-3. Digital Art 2. Offers studio experience using the personal computer in generating and processing visual arts images. Restricted to fine arts majors. May not be repeated. Prereq., FINE 2126. Same as FINE 5126.

FINE 4226-3. Advanced Computer Imaging. Explores advanced techniques and concepts of digital image-making. Emphasizes the creative application of computer imaging in the production of visual art through individual projects. May be repeated for a total of 6 credit hours. Restricted to junior and senior fine arts majors only. Prereq., FINE 4126. Same as FINE 5226.

FINE 4236-3. Electronic Arts Survey 2. Continuation of FINE 3230. Explores the development of video as an art form. Prerequisite for further studies in video production. Same as FINE 5236.

FINE 4246-3. Beginning Video Production. Presents a studio course on basic single-cameras video production strategies and concepts. Through class screenings, projects, demonstrations, discussions, and readings, students gain an introductory familiarity with camera, lighting, sound, editing, and the organization and planning involved in a video project. Explores a basic theoretical understanding of video as an art form and its relationship to television, film, art, history, and culture. Prereqs., FINE 1010, and either 1300 or 1400. Same as FINE 5246.

FINE 4346-3. Intermediate Video Production. Continuation of Beginning Video Production. Extends the knowledge of single-camera video production strategies and concepts. Expands the concept of montage (editing) and strategies to develop a video project through class screenings, projects, discussions, and readings. Further theoretical understanding of video as an art form. Prereqs., FINE 4246, and beginning image processing or review of work. Same as FINE 5346.

FINE 4446-3. Advanced Video Production. Continuation of Intermediate Video Production. Explores advanced technical skills to control the quality of the video image in production, post-production, and distribution. Emphasizes self-motivated independent projects and conceptual realization of advanced student work and a basic working knowledge of distribution and life as a media artist. Promotes further theoretical understanding of video as an art form. Prereq., FINE 4346 or review of work. Same as FINE 5446.

FINE 5126-3. Digital Art 2. Prereq., familiarity with computer basics. Same as FINE 4126.

FINE 5226-3. Advanced Computer Imaging. May be repeated for a total of 6 credit hours. Prereq., FINE 5126. Same as FINE 4226.

FINE 5846 (1-3). Graduate Independent Study—Video. May be repeated for a total of 6 credit hours.

Seminars/Special Topics

FINE 2097, 3097 (1-3). Special Topics. Introduces timely subjects in fine arts that cannot be offered on a regular basis. Information concerning topics offered in any given semester is available prior to preregistration from the Department of Fine Arts. May be repeated for a total of 7 credit hours, provided the topics are different. Prereqs., FINE 1010, and either FINE 1300 or 1400. Same as FINE 3097 restricted to juniors/seniors.

FINE 3007-3. Writing in the Visual Arts. Enables studio art and art history majors to improve their writing skills through organization, presentation, critique, and revision. Writing assignments include formal writing (analysis and argument), informal writing, and grant proposals. Prereq., junior or senior standing. Approved for arts and sciences core curriculum: upper-division written communication.

FINE 3637-3. Art for the Elementary Teacher. For persons planning to teach at the elementary level. Covers theoretical and practical elementary level art methods for the non-art major. Through Continuing Education only.

FINE 3847, 3857 (1-3). Independent Study. May be repeated for a total of 6 credit hours.

FINE 3937 (1-6). Internship. Gives upper-division students the opportunity to work in public or private organizations on assignments relating to their career goals, and allows them to explore the relationship between theory and practice in their major. May be repeated for a total of 6 credit hours.

FINE 4007-3. Studio/Art History Honors Thesis. May be elected during the final semester. Consists of a substantial, original, creative project and/or written thesis providing an art world context. Faculty sponsorship is required. Does not guarantee a student will receive honors.

FINE 4087-3. Selected Topics in Contemporary Art. Selectively studies significant areas of visual art of the last decade including major critical opinions. Prereq., 20 hours of fine arts courses. Same as FINE 5087. Approved for arts and sciences core curriculum: critical thinking.

FINE 4097 (1-3). Special Topics. Introduces timely fine arts subjects that cannot be offered on a regular basis. Information concerning the topics offered in any given semester is available prior to preregistration in the fine arts department. May be repeated for a total of 18 credit hours. Prereqs., FINE 1010, and either FINE 1300 or 1400. Same as FINE 5097.

FINE 4117-3. B.F.A. Seminar. For students intending to pursue graduate work and/or a professional career in art. Emphasizes the development of a critical overview of their work and interests and how they relate to the problems of professional activity. Prereq., B.F.A. candidate and senior standing.

FINE 4137-3. Curatorial Seminar. Introduces curatorial practices, such as exhibition development, programming, and preparation of educational materials. Emphasizes the application of art history skills in the museum field, research, writing, and analytical and interpretive skills. Students participate in organizing exhibitions at CU-Boulder galleries. May be repeated for a total of 12 credit hours. Same as FINE 5137.

FINE 4717 (1-3). Studio/Art History Critique. Consists of consultations with faculty on individual studio problems and projects. May be repeated for a total of 6 credit hours. Prereqs., junior standing and instructor consent.

FINE 5087-3. Performance/Installation. Primarily focuses on personal imagery as a live situation occurring either in invented constructed reality or a real environment. Work may be individual or a group configuration and also may take on the visual linguistic form of a solo performer or of a multimedia presen-
tation. Prereqs., FINE 1010, and either FINE 1300 or 1400. Same as FINE 5157.

FINE 5097 (1-3). Special Topics. May be repeated for a total of 6 credit hours. Same as FINE 4097.

FINE 5117-2. Graduate Art Seminar.

FINE 5137-3. Curatorial Seminar. May be repeated for a total of 12 credit hours. Same as FINE 4137.

FINE 5717-3. Graduate Studio/Art History Critique. Consists of consultations with faculty on individual studio problems and projects. May be repeated for a total of 9 credit hours with any single faculty member. Prereq., graduate standing or instructor consent.

FINE 5857 (1-3). Master’s Degree Candidate.

FINE 5957 (1-6). Master of Fine Arts Creative Thesis.

Visiting Artist Program

FINE 4118-3. Visiting Artist Program. Artists of national and international reputation, interacting with graduate and advanced undergraduate students, discuss their studio work at seminar meetings and at public lectures or events. Provides continuous input of significant developments and a comprehensive view of contemporary issues in the arts. May be repeated once. Prereq., portfolio review for undergraduates and senior standing. Same as FINE 5118.

FINE 5118-3. Graduate Visiting Artist Program. Same as FINE 4118.

Art History

B.A. students in art history are required to take FINE 1010 before taking 3000-level courses.

Some of the following courses are offered at both the undergraduate (4000) and graduate (5000) levels. A higher level of performance and extra work is expected of the graduate student. Seniors may take 5000-level courses only after consultation with the instructor.

FINE 1009-3. Greek Art and Archaeology. Introduces the major monuments and sites of the pre-classical and classical Greek world. Discusses Greek art, and architectural and archaeological artifacts in their political and social contexts. Examines major sites such as Knossos, Troy, Olympia, Athens, and Pergamon. Prereqs., FINE 1300 and 1400. Same as CLAS 1009.

FINE 1019-3. Roman Art and Architecture. Introduces the major monuments and sites of Rome and the Roman Empire in their historical, social, and geographical contexts. Explores the production and visual messages of Roman buildings, sculpture, paintings, mosaics, and urban planning. Prereqs., FINE 1300 and 1400. Same as CLAS 1019.

FINE 1709-3. Experiencing Art—Image, Artist, and Idea. Provides a broad introduction to understanding and appreciating art from all time periods and all parts of the world. Particularly directed to nonmajors. Approved for arts and sciences core curriculum: literature and the arts.

FINE 2409-3. Asian Art. Designed for those having no previous experience in the study of Asian art. Traces development of sculpture, painting, architecture, and the other visual arts of South Asia, the Far East, and Southeast Asia, with a synopsis of developments from 1453 through the 18th century.

FINE 2909-3. Critical Thinking in Art History. Familiarizes students with the evolution of art history as an academic discipline, and the processes art historians use to evaluate complex issues of style, form, content, and theory in visual arts. Involves discussion, readings, and written assignments. Prereqs., FINE 1300 and/or 1400. Approved for arts and sciences core curriculum: critical thinking.

FINE 3029-3. Medieval and Early Modern Visual Culture: 400-1750. Introduces students to the literature, history, culture, and art of Europe and the Mediterranean basin from late antiquity through the Renaissance. Interdisciplinary course focusing on topics revealing the dynamism and diversity of pre-modern culture. Prereqs., FINE 1300 and 1400 or instructor consent. Required for fine arts majors.

FINE 3089-3. Early Christian and Early Medieval Art. Studies the history of European art from Constantine to around the year 1000, emphasizing Western Christian, Hiberno-Saxon, Carolingian, Ottonian, and Anglo-Saxon art, but including barbarian and Byzantine contributions. Prereqs., FINE 1300 and 1400. Approved for arts and sciences core curriculum: critical thinking.

FINE 3109-3. Art in Contemporary Society. Examines writings by philosophers and art critics as they address the question: What is art for? Readings focus on the 19th and 20th centuries, including current theories and some non-Western theories. Encourages students to develop their own responses to the question. Prereqs., FINE 1300 and 1400. Approved for arts and sciences core curriculum: critical thinking.

FINE 3509-3. American Art. Surveys American art and material culture from the pre-colonial era to the present day. Considers cultural and artistic interaction, ethnic expressions, patronage, European and non-Western influences, and the struggle to develop a uniquely American artistic identity. Prereqs., FINE 1300 and 1400. Same as AMST 3509. Approved for arts and sciences core curriculum: United States context.

FINE 3719-3. History of Media Arts. Surveys the development of technological media both as sources of information and as art. Photography and related media, film, video, holography, and electronic imaging systems are surveyed as art and as technologies, emphasizing major artists, movements, exhibition, and other production in the 19th and 20th centuries. Prereqs., FINE 1300 and 1400.

FINE 3929 (1-3). Special Topics in Art History. Offered pass/fail only. May be repeated for a total of 18 credit hours when the topic varies. Prereqs., FINE 1300 and 1400.

FINE 4019-3. Art of Ancient Egypt. Surveys the development of Egyptian architecture, sculpture, painting, and the minor arts from their beginnings to the establishment of Christianity. Prereq., one 3000-level art history course. Same as FINE 5019.

FINE 4039-3. Byzantine Art. Examines art of the East Christian Empire from the accession of Constantine to the conquest of Constantinople with a synopsis of developments from 1453 through the 18th century. Prereq., one 3000-level art history course. Same as FINE 5039.

FINE 4059-3. Classical Art and Archaeology. Prereq., one 3000-level art history course. Same as FINE 5059 and CLAS 4059.

FINE 4079-3. Topics in Roman Art and Archaeology. Prereq., one 3000-level art history course. Same as FINE 5079 and CLAS 4079.

FINE 4119-3. Roman Sculpture. Examines ancient Roman sculpture, emphasizing the dis-
play, iconography, and production of private and public monuments in the Roman Empire. Explores sculpture as evidence for historical developments, societal and gender attitudes, and state ideologies in the ancient Roman world. Recommended prereqs., FIN 3500, and CLAS/FINE 4119. Same as FIN 5119, CLAS 4119.

FINE 4279-3. Michelangelo (1475–1564). Focuses on Michelangelo’s long career, marked by outstanding achievements in sculpture, painting, architecture, and poetry. Emphasizes his projects and achievements in light of 16th-century artistic theory, including relationships to his contemporaries in the arts and literature. Prereq., one 3000-level art history course. Same as FIN 5279.

FINE 4309-3. Neoclassicism and Romanticism: 1760 to 1840. Surveys painting and sculpture in England and France from the last quarter of the 18th century through the first half of the 19th century. Prereq., one 3000-level art history course. Same as FIN 5309.

FINE 4339-3. Modern Art 2. Begins with early Picasso and cubism, including analytic and synthetic cubism and emphasizing the various “isms” of the 20th century. Also studies Italian futurism, de Stijl and the Bauhaus, dada, and surrealism. Prereq., one 3000-level art history course. Same as FIN 5339.

FINE 4409-3. Arts of Africa and Oceania. Covers native arts of non-Western peoples of Africa and Oceania, including sculpture, architecture, and minor arts for both archaeological and ethnological cultures. Prereq., one 3000-level art history course. Same as FIN 5409.

FINE 4429-3. Latin American Art since 1492. Surveys arts of the colonies of Spain and Portugal in the Western Hemisphere from 1492 to the present. Prereq., one 3000-level art history course. Same as FIN 5429.

FINE 4439-3. Native North American Art. Surveys art of North American Indian cultures, including the northwest coast, southwest, southeast, northeast, and plains, covering architecture, sculpture, and minor arts for both archaeological and ethnological cultures. Prereq., one 3000-level art history course. Same as FIN 5439.

FINE 4449-3. Arts of India and Southeast Asia. Surveys the architecture, sculpture, and painting of India and those areas of Southeast Asia influenced by India from the period of Mohenjo Daro and Harappa to recent times. Includes the Himalayan region and Tantric art in general. Prereq., one 3000-level art history course. Same as FIN 5449.

FINE 4459-3. The Arts of Japan. Offers an appreciation and chronological development of the arts of Japan. Emphasizes the arts of Shintoism and Buddhism as well as the particular Japanese aesthetic from prehistoric times to the present. Prereq., one 3000-level art history course. Same as FIN 5459.

FINE 4469-3. The Arts of China. Surveys Chinese painting, sculpture, architecture, and other arts from neolithic to modern times. Prereq., one 3000-level art history course. Same as FIN 5469.

FINE 4509-3. 19th-Century American Art. Examines American painting, sculpture, photography, folk, and popular art throughout the 19th century, with particular attention to emergence of art styles, art by women and artists of color, the development of art museums and academies, and cultural interaction. Prereq., one 3000-level art history course. Recommended prereq., FIN 3000.

FINE 4519-3. 20th-Century American Art. Examines such American art as painting, sculpture, architecture, photography, parks, and fairs from the Gilded Age to World War II. Considers major art styles, women and minority artists, the development of art schools and museums, and cultural interaction between America and other countries. Prereq., one 3000-level art history course. Same as FIN 5519.

FINE 4549-3. Contemporary Public Art. Focuses on the changing relationship of architectural, art and ornament, the role of the public, and the function and patronage of contemporary public art. Considers environmental art, community murals, activist art, temporary installations, issues of censorship, and monuments and memorials. Prereq., one 3000-level art history course.

FINE 4619-3. Quattrocento Art in Florence and Central Italy. Commences with monuments of the so-called second renaissance style about 1440 around Florence. Deals with the later Ghiberti and Donatello, the work of Leon Battista Alberti, and the painting of Castagno, Piero della Francesca, Botticelli, Filippo Lippi, and others, ending in the late Quattrocento. Offered abroad only. Same as FIN 5619. Approved for arts and sciences core curriculum: literature and the arts.

FINE 4659-3. The Roman Baroque. Traces main stylistic trends, along with appropriate intellectual and social contexts, for Roman art of the 17th and 18th centuries. Emphasizes classroom and on-site lectures as well as techniques appropriate to writing about the visual arts. Offered abroad only. Same as FIN 5659. Approved for arts and sciences core curriculum: literature and the arts.

FINE 4709-3. Perspectives on Art and Criticism. Examines some traditional and current ideas that have shaped, defined, or influenced the goals, practices, and evaluation of the visual arts. Includes lectures, readings, and discussion. Open to fine arts majors or students with 9 or more credit hours in art. Same as FIN 5709. Not for art history credit.

FINE 4729-3. Readings: Issues in Contemporary Photography. Includes reading some of the critical and theoretical discourse surrounding the practice of photography and related art forms. Work is made in dialogue with ideas raised in those readings. Prereq., FIN 2191 or 3191. Approved for arts and sciences core curriculum: critical thinking.

FINE 4739-3. The Intellectual Roots of Italian Renaissance Art. Studies critical issues raised in the literature on art, focusing on renaissance interpretations of key historical themes such as imitation and decorum. Carefully examines the language used in primary sources (available in English). Approved for arts and sciences core curriculum: critical thinking.

FINE 4749-3. Italian Renaissance Art: Studies in the Exchange between Theory and Practice. Addresses how artists developed new compositional procedures, graphic techniques, and audiences, and how these procedures were theorized in an age when artists’ intellectual and social status rose dramatically. Explores reception of new graphic technology. Studies specific commissions and primary texts in depth. Prereq., one 3000-level art history course. Same as FIN 5749.
FINE 4759-3. 17th-Century Art and the Concept of the Baroque. Surveys 17th-century European painting, sculpture, and architecture, along with a critical study of artistic theory, artistic institutions (such as the academia di San Luca and the Academie Royal), and the concept of the term “baroque.” Prereq., one 3000-level art history course. Same as FINE 5759. Approved for arts and sciences core curriculum: literature and the arts.

FINE 4769-3. Gender Studies in Early Modern Visual Culture. Examines 15th and 16th-century European ideas about women from a variety of feminist perspectives. Focuses on recent contributions to history of women as they intersect with the visual arts. Prereq., one 3000-level art history course. Same as FINE 5769 and WMST 4769.

FINE 4909 (1-3). Independent Study—Art History. May be repeated for a total of 7 credit hours.

FINE 4919-3. Undergraduate Seminar: Selected Topics in Art History. Seminar course dealing with selected areas or problems within the history of art. Consult current Registration Handbook and Schedule of Courses for seminar topic. Prereq., instructor consent. May be repeated for a total of 7 credit hours.

FINE 4929 (1-3). Special Topics in Art History. May be repeated for a total of 18 credit hours when topic varies. Same as FINE 4929.

FINE 5019-3. Art of Ancient Egypt. Same as FINE 4019.

FINE 5059-3. Classical Art and Archaeology. Same as FINE 4059 and CLAS 5059.

FINE 5069-3. Prehistoric Greek Art and Archaeology. Provides an in-depth study of the Lithic and Bronze Age Aegean (c. 7000–1200 B.C.). Selects topics from architecture, pottery, frescoes, and minor arts of the third millennium B.C. Same as CLAS 5069.

FINE 5079-3. Topics in Roman Art and Archaeology. Same as FINE 4079 and CLAS 5079.

FINE 5089-3. Classical Greek Art. Same as CLAS 5089.

FINE 5119-3. Roman Sculpture. Same as FINE 4119, CLAS 5119.

FINE 5159-3. Hellenistic Art and Archaeology. Same as CLAS 5159.

FINE 5309-3. Neoclassicism and Romanticism: 1760 to 1840. Same as FINE 4309.

FINE 5409-3. Arts of Africa and Oceania. Same as FINE 4409.

FINE 5429-3. Latin American Art since 1492. Same as FINE 4429.

FINE 5449-3. Arts of India and Southeast Asia. Same as FINE 4449.

FINE 5459-3. The Arts of Japan. Same as FINE 4459.

FINE 5469-3. The Arts of China. Same as FINE 4469.

FINE 5519-3. 20th-Century American Art. Same as FINE 4519.

FINE 5619-3. Quattrocento Art in Florence and Central Italy. Same as FINE 4619.

FINE 5659-3. The Roman Baroque. Same as FINE 4659.

FINE 5709-3. Perspectives on Art and Criticism. Same as FINE 4709. Not for art history credit.

FINE 5759-3. 17th-Century Art and the Concept of the Baroque. Same as FINE 4759.

FINE 5779-3. Multicultural Perspectives on New Mexican Saints. Same as FINE 4779.

FINE 5909 (1-3). Graduate Independent Study—Art History. May be repeated for a total of 7 credit hours.

FINE 5929 (1-3). Special Topics: Art History/Criticism. Subjects and instructors vary. May be repeated for a total of 18 credit hours when topic varies. Same as FINE 4929.

FINE 6909 (1-3). Graduate Independent Study—Art History. May be repeated for a total of 7 credit hours.

FINE 6929-3. Seminar: Theories of Art History. Required for M.A. (art history) candidates. Provides a systematic critical overview of the development of art history as a discipline beginning with 18th-century theories of aesthetics and ending with current interdisciplinary models of critical interpretation. Weekly readings, discussions, reports, and written papers constitute the format of this seminar in methodology. Topics vary from semester to semester. May be repeated for a total of 6 credit hours.

FINE 6939-3. Graduate Seminar: Open Topics in Art History. Subjects and topics vary.

FINE 6949 (1-3). Master’s Candidate for Degree.

FINE 6959 (1-6). Master’s Thesis (Art History).

FRENCH AND ITALIAN

French

Students must receive a grade of C- or better in order to enroll in the next level of a foreign language. Students will not receive credit for a lower-level course in foreign language instruction taken after credit has been given for a higher-level course in the same language sequence. For example, students will not receive credit for FREN 1010 if it is taken after they have passed FREN 1020.

FREN 1010-5. Beginning French 1. For students with no previous knowledge of French. Presents basic grammar and most commonly used French vocabulary. Introduces students to Francophone culture. Students may not receive credit if they have completed FREN 1050.

FREN 1020-5. Beginning French 2. Completes the presentation of most basic structures and French vocabulary. Introduces students to Francophone culture. Students may not receive credit if they have completed FREN 1050.

FREN 1050-5. Beginning French Review. Covers the material of FREN 1010 and 1020 in one accelerated semester. Intended for students who know some French (i.e., three to five semesters in high school) but do not have skills adequate for 2000-level courses. Students may not receive credit for FREN 1050 if they have completed FREN 1010 or FREN 1020.

FREN 1200-3. Medieval Epic and Romance. Covers the most important works of medieval literature, in English translation. Among the texts studied are the Nibelungenlied, the Song of Roland, and Arthurian romances, including the stories of Lancelot and Guinevere and Tristan
and Isole. Offers a general introduction for nonmajors to medieval literature and society. Taught in English. Approved for arts and sciences core curriculum: literature and the arts.

FREN 1300-3. Discovering New Worlds. Introduces the Renaissance European accounts of Africa, Asia, and especially America. Includes writings of Marco Polo, Jean of Mandeville, Christopher Columbus, Hernan Cortes, Jean de Lery, and Cabeza de Vaca (read in translation), as well as maps and films.

FREN 1600-3. Introduction to French Film. History and evolution of French film from Lumière to today. Scripts and modern literary texts used as reference points for studying narrative structures in both literature and film. Handouts of technical terms and critical theory supplement readings. Taught in English.

FREN 2110-3. Second-Year French Grammar Review and Reading 1. Intensive review of important grammatical structures. Introduces cultural readings (track A) and literary readings (track B) as well as writing compositions in French. Prereq., successful completion of two semesters of college-level French or equivalent. Meets MAPS requirement for foreign language. Completes college undergraduate language requirement.

FREN 2500-3. Conversation in French. This lower-division course is for students who have spent no time in a French-speaking environment. Sessions include a variety of discussion formats including presentations, debates, and occasional videotaping. All work is in French. Prereq., FREN 2120 or equivalent.

FREN 3010-3. French Phonetics and Pronunciation. Training in correct pronunciation of standard French through understanding of the function of speech organs. International phonetic alphabet learned and used throughout the course; intensive practice in class and language laboratory. Required of all majors. Prereq., FREN 2120 or equivalent.

FREN 3060-3. French Composition 2. Continues grammar study and composition practice begun in FREN 3050. Should be taken before 3100, 3110, or 3120, but may be taken concurrently. Required for majors. Prereq., FREN 3050 or equivalent.

FREN 3100-3. Introduction to Critical Reading and Writing in French Literature. Introduces students to the analysis and interpretation of French literature through close readings of representative examples of major literary forms (poetry, fiction, drama, essay) and through the composition of critical writings in French. Required for French majors. Prereq., FREN 3050 or concurrent enrollment in FREN 3060. Approved for arts and sciences core curriculum: critical thinking.

FREN 3110-3. Main Currents of French Literature 1. Surveys French literature from the Middle Ages through the 18th century. Students are expected to acquire a fairly detailed knowledge of principal writers and schools of the periods covered. Required for majors. Prereq., FREN 3100 (may be taken concurrently). Approved for arts and sciences core curriculum: literature and the arts.

FREN 3200-3. Introduction to Literary Theory and Advanced Critical Analysis. Introduces important aspects of both classical and modern literary theory as an aid to reading and understanding literary texts. Covers theoretical works by figures ranging from Plato and Aristotle to modern French critics such as Barthes, Foucault, and Derrida in conjunction with selected literary works. Offers students more sophisticated means of understanding issues like gender, ethnicity, the roles of both author and reader in constructing meaning, the nature and functions of signs, and the relationship between literature and the larger society. Required for students taking Honors in French or Italian. Conducted in English, though French majors are required to read the texts in the original language. Prereq., FREN 3100 or instructor’s consent. Approved for arts and sciences core curriculum: literature and the arts, or critical thinking.

FREN 3500-3. French Current Events: Conversation and Composition. For students who have spent less than four months in a French-speaking environment. Focuses on presentation, debates, and occasional videotaping through discussion, readings, and written work. Prereq., FREN 3060 or equivalent.

FREN 3600-3. Business French 1. Designed primarily for students in business French who have not spent time in a French-speaking milieu; those with some experience should take FREN 4050. Concentrates on composing business letters and conducting business in French. Prereq., FREN 2120 or equivalent.

Note: Courses at the 4000 level or above are normally not open to freshmen or sophomores. Exceptions may be made with consent of instructor.

FREN 4030-3. Advanced Oral Practice and Interpreting. Intended for students who have spent six months or more in a French-speaking milieu. Concentrates on developing (or preserving) speaking fluency, correct pronunciation, and a good working vocabulary. Prereq., FREN 3060 and/or 3500, or instructor consent. May be repeated once for credit.

FREN 4100-3. Translation. Concentrates on the problems of written and oral translation, both into and out of French. Prereq., FREN 4010 or instructor consent.

Note: Prereqs. for all of the following courses are FREN 3010, 3110, and 3120 or instructor consent (except in the case of FREN 4200, which requires only FREN 3050 and 3060).

FREN 4110-3, 4120-3. French Special Topics. Topics vary each semester. Students should consult the Registration Handbook and Schedule of Course for specific topics. Each course may be repeated for a total of 6 credit hours.

FREN 4130-3. Medieval Lyric Literature. Examines the medieval concept of courtly love as both a cultural and literary phenomenon and its theoretical and stylistic evolution from the Provencal and Old French, with comparative reference to Italian lyric. Same as HUMN 4522 and ITAL 4130.

FREN 4200-3. Studies in Contemporary French Culture. Through a wide variety of texts and audio-visual documents, students learn the structures of contemporary French society and study the cultural phenomena of that society.

FREN 4250-3. Medieval and Renaissance Readings. Explores the complex and evolving cultural and historical contexts of medieval and Renaissance French. Introduces the masterpieces of French medieval and Renaissance literature, including the Chanson de Roland and Arthurian romance. Also focuses on the work of Marie de France, Guillaume de Lorris, and Jean de Meun, Christine de Pisan, Machaut, Villon, Louise Labé, and the poets of the Pléiade, Rabelais, and Montaigne.

FREN 4300-3. Theatre and Modernity in 17th-Century France. Readings of plays by Corneille, Molière, and Racine introduce students to theatre’s role as a mirror of the multifarious tensions shaping modern Western experience. Taught in English with English translations. Approved for arts and sciences core curriculum: literature and the arts.

FREN 4310-3. 17th-Century French Tragedy and Poetry. Close readings of tragedies by Corneille and Racine placed in the evolving context of baroque and neoclassical political and artistic culture as illustrated by lyric poetry, the Fables of La Fontaine, moral philosophy, painting, and architecture. Examines the role of heroic drama as at once a symptom and agent of early modern French social history.

FREN 4320-3. 17th-Century French Prose. Close readings of selected works of Descartes, Pascal, Mme. de La Fayette, La Rochefoucauld, La Bruyère, and Perrault. Themes include 17th-century theories of self, notions of honnêteté and the critical analysis of human motives and behavior, the role of literary prose in the critique of heroic idealism and in demystifying the monarchical absolutism of the Sun King, Louis XIV.

FREN 4330-3. Molière and 17th-Century French Comedy. Close readings of farces and comedies of Molière and Racine introduce students to the evolution of literary genres and the influence of philosophy, politics, and social change on “belles lettres.”

FREN 4770-3. 20th-Century French Theatre and Poetry. Close readings of plays from the turn of the century to the contemporary period introduce the principal themes and techniques of modernist and postmodernist French theatre. Students are encouraged to consider problems commonly evoked by these texts, and to compare the positions that each text takes on such problems as the status and uses of language, the function and limits of the theatre, and the dialectic of appearance and reality.

FREN 4480-3. 20th-Century French Novel. Close readings of novels from the 1930s to the contemporary period introduce the principal themes and techniques of the modernist and postmodernist French novel. Students are encouraged to analyze a variety of questions commonly evoked in these texts, such as the problem of representation, the uses and abuses of writing, the relation of fiction and history, and the status of the subject in the world.

FREN 4490-3. Women Novelists of the 20th Century in France. Explores major aspects of the 20th-century novel in France through works written by women. Gives historical perspective, studies a number of novels, and emphasizes works written since 1968, a turning point. Discusses relevance of women’s writings today.

FREN 4500-3. Reading the Orient: French Literature and Exoticism. Examines representations of the non-Western world in French literature from the 19th century to the present. Issues include imperialism, sexuality, the relationship between literature and the visual arts, and the place of post-colonial literature in the canon. Works include texts by Flaubert, Baudelaire, Gide, Djebar, Edward Said, and paintings by Delacroix. Taught in English for nonmajors, and may be used as a seminar course. Preparation: FREN 4750; must be admitted to the secondary teaching education program.

FREN 4980-3. French Senior Honors Thesis. The senior honors thesis is a 40 to 45 page original research paper, written in French, and constitutes a requirement for graduating with departmental honors. Prereq., all third-year course requirements including FREN 3200. Recommended prereq., at least one course numbered FREN 4100 or above.

FREN 4990-3. Senior Seminar. Preparation of a 15-page research paper in French presented to two members of the department faculty and defended orally in class. Prereq., all third-year requirements and advisor consent; recommended prereq., at least one course numbered FREN 4100 or above.

Note: Prereq. for all of the following courses is graduate standing or instructor consent.

FREN 5080-3. Introduction to Old French. Offered as part of the supervised student teaching in a secondary school required for state certification to teach French. These hours do not count toward student hours in the major nor in the maximum departmental hours allowed. The course is graded pass/fail only. Prereq., FREN 4750; must be admitted to the secondary teaching education program. Coreq., EDUC 4712.

FREN 5110, 5120-3. French Special Topics. Different topics are offered and, in a number of cases, cross-listed with other departments. May be repeated for a total of 6 credit hours on different topics.

FREN 5250-3. Medieval and Renaissance Readings. Through close readings of masterpieces of French medieval and Renaissance literature (e.g., the Chanson de Roland, Arthurian romance, and the work of Marie de France, Guillaume de Lorris and Jean de Meun; and Christine de Pisan, Machaut, Villon, Louise Labé, the poets of the Pléiade, Rabelais, Montaigne) in conjunction with contemporary criticism and theory, explores the complex and evolving cultural and historical contexts of medieval and Renaissance France. Readings in French. May be taught in English to accommodate students in other programs.

FREN 5310-3. 17th-Century French Tragedy and Poetry. Close readings of tragedies by (among others) Corneille, Racine, and Rotrou placed in the evolving context of baroque and neoclassical political and artistic culture as illustrated by lyric poetry, the Fables of La Fontaine, moral philosophy, painting, and architecture. With the help of recent critical and theoretical scholarship, explores the role of heroic drama as at once a symptom and agent of early modern French social and cultural history. Readings in French. May be taught in English to accommodate students in other programs.

FREN 5320-3. 17th-Century French Prose. Close readings of major works by such writers as Descartes, Pascal, Sorel, Mme. de La Fayette, La Rochefoucauld, La Bruyère, Mme. de Sévigné, Scarron, Cyrano de Bergerac, Bossuet, and Perrault. Themes include 17th-century theories of self, early modern epistemology, notions of honnêteté and the critical analysis of human motives and behavior, the emerging French novel, and the role of literary prose in the critique of heroic idealism and in demystifying the monarchical absolutism of the Sun King, Louis XIV. Readings in French. May be taught in English to accommodate students in other programs.

FREN 5330-3. Molière and 17th-Century French Comedy. Close readings of the farces and comedies of Molière in context with the comic works of such writers as Corneille, Rotrou, Cyrano de Bergerac, Desmarests de Saint-Sorlin, Georges de Scudéry, and the satires of Boileau and La Fontaine. Themes include Molière’s contribution to the institution of literary authorship, comedy as a form of social criticism and its role in the “deconstruction” of the early modern subject, and the sociocultural significance of such episodes of Molière’s career as the scandalous “quartets” of L’Ecole des femmes and Tartuffe. Readings in French. May be taught in English to accommodate students in other programs.

FREN 5350-3. French Enlightenment. Focuses on the uses of literature to address the revolutionary philosophical, scientific, religious, and/or socio-political questions of the day. Explores Diderot and d’Alembert’s Encyclopédie, Voltaire and Diderot’s philosophical tales and dialogues, Rousseau’s Discours, and other writings. Discusses the development of specific literary forms to promote the ideas and goals of the philosophes to reach a changing and diverse readership and to fight censorship.

FREN 5360-3. 18th-Century French Literature. Focuses on the study of a specific literary genre (e.g., theatre, the novel) or on the global production of a major author (e.g., Voltaire, Diderot, Rousseau). Discussion stresses both the uniqueness of the genre/writer and their significance as representatives of the century’s changing society and culture. May be repeated for a total of 6 credit hours during a student’s graduate career.

FREN 5430-3. Topics in 19th-Century French Prose, Poetry, and Theatre. Topics vary. May be repeated for a total of 6 credit hours.

FREN 5440-3. Literary Ludics. Taught in French and English. Focuses on literary structures proposed by author to reader as games. Considers critical texts, both practical and theoretical, with a view toward defining the relation between criticism and its objects.

FREN 5470-3. 20th-Century French Theatre and Poetry.

FREN 5480-3. 20th-Century French Novel.

FREN 5570-3. French Literary Criticism.

FREN 5770-2. College Foreign Language Teaching. Required for teaching assistants and graduate part-time instructors.

FREN 6840 (1-3). Independent Study.

FREN 8990 (1-10). Doctoral Dissertation.

ITAL 1010-5. Beginning Italian 1. The four skills of listening, speaking, reading, and writing are progressively developed in a predominantly oral presentation. The cultural focus is the personal world and life of students. Language laboratory work expected.

ITAL 1020-5. Beginning Italian 2. Continuation of ITAL 1010, with greater emphasis on reading and writing. The cultural focus shifts to social and civic areas. Prereq., ITAL 1010 with a grade of C- or better.

ITAL 2110-3. Intermediate Italian Reading, Grammar, and Composition 1. Explores the more complex structures of Italian grammar, emphasizing reading and writing of compositions. Readings are predominantly cultural with some introduction to Italian literature. Taught in Italian. Prereq., ITAL 1020, with a grade of C- or better. Meets MAPS requirement for foreign language.

ITAL 2120-3. Intermediate Italian Reading, Grammar, and Composition 2. Continuation of ITAL 2110. Continued reading in Italian literature and culture with considerable practice in writing and speaking Italian. Fulfills the Graduate School language requirement for the Ph.D. Prereq., ITAL 2110 or equivalent.

ITAL 2130-3. Introduction to Literary Analysis. Increases students’ ability to read and analyze literary texts by improving vocabulary and terminology. Students read short stories, essays, short plays, and poems to acquire critical skills and improve expression of opinions and arguments in Italian. Taught in Italian. Prereq., ITAL 2110 or instructor consent.

ITAL 3010-3. Advanced Composition and Conversation 1. Builds vocabulary and fluency in spoken Italian, and competence and confidence in correct and more sophisticated written Italian. Exercises and themes are drawn primarily from current events and politics (e.g., print and broadcast news) and contemporary culture (e.g., magazines, films, and video). Prereq., ITAL 2120 or instructor consent.

ITAL 3020-3. Advanced Composition and Conversation 2. Improves vocabulary and fluency in spoken Italian, and competence and confidence in correct and more sophisticated written Italian. Exercises and themes are drawn primarily from Italian cultural history. Prereq., ITAL 3010 or instructor consent.

ITAL 3140-3. Readings in Italian Literature—20th Century. Covers a selected reading of major texts, prose, and poetry of 20th-century literature. Emphasizes critical reading and analysis of modern and contemporary Italian literature in its literary and historical context. Taught in Italian. Prereq., ITAL 2130 or instructor consent.

ITAL 3150-3. Readings in Italian Literature—19th Century. Introduces students to 19th-century literary history through a selected reading of major texts, prose, and poetry. Emphasizes critical reading and analysis...
of Italian literature in its literary and historical context. Taught in Italian. Prereq., ITAL 2130 or instructor consent.

ITAL 4130-3. Medieval Lyric Literature. Examines the medieval concept of courtly love as both a cultural and literary phenomenon and its theoretical and stylistic evolution from the Provencal and Old French to Italian lyric. No knowledge of Italian is necessary. Consult instructor. Same as FREN 4130 and HUMN 4522.

ITAL 4140-3. The Age of Dante: Readings from the Divine Comedy. Focuses on close reading of Dante’s poetry with emphasis on the intellectual, religious, political, and scientific background of the medieval world. Taught in English. Prereq., junior standing or instructor consent. Approved for arts and sciences core curriculum: literature and the arts.

ITAL 4150-3. The Decameron and the Age of Realism. Analyzes the rise of realism in the 13th- and 14th-century Italian literature and parallel manifestestions in the visual arts. Focuses on Boccaccio’s Decameron and contemporary realistic prose and poetry with emphasis on gender issues and medieval cultural diversity. Taught in English. Prereq., junior standing or instructor consent. Approved for arts and sciences core curriculum: literature and the arts, or cultural and gender diversity.

ITAL 4200-3. Italian Culture and Civilization from Origins through the Renaissance. Taught in English.

ITAL 4250-3. History of Italy: 1815 to Present. Surveys political, social, and intellectual history of Italy from 1815 to present. Taught in English.

ITAL 4280-3. Topics in Italian Cinema. Examines different aspects of Italian cinema from the origins of neo-realism to the present. May focus on a particular director, the culture of a specific period, or certain themes (e.g., the representation of women, the relationship between cinema and literature, or socio-aesthetic movements like Futurism or Fascism). Taught in English. May be taken twice for a total of 6 credits, provided the topic is different. Prereqs., junior standing and 6 hours of Italian literature and/or history.

ITAL 4520-3. Italian and French Poetry of the Renaissance. Close reading of major poets of the Renaissance. Special attention given to the cultural context (influence from petrachism, revival of platonism, and impact of the counter-reformation, etc.). Taught in English; readings in Italian for Italian majors. Same as FREN 4520.

ITAL 4710-3. Italian Literature of the 19th Century. Focuses on the pre-Romantics, Italian Romanticism, Verismo, and Decadentismo literary and cultural movements, particularly in their European context. Taught in English; readings in Italian for Italian majors.

ITAL 4720-3. Italian Literature of the 20th Century. Studies Italian novel, theatre, poetry, and short story in the period from World War I to the present. Taught in English; readings in Italian for Italian majors.

ITAL 4730-3. Italian Feminisms: Culture, Theory, and Narratives of Difference. Studies Italian women writers, artists, and filmmakers of this century. Literary and visual texts are analyzed in dialogue with readings of leading Italian gender theorists. Italian history and culture is reread by following the development of a discourse about women. Taught in English; readings in Italian for Italian majors. Approved for arts and sciences core curriculum: cultural and gender diversity, or literature and the arts.

ITAL 4840 (1-3). Independent Study. May be repeated for a total of 7 credit hours.

ITAL 4980-3. Italian Senior Honors Thesis. The senior honors thesis is a 40 to 45-page original research paper, written in Italian, and constitutes a requirement for graduating with departmental honors. Prereq., all third-year credit hours. Recommended prereq., at least one course numbered ITAL 4100 or above.

ITAL 4990-3. Senior Seminar. Preparation of a 15-page research paper in Italian presented to two members of the faculty and defended orally in class. Prereq., advisor consent. Recommended prereq., at least one course numbered ITAL 4100 or above.

GEOG 3840 (1-3). Undergraduate Independent Study. Provides an independent study opportunity, by special arrangement with faculty, for students presenting strong geography preparation. May be repeated for a total of 8 credit hours. Restricted to geography majors.

GEOG 3930-3. Internship. Provides an academically supervised opportunity for advanced geography or environmental conservation majors to work in public and private organizations on projects related to the student’s career goals and to relate classroom theory to practice. May be repeated for a total of 6 credit hours. Restricted to geography and environmental studies majors.

GEOG 4100, 4110, and 4120 (1-3). Special Topics in Geography. Various topics not normally covered in the curriculum; offered intermittently depending on student demand and availability of instructors. May be repeated for a maximum of 6 credit hours. Prereq., instructor consent.

GEOG 4160-3. Teaching Geography. Provides a practicum and/or tutorial, by special arrangement only, in the teaching of geography. Includes serving as small-group leaders or tutors in introductory courses or developing and/or testing curriculum materials. May be repeated for a total of 6 credit hours. Restricted to geography and environmental studies majors.

GEOG 4430-3. Seminar: Conservation Trends. Provides environmental studies or geography majors with an undergraduate format for interdisciplinary discussion and research into current and future directions of conservation. May be repeated for a total of 6 credit hours. Restricted to junior and senior geography and environmental studies majors. Approved for arts and sciences core curriculum: critical thinking.

GEOG 4990-3. Senior Thesis. Offers thesis research under faculty supervision. Prereq., senior standing as geography or environmental studies major.

GEOG 5100-3. Special Topics: Geography. Covers various topics outside of the normal curriculum; offered intermittently depending on student demand and availability of faculty. May be repeated for a total of 9 credit hours.

Note: The following courses (GEOG 5840 through 8990) are restricted to graduate students.

GEOG 5840 (1-3). Graduate Independent Study. Offers independent research for master’s students only. May be repeated for a total of 6 credit hours.

GEOG 5930-3. Advanced Internship. Provides an academically supervised opportunity for graduate-level geography majors to work in public and private organizations on advanced projects related to geographic theory and their career goals. May be repeated for a total of 7 credit hours.

GEOG 6160-3. Seminar: Geographic Education. Surveys and critiques ideas from education, psychology, philosophy, and geography related to teaching and learning, especially for graduate students in geography who plan careers in college teaching. May be repeated for a total of 7 credit hours.

GEOG 6170 (1-4). Geography Teaching Materials. Emphasizes creation of materials
for classroom use in geography (individual work under supervision). May be repeated for a total of 7 credit hours.

GEOG 6180 (1-3). Seminar: Geographic Problems. Applies research methods to selected problems. Topics vary with instructor. May be repeated for a total of 7 credit hours.

GEOG 6940-3. Master’s Degree Candidate.

GEOG 6950 (1-6). Master’s Thesis.

GEOG 7840 (1-3). Graduate Independent Study. Offers independent research for doctoral students only. May be repeated for a total of 6 credit hours.

GEOG 8990 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of this catalog.

Physical Geography

GEOG 1001-4. Environmental Systems 1—Climate and Vegetation. Lect. and lab. Introduces the atmospheric environment of the Earth: elements and controls of climate and their implications for hydrology, vegetation, and soils. Emphasizes distribution of physical features across the Earth’s surface and interactions between humans and their environment, especially those leading to global change on the decade to century time scale. Meets MAPS requirement for natural science: non-lab or lab. Approved for arts and sciences core curriculum: natural science.

GEOG 1011-4. Environmental Systems 2—Landscapes and Water. Lect. and lab. Introduces landscapes and flowing water, emphasizing the formation and geographic distribution of mountains, volcanoes, valleys, and deserts, and their shaping by rivers and glaciers. Includes field trips. Meets MAPS requirement for natural science: non-lab or lab. Approved for arts and sciences core curriculum: natural science.

GEOG 3251-3. Mountain Geography. Surveys mountain environments and their human use with illustrations from temperate and tropical mountain areas.

GEOG 3511-4. Introduction to Hydrology. Examines hydrologic processes in the surface environment, emphasizing the environment of the western United States. Emphasizes natural processes and their management to augment water resources. Restricted to junior and senior geography and environmental studies majors. Approved for arts and sciences core curriculum: natural science.

GEOG 3601-3. Principles of Climate. Describes the basic components of the climate system: the atmosphere, ocean, cryosphere, and lithosphere. Investigates the basic physical processes that determine climate and link the components of the climate system, including the hydrological cycle and its role in climate, climate stability, and global change. Covers forecasting climate, its applications, and human dimensions. Prereq., one semester of calculus or instructor consent. Same as ATOC 3600 and ENVS 3600. Approved for arts and sciences core curriculum: natural science.

GEOG 4201-3. Biometeorology. Interdisciplinary science, studying the interactions between atmospheric processes and living organisms (plants, animals, and humans). Discusses how organisms adapt to a changing environment. Uses a practical, problem-solving approach to explore these interactions. Prereq., GEOG 1001. Same as ENVS 4201. Approved for arts and sciences core curriculum: natural science, or quantitative reasoning and mathematical skills.

GEOG 4211-3. Physical Climatology—Principles. Introduces physical principles of flows of heat and moisture to and from the Earth’s surface, interaction and modeling of such flows, and their distribution in space and time.

GEOG 4231-4. Physical Climatology/Field Methods. Highlights theory and field measurements in boundary layer climatology, emphasizing radioactive and turbulent fluxes near the ground. Field calibration of flux equipment and measurements of radioactive, sensible, latent, and ground heat fluxes over different terrain types. Prereq., GEOG 4211 or 5211. Same as GEOG 5231.

GEOG 4291 (3-4). Mountain Geomorphology. Provides a field course emphasizing the study of landforms produced by weathering and soils, mass movement, and erosional processes under all climatic and altitudinal conditions. Offered during the summer at the Mountain Research Station. Call for schedule. Prereq., a college course in physical geology or geography and instructor consent. Same as GEOG 5291 and GEOL 4291.

GEOG 4321-4. Snow Hydrology. Offers a multidisciplinary and quantitative analysis of physico-chemical processes that operate in seasonally snow-covered areas, from the micro- to global-scale: snow accumulation, metamorphism, ablation, chemical properties, biological aspects, electromagnetic properties, remote sensing, GIS, and quantitative methods. Prereq., GEOG 1001 or GEOG 1011, and any statistics course. Same as GEOG 5321 and GEOL 4321.

GEOG 4331 (3-4). Mountain Climatology. Surveys and analyzes climatic characteristics of mountain environments worldwide. Prereq., GEOG 1001 or ATOC 1050 or 1060. Same as GEOG 5331.

GEOG 4371-3. Forest Geography: Principles and Dynamics. Surveys principles of forest geography and ecology. Includes both individual tree responses to environmental factors and species interactions within communities. Emphasizes forest dynamics and their relation to management problems. Same as GEOG 5371.

GEOG 4411-3. Methods of Soil Analysis. Applies methods of soil sampling and laboratory analysis toward an understanding of the relationships between soils, the environment, and landscape impacts. Field trips explore field observation and sampling techniques. Laboratory analyses determine soil physical and chemical properties. Prereq., GEOG 1001 or GEOG 1011; prereq/coreq., GEOG 4401/5401. Same as GEOG 5411.

Interprets and analyzes hydroclimatic data, surface, and groundwater. Critically evaluates water use, emphasizing problems associated with geographic maldistribution, appropriations, irrigation, industry, pollution, and regional development. Same as GEOG 5501.

Note: The following courses (GEOG 5161 through 6241) are restricted to graduate students.

GEOG 5161-3. Research Design in Geography. The human section reads and discusses contemporary research philosophies and methodologies in human geography. Practices the development of research proposals and presentation of research ideas and results. The physical section reads and discusses contemporary research philosophies and methodologies in physical geography (climatology, geomorphology, biogeography, and soils geography). Practices the development of research proposals and presentation of research ideas. Restricted to geography graduate students.

GEOG 5211-3. Seminar: Physical Climatology. Involves a research seminar concerned with topics in physical climatology. Coreq., GEOG 4401. Selects topics from such areas as air quality, bioclimatology, the Earth-atmosphere system. Practices the development of research proposals and presentation of research papers. May be taken twice, as the topics vary.

GEOG 5211-3. Seminar: Biogeography. Considers in detail current research themes in biogeography. Includes intensive reading of current research literature and preparation of research papers. May be taken twice, as the topics vary.

GEOG 5251-4. Fluvial Geomorphology. Provides an historical survey of human consumption of earthly materials; environmental and global considerations of population growth, cultural attitude, and technological development; and diverse goals and philosophy of conservation movements in time and place.

GEOG 5391-3. Seminar: Biogeography. Considers in detail current research themes in biogeography. Includes intensive reading of current research literature and preparation of research papers. May be taken twice, as the topics vary.

GEOG 5401-3. Soils Geography. Same as GEOG 4401.

GEOG 5501-3. Water Resources and Water Management of Western United States. Same as GEOG 4501.

GEOG 5691-3. Theories of Climate and Climate Variability. Critically reviews current theories of climatic variability based on analysis of the different physical processes affecting climate. Same as ATOC 5960.

GEOG 6181 (1-4). Special Topics. Highlights current problems in geography, particularly physical and environmental geography. Topics vary with instructor. May be repeated for a maximum of 6 credit hours.

GEOG 6211 (1-3). Readings in Climatology. Discusses selected topics in current climatological literature. Specific themes vary. May be repeated for a total of 7 credit hours.

GEOG 6241 (1-3). Seminar in Hydrology and Geomorphology. Emphasizes process-oriented research in hydrology and geomorphology. Sample topics include river mechanics, snow hydrology, and periglacial processes. See the Registration Handbook and Schedule of Courses for specific title. May be repeated for a total of 6 credit hours. Same as GEOL 6241.

Human and Cultural Geography

GEOG 1982-3. World Regional Geography. Involves an intellectual journey around the globe, stopping at major regions to study the people, their environments, and how they interact. Topics include the political/economic tensions in changing Europe, conflicts in Brazilian rain forests, transitions facing African peoples, and rapid changes in China. Meets MAPS requirement for social science: geography.

GEOG 2412-3. Environment and Culture. Examines nature-culture interactions and the effects of development and resource use on environmental quality, as well as practical efforts to manage and protect the environment. Meets MAPS requirement for social science: geography.

GEOG 3402-3. Natural Hazards. Explores the impacts of extreme geophysical events on human society. Emphasizes adaptation to extreme events and ways of reducing vulnerability and damage.

GEOG 3422-3. Conservation Thought. Provides an historical survey of human consumption of earthly materials; environmental and global considerations of population growth, cultural attitude, and technological development; and diverse goals and philosophical conservation movements in time and place.

GEOG 3612-3. Geography of American Cities. Introduces geography of American cities. Includes demographic and ideological contexts of urban development, emergence of the city system, location theory and rent models, and urban-economic problems.

GEOG 3662-3. Economic Geography. Presents several theories of location of economic activity: general theory of land use, agricultural location theory; plant location theory; central place theory; location of systems of cities, and geographical organization of industries. Studies aggregate geographical structure of regions as
the geography of three major markets: labor, product, and capital, including the banking system. Explores the economic growth of regions and policies designed to influence regional growth and welfare.

GEOG 3682-3. Geography of International Development. Compares and contrasts global characteristics and processes of development, emphasizing the developing countries of the world. Integrates theories of development, specific development topics, and case studies to explore the problems of development.

GEOG 3812-3. Mexico, Central America, and the Caribbean. Introduces the geography of Latin America, focusing on the lands and peoples of Mexico, Central America, and the Caribbean. Examines regional and national culture, history, environment, and population, as well as ongoing environmental and socioeconomic changes.

GEOG 3822-3. Geography of China. Surveys the world’s most populous country, examining physical and historical geography, urbanization and regional development, agriculture, population, energy, and the environment. Seeks to situate China’s development in a broader Asian and global context. Recommended prereq., GEOG 1982. Approved for arts and sciences core curriculum: cultural and gender diversity.

GEOG 4292-3. Migration, Urbanization, and Development. Examines historical and current patterns of national settlement system development. Focuses on quantitative analysis of problems associated with population growth and decline, urbanization, and economic structural change in more developed and less developed countries. Same as GEOG 5292 and ECON 4292.

GEOG 4622-3. City Life. Analyzes social, behavioral, political, and demographic factors that influence development and maintenance of communities in contemporary urban environments, with primary emphasis on U.S. cities. Same as GEOG 5622. Approved for arts and sciences core curriculum: critical thinking.

GEOG 4712-3. Political Geography. Systematic study of relations between geography and politics, especially as background for better understanding of international affairs. Includes topics such as frontiers and boundaries, power analysis, geopolitics, international political economy, and strategic concepts. Same as GEOG 5712.

GEOG 4722-3. Field Methods in Human Geography. Examines research methods associated with fieldwork in human geography. Prepares students for fieldwork by focusing on geographic and interdisciplinary field work techniques; interpretation of field data; and discussion of the politics, ethics and gender, race, class and cross-cultural issues related to field work. Prereqs., 15 credit hours in human geography. Same as GEOG 5722.

GEOG 4732-3. Population Geography. Emphasizes spatial aspects of population characteristics including fertility, mortality, migration, distribution, and composition. Includes both theoretical and empirical considerations, in addition to fieldwork and computer simulations. Same as GEOG 5732.

GEOG 4742-3. Environments and Peoples. Studies the interaction of people and the environment, including human adaptation and modification of environments, cultural interpretation and construction of landscapes, and natural resources and land management. May be taken twice as the topics vary. Restricted to junior and senior students. Approved for arts and sciences core curriculum: critical thinking.

GEOG 4812-3. Environment and Development in South America. Presents theoretical approaches to the links between environment and development in Latin America and focuses on analytical discussion of contemporary (and controversial) issues in sustainable development in South America. Examines social, ecological, economic, and political forces influencing the use of natural resources. Recommended prereq., GEOG 3812 or 3422. Approved for arts and sciences core curriculum: critical thinking.

GEOG 4822-3. Geography and Modernity in China. Explores the changing economic and cultural geography of contemporary China. Examines changing patterns of rural and urban development and cultural and social trends and tensions emerging from these changes, such as new patterns of leisure, popular culture, and intellectual activities. Recommended prereqs., GEOG 1982 and 1992 and HIST 1608.

GEOG 4882-3. Russian Commonwealth. Offers a systematic and regional survey of features that characterize the physical, economic, and social geography of the Russian Commonwealth.

GEOG 4892-3. Geography of Western Europe. Provides a regional survey of cultural, political, economic, social, and physical geography of Western Europe, emphasizing the distinctive character and problems of each major area and the relationship of the region to the world. Approved for arts and sciences core curriculum: critical thinking.

Note: The following courses (GEOG 5152 through 6742) are restricted to graduate students.

GEOG 5152-3. History and Theory of Geography. History of ideas and institutions that have shaped contemporary geographic inquiry. Examines the evolving relations among human geography, physical geography, environment-society relations, and geographic information processing. Designed to situate graduate student research within major subfields and intellectual currents of geography.

GEOG 5222-3. Continuities and Changes in the Modern World Economy. Introduces the topics of globalization and democratization from an interdisciplinary perspective. Examines major changes to global political economy and explores their implications for local, national, regional, and international political and economic processes. Prereq., graduate standing in GEOG, PSCI, SOCY, or ECON. Same as PSCI 5223 and SOCY 5223.

GEOG 5292-3. Migration, Urbanization, and Development. Same as GEOG 4292.

GEOG 5622-3. City Life. Same as GEOG 4622.

GEOG 5712-3. Political Geography. Same as GEOG 4712.

GEOG 5722-3. Field Methods in Human Geography. Same as GEOG 4722.

GEOG 5732-3. Population Geography. Same as GEOG 4732.

GEOG 5762-3. Sustainable Development: Theory and Classic Issues. Provides an assessment of sustainable development primarily as it relates to the Third World. Follows a sequence from development theory through facts, approaches, and goals. Investigates specific topical
problems and closes with analyses of case studies. May be repeated for a total of 9 credit hours.

GEOG 5772-3. Sustainable Development: Institutions and Policy. This second course in the Sustainable Development sequence investigates the links between social theory, development practice, and policy.

GEOG 6402-3. Seminar: Comparative Environmental Studies. Critically examines cross-cultural experience with adjustments to natural hazards and political management of resource exploitation. May be repeated for a total of 7 credit hours.

GEOG 6712-3. Seminar: Political Geography. Considers in detail history and methodology of the field, including an analysis of selected systematic topics such as frontiers and boundaries, international rivers, conflicting claims to territory, and electoral geography. May be repeated for a total of 7 credit hours.

GEOG 6732-3. Formal Population Geography: Analysis and Forecasting. Focuses on methods for describing, interpreting, and forecasting the spatial dynamics of human populations disaggregated by age and such state categories as different marital and labor force statuses. Prereq., GEOG 4023/5023 or equivalent.

GEOG 6742-3. Seminar: Cultural Geography. Explores various geographic topics emphasizing the concept of culture. Emergence and respective fields and urban, transportation, landform, and vegetation features. Restricted to junior and senior geography and environmental studies majors.

GEOG 4023-3. Introduction to Quantitative Methods in Human Geography. Introduces fundamental statistical and quantitative modeling techniques widely used in geography today. Emphasizes geographic examples and spatial problems, as are statistical routines now available on most computers. Prereq., GEOG 3023 or equivalent.

GEOG 4033-2. Quantitative Methods in Geography Laboratory. Introduces the use of personal computers and statistical software in geographical analysis. Coreq., GEOG 4023. Same as GEOG 5033.

GEOG 4043-4. Cartography 2—Computer Mapping. Studies advanced cartography, focusing on map compilation and reproduction, including digitizing and scanning as well as the use of existing digital data files. Surveys commercially available mapping packages. Students work on independent projects and design and produce a final map to be printed in color. Prereq., GEOG 3053. Same as GEOG 5043.

GEOG 4083-4. Mapping from Remotely Sensed Imagery. Acquaints students with mapping of spatial information from remotely sensed imagery, specifically high spatial resolution imagery (e.g., photography) in digital form. Emphasizes correction of 2- and 3-D geometric distortions, topographic influences, planimetric, topographic, and thematic mapping concepts. Restricted to junior and senior geography and environmental studies majors. Prereq., GEOG 3093, 4093, or equivalent. Same as GEOG 5083.

GEOG 4103-4. Introduction to Geographic Information Science. Examines construction and use of an information system and its data specifically designed for representing and manipulating geographical data. Emphasizes modern geographical information systems including computer hardware/software with a collection of methods/procedures for recording, transforming, storing/retrieving, analyzing, and mapping geographic data. Restricted to junior and senior geography and environmental studies majors. Prereq., GEOG 3053. Same as GEOG 5103.

GEOG 4173-3. Research Seminar. Examines the nature of research and develops pre-graduate skills for geographic research, emphasizing problem definition, methods, sources, data interpretation, and writing. Restricted to senior geography and environmental studies majors. Recommended for students pursuing honors. Approved for arts and science core curriculum: critical thinking.

GEOG 4383-3. Methods of Vegetation Analysis. Techniques of describing, sampling, classifying, and analyzing change in vegetation applied to a variety of local vegetation types. Includes field trips and laboratory work. Prereq. or coreq., GEOG 4371. Same as GEOG 5383.

GEOG 4983 (1-3). Field Problems. Selected geographic problems investigated through intensive, instructor-directed field work. The instructor and the problem(s) vary and are announced. May be repeated for a total of 12 credit hours. Same as GEOG 5983.

Note: The following courses (GEOG 5003 through 7095) are restricted to graduate students.

GEOG 5003-4. Elements of Geographic Information Systems. Discusses incorporating GIS methods into graduate thesis or dissertation research. Reviews basic mapping concepts (scale and projections), acquiring different types of spatial data (raster and vector), building an error-free database, making simple queries, overlays, charts, and maps. Intended for students who want to learn GIS but lack background skills in computing or cartography. Recommended prereq., some experience with Mac or Windows.

GEOG 5023-3. Introduction to Quantitative Methods in Geography.

GEOG 5033-2. Quantitative Methods in Geography Laboratory. Same as GEOG 4033.

GEOG 5043-4. Cartography 2—Computer Mapping. Prereq., GEOG 3053 or equivalent, or instructor consent. Same as GEOG 4043.

GEOG 5083-4. Mapping from Remotely Sensed Imagery. Prereq., GEOG 3093 or 4093 or equivalent. Same as GEOG 4083.

GEOG 5113-3. Seminar: Geographic Information Systems. Focuses on the current research topics in geographical information systems and selected areas of application. Includes major journal articles related to each topic. Students complete and present a seminar paper. Prereq., GEOG 4103, 5103, or instructor consent.

GEOG 5183-3. Data Processing in the Earth Sciences. Restricted to geography graduate students. Prereq., GEOG 4023 or equivalent, or instructor consent. Same as GEOG 5183.

GEOG 5383-3. Methods of Vegetation Analysis. Same as GEOG 4383.

GEOG 5983 (1-3). Field Problems. May be repeated for a total of 7 credit hours. Same as GEOG 4983.

Political Data

GEOG 5095-3. Advanced Political Data Analysis. Same as GEOG 7095 and PSCI 5095.

GEOG 7095-3. Advanced Political Data Analysis. Provides advanced training in empirical and analytic methods of political analysis. Covers general multivariate linear (regression) model as employed in political science. Also covers a variety of dynamic approaches to empirical analysis (stochastic models, time series, and simulation). Prereq., instructor consent. Same as GEOG 5095 and PSCI 7095.

GEOLOGICAL SCIENCES

GEOG 1010-3. Introduction to Geology 1. Introductory geology for majors and nonmajors. Studies the Earth, its materials, its character, its dynamics, and how it relates to people. Separate lab (GEOL 1080) is optional. Meets MAPS requirement for natural science: non-lab. Approved for arts and sciences core curriculum: natural science.

GEOG 1060-3. Global Change 1—An Earth Science Perspective. Lect. Surveys the problems of global change. Emphasizes the Earth as an interlocking system consisting of the lithosphere, hydrosphere (including snow and ice), and atmosphere. Discusses circulation and interaction of these components, as well as geological evidence for environmental changes in the recent past and prospect for future change. Meets MAPS requirement for natural science: non-lab. Approved for arts and sciences core curriculum: natural science.

GEOG 1080-1. Introduction to Geology Laboratory 1. Features field trips to local points of geologic interest. Studies rocks and topographic and geologic maps. Prior or current registration in 1000-level geology recommended. Meets MAPS requirement for natural science lab, if taken with GEOG 1010. Approved for arts and sciences core curriculum: natural science.

GEOG 1110-1. Global Change Laboratory. Optional laboratory for GEOG 1060 or 1070, featuring field excursions and laboratory exercises on topics such as solid waste management, flooding, climate change, desertification and water treatment. Approved for arts and sciences core curriculum: natural science.

GEOG 1600-4. Order, Chaos, and Complexity. Develops the foundations for understanding new ideas in science, focusing on fractals, and chaos in complex interacting systems. Topics include the historical perspective, fractal geometry, complex nonlinear systems, and the nature of uncertainty. Same as PHYS 1600. Approved for arts and sciences core curriculum: natural science, or quantitative reasoning and mathematical skills.

GEOG 2110-4. Physical Science of the Earth System. Covers basic concepts of physics and chemistry, taught in the context of Earth and space science. Small class size and emphasis on student investigations, lab and field work, and active learning make this course particularly appropriate for future K-6 teachers. Prereq., two high school science courses (college prep level). Same as ARSC 2110. Approved for arts and sciences core curriculum: natural sciences.

GEOG 2700-2. Introduction to Field Geology. Introduces basic field techniques necessary to collect geologic data and samples, and necessary to map geologic units. Prereqs., GEOG 1010 and 1020; or GEOG 1060 and 1070; or GEOG 4093 and GEOL 4093.

GEOG 3010-3. Introduction to Mineralogy. Two lectures and one lab per week. Origin, occurrence, identification, classification, and uses of minerals. Applications of mineralogy to economic geology and petrology are emphasized. Prereqs., CHEM 1111 and MATH 1300.

GEOG 3020-3. Petrology. Field relations, petrography, petrology, chemistry, and origins of igneous and metamorphic rocks are studied by means of lectures, reading, and lab and field experience. Labs include instruction in the fundamentals of optical petrography and the study of rocks in thin section. Prereq., GEOG 3010.

GEOG 3030-3. Introduction to Hydrogeology. Introduces groundwater flow concepts, hydrologic cycle, physical and chemical properties, flow net, hydraulic potential, geologic controls on heterogeneity and anisotropy, aquifers and aquitards in a geologic system, saturated and unsaturated flow, flow to a well, pumping tests, and role of groundwater in geologic processes. Prereqs., GEOG 1010 or 1060, and MATH 1300; or instructor consent.

GEOG 3040-3. Global Change: The Recent Geological Record. Geological records in lakes, oceans, deserts, and around glaciers indicate the significant changes in the global system that have taken place over the last few hundred or thousand years. Explores the timing and nature of these changes. Prereq., any two-course sequence of natural science core courses. Approved for arts and sciences core curriculum: natural science.

GEOG 3070-3. Introduction to Oceanography. Surveys ocean features and processes including ocean water, circulation, sediments, structure, faunas, floras, and history of the ocean basins. Prereqs., any two-course sequence
of natural science courses. Approved for arts and sciences core curriculum: natural science.

GEOL 3120-4. Structural Geology. Geometrical techniques for describing and illustrating geological structures. Major topics include graphic methods and geometry of fractures and folds. Prereq., any 1000-level sequence in geological sciences.

GEOL 3300-3. Extraterrestrial Life. Discusses the scientific basis for the possible existence of extraterrestrial life. Includes origin and evolution of life on Earth, possibility of life elsewhere in the solar system (including Mars), and the possibility of life on planets around other stars. Prereq., one-year sequence in a physical science. Same as ASTR 3300.

GEOL 3320-3. Introduction to Geochemistry. Introduces chemical principles as applied to geologic processes. Includes an introductory discussion of mineral and rock chemistry, aqueous geochemistry, and organic geochemistry. Prereq., CHEM 1111 and MATH 1300.

GEOL 3400-4. Palaeontology. Surveys morphology, ecology, and evolution of ancient animal and plant life and their interactions with the Earth. Fossils used to solve geological and biological problems. Prereq., any 1000-level sequence in geological science or environmental, population and organismic biology or instructor consent.

GEOL 3430-4. Sedimentology and Stratigraphy. Introduces the study of sedimentary rocks emphasizing their origin, characteristics, and interpretation; and the principles and techniques for establishing the temporary order and spatial distribution of sedimentary layers. Prereq., any 1000-level sequence in geological sciences or equivalent.

GEOL 3520-3. Environmental Issues in Geosciences. Addresses current environmental problems in which an understanding of geology is needed. Topics include energy resources, climate modification, hydrology, waste disposal, and mining resources. Specific examples used to illustrate restrictions imposed by nature and man on solutions to these problems. Prereq., a two-course sequence in any natural science. Same as ENVS 3520. Approved for arts and sciences core curriculum: natural science.

GEOL 3620-3. Controversies in Planetary Geology. Covers the evolution of controversial ideas in planetary geology: discusses competing hypotheses and the critical thinking required to decide between them. Topics include origin of the moon, volcanic versus impact origin of craters, planetary plate tectonics, and geologic history of the planets. For nonmajors. Prereq., a two-course sequence in any natural science. Approved for arts and sciences core curriculum: critical thinking.

GEOL 3700-2. Geology of the Front Range. Field-oriented approach to tracing the geologic development of the Colorado Front Range, from the Precambrian to recent times. Field observations provide a framework for discussions of current ideas concerning the geologic evolution of the Front Range. Prereq., 1000-level course in geology or equivalent.

GEOL 3720-3. Evolution of Life: The Geological Record. Discusses the evolution of life on Earth, beginning with the earliest origins and surveying the major steps that led to the rise of higher plants and animals. Covers modern ideas on the causes of periodic mass extinctions in both the marine and terrestrial realms. Emphasizes geologic evidence for the pathways of evolution, using examples from the ordinary to the bizarre. Approved for arts and sciences core curriculum: natural science.

GEOL 3930 (1-6). Internship. The internship offers an academically supervised opportunity for geological sciences majors to work with public or private organizations. Projects are usually associated with students’ career goals; each project has an academic emphasis. Prereq., junior standing and completion, with a B or better, of at least two courses for geological majors.

GEOL 4050-3. Earthquakes. Covers causes and effects of earthquakes, earthquake prediction, seismic waves, record interpretation, parameters of seismic foci, and seismo-tectonics of the world. Prereq., one year of natural science and MATH 1300 or instructor consent. Same as GEOL 5050.

GEOL 4060-4. Oceanography. Studies the ocean as a system influencing the Earth’s surficial processes and climate. Composition and properties of seawater, ocean circulation, waves, tides, coastal-, shallow-, and deep-sea sediments. Laboratory emphasizes the use of oceanographic data. Prereq., one semester of chemistry, physics, or geology. Same as GEOL 5060.

GEOL 4080-3. Societal Problems and Earth Sciences. Analyzes contemporary societal problems involving geoscience. One class period per week is generally devoted to lecture. During class discussions the professor acts as scientific advisor while students debate material they have researched. Prereq., one year of calculus and one year of natural science (physics, chemistry, biology) or equivalent, or instructor consent. Approved for arts and sciences core curriculum: critical thinking.

GEOL 4093-4. Remote Sensing of the Environment. Covers acquisition and interpreta-
with examples drawn from selected districts. Field trips to representative deposits. Prereq., GEOL 3010. Same as GEOL 5400.

GEOL 4291 (3-4). Mountain Geomor- phology. Field course emphasizing study of landforms produced by weathering and soils, mass movement, and erosional processes under all climatic and altitudinal conditions. Offered during the summer at the Mountain Research Station. Prereq., a college course in physical geography or geology, and instructor consent. Same as GEOL 5291 and GEOG 4291.

GEOL 4350-3. Fold Belts and Extensional Basins. Includes geology, tectonic setting, and structure of fold/thrust belts including relationships between thrusting and sedimentation, foreland basins, sea level change, techniques for constructing restored and balanced cross sections, and examination of type areas including North American Cordillera, Alps, and Himalayas. Prereqs., GEOL 3120 and 3430. Same as GEOL 5350.

GEOL 4470-4. Paleontology of the Lower Vertebrates. Evolution of the nonmammalian vertebrates emphasizing evolutionary development of major vertebrate features. Prereqs., GEOL 3410, one year of biology, and one year of geology. Same as GEOL 5470.

GEOL 4480-4. Paleontology of the Higher Vertebrates. Evolution of mammals and birds emphasizing evolutionary history of modern and prominent fossil orders. Prereqs., GEOL 3410, one year of biology, one year of geology, or instructor consent. Same as GEOL 5480.

GEOL 4500-3. Critical Thinking in the Earth Sciences. Deals with controversies within the broad realm of geological sciences, including either planetary geology, evolution, paleobiology, global change, environmental issues, plate tec- tonics, resources, other societal problems, or geologic thought in general. Students are provided the opportunity to analyze and debate scientific issues in the earth sciences. Prereqs., GEOL 1010, or instructor consent. May be repeated for a total of 6 credit hours. Approved for arts and sciences core curriculum: critical thinking.

GEOL 4540-4. Petroleum Geology. Covers theoretical and applied aspects of petroleum geology and geochemistry. Discusses organic geochemistry, time-temperature models, migration, trapping mechanisms, log analysis, application of facies models in the subsurface, and reservoir geology. Prereqs., course work in structure, stratigraphy, sedimentology, de-

GEOL 5050-3. Earthquakes. Same as GEOL 4050.

GEOL 5060-4. Oceanography. Same as GEOL 4060.

GEOL 5100-3. X-Ray Crystal Chemistry. Same as GEOL 4100.

GEOL 5200-3. Advanced Mineralogy. Same as GEOL 4200.

GEOL 5250-4. Introduction to Ore Deposits. Same as GEOL 4250.

GEOL 5291 (3-4). Mountain Geomorphology. Same as GEOL 4291 and GEOG 5291.

GEOL 5350-3. Fold Belts and Extensional Basins. Same as GEOL 4350.

GEOL 5360-3. Glacial Geology. Same as GEOL 4360.

GEOL 5370-3. Quantitative Dynamic Stratigraphy. Evaluates simple to complex approaches (dimensional analysis, transport equations; finite element vs. finite difference schemes) to understand how stratigraphic sequences are formed. Excellent introductory course on simulation modeling. Examples include research from placer mining, pollution and hazards studies, military applications, and reservoir characterization. Prereq., college algebra, intro to statistics, sedimentology, and stratigraphy, or instructor consent.

GEOL 5400-4. Quaternary Stratigraphy. Summary of geologic and pedologic methods used to recognize, date, and correlate Quaternary deposits and interpret Quaternary history. Prereq., GEOL 4241 or 5241 or equivalent, or instructor consent.

GEOL 5420-3. Quaternary Dating Methods. In-depth survey of standard and experimental dating methods that provide absolute ages for events of the last two million years of Earth history. Includes theory and application of radiocarbon, uranium series, amino acid, thermoluminescence, fission track, potassium/argon, hydration, light stable isotopes, and other radioactive techniques.

GEOL 5470-4. Paleontology of the Lower Vertebrates. Same as GEOL 4470.

GEOL 5490-3. Geochemistry of Hydrothermal Ore Deposits. Laboratory studies, thermodynamic data, chemical data, fluid inclusions, stable isotopes, and field occurrences are all used to explain composition, origin, and history of hydrothermal ore deposits. Prereq., GEOL 4250/5250 or equivalent, or instructor consent.

GEOL 5540-4. Petroleum Geology. Prereqs., course work in structure, stratigraphy/sedimentology, deposits, environment, physics, and chemistry. Same as GEOL 4540.

GEOL 5610-2. Mammalian Micropalaeontology. Studies mammalian microfossils. Methods of analysis, collection, and use in stratigraphic problems such as correlation, palaeoecology, and earth history. Prereq., instructor consent.

GEOL 5670-3. Isotope Geology. Same as GEOL 4670.

GEOL 5680-3. Global Tectonics. Geological and geophysical aspects of plate motions along accretionary, transforming, subducting, and collisional margins. Relationships of sedimentation, volcanism, metamorphism, and deformation to mountain building are studied in conjunction with examination of type areas. Prereqs., graduate standing or instructor consent.

GEOL 5700 (1-4). Geological Topics Seminar. Seminar studies in geological subjects of special current interest are offered primarily for graduate students, as departmental staff and facilities permit. May be repeated for a total of 6 credit hours.

GEOL 5711–5719 (1-3). Topics Seminars in Field Geology. Includes field geophysics, environmental, structural, and stratigraphic field geology, and/or field topics in petrology, hydrology, and geomorphology. May be repeated for a total of 6 credit hours.

GEOL 5800-3. Planetary Surfaces and interiors. Examines processes operating on the surfaces of solid planets and in their interiors. Emphasizes spacecraft observations, their interpretation, the relationship to similar processes on Earth, the relationship between planetary surfaces and interiors, and the integrated geologic histories of the terrestrial planets and satellites. Prereq., standing in physical sciences or instructor consent. Same as ASTR 5800.

GEOL 5810-3. Planetary Atmospheres. Covers the structure, composition, and dynamics of planetary atmospheres. Includes the origin of planetary atmospheres, chemistry and cloud physics, greenhouse effects, climate, and the
evolution of planetary atmospheres—past and future. Same as ATOC 5810 and ASTR 5810.

GEOL 5820-3. Origin and Evolution of Planetary Systems. Considers the origin and evolution of planetary systems, including protoplanetary disks, condensation in the solar nebula, composition of meteorites, planetary accretion, comets, asteroids, planetary rings, and extrasolar planets. Applies celestial mechanics to the dynamical evolution of solar system bodies. Prereq., graduate standing in physical sciences or instructor consent. Same as ATOC/ASTR 5820.

GEOL 5830-3. Topics in Planetary Science. Discusses current topics in planetary science, based on recent discoveries, spacecraft observations, or other developments. Focuses on a specific topic such as Mars, Venus, Galilean satellites, exobiology, comets, or extrasolar planets. May be taken twice for credit. Prereq., graduate standing in physical sciences or instructor consent. Same as ATOC/ASTR 5830.

GEOL 5835.1. Seminar in Planetary Science. Studies current research on a topic in planetary science. Students and faculty give presentations. Subjects may vary each semester. May be repeated for a total of 4 credit hours to meet candidacy requirements. Prereq., graduate standing or instructor consent. Same as ATOC/ASTR 5835.

GEOL 5840 through 5851 (1-3). Graduate Independent Study. May be repeated for a total of 7 credit hours.

GEOL 6060-4. Petroleum Geology of Turbidite Systems. Covers the exploration and production aspects of petroleum submarine fans and turbidite systems. A one-week field trip to Arkansas is included. Students are responsible for part of the trip expenses. Prereq., GEOL 6330.

GEOL 6241 (1-3). Seminar in Hydrology and Geomorphology. Emphasizes process-oriented research in hydrology and geomorphology. Sample topics include river mechanics, snow hydrology, and periglacial processes. Same as GEOG 6241. May be repeated for a total of 6 credit hours.

GEOL 6340-3. Remote Sensing of Planetary Surfaces. Quantitative description of properties of and geological processes on planetary surfaces, based on remote sensing techniques. Topics include reflection and emission spectroscopy, radar reflection, microwave and infrared radiometry, and high-energy spectroscopy, with application to the planets and their satellites. Prereq., basic undergraduate physics. Same as ASTR 6340.

GEOL 6620-3. Earth and Planetary Physics 2. Offered alternate years. Space and surface geodetic techniques, as well as potential theory, are covered. Other topics are definition and geophysical interpretation of the geoid and of surface gravity anomalies; isostasy; post-glacial rebound; tides and the rotation of the Earth. Same as ASTR 6620 and PHYS 6620.

GEOL 6640-3. Introduction to Planetary Science. Overview of the nature of the solar system. Topics include geologic processes and histories of solid planets, planetary chemistry, interiors, and atmospheres, the outer planets, planetary rings, comets and asteroids, extrasolar planets, and formation of the solar system. Prereq., graduate standing in a physical science and basic undergraduate physics. Same as ASTR 6640.

GEOL 6650 (1-3). Seminar in Geophysics. Advanced seminar studies in geophysical subjects for graduate students. Same as ASTR 6650 and PHYS 6650. May be repeated for up to 6 credit hours.

GEOL 6960-3. Plan II Master’s Research. GEOL 8990 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of this catalog.

GERMAN AND SLAVIC LANGUAGES AND LITERATURES

German

Students must receive a grade of C- or better in order to enroll in the next level of a foreign language. Students will not receive credit for a lower level course in foreign language instruction taken after credit has been given for a higher level course in the same language sequence. For example, students will not receive credit for GRMN 1010 if it is taken after they have passed GRMN 2110.

GRMN 1010-4. Beginning German 1. For students with no previous training in German.

GRMN 1020-4. Beginning German 2. Prereq., GRMN 1010 with a grade of C- or better.

GRMN 1028-3. Special Topics in German. Students should inquire at the department, since topics vary. Does not count towards the German major. May be repeated for a total of 6 credit hours when topic varies.

GRMN 1500-3. German for Reading Knowledge. Designed especially for graduate students. Emphasizes analytical skills for acquiring reading proficiency in specialized and technical German in one’s field of research. Recommended for pass/fail registration; does not satisfy the arts and sciences foreign language requirement. Does not count towards the German major.

GRMN 1900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.

GRMN 2010-4. Intermediate German 1. Review and continuation of basic skills begun in the first year: reading, writing, speaking, and oral comprehension. Prereq., GRMN 1020 with a grade of C- or better. Meets MAPS requirement for foreign language. Satisfies arts and sciences language requirement.

GRMN 2020-4. Intermediate German 2. Prereq., GRMN 2010 with a grade of C- or better.
GRMN 2050 (2-4). Intermediate German: Conversation. For students who wish supplementary conversational practice at the third-semester level. Does not count towards the German major. Students may take this course concurrently with GRMN 2010. May be repeated for a total of 8 credit hours. Prereq., GRMN 1020 or equivalent. Does not satisfy the arts and sciences foreign language requirement.

GRMN 2220-4. Scientific German. Prereq., GRMN 2010 or equivalent, or instructor consent.

GRMN 2900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.

GRMN 3010-3. Advanced Conversation and Grammar. Reviews special grammatical topics, reading, and conversation. Students have the option of taking the internationally recognized exam Zertifikat Deutsch als Fremdsprache in GRMN 3010. Prereq., Four semesters of college German or equivalent. Open to freshmen with instructor consent.

GRMN 3020-3. Professional German. Continuation of GRMN 3010. Emphasizes practical communications and correspondence and professional transactions. With option to take Goethe-Institute-sponsored Prüfung Deutsch für den Beruf. Prereq., GRMN 3010 or equivalent, or instructor consent.

GRMN 3110-3. German Literature from 1910 to the Present. Examines selected literary texts. Emphasizes longer unedited texts as well as critical skills. May be taken either before or after GRMN 3120. Prereq., GRMN 2020 or equivalent, or instructor consent.

GRMN 3120-3. Modern German Literature from 1750 to 1910. Examines selected literary texts of various periods. Emphasizes longer texts and critical skills. May be taken either before or after GRMN 3110. Prereq., GRMN 2020 or equivalent, or instructor consent.

GRMN 3140-3. Current Issues in German Literature. Examines issues pervading contemporary German literature, such as concerns of youth, gender, stereotyping as it affects women and men in their relations with one another, loneliness and sexual frustration, work experiences, and other issues. Prereq., ability to read unedited German and to speak German.

GRMN 3520-3. Open Topics in the Cultural Context. Examines topics in the cultures of German-speaking central Europe. Contact the departmental office for specific course offerings. May be repeated for a total of 6 credit hours when topic varies. Prereq., GRMN 3020 or equivalent, or instructor consent.

GRMN 3900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.

GRMN 3930 (1-6). Internship. Provides an academically supervised opportunity for upper-division students to earn credit while working for public or private organizations. Students apply skills and knowledge earned in the major, and supplement their work experience through directed readings and assignments. May be repeated for a total of 6 credit hours. Restricted to junior and senior GRMN majors.

GRMN 4030-3. Business German. Develops the more sophisticated language skills required by employees of German organizations and foreign business persons who wish to transact business with German firms. Examines current issues in German business. With option to take the Goethe Institute-sponsored Prüfung Wirtschaftsdeutsch International. Prereq., GRMN 3020 or instructor consent.

GRMN 4100-3. Applied Linguistics. Introduces the study of language and its applications to the teaching of German. Analysis of phonology, grammatical structure, and vocabulary of German and English for high school and college teachers of German.

GRMN 4330-3. The Age of Goethe. German literature from 1770 to 1830. Close examination of representative texts from the periods of Sturm und Drang, classicism, and romanticism. Emphasizes philosophical and social background. Prereq., GRMN 3020 or instructor consent.

GRMN 4340-3. Seminar in German Literature. Intensive study of a particular literary period, author, or genre. Secondary sources are utilized. Course content differs each time. May be repeated for a total of 6 credit hours when topic varies. Prereq., GRMN 3020 or instructor consent.

GRMN 4370-3. Introduction to German Literary History 1. Examines main currents in German literature, including the Middle Ages, the Renaissance, Baroque, and early classicism. Prereq., GRMN 3020 or instructor consent.

GRMN 4380-3. Introduction to German Literary History 2. Continuation of GRMN 4370. From 1750 to the present. Covers Weimar classicism, romanticism, realism, naturalism, and currents of the 20th century. Prereq., GRMN 3020 or instructor consent.

GRMN 4450-3. Methods of Teaching German. Required of students who desire the recommendation of the department for secondary school teaching positions. Restricted to students who have been admitted to the teacher education program in the School of Education. For student teaching in German, see EDUC 4712 under the School of Education.
GRMN 3502-3. Literature in the Age of Goethe. Features the writings of Germany’s major literary figures from 1749 to 1832. Special attention is paid to the formation of literary periods, genres, aesthetic, and socio-historical developments contributing to the birth of modernism in German intellectual history and literature. Approved for arts and sciences core curriculum: literature and the arts.

GRMN 3503-3. German Film and Society 1. History and theory of Weimar and Nazi film with sociocultural emphasis. Same as FILM 3503.

GRMN 3504-3. Topics in German Film. A comparative analysis of key issues in German culture as they are represented in film and other media, e.g. technology, architecture, women, Holocaust. Same as FILM 3504. May be repeated for a total of 6 credit hours when topic varies.

GRMN 3505-3. The Enlightenment: Tolerance and Emancipation. Examines the enlightenment belief in reason and the common humanity of all individuals and cultures. Emphasizes arguments for and against freedom of religion, abolition of slavery, and emancipation of women in 18th-century European and American literature and thought. Same as HUMN 3505. Approved for arts and sciences core curriculum: ideals and values.

GRMN 3513-3. German Film and Society 2. History and theory of postwar German cinema with sociocultural emphasis. Same as FILM 3513.

GRMN 4501-3. Seminar: Literature in Cultural Context. Provides a broader basis for the work of literature, viewing it from various cultural perspectives. Specific content of course is defined by the instructor. May be repeated for a total of 6 credit hours when topic varies.

GRMN 4502-3. Nietzsche: Literature and Values. Emphasizes Nietzsche’s major writings spanning the years 1872 to 1888 with particular attention to the critique of Western values. Includes a systematic exploration of doctrines, concepts, and ideas leading to the values of creativity. Same as HUMN 4502. Approved for arts and sciences core curriculum: ideals and values.

GRMN 4503-3. Issues in German Thought. Provides the opportunity to examine major issues in German philosophical, social, and religious thought from the end of German idealism to existentialism and critical theory. Emphasizes the relationship between ideas and social and political action. May be repeated for a total of 6 credit hours when topic varies.

GRMN 4504-3. Goethe’s Faust. Systematic study of the Faust motif in Western literature, with major emphasis on Faust I and II by Goethe. Same as HUMN 4504. Approved for arts and sciences core curriculum: literature and the arts.

GRMN 5010-3. Bibliography and Methods of Research. Training in the use of reference works for conducting research in the humanities and social sciences. Analysis of, and hands-on practice with, bibliographic tools specific to German, as well as reference tools inclusive of German-area materials but broader in their scope. Students learn proper procedure for manuscript preparation and submission. Prereq., graduate standing or instructor consent.

GRMN 5020-3. Applied Linguistics and Foreign Language Teaching Methodology. Required of all graduate teaching assistants, this course provides a knowledge of the aspects of German linguistics that are important for teaching German and a survey of foreign language teaching methods and second language acquisition research. Prereq., graduate standing or instructor consent.

GRMN 5110-3. Seminar: German Heroic Literature and Romance in the Beginning to the Renaissance. Treats cultural, intellectual, linguistic, and literary developments, with emphasis on the medieval period. Readings include Gottfried’s Tristan und Isolde, Das Nibelungenlied, courtly lyric poetry, Wolfram’s Parzival, and other Arthurian romances. Prereq., graduate standing or instructor consent.

GRMN 5220-3. Seminar: Topics in the Age of Goethe. Examines various aspects of German-speaking society from the 1770s to 1830s. Topics may include Sturm und Drang as social commentary; romantic theory in the wake of the French Revolution; Romantic nationalism; the Faust theme; Weimar as a cultural center; and others. May be repeated for a total of 6 credit hours when topic varies. Prereq., graduate standing or instructor consent.

GRMN 5230-3. Seminar: Concepts of the Self from Schlegel to Freud and Jung. Profound contributions to the discourses of modernity begin with Romanticism and lead to the depth-psychology of Freud and Jung. Examines the major stages in this process: the symbolism of the self in Romanticism (Schlegel, E.T.A. Hoffman, Chamisso), the seminal role of Schopenhauer and Nietzsche, and finally the emergence of the self as the hidden god in the thought of Freud, Jung, Hesse, and others. Prereq., graduate standing or instructor consent.

GRMN 5310-3. Seminar: Topics in the 19th Century. Examines the transformation of realism from Büchner to Gerhart Hauptmann. Topics may include literary responses to the Restoration; intellectuals and the Revolution of 1848; philosophy and literature; theatrical representations of woman, family, and gender; and others. May be repeated for a total of 6 credit hours when topic varies. Prereq., graduate standing or instructor consent.

GRMN 5320-3. Seminar: The German Novel from 1901-1956. Beginning with T. Mann’s Buddenbrooks, this course charts the rise of the German novel in the early 20th century and examines such topics as Wilhelminian society; intellectuals and World War I; dehumanization and alienation; national socialism and literature; and others. Authors include T. Mann, H. Hesse, R. Rilke, F. Kafka, A. Seghers, and A. Zweig. Prereq., graduate standing or instructor consent.

GRMN 5330-3. Seminar: German Intellectuals and Society Between the Wars. Examines the period of social crisis and the intellectual responses to the collapse of the prewar order. Gives attention to the antidemocratic thought of Spengler, Jünger, Stefan George and his circle, to the emergence of existentialism with Scheler and Heidegger, and to the search for a new political humanism as evidenced by the work of Thomas Mann. Prereq., graduate standing or instructor consent.

GRMN 5410-3. Seminar: Topics in Early 20th-Century German Society. Focuses on major issues, events, movements, and figures prior to World War II. Topics may include the ontology of lyric poetry; Berlin in the 1920s; exiles, their communities, and their writings; women writers from Andrea-Salomé to Anna Seghers; topics in German film; and others. May be repeated for a total of 6 credit hours when topic varies. Prereq., graduate standing or instructor consent.

GRMN 5420-3. Seminar: Topics in Later 20th-Century German Society. Analyzes major currents and events such as the Holocaust, coming to terms with the past (Vergangenheitsbewältigung), German Democratic Republic (GDR) literature, and responses to the reunification. Topics may include the Austrians from Anschluß to Waldheim; Paul Celan; East German writers between Wolf Biermann and Christa Wolf; topics in German film; and others. May be repeated for a total of 6 credit hours when topic varies. Prereq., graduate standing or instructor consent.
GRMN 5510-3. Seminar: Open Topics in German Civilization. Focuses on cultural issues that cross lines of literary periodization. Topics may include the theater as social criticism from Lessing to Handler; forms of German protest from Luther to Thomas Mann; nihilism from Bonaventura to Thomas Bernhard; topics in German film; and others. May be repeated for a total of 6 credit hours when topic varies. Prereq., graduate standing or instructor consent.

GRMN 5520-3. Seminar: Current Issues in German Literature and Media. Examines issues pervading contemporary German literature and media, such as concerns of youth, xenophobia, stereotyping as it affects women and men in their relations, work experience, feminism, problems connected with the re-unification, and other issues. Prereq., graduate standing or instructor consent.

RUSS 1010-4. Beginning Russian 1. For students with some previous training in Russian. Offers the requisite structure and vocabulary of Russian in an intensive format, such that students are able to read and translate Russian in their field of study with the help of a dictionary. Does not count towards the Russian major.

RUSS 1900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.

RUSS 2010-4. Second-Year Russian 1. Review and continuation of basic skills learned in the first year: reading, writing, speaking and oral comprehension. Satisfies arts and sciences language requirement. Prereq., RUSS 1020 with a grade of C- or better. Meets MAPS requirement for foreign language. Satisfies arts and sciences language requirement.

RUSS 2900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.

RUSS 3000-3. Advanced Conversation. Enables students to speak and understand contemporary Russian. Discussion topics and source materials vary. May be repeated for a total of 6 credit hours. Prereq., RUSS 2020.

RUSS 3900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.

RUSS 3930 (1-6). Russian Internship. Provides an academically supervised opportunity for upper-division students to earn credit while working for public or private organizations. Students apply skills and knowledge earned in the major, and supplement their work experience through directed readings and assignments. May be repeated for a total of 6 credit hours. Restricted to junior and senior RUSS majors.

RUSS 4210 (1-3). Open Topics: Russian Literature and Culture. Selected topics in Russian literature, film, art, and music. Prereq., RUSS 3020. May be repeated for a total of 9 credit hours when topic varies.

RUSS 4900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.

Russian Courses Taught in English

RUSS 2211-3. Introduction to Russian Culture. What Russians are like and how they got that way; development of national consciousness from feudalism through imperialism; Russian cookery, folklore, popular literature, religious thought, art, and architecture. Lectures, slides, films, guest speakers. Approved for arts and sciences core curriculum: historical context.

RUSS 3301-3. Contemporary Issues in Russian Film. Examines the relationship between politics, economics, aesthetics, and the way moral and social issues are treated in noteworthy Russian films from the last 20 years. Same as FILM 3301.

RUSS 3502-3. Ideals and Values in Modern Russia. Covers sources and evolution of contemporary Russian ideals and values in the spheres of religion, education, law, business, family life, ethnicity, gender, and sexuality. Approved for arts and sciences core curriculum: ideals and values.

RUSS 3601-3. Russian Culture Past and Present. Introduction to Russian culture from the ninth century to the present. Focuses on interdisciplinary exploration of literature, folklore, art, architecture, and music. Offered only through CU-Boulder’s study abroad program in St. Petersburg.

RUSS 4441-3. Tolstoy. Selected short stories and novels.

RUSS 4471-3. Women in 20th-Century Russian Culture. Acquaints students with literature and cinema focusing on women in 20th-century Russia, with Anglo-American and French femi-
nist criticism. All texts and films in English translation. Students should be prepared to write college-level analytical essays. Recommended preereqs., course(s) in literature or film studies, and upper-division writing course(s). Same as WMST 4471. Approved for arts and sciences core curriculum: cultural and gender diversity.

RUSS 4811-3. 19th-Century Russian Literature. Surveys background of Russian literature from 1800 to 1900. Russian writers and literary problems in the 19th century emphasizing major authors: Pushkin, Lermontov, Gogol, Dostoevsky, Turgenev, Tolstoy, and Chekhov. Approved for arts and sciences core curriculum: literature and the arts.

RUSS 4821-3. 20th-Century Russian Literature and Art. Interdisciplinary course emphasizing the influence of art in 20th-century Russian literature. Follows the changing cultural landscape from the time when Russia was in the vanguard of modern European literature to the gradual cultural relaxation that culminated in perestroika and glasnost. Same as HUMN 4821. Approved for arts and sciences core curriculum: literature and the arts.

RUSS 4823-3. Contemporary Russian Literature. Acquaints students with representative works of Russian writers from the 1960s to the present in a broad historical and political perspective. Examines the relationships between ideological concepts and aesthetic, and the treatment of moral and social issues in recent literary works. All readings provided in translation. Recommended prereq., lower-level literature course. Pass/fail only.

Scandinavian

Students will not receive credit for a lower level course in foreign language instruction taken after credit has been given for a higher level course in the same language sequence. For example, students will not receive credit for NORW 1010 if it is taken after they have passed NORW 2110.

NORW 1020-4. Beginning Norwegian 2. Prereq., NORW 1010 with a grade of C- or better.
NORW 1900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.
NORW 2120-4. Second-Year Norwegian Reading and Conversation 2. Continuation of NORW 2110, with focus on Norwegian culture and society. Small group work and class discussions. Prereq., NORW 2110 with a grade of C- or better.
NORW 2900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.
NORW 3900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.
NORW 4900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.
SCAN 1900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.
SCAN 2900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.
SCAN 3900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.
SCAN 4900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.

Scandinavian Courses Taught in English

SCAN 2202-3. The Vikings. Examines the social, cultural, technological, and artistic backgrounds of the Viking experience, charting the history of the period both within Scandinavia and Europe as well as North America. Additionally, looks at some of the lasting influences of the Vikings on western civilization. Approved for arts and sciences core curriculum: historical context.
SCAN 3202-3. Old Norse Mythology. Surveys the mythology and heathen cult practices of the Old Norse world. Students learn how to read mythological texts and study the major gods (Odin, Thor, and Frey among others) along with supernatural beings like valkyries, dwarves, giants, and berserks, and examine the evidence for cult practices in texts, art, and archeological finds. Approved for arts and sciences core curriculum: literature and the arts.
SCAN 3203-3. Masterpieces of Modern Scandinavian Literature. Examines Scandinavia’s influence on social realism, expressionism, and postwar literature, including such themes as women in society, nature and industrialization, and identity and angst. Works by Ibsen, Strindberg, Dinesen, and Nobel Prize winners Lagerlöf, Hamsun, Undset, and Lagerkvist. Approved for arts and sciences core curriculum: literature and the arts.
SCAN 3204-3. Medieval Icelandic Saga. Advanced introduction to medieval Icelandic saga with readings in the family, outlaw, skald, and legendary sagas as well as the main scholarly approaches to this unique literature. Topics include honor, blood feud, fate, sexuality/gender, oral composition, and legend. Approved for arts and sciences core curriculum: literature and the arts.
SCAN 3205-3. Scandinavian Folk Narrative. Introduces the rich tradition of Scandinavian folk narrative. Looks at relationship between the tales and the rural culture in which they existed. Explores various interpretive methodologies. Approved for arts and sciences core curriculum: literature and the arts.

Slavic

SLAV 1900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.
SLAV 2900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.
SLAV 3900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.
SLAV 4900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.

Swedish

Students will not receive credit for a lower level course in foreign language instruction taken after credit has been given for a higher level course in the same language sequence. For example, students will not receive credit for SWED 1010 if it is taken after they have passed SWED 2110.

SWED 1020-4. Beginning Swedish 2. Prereq., SWED 1010 with a grade of C- or better.
SWED 1900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.
SWED 2120-4. Second-Year Swedish Reading and Conversation 2. Prereq., SWED 2110 with a grade of C- or better.
SWED 2900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.
SWED 3900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.
SWED 4900 (1-6). Independent Study. May be repeated for a total of 6 credit hours.
HISTORY

Many 1000-level courses, most 3000-level seminars, and all 4000-level courses count toward the 36-39 credit hour major requirements. The remaining 1000-level and all 2000-level courses count within the 45 credit hour maximum in history but do not fill requirements toward the 36-39-credit-hour major. All 3000-level readings and research seminar courses except HIST 3000 are restricted to history majors. HIST 4020 is restricted to history majors and minors.

Methodological, Comparative, and General

HIST 1010-3. Western Civilization 1: From Antiquity to the 16th Century. Surveys the development of Western civilization from its beginnings in the ancient Near East through the Reformation of the 16th century. Also available through correspondence study. Meets MAPS requirement for social science: general and world history. Approved for arts and sciences core curriculum: historical context.

HIST 1020-3. Western Civilization 2: 16th Century to the Present. Surveys political, economic, social, and intellectual developments in European history from the 16th century to the present. Similarities and contrasts between European states are underscored, as is Europe’s changing role in world history. Also available through correspondence study. Meets MAPS requirement for social science: general and world history. Approved for arts and sciences core curriculum: historical context.

HIST 1040-3. Honors: Western Civilization 2. Studies the history of social, political, and cultural development of the Western world from the 16th century to the present. Designed for freshmen with advanced standing. Emphasizes reading and discussion. A student receiving credit for HIST 1020 may not receive credit for HIST 1040. Prereq., 1200 on SAT, 28 on ACT, or 3.5 GPA in high school. Approved for arts and sciences core curriculum: historical context.

HIST 2100-3. Revolution in History. Examines the causes, character, and significance of political revolution in world history. Concentrating on one of the major revolutions of modern history, it examines why revolutions occur, who participates in revolution, and to what effect. Specific course focus varies. Does not fulfill major requirements. Approved for arts and sciences core curriculum: historical context.

HIST 3000-3. Seminar in History. Encourages students to explore and analyze a problem, topic, or area through selected readings in primary (when feasible) and secondary sources. Exposes students to the way historians view various complex issues. Enrollment limited to nonmajors. Approved for arts and sciences core curriculum: critical thinking.

HIST 3010-3. Communist Societies in Historical Perspective. Examines communist societies in Asia and Europe, 1917 to the present, using primary sources to compare how different social groups experienced such regimes, the social bases of revolutions which created and ended communism, and why some communist regimes have survived. Enrollment limited to majors. Approved for arts and sciences core curriculum: critical thinking.

HIST 3100-3. History Seminar in Honors. Approaches to the historian’s craft. GIVES honors students (both history and non-history majors) an opportunity to engage significant issues in historical interpretation chosen from the field of the instructor. Primary sources typically form the basis for reading, writing, and discussion. Prereq., honors standing.

HIST 3840 (1-3). Independent Study.

HIST 4020-3. Capstone: Comparative History. Explores historical themes from a comparative perspective. As a culmination of the major, it encourages students to think more analytically about historical change. Consult the Registration Handbook and Schedule of Courses to determine the course’s focus each semester. Team-taught by several faculty. Restricted to history majors and minors. Prereq., 12 hours of upper-division history.

HIST 4030-3. History of Slavery: Origins to Present. Examines slavery across the globe from its origins in ancient societies to the present. Includes the legal, social, economic, linguistic, and gender aspects of slavery, among other subjects.

HIST 4050-3. The World War II Era. The World War II era witnessed transformations in the social, political, and economic orders across the globe. Traces the domestic and international developments, including military issues, that shaped the period in Europe, Asia, and the United States and assesses the war’s legacy. Prereq., sophomore standing.

HIST 4930 (1-3). History Internship. Matches selected students with supervised internships in professional archives, research libraries, historical associations, and special projects. Internships have a work and academic (reading and writing) component. Prereq., HIST major of junior standing. Recommended: completion of lower-level HIST course work.

HIST 5010-3. Historiography: Introduction to the Professional Study of History. Covers some of the major historiographical schools and concerns that have emerged during the course of the discipline’s development in Europe and the United States.

HIST 5840 (1-3). Independent Study.

HIST 6500-3. Comparative Labor History. Examines major issues in labor history through comparative study of Europe, the United States, and Latin America. Issues to be studied include working-class formation, the development of worker identities, and workers and the state.

HIST 6940 (1-3). Master’s Degree Candidate.

HIST 6950 (1-6). Master’s Thesis.

HIST 7840 (1-3). Independent Study.

HIST 8990 (1-10). Doctoral Dissertation. All doctoral students must register for no fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of this catalog.

Europe: Ancient and Medieval

HIST 1041-3. War and Society in Ancient Greece. Studies Greek warfare in its cultural, social, and economic contexts, in the light of anthropological comparisons and modern theories. Same as CLAS 1041.

HIST 1051-3. The World of the Ancient Greeks. Surveys the emergence, major accomplishments, failures and decline of the world of the ancient Greeks, from Bronze Age civilizations of the Minoans and Mycenaeans through the Hellenistic Age (c. 2000–30 B.C.). Does not fulfill major requirements. Same as CLAS 1051. Approved for arts and sciences core curriculum: historical context.
HIST 1061-3. The Rise and Fall of Ancient Rome. Surveys the rise of ancient Rome in the eighth century B.C. to its “fall” in the fifth century A.D. Emphasizes political institutions, foreign policy, leading personalities, and unique cultural accomplishments. Does not fulfill major requirements. Same as CLAS 1061. Approved for arts and sciences core curriculum: historical context.

HIST 3841 (1-3). Independent Study.

HIST 4021-3. Athens and Greek Democracy. Studies Greek history from 800 B.C. (the rise of the city-state) to 323 B.C. (the death of Alexander the Great). Emphasizes the development of democracy in Athens. Readings are in the primary sources. Same as CLAS 4021.

HIST 4031-3. Alexander and the Hellenistic World. Focuses first on the careers of Philip of Macedon and his son Alexander and second on the Hellenistic Age, especially its culture, from Alexander’s death (323 B.C.) to the defeat of Cleopatra and Anthony by Octavian in 31 B.C. Same as CLAS 4031.

HIST 4041-3. Classical Greek Political Thought. Studies main representatives of political philosophy in antiquity (Plato, Aristotle, Cicero) and of the most important concepts and values of ancient political thought. Same as CLAS 4041, PHIL 4210, and PSCI 4094. Prereq., CLAS/HIST 1051, CLAS/HIST 1061, HIST 1010, PSCI 2004, or PHIL 3000.

HIST 4061-3. The Twilight of Antiquity. Explores the reasons for the fall of the Roman Empire in the western Mediterranean and its survival in the east by Byzantium. Emphasizes Christianity; barbarians; social, economic, and cultural differences; contemporary views of Rome; and modern scholarship. Same as CLAS 4061.

HIST 4081-3. The Roman Republic. Studies the Roman Republic from its foundation in 753 B.C. to its conclusion with the career of Augustus. Emphasizes the development of Roman Republic government. Readings are in the primary sources. Same as CLAS 4081.

HIST 4091-3. The Roman Empire. Studies Imperial Roman history beginning with the Roman Revolution and ending with examination of the passing of centralized political authority in the western Mediterranean. Emphasizes life, letters, and personalities of the Empire. Same as CLAS 4091.

HIST 4511-3. Social Foundations of European Civilization. Studies social structures of Europe and their relationship to political, religious, and economic institutions, from A.D. 400 to 1500.

HIST 4711-3. History of the Mediterranean World, 1099-1571. Examines Mediterranean civilizations from the First Crusade to the Battle of Lepanto. Topics include the commercial revolution, medieval colonization, the Byzantine and Ottoman states, shipping and navigation, and the “Atlantic threat.” Equal treatment of eastern and western Mediterranean.

HIST 4761-3. Roman Law. Same as HIST 5761 and CLAS 4761.

HIST 5761-3. Roman Law. Same as HIST 4761 and CLAS 5761.

HIST 5841 (1-3). Independent Study.

HIST 6011-3. Readings in Ancient History. Prereq., graduate standing. Same as CLAS 6011.

HIST 7581-3. Latin Paleography. Discusses the development of formal scripts from the late Roman Empire to the 15th century. Provides practice in identification, transliteration, and translation of medieval manuscripts. Prereq., graduate standing and reading knowledge of Latin.

HIST 7841 (1-3). Independent Study.

Europe: Modern

HIST 1002-3. Introduction to Central and East European Studies. Examines major themes in the history of Russia and East-Central Europe since the early modern era, introduces the literature and arts of the region, and presents current political, social, and economic issues. Does not fulfill major requirements. Same as CEES 1000. Approved for arts and sciences core curriculum: historical context.

HIST 2222-3. War and Society in the Modern World. Focuses on war in European and/or American history. Explores the character, origins, and social, political, and intellectual impact of war in contexts ranging from several centuries of international conflict to the experience of individual nations in specific wars. Specific course focus may vary. Does not fulfill major requirements. Approved for arts and sciences core curriculum: historical context.

HIST 3842 (1-3). Independent Study.

HIST 4112-3. Venice and Florence in the Renaissance. Comparative urban study of Florence and Venice from 13th through 16th centuries. Principal subjects are the distinctive economies of the cities, political developments, Renaissance humanism, patronage of the arts, and foreign policy.

HIST 4122-3. Europe During the Renaissance. Explores the history and culture of Western Europe, circa 1300–1520. Comprehensive in scope, with analysis of political, economic, social, religious, intellectual, and artistic matters. Discusses significance of the Renaissance for origins of modern civilization.

HIST 4222-3. War and the European State, 1618-1793. Studies the development of the European states in response to international power struggles in the 17th and 18th centuries (up to the French Revolution). Same as HIST 5222.

HIST 4232-3. The Age of Reason, Montaigne to Voltaire. Studies major European intellectual trends from late 16th century through the Enlightenment.

HIST 4312-3. 19th-Century Europe. Concerned with major social, political, and cultural developments in Europe from circa 1800 to the outbreak of World War I. Special emphasis is placed upon the Napoleonic experience, the rise of modern nationalism, romanticism, Darwinism and its social applications, the Industrial Revolution, imperialism, the emergence of modern ideologies, and the background of World War I. Prereq., junior or senior standing or instructor consent.

HIST 4412-3. 20th-Century Europe. Examines the major political, economic, and social developments in 20th-century Europe, from the origins of the First World War to the disintegration of communism in Eastern Europe. Particular attention is paid to the political and social consequences of the two world wars, and the division, reconstruction, and transformation of Europe after 1945. Prereq., junior or senior standing.

HIST 4422-3. World War I. The Brutalization of Europe. Examines the causes of World War I, the nature of the war itself, and its political, psychological, cultural, and social impacts. Considers the link between World War I and the rise of modern totalitarian movements and ideologies. Prereq., HIST 1020 or 1040.
HIST 5012-3. Graduate Colloquium in European History. Acquaints students with key works in the literature of European history, and addresses matters of method and interpretation. May be repeated for a total of 6 credits. Prereq., admission to the graduate program in history.

HIST 5222-3. War and the European State, 1618-1793. Prereqs., HIST 1010 and HIST 1020 or equivalent; and at least two of the following: HIST 4033, 4133, 4143, 4223, 4232, 4613, or equivalent upper-division graduate courses. Same as HIST 4222.

HIST 5842 (1-3). Independent Study.

HIST 6012-3. Readings in Modern European History.

HIST 7252-3. Seminar: Early Modern Europe, 16th to 18th Centuries.

HIST 7842 (1-3). Independent Study.

Europe: Specific Countries

HIST 1113-3. The History of England to 1660. Deals with Roman, medieval, and early modern periods. Covers the demographic, economic, and social patterns, political and religious developments, and cultural changes that contributed to the formation of the English nation. Does not fulfill major requirements. Approved for arts and sciences core curriculum: historical context.

HIST 1123-3. The History of England, 1660 to Present. Deals with the period from the 17th century to the present. Political, economic, social, and imperial developments that contributed to creation of the modern industrial and democratic state are the major issues covered. Does not fulfill major requirements. Approved for arts and sciences core curriculum: historical context.

HIST 2113-3. Early Modern England (1450–1700). Examines major themes in the history of England during the period of transition between the medieval and modern eras. The kinds of issues to be explored include the Reformation, the Renaissance, popular culture, the roles of women, and the English Civil War. Specific course focus may vary. Does not fulfill major requirements. Approved for arts and sciences core curriculum: historical context.

HIST 2543-3. Medieval Nations. Examines major themes in European national histories during the medieval period: the origins and development of states, social and economic life, religion, and popular culture. Specific course focus may vary. Does not fulfill major requirements. Approved for arts and sciences core curriculum: historical context.

HIST 3133-3. Seminar in Britain since 1688. Restricted to majors. Approved for arts and sciences core curriculum: critical thinking.

HIST 3843 (1-3). Independent Study.

HIST 4063-3. Women in Victorian England. Examines changing roles and status of women in a period of expansion. Studies the impact of industrialization on working women, sexuality, family planning, expansion of women in education, politics and the professions, the single women crisis, and women’s rights. Same as WMST 4063.

HIST 4123-3. Medieval England. Treats the major developments in English history from the Anglo-Saxon period through the 15th century. Emphasizes late medieval English society during the 13th and 14th centuries. Prereq., junior or senior standing.

HIST 4153-3. England in the Age of Revolution, 1688-1832. Deals with major political, social, and economic events and movements between the accession of King James II and the passage of the Reform Act of 1832. Prereq., junior standing or 6 hours of history credit.

HIST 4223-3. Revolutionary France. Examines the two questions most fundamental to any scholarly understanding of the French Revolution: What were the political, social, and cultural causes of revolution in 1789? Why did the French Revolution become increasingly radical after 1789? Prereq., junior standing or 6 hours of history credit.

HIST 4233-3. History of France since 1815. Examines the ongoing struggle between the revolutionary and counter-revolutionary traditions of France and how it shaped the political history and affected the social, cultural, and intellectual character of the nation from 1815 to the present. Prereq., junior standing or 6 hours of history credit.

HIST 4413-3. German History to 1849. Cultural, political, and social history of Germany up to and including the revolutions of 1848. Emphasizes the political history of Prussia and such cultural phenomena as German romanticism.

HIST 4423-3. German History since 1849. Cultural, political, and social history of Germany since 1849. Emphasizes German unification, Bismarckian foreign policy, the rise of neo-romanticism, Weimar politics, and the rise of national socialism.

HIST 4433-3. Nazi Germany. Examines political, social, cultural, and psychological roots of national socialism, the nature of the national socialist regime, and those policies and actions that came directly out of its challenge to values central to Western civilization. Prereq., junior or senior standing.

HIST 4613-3. History of Eastern Europe to 1914. Examines the conquering of the kingdoms of Eastern Europe by the Russian, Prussian, Habsburg, and Ottoman Empires, and the formation of national consciousness among the subject peoples of the region before World War I.

HIST 4623-3. History of Eastern Europe since 1914. Examines the struggle of nations of eastern Europe to assert their independence, from break-up of the imperial system at the end of World War I, through the Soviet bloc which emerged after World War II, to the establishment of democratic governments after the 1989 revolutions.

HIST 4713-3. History of Russia through the 17th Century. Introduces the history and culture of Russia from the 9th to the 17th century. Emphasizes selected topics in social, economic, religious, and cultural history, including the formation of the Russian state conversion to Orthodox Christianity, the Mongol invasion, and the reign of Ivan the Terrible.

HIST 4723-3. Imperial Russia. Surveys major cultural, social, and economic changes
from the reign of Peter the Great through World War I.

HIST 4733-3. The Russian Revolution and the Soviet Regime. Covers in detail the significant social, economic, and political events of Soviet Russia from the February Revolution of 1917 to the present. Prereq., junior or senior standing.

HIST 4803-3. Special Topics in European History. Covers specialized topics in European history, to be specified in the Registration Handbook and Schedule of Courses. May be repeated for a total of 6 credit hours.

HIST 5843 (1-3). Independent Study.

HIST 6113-3. Readings in English History to 1714.

HIST 6123-3. Readings in English History since 1688.

HIST 6413-3. Readings in Modern German History. Prereq., general background in European history.

HIST 7153-3. Seminar: English History, 800-1688. Prereq., background in English or European history.

HIST 7183-3. Interdisciplinary Seminar in British Studies. Introduces students to the methodologies and texts/sources of current work in English literature, history, theatre, art history, and social sciences. Students write a paper based upon the University of Colorado’s distinctive research collections in British studies. Same as ENGL 7899. Prereq., graduate standing.

HIST 7843 (1-3). Independent Study.

Europe: Topical

HIST 3164-3. History and Literature of Georgian England. (Not a seminar course.) Provides interdisciplinary study of England in one of its most vibrant cultural and historical periods. Topics include politics, religion, family life, and the ways contemporary authors understood their world. Same as ENGL 3164. Approved for arts and sciences core curriculum: historical context.

HIST 3844 (1-3). Independent Study.

HIST 4314-3. History of Science from the Ancients to Sir Isaac Newton. History of science from Pre-Socratics to Isaac Newton, underscoring major intellectual themes in scientific thought and the historical context in which they developed. Same as HIST 5314. Approved for arts and sciences core curriculum: natural science, or United States context.

HIST 4414-3. European Intellectual History, 1750-1870. Explores major developments in European thought from the Enlightenment to Nietzsche. Special attention given to the individuals whose ideas have had the greatest influence on modern intellectual history, e.g., Rousseau, Hegel, Herder, Marx, Kierkegaard, Baudelaire, Darwin, and others.

HIST 4424-3. European Intellectual History, 1870-Present. Emphasizes Nietzsche and the youth revolt against middle class society, the literary and artistic avant garde (impressionism to existentialism), the psychoanalytic movement, the European right and left, and post-WW II European thought.

HIST 4434-3. Topics in European Thought to 1900. Enables students to explore an historical theme in pre-1900 Western thought or culture. Theme (varied each semester) is explored in its social context and with reference to contemporary issues.

HIST 4444-3. Topics in European Thought: 20th Century. Focuses on a selected theme in the history of ideas since 1900. Topics vary each term but may include such themes as critical theory, European fascism, and contemporary developments in the philosophy of history.

HIST 4614-3. Women and Society in Industrial Europe. Examines impact of industrialization and related social change on women in modern European history. Topics include work, family, sexuality, and women in movements for social and political change. Prereq., HIST 1020 or equivalent. Same as WMST 4614.

HIST 3844 (1-3). Independent Study.

HIST 5014-3. Law and Legal History in Early Modern Europe. Explores use of legal records as a source for writing not only political and economic history, but social and cultural history as well. Traces the historiographic and methodological trajectory of legal history in early modern European countries. Prereq., graduate standing.

HIST 6414-3. Readings in European Intellectual. Prereq., graduate standing or instructor consent.

HIST 7424-3. Research Methods in Medieval/Early Modern European History. Introduces students to research skills needed to work with historical manuscripts. Students learn to read late medieval/early modern handwriting, explore CU’s microfilmed collections of manuscripts, and write a research paper based on the manuscript materials. Prereq., graduate standing or instructor consent.

HIST 7844 (1-3). Independent Study.

United States: Chronological Periods

HIST 1025-3. History of the United States since 1865. Surveys social, economic, political, and cultural development of the United States from the close of the American Civil War to the present. Also available through correspondence study. Meets MAPS requirement for social science: general and U.S. history. Approved for arts and sciences core curriculum: United States context.

HIST 1035-3. Honors: The United States to 1865. Surveys American history from the first settlement until the end of the Civil War for students with honors standing. Emphasizes reading and discussion of primary sources and interpretations of significant topics of this time period. Students explore critical thinking skills of analysis, evaluation, and interpretation from the historian’s perspective. A student receiving credit for HIST 1015 may not receive credit for HIST 1035. Restricted to freshmen. Prereq., 1200 on SAT, 28 on ACT, or 3.36 GPA in high school. Approved for arts and sciences core curriculum: United States context.

HIST 1045-3. Honors: The United States since 1865. Surveys American history from the Civil War to the present for students with honors standing. Emphasizes reading and discussion of primary sources and interpretations of significant topics of this time period. Students learn critical thinking skills of analysis, evaluation, and interpretation from the historian’s perspective. A student receiving credit for HIST 1025 may not receive credit for HIST 1045. Restricted to freshmen. Prereq., 1200 on SAT, 28 on ACT, or 3.36 GPA in high school. Approved for arts and sciences core curriculum: United States context.

HIST 2015-3. The History of Early America. Examines major themes in the development of colonial societies in North America from the 15th to the early 19th centuries. Explores intercultural relations, economic development, labor systems, religion and society, and family life. Specific course focus may vary. Does not fulfill...
major requirements. Approved for arts and sciences core curriculum: United States context.

HIST 2215-3. The Era of the American Revolution. Explores the foundation of the American republic and promotes an understanding of the social, cultural, and political circumstances that define the era of the American Revolution. Specific course focus may vary. Does not fulfill major requirements. Approved for arts and sciences core curriculum: United States context.

HIST 3845 (1-3). Independent Study.

HIST 4115-3. Natives and Newcomers: Encounters in the New World. Focuses on the first generations of interaction between natives and newcomers in the northern and middle regions of the Americas during the 16th and 17th centuries. Areas include New England, the Chesapeake, Canada, Spanish borderlands, and the West Indies. Prereq., junior standing or successful completion of one lower-division history course.

HIST 4215-3. The Revolutionary War and the Making of the American Republic, 1775–1801. Investigates the Revolutionary War and its impact on the creation of American political institutions, as well as its cultural, social, and economic effects, from the Battles of Lexington and Concord through the inauguration of Thomas Jefferson. Recommended prereq., HIST 1015 or 1035. Same as HIST 5215.

HIST 4235-3. Jacksonian America. Focuses on the social and cultural history of the Jacksonian Era. Issues include the transformation of the market economy, slavery, moral reform, Indian removal, changes in ideas about men’s and women’s natures and roles, western expansion, and political culture.

HIST 4315-3. Civil War and Reconstruction. Describes the forces at work in the ante-bellum period that led to sectional warfare; social, economic, and political changes effected by the war; the American agony of reconstruction; and the long-range results of that difficult era. Prereq., HIST 1015. Approved for arts and sciences core curriculum: United States context.

HIST 4415-3. United States History, 1900–1929. History of the United States during the progressive years, 1900 to 1929, emphasizing social, economic, cultural, and political evolution of the American people and the nation’s role in world affairs.

HIST 4425-3. United States History, 1933–1968. Examines American history, 1933–1968, with attention to domestic and foreign policy issues. Emphasizes the Great Depression, WW II, the cold war, the Korean conflict, and the Truman administration’s Fair Deal.

HIST 4445-3. United States since 1968. Traces political, diplomatic, economic, and social developments in the United States from 1968 to the present. Prereq., junior or senior standing.

HIST 5845 (1–3). Independent Study.

HIST 7485 (1–3). Independent Study.

United States: Topical Courses

HIST 2126-3. Modern U.S. Politics and Diplomacy. Traces the development of contemporary U.S. politics and foreign relations. Examines subjects such as the Cold War, the relationship between foreign and domestic politics, the developing meaning of conservatism, liberalism, and radicalism. Explains the impact of race, gender, class, and immigration. Specific course focus may vary. Does not fulfill major requirements. Approved for arts and sciences core curriculum: United States context or contemporary societies.

HIST 2326-3. Issues in American Thought and Culture. Examines the origins, development, and impacts (social, political, cultural, etc.) of significant ideas and themes in the history of American thought. Topics may include Darwinism, technology, race, success and failure, the social gospel, national mission, and utopia. Does not fulfill major requirements. Approved for arts and sciences core curriculum: United States context.

HIST 2516-3. America Through Baseball. Baseball could not have existed without America. Course explains how the game fit into the larger context of social, cultural, economic, and political history from the nineteenth century to the present. Studies the events and people who made baseball the national pastime. Does not fulfill major requirements.

HIST 2616-3. Women’s History. Examines the history of women in culture and society over time. Particular emphasis on the roles of women in family, economy, society, and politics. Specific course focus may vary. Does not fulfill major requirements. Approved for arts and sciences core curriculum: cultural and gender diversity.

HIST 2746-3. Christianity in American History. Examines the history of religious life in America, with special attention to Protestant and Catholic traditions, as affected by (and affecting) changing historical contexts. Does not fulfill...
major requirements. Approved for arts and sciences core curriculum: United States context.

HIST 2866-3. American History and Film. Teaches students to "read" films as historical documents, with an emphasis on the 20th century. Focuses on selected moments in U.S. history, studying the historical background and viewing and critiquing relevant films. Does not fulfill major requirements. Approved for arts and sciences core curriculum: United States context.

HIST 3656-3. History of Women in Progressive Social Movements. Explores women's involvement in the United States and international peace movements, including feminist and civil rights movements of the 19th and 20th centuries. Students learn research methods by using a variety of primary and secondary sources and writing an original research paper. Restricted to majors. Prereq., WMST 2000 or 2010, or HIST 1015 or 1025. Same as WMST 3656. Approved for arts and sciences core curriculum: critical thinking.

HIST 3846 (1-3). Independent Study.

HIST 4016-3. The Rise and Fall of African Slavery in the New World. Explores the origins, development, and end of slavery in Barbados, Jamaica, Haiti, and Brazil, as well as in the United States. Contrasts the life experiences of slaves under different legal systems and work regimes: Spanish, Portuguese, Dutch, French, and Anglo-American.

HIST 4116-3. U.S. Diplomatic History, 1865-1939. Traces the rise of the United States to world power. Explores the interactions of expansionist and isolationist impulses with politics, ideology, culture, and economics.

HIST 4126-3. U.S. Diplomatic History since 1940. Traces the development of the United States as a superpower. Special attention is paid to the way in which foreign policy was created and the relationship between foreign and domestic affairs.

HIST 4146-3. Military History. Examines America's national defense and war efforts from the Spanish American War to the present, emphasizing causes and consequences of modern conflicts, and the impact of military activities on American society.

HIST 4166-3. The War in Vietnam and Its Legacy. Traces diplomatic, military, cultural, social, and political history of the war in Vietnam from the beginning of U.S. involvement in 1950 to its aftermath in the 1980s. Prereq., junior or senior standing.

HIST 4316-3. The Origins of American Culture, 1600-1830. Traces the development of American culture from its colonial roots to the early decades of the 19th century. Focuses on regional differences in the colonial period, the creation of a new cultural synthesis during the Revolution, and the cultural implications of the Revolutionary legacy. Prereq., HIST 1015.

HIST 4326-3. Health and Disease in the United States. Examines health care and disease patterns in the United States, from the colonial period through the 1980s. Topics include biomedicine and alternative therapies, changing ideas about health and disease, the patient perspective, and financing health care. Recommended prereqs., HIST 1015 and 1025. Approved for arts and sciences core curriculum: United States context.

HIST 4336-3. 19th-Century American Intellectual History. Examines developing intellectual traditions in their social and political contexts. Addresses democracy, religion, transcendentalism, women, race, union or dis-union, the Darwinian revolution, and literary realism and naturalism.

HIST 4346-3. 20th-Century American Intellectual History. Addresses the impacts of political, social, and economic developments on ideas about democracy, science, race, gender, faith, the supposed mission of America, and the role of intellectuals in society.

HIST 4356-3. The Spanish Civil War. Discusses how the Spanish Civil War was a stage for competing cultural and social ideologies, change, idealism and realism, tragedy and triumph, and revolution and conservatism. It also provided a dress rehearsal for World War II. Explores the conflict in its Spanish, European, and global contexts.

HIST 4516-3. U.S. Society in the 19th Century. Concerned with the American family and community in the changing social environments of the 19th century. Examines families of different ethnic and class backgrounds, observing how they are changed by new economic conditions, reform, or new political institutions. Approved for arts and sciences core curriculum: United States context.

HIST 4566-3. 20th-Century United States Labor History. Traces development of an industrial labor force in the United States and focuses on gender, ethnicity, and class. Three major themes covered are transformation of the organization of work, everyday lives of workers, and the role of government. Prereq., junior or senior standing.

HIST 4616-3. History of Women in the United States to 1890. Examines female experience in the United States from 17th-century European colonization to 19th-century settlement of the frontier. Emphasizes comparison between classes, regions, and racial/ethnic groups. Women's writings provide the basis for discussions of private and public roles, definitions of femininity, interpersonal relationships, and struggles for survival and self-expression. Same as WMST 4616. Prereq., junior or senior standing.

HIST 4626-3. History of Women in the United States since 1890. Examines what it means to be female in 20th-century United States, emphasizing comparison between classes and racial/ethnic groups. Women's writings serve as the basis for discussions of private and public roles, definitions of womanhood, interpersonal relationships, and struggles for auton-
omy and equality. Same as WMST 4626. Prereq., junior or senior standing.

HIST 4636-3. Lesbian and Gay History: Culture, Politics, and Social Change in the United States. Considers current theoretical approaches to the history of sexuality and traces the changing meaning of same-sex sexuality in the United States through investigation of lesbian/gay identity formation, community development, politics, and “queer” cultural resistance. Prereq., WMST 2000 and junior or senior standing. Same as WMST 4636.

HIST 4726-3. U.S. Immigration History. Focuses on economic, social, and cultural history of immigration, return migration, and permanent settlement in the U.S. during the 19th and 20th centuries. Examines the ways in which race, class, ethnicity, gender, and sexuality shape social relations.

HIST 5106-3. Graduate Colloquium in United States History. Students gain an acquaintance with major works in the field and discuss current issues of interpretation and methodology. May be repeated for a total of 9 credit hours. Prereq., graduate standing.

HIST 5846 (1-3). Independent Study.

HIST 6146-3. Readings in U.S. Political History. Explores the history of politics in the U.S., with an emphasis on the period since 1865. Key themes include the relations between state and society, the origins and nature of social movements, and the role played by political culture. Prereq., graduate standing.

HIST 6326-3. Readings in United States Intellectual History. Examines the history of ideas and the social history of intellectuals in American society during the 19th and 20th centuries. Stresses social and political dimensions and the changing cultural and institutional contexts of intellectual discourse. Prereq., graduate standing or instructor consent.

HIST 6516-3. Readings in United States Society and Thought, 1800-1880. Prereq., graduate standing or instructor consent.

HIST 6526-3. Readings in U.S. Social History, 1880-1940. Prereq., graduate standing or instructor consent.

HIST 6546-3. Readings in Cultural History and Theory. Introduces standard works and recent developments in cultural history. Explores structuralism and post-structuralism, semiotics, social construction, relativism, hegemony, and the idea of “postmodernity” in the uses of “culture” as an historical category. Prereq., graduate standing or instructor consent.

HIST 6756-3. Race and Nationalism. Focuses on analytical, ideological, cultural, and political tensions between understandings of race and nationalism. Readings are interdisciplinary, but students identify and analyze tensions between race and nationalism at particular historical moments. Prereq., graduate standing or instructor consent.

HIST 7566-3. Research Seminar in Labor History. Explores various issues in U.S. labor history through readings and research projects. Most of the readings are taken from writings on U.S. labor history. Special attention is given to women, immigration, and regional patterns. Research skills emphasized. Prereq., HIST 6536 or instructor consent.

HIST 7846 (1-3). Independent Study.

United States: Topical Courses 2

HIST 1717-3. Introduction to Asian-American History. Introductory-level survey of social history of Asians in America from the 19th century to the present. Primary focus is on delineating and explaining changes that Asian Americans have undergone since their arrival in the United States. Same as AAST 1717. Does not fulfill major requirements. Approved for arts and sciences core curriculum: United States context.

HIST 2117-3. History of Colorado. Emphasizes historical variety and ethnic diversity of Colorado. Along with traditional themes in Colorado history, such as the gold rush, attention is given to Indian and Hispanic activity and culture. Also available through correspondence study. Does not fulfill major requirements. Approved for arts and sciences core curriculum: United States context.

HIST 2537-3. Chicano History. Examines social, economic, political, and cultural history of Americans of Mexican descent and focuses on the heritage of Mexican society and thought, the Mexican-U.S. war, Mexican-American society and thought, and the Chicano movement of the 1960s. Same as CHST 2537. Does not fulfill major requirements. Approved for arts and sciences core curriculum: United States context.

HIST 3847 (1-3). Independent Study.

HIST 4217-3. The American West in the 19th Century. Explores cultural, social, and political interaction in the American west during the 19th century. Themes include environmental change; conflict and syncretism across race, class, and gender lines; and mythic images, and their relationship to the “real” west.

HIST 4227-3. The American West in the 20th Century. Explores cultural, social, and political interaction in the American west during the 20th century. Themes include popular culture, state-federal relationships, environmental change, urbanization, immigration, and cultural formation.

HIST 4267-3. U.S. Mining West. Integrates social, economic, technological, and environmental aspects of industrial mining in the U.S. west. Explores urban development and economic adaptations, mining and reclamation technology, and federal mining law and policies that accompanied the evolution of the industry.

HIST 4327-3. The American Southwest. Focusing on the region’s three main peoples (Indian, Hispanic, and Anglo), emphasizes dynamics of interethnic relations. Indian migrations, Spanish conquest and Indian response, Mexican-Indian interaction, and Anglo domination are among the themes discussed.

HIST 4417-3. Environmental History of North America. Examines how people of North America, from pre-colonial times to the present, organized their lives within the ecologi-
cal systems of the area, how they conceived of their natural world, and how they reshaped their environment according to their human needs. Prereqs., HIST 1015 and 1025.

HIST 4617-3. The Indian in American History: The Eastern Region. Explores pre-European social and cultural developments, long-ev, and continuity of human history in North America. By examining ways in which Indian societies east of the Mississippi River responded to Euro-Americans, the Indians’ role in eastern North American history is demonstrated.

HIST 4627-3. The Indian in American History: The Western Region. Explores the longevity and continuity of human history in North America by discussing pre-European social and cultural developments. By examining ways in which Indian societies west of the Mississippi River responded to Euro-Americans, the Indians’ role in western North American history is demonstrated. Same as AIST 4627.

HIST 4717-3. Chinese-American History. Examines Chinese-American history from 1848 to the present day within context of socioeconomic and political developments in China and the United States. Topics include the Chinese diaspora, immigration to the United States, participation in the economy, the exclusion movement, community development, women, and family. Same as AAST 4717. Prereq., AAST 1015, HIST/AAST 1717, or instructor consent.

HIST 4727-3. Japanese-American History. An overview of the Japanese-American experience in the United States, highlighting pre-WWII processes of immigration, community and family formation, and exclusion, as well as mass incarceration during the 1940s. Same as AAST 4727. Prereq., HIST or ETHN major and junior or senior standing, or instructor consent.

HIST 5847 (1-3). Independent Study.

HIST 6317-3. Readings in the American West. Prereq., graduate standing.

HIST 6417-3. Readings in Environmental History. Offers historical perspective on the complex and interdependent relationship between human social and cultural institutions and the natural world. Considers interdisciplinary methodologies incorporating history, biology, geography, law, and other disciplines. Same as EPOB 6410.

HIST 7847 (1-3). Independent Study.

World Areas: Specific Regions

HIST 1038-3. Introduction to Latin American History. Broad survey of the history of that part of the Western Hemisphere now known as Latin America. Chronologically covers pre-historical period to present. Provides an understanding of the relationship of Latin America to the Western world, and is concerned with Latin American social and political development. Approved for arts and sciences core curriculum: historical context.

HIST 1208-3. Sub-Saharan Africa to 1800. Introduces the peoples of Africa south of the Sahara and some major developments in the region up to 1800 A.D. Approved for arts and sciences core curriculum: historical context.

HIST 1308-3. Introduction to Middle Eastern History. Interdisciplinary course that focuses on medieval and modern history of the Middle East (circa 600 C.E. to the present). Introduces the Islamic civilization of the Middle East and to the historical evolution of the region from the traditional into the modern era. Covers social patterns, economic life, and intellectual trends, as well as political developments. Approved for arts and sciences core curriculum: historical context.

HIST 1608-3. Introduction to Chinese History. Introduces students to Chinese civilization and its historical evolution, from Neolithic period to present. Focuses on social patterns, economic structure, intellectual trends, and political developments. Approved for arts and sciences core curriculum: historical context.

HIST 1708-3. Introduction to Japanese History. A broad interdisciplinary survey of the history of Japan from earliest times to the 20th century. Explores the development of political institutions, social structures, cultural and religious life, economic development, and foreign relations in an historical perspective. Approved for arts and sciences core curriculum: historical context.

HIST 3848 (1-3). Independent Study.

HIST 4118-3. History of Mexico to 1821. Studies Mexican history beginning with roots and evolution of pre-Columbian civilizations and concluding with the events of Mexican independence in 1821. Emphasizes society and culture of the Aztecs and Mayans, the Spanish conquest of Mexico, and the colonial regime of New Spain.

HIST 4128-3. The Emergence of Modern Mexico. The study of Mexican history continues with the establishment of independence in 1821. Examines the upheavals of the Mexican Revolution and culminates with recent events in Mexico. Same as CHST 4128.

HIST 4218-3. States and Societies of West Africa to 1900. Examines the history of West Africa from the earliest times to the 19th century. Prereq., junior standing.

HIST 4258-3. Africa Under European Colonial Rule. Focuses on the political, economic, and social dimensions of colonialism, as well as African nationalism and decolonization.

HIST 4318-3. The Medieval Middle East, A.D. 500–1600. Examines the history of the Middle East from 600 to the early modern period. Attention divided equally between political and economic history, and the arts and sciences characteristic of the civilization of Islam (theology, philosophy, mysticism, etc.).

HIST 4328-3. The Modern Middle East, 1600 to the Present. Primarily from 1800 to the present. Attention divided equally between the region’s political history and international relations and its patterns of economic, social, and cultural modernization in the main countries. Same as HIST 5328.

HIST 4348-3. Topics in Jewish History. Topics vary each semester. Surveys Jewish history from biblical beginnings through the early middle ages. Examines the Torah, prophecy and wisdom, and the origins of Christianity and Rabbinic Judaism.

HIST 4538-3. History of Modern India. Examines the history of India from the British conquest of India in the late 18th century to independence in 1947. Emphasizes the impact of British rule on the political, economic, and social development of modern India. Recommended prereq., at least 6 hours of history credit.

HIST 4628-3. Modern China. Examines China from 1750 to 1949. Focuses on such issues as the influence of imperialism, the emergence of nationalism, and the meaning of revolution. Same as HIST 5628.

HIST 4638-3. Contemporary China. Examines the history of the People’s Republic of China from 1949 to the present. Focuses on such issues as the nature of Maoism, foreign policy, political campaigns such as the Cultural Revolution and the Democracy movement, and recent economic developmental efforts.

HIST 4648-3. History of Modern Chinese Intellectual Thought. Examines major intellectual movements in modern China from Ch’ing neo-Confucianism, empiricism, and nationalism to Chinese communism.

HIST 4718-3. Ancient, Classical, and Medieval Japanese History. Begins with the prehistoric and protohistoric periods. Explores the development of Japan’s classical age and traces the rise and attenuation of elite warrior government.

HIST 4728-3. Modern Japanese History. Begins with early modern Japan, proceeds through the era of rapid modernization after the Meiji Restoration in the mid-19th century, and concludes with Japan’s gradual descent into prolonged war, first with China and then in the Pacific.

HIST 5328-3. The Modern Middle East, 1600 to the Present. Prereq., graduate standing. Same as HIST 4328.

HIST 5848 (1-3). Independent Study.

HIST 6018-3. Readings in Latin American Colonial History. Prereq., graduate standing or instructor consent.

HIST 7848 (1-3). Independent Study.

World Areas: Comprehensive and General

HIST 3849 (1-3). Independent Study.

HIST 4619-3. Women in Asian History. Considers major issues in the history of Asian women in the 18th, 19th, and 20th centuries. Focuses on gender roles in Asian family, state, and religious systems. Same as WMST 4619.

HIST 5849 (1-3). Independent Study.

HIST 6339-3. Natives and Newcomers: New World Encounters, 1500–1775. A comparative analysis of Native American encounters with Europeans and Africans in the period 1500 to 1775. Makes use of archaeological and ethnographic studies of Native Americans and West African societies prior to contact while employing more traditional historical sources for the European cultures from which these explorers and colonists derived. Analyzes the forms and direction of interaction between hosts and intruders. Prereq., graduate standing in history.

HIST 7849 (1-3). Independent Study.

HONORS

Many honors courses are unique to the Honors Program and are not taught each year. To view a complete listing of the course descriptions, please see the web page at colorado.edu/~honors/Home.html.

CLAS 1115-3. Honors—Greek Literature in Translation. Students read about mythological heroes and historical individuals from Achilles to Socrates in Greek literature. Class discusses why the Greeks told stories the way they did and what those stories might have meant to them and might mean to us. Approved for arts and sciences core curriculum: literature and the arts.

HONR 2250-3. The Ethics of Ambition: Styles of Choosing in an Armed World. Through selected readings in classical literature on ethics and through more contemporary readings and films, examines ethical issues relating to the competition of ambitions and the alternative styles of choosing between courses of action in a dangerous world. Uses biographies of those whose lives illustrate both the complexities of the struggles and the profundity of possibilities. Considers the unconscious metaphors of national visions and ambitions, the competing ethics of ends and means, the conflicting ambitions in a pluralistic society, and the transcendent ambitions of visionaries. Same as FARR 2660. Approved for arts and sciences core curriculum: ideals and values.

HONR 3004-3. Women in Education. Honors women in education and their legacy. Introduces women educators, beginning in the late 19th century, whose significant theories of education and work in teaching have had an impact on all of our lives, in history and in society. Examines the educational theories and methods of several representative women educators and analyzes them through an investigation of their professional and personal lives. Same as WMST 3004. Approved for arts and sciences core curriculum: cultural and gender diversity.

HONR 4025-3. Heroines and Heroic Traditions. Given recent controversies about the roles of women in power, e.g. redefinition of the role of the First Lady, questions of women in combat, etc., this course re-evaluates heroic traditions as the stories that ground our sense of public endeavor. What do we mean by heroic? What is a heroine? Are heroines different from heroes? Course attempts to answer these questions by reading several texts from various heroic traditions and comparing them to modern retellings by female authors. Approved for arts and sciences core curriculum: cultural and gender diversity.

HONR 4510-3. Animal Locomotion. Leonardo da Vinci observed birds and tried to build a human-powered flying machine but was unsuccessful. Partial success of this dream occurred at Kitty Hawk with the Wright brothers’ full success and with the Gossamer Condor built by Paul MacCready in 1976. A California condor and the black footed albatross are soarers (gliders) but they have drastically different wing designs. Why? A hummingbird flies using the same principles as a helicopter uses. Class discusses the physical, chemical, physiological, and fluid dynamical mechanisms used by a variety of living systems for locomotion.

HUMANITIES

See Comparative Literature and Humanities.

INTERNATIONAL AFFAIRS

IAFS 1000-4. Global Issues and International Affairs. Introduces students to the international affairs program. Examines political and economic development in several countries in many different world regions, historical trends and development, and current political and economic issues. Approved for arts and sciences core curriculum: contemporary societies.

IAFS 3000-3. Special Topics in International Affairs. Senior level “umbrella” seminar spanning a variety of topics relevant to the study of international affairs. Subjects addressed vary according to student interest and faculty availability. May be repeated for a total of 6 credit hours. Prereq., junior or senior standing.

IAFS 4500-3. The Post-Cold War World. A capstone course for international affairs majors. Examines the ways in which the end of the Cold War affected world politics. Studies how peoples, governments, and nongovernmental organizations faced new social, political, and economic challenges as issues of military confrontation and the danger of nuclear war between the superpowers faded. Includes discussion, oral reports, critical book reviews, and research papers. Prereqs., IAFS 1000 and junior standing. Approved for arts and sciences core curriculum: critical thinking.

IAFS 4700-3. Global Perspectives and Political Philosophy. Preparation and discussion of selected political philosophies from various regions around the world including Islamic fundamentalism, Confucianism, traditional African ideolo-
gies, and Enlightenment. A critical review of these approaches forms the basis for a comparison of the corresponding political systems.

IAFS 4800-3. Honors Seminar in International Affairs. This is a directed research course tailored to the particular research interests of the students enrolled. Devoted to research methodology and the development of students' research. Prereq., 3.50 GPA. Approved for arts and sciences core curriculum: critical thinking.

IAFS 4810-3. Honors in International Affairs 2. Includes writing and discussion of student-selected topics in international affairs. Critically reviews the major methodological and conceptual features of the discipline. Students prepare their honors papers in seminar.

IAFS 4900 (3-6). Independent Study in International Affairs. Provides an opportunity to earn academic credit for learning outside the formal class structure. Students interested in doing in-depth research propose a research project to a faculty sponsor and then work closely with that person to produce a piece of original research. Prereq., upper-division standing, GPA of 3.00 or better, grade of C or better in all lower-division courses, and at least 6 upper-division courses.

IAFS 4930 (3-6). Internship in International Affairs. Working individually under the guidance of a public or private organization, students are assigned to projects selected for their academic suitability. Written assignments occur throughout the semester. Prereq., departmental approval.

INTERNATIONAL AND NATIONAL VOLUNTARY SERVICE TRAINING (INVST)

INVST 1000-4. Responding to Social Problems: An Introduction to Service Learning. By integrating course work with community experience, students study social problems and possible solutions. They examine critically how social problems are shaped by cultural values, and explore how alternative value paradigms affect the definition of the problem and the approaches taken to solve it. Through critical analysis, students begin to envision new social possibilities. Admission to INVST not required for enrollment. Approved for arts and sciences core curriculum: ideals and values.

INVST 3302-3. Facilitating Peaceful Community Change. Students gain knowledge and skills that enable them to become effective organizers and facilitators of community goals. Focuses on understanding the processes of community building and fostering grass-roots democracy with a multicultural emphasis. Students are encouraged to apply concepts to life experiences and to examine themselves as potential change agents. Theory and summer experience are integrated. Prereq., INVST 3912.

INVST 3912-1. The Practice of Facilitating Peaceful Community Change. Explores and integrates topics and skills related to facilitating peaceful community change with service activities of INVST Intern Plus. Through an experiential format, students learn to be more effective organizers and facilitators of community initiatives. Prereq., admission to INVST. Coreq., INVST 3302.

INVST 4033 (3-4). Implementing Social Change. Students examine how changes are initiated within organizations and communities. They learn methods of responsible and effective leadership, conduct sector analyses of organizations and communities, and assess changes within them in terms of their function and structure. Students gain an understanding of the probable nature of relationships between social action and outcomes. Theory and summer experience are integrated. Prereq., INVST 3302. Coreq., INVST 4034.

INVST 4034-1. The Practice of Implementing Social Change. Explores and integrates topics and skills related to implementing social change with service activities of INVST Intern Plus. Through an experiential format, students learn techniques for social action and organization. Prereq., INVST 3912. Coreq., INVST 4033.

INVST 4732-3. Critical Thinking in Development. Requires students to critically evaluate explanations, presented in assigned or optional readings or in student papers, on the success or failure of development and policy proposals for facilitating development. Prereq., ECON 2010 and 2020, PSCI 2012 or IAFS 1000, and one upper-division PSCI course. Same as PSCI 4732 and similar to PSCI 4012. Coreq., INVST 4734. Approved for arts and sciences core curriculum: critical thinking or contemporary societies.

INVST 4734-1. The Practice of Critical Thinking in Development. Explores and integrates topics and skills related to critical thinking in development with service activities of INVST Intern Plus. Through an experiential format, students learn techniques for social action and organization. Prereq., INVST 4732. Coreq., INVST 4734.

INVST 4914-3. Democracy and Nonviolent Social Movements. Explores theories of democracy and development engendered and tested by movements for nonviolent social change in different settings. Focuses on means and ends, spirituality, leadership, decision-making, civil society, cooperative economics, ecology, and decentralized power. Same as SOCY 4115. Coreq., INVST 4915.

INVST 4915-1. Democracy and Nonviolent Social Movements Practicum. Explores and integrates topics and skills in nonviolent social movements with service activities of INVST Community SOL Projects. Through an experiential format, students learn nonviolent social change techniques and tactics. They also explore their professional development as community leaders. Prereq., INVST 4734. Coreq., INVST 4914.

INVST 4999-3. Teaching Social Justice through Service Learning. Service-learning teaching practicum under the supervision of an INVST instructor. Explores teaching strategies for implementing concrete educational goals. Focusing on the issues of social justice and social change, higher levels of creativity and analysis are encouraged among students. Prereq., 16 credits of required core INVST program courses with at least a B-.

KINESIOLOGY AND APPLIED PHYSIOLOGY

KAPH 1010-3. Introduction to Kinesiology. Introduces the scientific foundation of kinesiology (the study of human movement and performance). Includes historical development of the discipline and introduces students to its many facets, including anatomy, biomechanics, exercise physiology, motor development, motor learning, motor control, and social psychological aspects of human performance. Career opportunities in kinesiology also are discussed.

KAPH 1950-3. Introduction to Scientific Writing in Kinesiology. Provides an overview of writing skills and strategies, emphasizing those most important to the sciences, especially kinesiology. Focuses on fundamental skills, objective analysis, and scientific persuasion, with attention to clear organization and style, academic and scientific mechanics, and distinctions between audiences. Meets MAPS requirement for English. Approved for arts and sciences core curriculum: written communication.

KAPH 2700-3. Introduction to Statistics and Research in Kinesiology. Introduces types of statistics and research, methods of accomplishing research, and skills necessary to read and interpret research in the field of kinesiology. Restricted to kinesiology majors.

KAPH 2910 (1-3). Practicum in Kinesiology. Offers practical experience in organized situations with direct supervision. May be repeated for a maximum of 3 credit hours. Prereq., instructor consent.
KAPH 3420-3. Nutrition, Health, and Performance. Highlights basic principles of nutrition and their relationship to health. Students may not receive credit for both KAPH 3420 and PSYC 2062. Prereq., junior standing (pre-nursing students are exempt). Approved for arts and sciences core curriculum: natural science.

KAPH 3700-3. Scientific Writing in Kinesiology. Presents guidelines for language, style, and format in scientific writing. Provides practice in writing preparation techniques including library searches, outlining, and computer use. Critiques research articles on issues of kinesiology. Provides students with experience in writing, editing, and revising review and research papers. Restricted to kinesiology majors. Prereq. or coreq., at least one upper-division kinesiology core course. Approved for arts and sciences core curriculum: written communication.

KAPH 4010 (1-3). Seminar in Kinesiology. Introduces a small group of students to current research topics in kinesiology, evaluation of current research, and discussion of critical issues. May be repeated for a total of 6 credit hours when topics vary. Prereq., junior or senior standing.

KAPH 4100-2. Colloquium in Current Kinesiology. Offers a general research seminar experience for upper-division kinesiology majors. Emphasizes integrating research topics from all areas of kinesiology and promoting faculty-student research interaction. Also focuses on developing fundamental research skills and science-based critical thinking. May be repeated for a total of 6 credit hours. Prereqs., KAPH 1010, 2700, and junior standing. Same as KAPH 5100.

KAPH 4540-5. Biomechanics. Studies biomechanical and anatomical concepts serving as basis for analysis of movement. In addition, presents the applications of these principles to work, general physical activity, sports performance, and physical medicine. Restricted to kinesiology majors. Prereqs., EPOB 3420, KAPH 1010 and 2700, MATH 1300 or 1310 or APPM 1350, and PHYS 2010.

KAPH 4560-3. Quantitative Analysis in Kinesiology. Confronts various issues concerning measurement techniques associated with the assessment of kinesiological parameters. Prereqs., KAPH 1010 and 2700, junior standing, and KAPH major standing. Approved for arts and sciences core curriculum: critical thinking.

KAPH 4650-5. Physiological Kinesiology. Examines physiological adjustments that occur in selected organ systems with acute and chronic exercise. Topics center on the physiological mechanisms pertaining to metabolic, cardiovascular, respiratory, and hormonal alterations. Restricted to kinesiology majors. Prereqs., EPOB 3430, and KAPH 1010 and 2700. Prereq. or coreq., EPOB 3420. Same as KAPH 5600.

KAPH 4660-3. Selected Topics in Exercise Physiology. Covers specific exercise physiology topics such as cellular causes of fatigue and muscle soreness, heart disease, regulation of blood flow, diabetes, aging, training adaptations, exercise at high altitudes, ergogenic aids, and excitation-contraction of muscles. Prereq., KAPH 4650. Approved for arts and sciences core curriculum: critical thinking.

KAPH 4720-4. Sensorimotor Neuroscience. Focuses on the neurological and muscular factors involved in the control movement and the factors that effect the learning of motor skills. Restricted to kinesiology majors. Prereqs., KAPH 1010 and 2700, and PSYC 1001. Prereq. or coreq., EPOB 3420. Same as KAPH 5720.

KAPH 4730-3. Motor Control. Examines the central and peripheral neural structures responsible for the control and coordination of human movement. Theories of motor control are also investigated from a behavioral and biomechanical view. Concepts in reflexive and voluntary movement control are emphasized. Prereqs., KAPH 2700, 4720, or instructor consent. Same as KAPH 5730.

KAPH 4750-4. Psychological Kinesiology. Examines theoretical concepts and current research concerning psychological phenomena as they relate to motor performance, exercise, and sport. Topics include a scientific approach to studying movement behavior, arousal, anxiety, personality, group dynamics, modeling, efficacy, and exercise adherence. Restricted to kinesiology majors. Prereqs., PSYC 1001 and KAPH 1010 and 2700. Same as KINE 5750.

KAPH 4760-3. Critical Thinking in Motor Behavior. Focuses on critical analysis of re-search concerning psychological phenomena as they relate to motor performance, exercise, and sport. Topics include a scientific approach to studying movement behavior, arousal, anxiety, personality, group dynamics, modeling, efficacy, and exercise adherence. Restricted to kinesiology majors. Prereqs., KAPH 4750 or equivalent. Same as KAPH 5760.

KAPH 4770-3. Exercise and Sport Psychology. Examines psychological factors as they relate to motor performance, exercise, and sport. Current theoretical concepts and research are examined. Projects and presentations are required. Prereq., KAPH 4750 or equivalent.

KAPH 5100-2. Colloquium in Current Kinesiology. May be repeated for a total of 6 credit hours. Prereq., graduate standing. Same as KAPH 4100.

KAPH 5550-3. Biochemical Basis of Exercise. Examines the underlying biochemical mechanisms that are responsible for the physiological adaptations to short- and long-term dynamic exercise. Prereq., one year of chemistry. Prereq. or coreq., KAPH 4650 or instructor consent.

KAPH 5600-5. Physiological Kinesiology. Same as KAPH 4650.

KAPH 5640-3. Clinical and Exercise Electrocadioigraphy. Involves lectures and laboratory practice in recognition and evaluation of normal and pathological electrical activity of the heart as demonstrated by the electrocardiogram. For graduate students who monitor laboratory physiological testing and/or pre-scriptive exercise programs in laboratory settings. Prereqs., KAPH 4650 and EPOB 3430.

KAPH 5650-2. Cellular Kinesiology Research Seminar. Focuses on the cellular adaptations of the heart to physiological and pathophysiological stress. Discusses and critiques weekly reviews of current research articles in the area. Identifies contemporary research techniques. Prereqs., exercise physiology (or equivalent), one semester of calculus, and instructor consent.

KAPH 5700-3. Exercise and Sport Psychology. Examines psychological factors as they relate to motor performance, exercise, and sport. Current theoretical concepts and research are examined. Projects and presentations are required. Prereq., KAPH 4750 or equivalent.

KAPH 5720-4. Neuromuscular Kinesiology. Same as KAPH 4720.

KAPH 5730-3. Motor Control. Examines central and peripheral neural structures responsible for the control and coordination of human movement, and investigates theories of motor control from a behavioral and mechanical view. Same as KAPH 4730.

KAPH 5750-4. Psychological Kinesiology. Same as KAPH 4750.

KAPH 5800-5. Advanced Statistics and Research Methods in Kinesiology. Focuses on how descriptive, correlational, and inferential statistics apply to kinesiological data. Provides instruction and experience in using related computer programs and examines the many considerations involved in kinesiological research methods. Prereq., KAPH 2700.

KAPH 5840 (1-3). Graduate Independent Study. May be repeated for a total of 7 credit hours.

KAPH 6010 (1-3). Seminar. Presents special topics in kinesiology.

KAPH 6020 (1-3). Seminar. Presents special topics in kinesiology. May be repeated for a total of 6 credit hours.

KAPH 6100 (1-3). Independent Study—Doctoral. Mentor-supervised academic experience designed to develop and enhance the professional/research skills of the doctoral candidates from the department.

KAPH 6610-3. Controversies in Exercise Physiology. Discusses controversial topics in exercise physiology and biochemistry. Critically analyzes the physiological mechanisms, significance, and responses of each topic. Students participate in scientific debates and article critiques. Prereq., KAPH 4650.

KAPH 6620-3. Current Topics in Exercise Physiology. Presents and evaluates relevant issues in the field of exercise physiology; conducted in a seminar format. Prereq., KAPH 5600. May be repeated for a maximum of 9 credit hours.

KAPH 6640-3. Systematic Cardiovascular Regulation. Seminar course focusing on systematic control of the cardiovascular system at rest and in response to acute and chronic pathological states such as exercise. Primary emphasis on the human cardiovascular system in health, chronic disease, and normal aging. Prereq., Anatomy and Physiology: Exercise Physiology.

KAPH 6830-3. Professional Skills for the Research Scientist. Focuses on delineation of research problems, types of research, design of experiments, specific research procedures and tools, and instruction in preparation of proposals, research papers, and theses.

KAPH 6840 (1-3). Research Project. Involves a scholarly investigation of a selected topic utilizing literature and/or experimental techniques. Advisor required. May be repeated for a total of 7 credit hours.

KAPH 6940-3. Master’s Degree Candidate.

KAPH 6950 (1-6). Master’s Thesis.

KAPH 8990 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the graduate school portion of the catalog.

LESBIAN, GAY, BISEXUAL, AND TRANSGENDER STUDIES

LGBT 2707-3. Introduction to Lesbian, Bisexual, and Gay Literature. Offers students at sophomore and junior levels an introduction to some of the forms, concerns, and genres of contemporary lesbian, bisexual, and gay writing in English. Prereq., sophomore standing. Same as ENGL 2707.

LGBT 4287-3. Studies in Lesbian, Gay, Bisexual, and Transgender Literature. Examines selected British, American, and French literary representations of lesbian and gay identity from the early 16th century to the present. Discusses the changing status of homosexuality as a literary and cultural topos, including how same-sex desire is defined, and the rhetorical and ideological difficulties involved in its representation. Specific topics vary each semester. Prereq., junior standing. Same as ENGL 4287.

LINGUISTICS

LING 1000-3. Language in U.S. Society. Nontechnical exploration of the ways that language is used in America. Emphasizes language as a social institution and how values and goals of both public institutions and private groups shape and are shaped by language and its use. Meets MAPS requirement for social science: general. Approved for arts and sciences core curriculum: United States context, or contemporary societies.

LING 1500-3. Basic Traditional Grammar. Presents fundamentals of grammar in the Western tradition. Emphasizes making concepts and uses of grammar (as exemplified in English and closely related foreign languages) understandable to the nonspecialist.

LING 2000-3. Introduction to Linguistics. Introduces the study of languages as structural systems. Principles of sound patterns, word formation, meaning, and sentence structure. Gives attention to language acquisition, psycholinguistics, language families, dialects, historical change in languages, and different language types. Meets MAPS requirement for social science: general.

LING 2400-3. Language and Gender. Familiarizes students with the effects of gender on language use; discusses popular beliefs and scholarly theories about language and communication. Provides students with tools for exploring the role of language and gender. Approved for arts and sciences core curriculum: cultural and gender diversity.

LING 3100-3. Language Sound Structures. Introduces the sounds of languages and their organization into phonological structures. Prereq., LING 2000 or equivalent.

LING 3220-3. American Indian Languages in their Social and Cultural Context. A sampling of the many languages and cultures found in America before Columbus. Emphasizes those living in what eventually became the United States, but also gives attention to the languages and higher civilizations of Latin America. Prereq., junior standing. Approved for arts and sciences core curriculum: cultural and gender diversity.

LING 3500-3. Language and the Public Interest. Studies language in public and private
use, concentrating on semantic devices as found in language of political propaganda, advertising, business, and government, as well as everyday use of language between people.

LING 3545-3. World Language Policies. Examines the economic and sociopolitical impact of choosing English vs. other languages in the U.S. Introduces the study of language policies, rights, and planning in other countries, including the world-wide use of English in social, business, and legal contexts.

LING 3800 (1-4). Special Topics in Linguistics. Intensive study of a selected area or problem in linguistics. May be repeated for a total of 7 credit hours.

LING 4040-3. Linguistics for TESEAL. Introduces linguistics for students in the East Asian Languages and Civilizations’ TESEAL track. Lecture is same as LING 2000, but recitation assignments focus on East Asian languages. May not be taken by linguistics majors (undergraduate or graduate). Coreq., EALC 5950.

LING 4100-3. Perspectives on Language. Provides extended critical examination of a few selected issues, chosen each term for their general interest and relevance, e.g., the relation between language and thought, or human language vs. animal languages and computer languages. Prereq., LING 2000 or equivalent, and junior or senior standing. Approved for arts and sciences core curriculum: critical thinking.

LING 4220-3. Language and Mind. Studies processes of perceiving speech and interpreting it as meaningful and of expressing communicative intentions as utterances. Emphasizes roles of the brain and of perceptual and motor systems. Writing, gestural, and animal communicative systems are also treated. Prereq., LING 2000 and PSYC 1001, or instructor consent. Same as PSYC 4220.

LING 4420-3. Morphology and Syntax. Introduces principles of word formation and sentence structure. Covers major morphological and syntactic structures found in the world’s languages, and methods for describing grammatical structures, and includes practice in analyzing data from a variety of languages. Prereq., LING 2000 or equivalent. Same as LING 5420.

LING 4560-3. Language Development. Emphasizes acquisition of language by young children; development in later years and into adulthood is also treated. Particular attention given to roles of environment and of neurophysiological endowment in learning to communicate with words, sentences, and narratives. Prereq., LING 2000 and PSYC 1001. Same as SLHS 4560 and PSYC 4560.

LING 4800-3. Language and Culture. Principles of language structure and how language and culture interrelate; how language and language use are affected by culture; and how culture may be affected by use of, or contact with, particular languages. Prereq., junior standing. Same as ANTH 4800.

LING 4810-3. Senior Seminar in Linguistics. Topics vary from year to year, depending on interest of faculty and prospective students. Offerings are at intermediate level of difficulty.

LING 4830-3. Honors Thesis. Required for students who elect departmental honors. Students write an honors thesis based on independent research under the direction of a faculty member. May be repeated for a total of 7 credit hours.

LING 4900 (1-3.) Independent Study. May be repeated for a total of 7 credit hours.

LING 5200-3. Introduction to Computational Corpus Linguistics. Covers computer methods for doing linguistics with on-line corpora. Includes extensive introduction (with lab) to the PERL programming language, UNIX corpus tools, Concordance/KWIC programs, syntactic treebanks, and corpora for discourse and phonetics research. Segment on corpus design covers SGM/L tools and theoretical issues in transcription. Prereq., graduate standing or instructor consent.

LING 5300-3. Research in Psycholinguistics. After a general introduction to issues and research methods in psycholinguistics (language production and comprehension, language and cognition, language acquisition), several major current research topics, such as models of speech production, and theories of brain specialization for language, are explored. Prereq., at least one graduate-level course in linguistics.

LING 5430-3. Semantics and Pragmatics. Explores fundamental concepts of semantics and pragmatics, including theories of communication and meaning representation, conversational implicatures, speech acts, and discourse structure. Prereq., LING 5420 or instructor consent.

LING 5450-3. Introduction to Formal Syntax. Introduces the use of formal models of syntax in the study of language. Surveys the motivation, claims, and influence of the most widely used models. One model is chosen as a framework for the study of methodology. Prereq., graduate standing.

LING 5570-3. Introduction to Diachronic Linguistics. Familiarizes students with terminology, methods, and theories dealing with phenomena of language change through time. Prereq., LING 5410 or instructor consent.

LING 5610-3. English Structure for Teachers of English to Speakers of Other Languages. Prereq., graduate standing. Same as LING 4610.

LING 5832-3. Natural Language Processing. Explores the field of natural language processing as it is concerned with the theoretical and practical issues that arise in getting computers to perform useful and interesting tasks with natural language. Covers the problems of understanding complex language phenomena and building practical programs. Prereq., graduate standing or instructor consent. Same as CSCI 5832.

LING 5900 (1-3). Independent Study. May be repeated for a total of 7 credit hours.

LING 5950-1. Perspectives on East Asian Languages. Readings and discussion of issues in contrastive linguistics, cultural differences, linguistic analysis, and methodological issues related to the teaching of English to speakers of East Asian languages. May be repeated for a total of 6 credit hours.

LING 6000-3. Linguistics for Cognitive Science. Surveys linguistics for doctoral students, especially those in the cognitive science disciplines. Covers the phenomena studied by linguists (sound systems, grammar, meaning and function, language use, and language change) and the theoretical approaches linguists take to these phenomena. Not open to graduate students in linguistics. Prereq., graduate standing or instructor consent.

LING 6300-3. Topics in Language Use. Discusses current issues and research in a selected area related to language use and function. Sample topics include conversational interaction, language policy, language content, and sociolinguistic variation.

LING 6510-3. Language Structures. Surveys the structure of one or more languages, emphasizing understanding how parts of the lan-
guage interact. Designed to supplement courses in which parts of languages are used to illustrate theoretical claims. Prereqs., LING 5410 and 5420.

LING 6520-3. Topics in Comparative Linguistics. Students compare and contrast selected structures of languages treated from a typological, genetic, or areal perspective. No special prior knowledge of the subject language is required. Prereqs., LING 5410, 5420, and 5570, or equivalent.

LING 6940 (1-3). Master’s Degree Candidate.

LING 6950 (1-6) Master’s Thesis.

LING 7000-3. Methods of Typological Research 1. Research practicum that provides experience in discovering generalizations about language from observations over a sample of individual languages. Students practice the steps in such research from formulation of research questions to preliminary sketch of results under close faculty supervision. Prereqs., LING 5410, 5420, and 5570; or equivalent.

LING 7100-3. Field Methods 1. Introduces the process of discovering structure of a language from data obtained directly from its speakers. Emphasizes effectiveness in the field context, rapid recognition of structural features, and preliminary formulation using computational tools. Prereqs., LING 5410 and 5420, or equivalent.

LING 7110-3. Field Methods 2. Continuation of LING 7100. Students continue field investigation of the same language, further applying the techniques introduced in LING 7100, but they are expected to undertake a deeper analysis of one aspect of the language structure. Prereq., LING 7100.

LING 7200-3. Computational Methods in Linguistics. Computational speech and text corpora analysis (search tools, statistics, script writing), foundations of linguistics theory (regular and context-free grammars, the Chomsky hierarchy), and an overview of common algorithms (transduction, parsing, connectionism). Prereq., CSCI 1200 or basic computer programming ability.

LING 7250-3. Research Methods in Language Development. Covers advanced methods of conducting research in language development and acquired disorders. Students design a research project that includes elicitation tasks, transcription, and data coding and analysis. Child language data archives and computer-based analysis programs are explored. Same as SLHS 7250. Prereq., LING/PSYC/SLHS 4560 or instructor consent.

LING 7420-3. Syntactic Theory. Covers various topics in syntactic theory. May be repeated for a maximum of 9 credit hours with instructor consent. Prereq., LING 5420 or equivalent.

LING 7430-3. Semantic Theory. Current developments in the theory of linguistic semantics. Topics include truth-conditional theories, generative linguistic theories, semantic theories of communicative competence, and integration of these theories in development of a combined theory of semantics and pragmatics. Prereq., LING 5430 or instructor consent.

LING 7762-1. Readings in Cognitive Science. Prereq., graduate standing. Same as PSYC 7762, EDUC 6505, PHIL 7310, and CSCI 7762.

LING 7800-3. Open Topics in Linguistics. Prereq., instructor consent.

LING 7900 (1-3) Independent Study. May be repeated for a total of 7 credit hours.

LING 8430-3. Seminar: Topics in Semantic Theory. Devoted to particular topic in semantic theory, such as place and nature of the lexicon in linguistic theory, a particular semantically based theory of general linguistics (e.g., Montague grammar), or some aspect of lexicology (e.g., dictionaries). Prereq., LING 7430 or instructor consent.

LING 8540-3. Seminar: Language Variation. Selected topics on the systematic variation of language. Relative emphasis on contextual, geographical, stylistic, and social variation differs from offering to offering. Prereq., instructor consent.

LING 8560-3. Seminar: Issues in Language Acquisition. In-depth exploration of current issues in language acquisition, through readings and through analyses of audio- and videotapes of young children. Course topics vary; sample topics are syllable structure, development of morphological markers, and development of locative structures. Prereq., LING 7560 or instructor consent.

LING 8990 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of this catalog.

English as a Second Language

Students may not apply ESLG course work toward minimum degree requirements. Students may, although they are not required to, take ESLG 1110, 1210, and 1310 as a sequence.

ESLG 1110-3. Spoken English for Foreign Students. Oral drills with goal of promoting fluency and listening comprehension. Does not fulfill humanities or major requirements.

ESLG 1120-3. Advanced Spoken English for Foreign Students. Continued practice in speaking and listening comprehension, with attention to grammar and pronunciation as well as meaning and appropriateness. Does not fulfill humanities or major requirements.

ESLG 1210-3. Written Composition for Foreign Students. Distinction between spoken and written English emphasizing grammar and vocabulary of the latter. Does not fulfill humanities or major requirements.

ESLG 1220-3. Advanced Written Composition for Foreign Students. Continued work on grammar and vocabulary but with greater focus on the mechanics of writing and organization of material for longer connected discourse. Does not fulfill humanities or major requirements. Prereq., ESLG 1210 or instructor consent.

ESLG 1310-3. Intermediate Applied English Structure for Foreign Students. Instruction and practice at the non-beginning level in colloquial and written American English. Intended for foreign students requiring additional study to become competent in English for most university needs. Does not fulfill humanities or major requirements.

ESLG 1320-3. Advanced Applied English Structure for Foreign Students. Instruction and practice at the advanced level in colloquial and written American English. Intended for foreign students needing additional study of English to function to the best of their ability in a university. Does not fulfill humanities or major requirements.

MATHEMATICS

After completing one semester of calculus with a grade of C (2.00) or better, no math major may receive credit in any mathematics course numbered below 1300. No student may obtain more
than 9 hours of credit in mathematics courses numbered below 1300. A grade of C- or above is required for all prerequisite courses.

MATH 1012-3. Quantitative Reasoning and Mathematical Skills. Promotes mathematical literacy among liberal arts students. Teaches basic mathematics, logic, and problem-solving skills in the context of higher level mathematics, science, technology, and/or society. This is not a traditional math class, but is designed to stimulate interest in and appreciation of mathematics and quantitative reasoning as valuable tools for comprehending the world in which we live. Same as QRMS 1010. Meets MAPS requirement for mathematics. Approved for arts and sciences core curriculum: quantitative reasoning and mathematical skills.

MATH 1110-3. The Spirit and Uses of Mathematics 1. For liberal arts students and prospective elementary teachers. Includes a study of problem-solving techniques in mathematics, the uses and role of mathematics in our society, and the structure of our familiar number systems. Additional topics are chosen from number theory, ancient numeration systems, computer science, modern geometry and algebra, and elementary logic. Prereqs., one year of high school algebra and one year of plane geometry. The combination MATH 1110 and 1120 is approved for arts and sciences core curriculum: quantitative reasoning and mathematical skills.

MATH 1120-3. The Spirit and Uses of Mathematics 2. Continuation of MATH 1110. Prereqs., one year of high school algebra and one year of plane geometry. The combination MATH 1110 and 1120 is approved for arts and sciences core curriculum: quantitative reasoning and mathematical skills.

MATH 1150-4. Precalculus Mathematics. Develops techniques and concepts prerequisite to calculus through the study of trigonometric, exponential, logarithmic, polynomial, and other functions and their applications. Prereqs., one and one-half years of high school algebra. Similar to MATH 1000, 1010, 1020, 1001, 1011, 1021, 1030, and 1040. Students having credit for college algebra and trigonometry may not receive additional credit for MATH 1150. Students with credit for college algebra receive only 2 additional hours credit for MATH 1150. Meets MAPS requirement for mathematics. Approved for the arts and sciences core curriculum: quantitative reasoning and mathematical skills.

MATH 1300-5. Analytic Geometry and Calculus 1. Topics include limits, derivatives of algebraic and trigonometric functions, applications of the derivative, integration, and applications of the definite integral. Students with credit in MATH 1080, 1090, and 1100 receive only 2 credit hours in MATH 1300. Students with credit in MATH 1300 may not receive credit in MATH 1081, 1310, or APPM 1350. Prereqs., two years of high school algebra, one year of geometry, and ½ year of trigonometry or MATH 1000 through 1040. Approved for arts and sciences core curriculum: quantitative reasoning and mathematical skills.

MATH 1310-5. Calculus 1 with Computer Applications. The topics, prerequisites, and credit restrictions are the same as for MATH 1300, but a greater emphasis is placed on synthesizing the geometric, numerical, and algebraic aspects of each concept and on exploring ‘real world’ applications of calculus. Especially recommended for biology majors. Students with credit in MATH 1310 may not receive credit in MATH 1300 or APPM 1350. Prereq., three years of high school math, including trigonometry. Approved for arts and sciences core curriculum: quantitative reasoning and mathematical skills.

MATH 1320-5. Calculus 2 with Computer Applications. Continuation of MATH 1310. Students with credit in MATH 1320 may not receive credit in MATH 2300 or APPM 1360. Prereq., MATH 1310.

MATH 2300-5. Analytic Geometry and Calculus 2. Continuation of MATH 1300. Topics include transcendental functions, methods of integration, polar coordinates, conic sections, improper integrals, and infinite series. Students with credit in MATH 2300 may not receive credit in MATH 1320, APPM 1360, or MATH 2310. Prereq., Calculus 1.

MATH 2380-3. Mathematics for the Environment. An interdisciplinary course where analysis of real phenomena such as acid rain, population growth, and road-killed rabbits in Nevada leads to consideration of various fundamental concepts in mathematics. One-third of the course consists of individual projects chosen by students. Prereq., proficiency in high school mathematics. Same as QRMS 2380. Approved for arts and sciences core curriculum: quantitative reasoning and mathematical skills.

MATH 2400-4. Analytic Geometry and Calculus 3. A continuation of Calculus 2. Topics include vectors, three-dimensional analytic geometry, partial differentiation and multiple integrals, and vector analysis. Students with credit in MATH 2400 may not receive credit in APPM 2350. Prereq., Calculus 2.

MATH 2420-4. Honors Calculus 3. A more challenging continuation of Calculus 2. Emphasizes power series and touches on more advanced topics than the non-honors class. Includes differential equation and vector analysis. Prereq., MATH 2300 or equivalent. Similar to MATH 2400 and APPM 2350.

MATH 2510-3. Introduction to Statistics. Elementary statistical measures. Introduces statistical distributions, statistical inference, and hypothesis testing. Students may not receive credit for both MATH 2510 and MATH 4570/5570. Prereq., two years of high school algebra.

MATH 3000-3. Introduction to Abstract Mathematics. Bridges the gap between lower-division mathematics courses and the more abstract and theoretical upper-division courses. Topics vary but often include informal logic, set theory, relations and functions, axiomatic systems with examples from algebra or geometry, and number systems. Prereq., Calculus 2. Approved for arts and sciences core curriculum: critical thinking.

MATH 3110-3. Introduction to Theory of Numbers. Studies the set of integers, focusing on divisibility, congruences, arithmetic functions, sums of squares, quadratic residues and reciprocity, and elementary results on distributions of primes. Offered each spring. Prereq., Calculus 3.

MATH 3130-3. Introduction to Linear Algebra. Examines basic properties of systems of linear equations, vector spaces, linear independence, dimension, linear transformations, matrices, determinants, eigenvalues, and eigenvectors. Students may not receive credit for both MATH 3130 and APPM 3310. Prereq., Calculus 3.

MATH 3140-3. Abstract Algebra 1. Studies the elementary theory of groups, rings, fields, polynomials, group and ring homomorphisms, and isomorphisms. Prereq., MATH 3000, 3110, 3130, or 3200.

MATH 3200-3. Introduction to Topology. Helps prepare students for MATH 4310 through studying the underlying structure of a space, with particular attention to open and closed sets and continuous functions. Includes basic set theory, metric spaces, Hausdorff spaces, general topological spaces, continuity, limits, homeomorphisms, connectedness, and compactness. Prereq., Calculus 3. Approved for the arts and sciences core curriculum: critical thinking.

MATH 3720-3. Computable Functions. Topics include Turing computers, computable functions, the halting problem and noncomputable functions, Church’s thesis, universal machines, Goedel’s incompleteness theorem, and undecidable theories. Prereq., Calculus 2.

MATH 4000-3. Foundations of Mathematics. Focuses on a complete deductive framework for
mathematics and and applies it to various areas. Presents Godel’s famous incompleteness theorem about the inherent limitations of mathematical systems. Uses idealized computers to investigate the capabilities and limitations of human and machine computation. Prereq., one upper-division mathematics course.

MATH 4120-3. Introduction to Operations Research. Studies linear and nonlinear programming, the simplex method, duality, sensitivity, transportation, and network flow problems, some constrained and unconstrained optimization theory, and the Kuhn-Tucker conditions, as time permits. Prereq., MATH 3130 or APPM 3310. Same as APPM 4120.

MATH 4230-3. Geometry of Curves and Surfaces. Introduces the modern differential geometry of plane curves, space curves, and surfaces in space. Computers are used, but no prior knowledge of computer programming is required. Prereqs., MATH 2400 and 3130.

MATH 4270-3. Computer Geometry. Involves synthetic and analytic projective geometry, especially as applied to depicting mathematical phenomena. Topics may include tangents, envelopes, splines, quadric surfaces, conformal mappings, singular points of surfaces, level curves, vector fields, and polyhedra. Prereqs., Calculus 3, MATH 3130, and CSC 1200.

MATH 4310-3. Introduction to Analysis. Aquaints students with calculus of one variable. Topics include the real number system, continuity, differentiation, sequences and series, convergence, uniform convergence, Taylor’s theorem, and integration. Prereqs., Calculus 3 and MATH 3000 or MATH 3200. MATH 3130 highly recommended.

MATH 4320-3. Multivariable Analysis. Introduces students in calculus of several variables. Topics include continuity, differentiation and integration, implicit function theorem, inverse function theorem, and if time permits, Fourier series. Prereqs., MATH 4310, and either MATH 3130 or APPM 2360.

MATH 4330-3. Fourier Analysis. The theory of Fourier analysis, via series and integrals, of periodic and nonperiodic phenomena is central to many areas of mathematics. Develops the Fourier theory in depth, and constructs students in calculus of several variables. Topics also include spectral analysis and estimation of the power spectrum using computers. Prereqs., MATH 4510/APPM 3570 and MATH 4520/APPM 4520. Same as MATH 5540 and APPM 4540.

MATH 4450-3. Introduction to Complex Variables. Theory of functions of one complex variable, including integrals, power series, residues, conformal mapping, and special functions. Prereq., Calculus 3.

MATH 4470-3. Introduction to Partial Differential Equations 1. Studies initial and boundary value problems for the wave, heat, and Laplace equations. Also highlights separation of variables method, eigenvalue problems, Fourier series, and orthogonal systems. Prereq., APPM 2360 or MATH 4430.

MATH 4480-3. Introduction to Partial Differential Equations 2. Involves a numerical analysis of partial differential equations, including finite difference methods, finite element methods, and finite spectral methods. Also considers the mathematical settings and analyses of these methods. Examines model problems such as heat equation, convection/diffusion equations, and first-order hyperbolic systems. Prereq., MATH 4470 or equivalent. Same as MATH 5480.

MATH 4510-3. Introduction to Probability Theory. Studies axioms, combinatorial analysis, independence and conditional probability, discrete and absolutely continuous distributions, expectation and distribution of functions of random variables, laws of large numbers, central limit theorems, and simple Markov chains. Prereq., Calculus 3. Credit may not be received for both MATH 4510 and APPM 3570 or for both MATH 4510 and ECEN 3810.

MATH 4520-3. Introduction to Mathematical Statistics. Topics include point and confidence interval estimation. Examines principles of maximum likelihood, sufficiency, and completeness, as well as tests of simple and composite hypotheses, linear models, and multiple regression analysis. Includes various distribution-free methods. Prereqs., MATH 4510, APPM 3570, or APPM 4560. Same as MATH 5520, APPM 4520, and 5520.

MATH 4540-3. Introduction to Time Series. Stresses basic properties, linear extrapolation, and filtering of stationary random functions. Topics also include spectral analysis and estimation of the power spectrum using computers. Prereqs., MATH 4510/APPM 5570 and MATH 4520/APPM 4520. Same as MATH 5540 and APPM 4540.

MATH 4650-3, 4660-3. Intermediate Numerical Analysis 1 and 2. Topics include solution of algebraic and transcendental equations, and linear and nonlinear systems of equations. Highlights interpolation, integration, solution of ordinary differential equations, least squares, sources of error and error analysis, computer implementation of numerical methods, matrix eigenvalue problems, and summation of infinite series. Prereqs., MATH 3130 or APPM 3310; and knowledge of a programming language. Same as APPM 4650 and 4660.

MATH 4730-3. Set Theory. Studies in detail the theory of cardinal and ordinal numbers, definition by recursion, the statement of the continuum hypothesis, simple cardinal arithmetic, and other topics chosen by the instructor. Prereq., Calculus 3 or MATH 3000.

MATH 4800-3. History of Mathematics. Encompasses a selection of topics in the history of mathematics from earliest times to present, emphasizing Greek mathematics, development of calculus in the 17th century, and history of algebra, analysis, and geometry in the 19th and 20th centuries. Prereq., two upper-division courses in mathematics. Same as MATH 5800.

MATH 4890 (1-3). Honors Independent Study. Offered for students doing a thesis for departmental honors.

MATH 4900 (1-3). Independent Study.

Graduate Courses

Undergraduates must have approval of the instructor to take courses numbered 5000 and above.

MATH 5000-3. Foundations of Mathematics. Focuses on foundations used in other graduate courses and for specialization in foundations. Includes equivalence relations, orderings, ordinal and cardinal numbers and arithmetic, axiom of choice; first-order logic, models, truth, compactness and completeness theorems, nonstandard analysis, and infinitesimals; and formulation of Godel’s incompleteness theorem. Prereqs., MATH 3130, 3140, and 4310.

MATH 5120-3. Introduction to Operations Research. Studies linear and nonlinear programming, the simplex method, duality, sensitivity, transportation and network flow
problems, some constrained and unconstrained optimization theory, and the Kuhn-Tucker conditions, as time permits. Prereq., MATH 3130 or APPM 3310. Same as MATH 4120 and APPM 5120.

MATH 5330-3. Fourier Analysis. Same as MATH 4330.

MATH 5430-3. Ordinary Differential Equations. Introduces theory and applications of ordinary differential equations, including existence and uniqueness theorems, qualitative behavior, series solutions, and numerical methods, for scalar equations and systems. Prereqs., MATH 3130 and 4310.

MATH 5440-3. Mathematics of Coding and Cryptography. Same as MATH 4440.

MATH 5470-3. Partial Differential Equations 1. Introduces theory and applications of partial differential equations, including existence, uniqueness, stability, regularity, and solution construction and approximation procedures. Prereq., MATH 4430, or APPM 4350 and APPM 4360, or equivalent. Same as APPM 5470.

MATH 5480-3. Partial Differential Equations 2. Prereq., MATH 4470, 5470, APPM 5470, or equivalent. Same as MATH 4480.

MATH 5520-3. Introduction to Mathematical Statistics. Prereq., one semester of calculus-based probability (MATH 4510, APPM 3570 or 4560). Same as MATH 4520 and APPM 5520.

MATH 5540-3. Introduction to Time Series. Stresses basic properties, linear extrapolation, and filtering of stationary random functions. Topics also include spectral analysis and estimation of the power spectrum using computers. Prereqs., MATH 4510/APPM 3570 and MATH 4520/APP 4520. Same as MATH 4540 and APPM 5540.

MATH 5800-3. History of Mathematics. Prereq., two upper-division math courses Same as MATH 4800. This course does not count toward a graduate degree in mathematics.

MATH 6100-3. Introduction to Number Theory. Examines divisibility properties of integers, congruences, diophantine equations, arithmetic functions, quadratic residues, distribution of primes, and algebraic number fields. Prereq., MATH 3140.

MATH 6150-3. Commutative Algebra. Introduces topics used in number theory and algebraic geometry, including radicals of ideals, exact sequences of modules, tensor products, Ext., Tor, localization, primary decomposition of ideals, and Noetherian rings. Prereq., MATH 6140.

MATH 6170-3. Algebraic Geometry. Introduces algebraic geometry, including affine and projective varieties, rational maps and morphisms, and differentials and divisors. Additional topics might include Bezout’s Theorem, the Riemann-Roch Theorem, elliptic curves, and sheaves and schemes. Prereq., MATH 6140.

MATH 6180-3. Algebraic Number Theory. Introduces number fields and completions, norms, discriminants and different, finiteness of the ideal class group, Dirichlet’s unit theorem, decomposition of prime ideals in extension fields, decomposition, and ramification groups. Prereq., MATH 6110 and 6140.

MATH 6190-3. Analytic Number Theory. Aquaints students with the Riemann Zeta-function and its meromorphic continuation, characters and Dirichlet series, Dirichlet’s theorem on primes in arithmetic progression, zero-free regions of the zeta function, and the prime number theorem. Prereq., MATH 6110 and 6350.

MATH 6210-3, 6220-3. Introduction to Topology 1 and 2. Introduces elements of general topology, algebraic topology, and differentiable manifolds. Prereqs., MATH 3130, 3140, 4310, and 4320.

MATH 6230-3, 6240-3. Introduction to Differential Geometry 1 and 2. Introduces tangent bundles, vector fields, and differential forms. Also emphasizes Frobenius theorem, Riemannian metrics, and selected topics. Prereqs., MATH 5150, 6210 and 6220, 6310, and 6320.

MATH 6330-3 and 8340-3. Functional Analysis 1 and 2. Introduces such topics as Banach spaces (Hahn-Banach theorem, open Riemann equations, complex integration, Cauchy integral theory, infinite series and products, residue theory, conformal mapping, analytic continuation, singularities, elementary special functions. Prereq., MATH 4310.

MATH 6410-3. Calculus of Variations and Control Theory 1. Highlights classical necessary and sufficient conditions with emphasis on the simplest problems, the problem of Lagrange, and Hamiltonian and Lagrangian mechanics. Also examines the problem of optimal control, the maximum principle of Pontriagin, controllability, and applications. Prereq., instructor consent.

MATH 6520-3. Mathematical Statistics. Focuses on mathematical theory of statistics covering distribution theory, estimation and testing of hypotheses, multivariate analysis, and nonparametric inference, all with emphasis on theory. Prereq., MATH 5520 or APPM 5520. Same as APPM 6520.

MATH 6550-3. Introduction to Stochastic Processes. Provides a systematic study of Markov chains and some of the simpler Markov processes, including renewal theory, limit theorems for Markov chains, branching processes, queuing theory, and birth and death processes. Applications to physical and biological sciences. Prereqs., MATH 4510 and 4310, or instructor consent. Same as APPM 6550.

MATH 6710-3. Mathematical Logic 1. Studies first-order logic, completeness theorems, model theory, ultraproducts, Goedel’s incompleteness theorems, and theory of recursive functions. Prereqs., MATH 4710 and 4730, or instructor consent.

MATH 6730-3, 6740-3. Set Theory 1 and 2. Presents cardinal and ordinal arithmetic, generalizations of Ramsey’s theorem, and independence of the axiom of choice and of the generalized continuum hypothesis. Prereqs., MATH 4710 and 4730, or instructor consent.

MATH 6900 (1-3). Independent Study. May be repeated for a total of 6 credit hours.

MATH 6950 (1-6). Master’s Thesis.
MATH 8304-3. Topics in Analysis 1. Presents advanced topics in analysis including Lie groups, Banach algebras, operator theory, ergodic theory, representation theory, etc. Prereq., MATH 8330 and 8340, or instructor consent.

Seminars
Normally, about half of the following seminars are given each year. The same seminar number may be repeated for credit.

MATH 5905-1. Mathematics Teacher Training. Designed to train students to become effective teachers. Students teach a mathematics course, meeting weekly with faculty to discuss problems particular to the teaching of mathematics. Prereq.s., instructor consent.

MATH 8815-3. ULAM Seminar.

Mathematics Module Courses
Courses numbered 1000 through 1100 are self-paced 1-credit minicourses, or “modules,” administered by the Mathematics Module Program. Certain combinations of modules are equivalent to conventional courses in college algebra, college trigonometry, and mathematics for business and social sciences, as indicated below. These combinations of three courses meet the MAPS requirements for mathematics and are approved for the arts and sciences core curriculum: quantitative reasoning and mathematical skills.

MATH 1000-1. Solving Equations and Inequalities. Includes linear, quadratic, more general polynomial, rational, and radical equalities; linear, polynomial, rational, and absolute value inequalities; and systems of linear and nonlinear equations. Also includes the Binomial Theorem. Students who elect to follow MATH 1000 with MATH 1010 and MATH 1020 receive the equivalent of a conventional 3-credit course in college algebra, such as MATH 1001 or 1011. Prereq., MATH 6310 or equivalent.

MATH 1010-1. Functions, Limits, and Derivatives. Highlights functions, graphs, limits and continuity, definition of derivative, derivative formulas, higher order derivatives, and applications. Students who elect to follow MATH 1080 with MATH 1090 and MATH 1100 receive the equivalent of a conventional 3-credit course in

MATH 8134-3. Diophantine Special Topics. Introduces heights, Thue-Siegel-Roth Theorem, S-unit equations, and applications to Diophantine equations. Prereq., MATH 6115.

MATH 8304-3. Topics in Analysis 1. Presents advanced topics in analysis including Lie groups, Banach algebras, operator theory, ergodic theory, representation theory, etc. Prereqs., MATH 8330 and 8340, or instructor consent.

Seminars
Normally, about half of the following seminars are given each year. The same seminar number may be repeated for credit.

MATH 5905-1. Mathematics Teacher Training. Designed to train students to become effective teachers. Students teach a mathematics course, meeting weekly with faculty to discuss problems particular to the teaching of mathematics. Prereqs., instructor consent.

MATH 8815-3. ULAM Seminar.

Mathematics Module Courses
Courses numbered 1000 through 1100 are self-paced 1-credit minicourses, or “modules,” administered by the Mathematics Module Program. Certain combinations of modules are equivalent to conventional courses in college algebra, college trigonometry, and mathematics for business and social sciences, as indicated below. These combinations of three courses meet the MAPS requirements for mathematics and are approved for the arts and sciences core curriculum: quantitative reasoning and mathematical skills.

MATH 1000-1. Solving Equations and Inequalities. Includes linear, quadratic, more general polynomial, rational, and radical equalities; linear, polynomial, rational, and absolute value inequalities; and systems of linear and nonlinear equations. Also includes the Binomial Theorem. Students who elect to follow MATH 1000 with MATH 1010 and MATH 1020 receive the equivalent of a conventional 3-credit course in college algebra, such as MATH 1001 or 1011. Prereq., MATH 6310 or equivalent.

MATH 1010-1. Functions, Limits, and Derivatives. Highlights functions, graphs, limits and continuity, definition of derivative, derivative formulas, higher order derivatives, and applications. Students who elect to follow MATH 1080 with MATH 1090 and MATH 1100 receive the equivalent of a conventional 3-credit course in
calculus for business and social sciences such as MATH 1081. Prereq., MATH 1070 or MATH 1010 or two years of high school algebra.

MATH 1090-1. Fundamentals of Differential Calculus. Examines implicit differentiation, relative and absolute extrema, concavity, first and second derivative tests, asymptotes, logarithmic and exponential functions, and applications. MATH 1090 forms the middle one-third of a standard one-semester course in calculus for business and social sciences. Prereq., MATH 1080 or one semester of high school calculus.

MATH 1100-1. Fundamentals of Integral Calculus. Focuses on the indefinite integral, methods of integration, differential equations, the definite integral, area under a graph, function of several variables, and applications. MATH 1100 forms the final one-third of a standard one-semester course in calculus for business and social sciences. Prereq., MATH 1090.

Quantitative Reasoning and Mathematical Skills

QRMS 1010-3. Quantitative Reasoning and Mathematical Skills. Promotes mathematical literacy among liberal arts students. Teaches basic mathematics, logic, and problem-solving skills in the context of higher level mathematics, science, technology, and/or society. QRMS is not a traditional math class, but is designed to stimulate interest in and appreciation of mathematics and quantitative reasoning as valuable tools for comprehending the world in which we live. Same as MATH 1012. Meets MAPS requirement for mathematics. Approved for arts and sciences core curriculum: quantitative reasoning and mathematical skills.

QRMS 2380-3. Mathematics for the Environment. An interdisciplinary course where analysis of real phenomena such as acid rain, population growth, and road-killed rabbits in Nevada leads to consideration of various fundamental concepts in mathematics. One-third of the course consists of individual projects chosen by students. Prereq., proficiency in high school mathematics. Same as MATH 2380. Approved for arts and sciences core curriculum: quantitative reasoning and mathematical skills.

Continuing Education Mathematics

These courses are not offered through the mathematics department. Each of these four courses is approved for arts and sciences core curriculum: quantitative reasoning and mathematical skills.

MATH 1011-3. Fundamentals of College Algebra. Covers simplifying algebraic expressions, factoring linear and quadratic equations, inequalities, exponentials, logarithms, functions and graphs, complex numbers, and binomial theorem. Students may not receive credit for both MATH 1011 and Math Modules 1000, 1010, and 1020. Prereq., one year of high school algebra or placement exam score for MATH 1000. Meets MAPS requirement for mathematics.

MATH 1021-2. Numerical and Analytical College Trigonometry. Covers trigonometric functions, identities, solutions of triangles, addition and multiple angle formulas, inverse and trigonometric functions, and laws of sines and cosines. Students may not receive credit for both MATH 1021 and 1030/1040. Prereq., MATH 1011 or 1020, placement exam score for MATH 1030, or 1 ½ years high school algebra and one year high school geometry.

MATH 1071-3. Finite Mathematics for Social Science and Business. Discusses systems of linear equations and introduces matrices, linear programming, and probability. Students may not receive credit for both MATH 1071 and 1050/1060/1070. Prereq., MATH 1011 or 1000, placement exam score for MATH 1020, or 1 ½ years high school algebra.

MATH 1081-3. Calculus for Social Science and Business. Covers differential and integral calculus of algebraic, logarithmic, and exponential functions. Students may not receive credit for both MATH 1081 and 1080–1100. Prereq., MATH 1011, 1071, 1010, or 1070, placement exam score for MATH 1020, or two years high school algebra.

Student Academic Service Center Course

This course is not offered through the mathematics department; it is a controlled enrollment course offered through the Student Academic Services Center.

MATH 1001-3. College Algebra. Provides an introduction to college mathematics. Can be a terminal course in mathematics or can be used as preparation for more advanced math modules and courses in science, economics, business, or statistics. Includes polynomials, factoring, rational expressions, inequalities, negative and rational exponents, functions and graphs, inverse functions, theory and manipulation of logarithms, and exponents. Prereq., knowledge of basic algebraic concepts—i.e., those gained through at least one year of high school algebra or the equivalent. Meets MAPS requirement for mathematics. Approved for arts and sciences core curriculum: quantitative reasoning and mathematical skills.

MEDITAL AND EARLY MODERN STUDIES

MEDV 4020-3. Medieval and Early Modern Studies: Special Topics. Different topics offered by the faculty of the Medieval and Early Modern Studies Program in alternate semesters. Topics may include the literature of pilgrimage and travel, women and minorities, theatre, music, epic, medieval and Early Modern views of the Classics, the Bible, and Medieval and Early Modern theories of education. Prereqs., CLAS 1110 and 1120, or ENGL 2600 and 2610, or HIST 1010 and 1020, or HUMN 1010 or 1020, or MEDV 2020, or HIST 2020, or FINE 2029; or instructor consent. Same as MEDV 5020.

MEDV 4030-3. Medieval and Early Modern Studies: Special Topics. Different topics offered by the faculty of the Medieval and Early Modern Studies Program in alternate semesters. Topics may include the literature of pilgrimage and travel, women and minorities, theatre, music, epic, medieval and Early Modern views of the Classics, the Bible, and Medieval and Early Modern theories of education. Prereqs., CLAS 1110 and 1120, or ENGL 2600 and 2610, or HIST 1010 and 1020, or HUMN 1010 or 1020, or MEDV 2020, or HIST 2020, or FINE 2029; or HUMN 1010 or 1020, or instructor consent. Same as MEDV 5030.

MEDV 4020-3. Medieval and Early Modern Studies: Texts and Contexts. Prereq., graduate standing in comparative literature, theatre, classics, or instructor consent. Recommended prereq., ability to use literary texts in their original language. Same as MEDV 4020.

MEDV 5030-3. Medieval and Early Modern Studies: Special Topics. Prereq., graduate standing in comparative literature, theatre, classics, or instructor consent. Recommended prereq., ability to use literary texts in their original language. Same as MEDV 4030.

MOLECULAR, CELLULAR, AND DEVELOPMENTAL BIOLOGY

MCDB 1150-3. Introduction to Cellular and Molecular Biology. Covers biologically important macromolecules and biological processes, together with an introduction to cell structure, function, and physiology. Provides the foundation for advanced MCDB courses to majors, and a rigorous overview of modern biology to nonmajors. MCDB 1151 must be taken concurrently by MCDB and biochemistry majors and pre-health science students. Prereq., high school chemistry and algebra. Coreq., MCDB 1151 for majors. Meets MAPS requirement for natural sciences: lab. Approved for arts and sciences core curriculum: natural science.

MCDB 1151-1. Introduction to Cellular and Molecular Biology Laboratory. Offers one- or two-hour lab per week designed to acquaint students with research techniques and concepts in molecular and cellular biology. Topics include cell structure, function, physiology, and recombinant DNA. MCDB 1150 must be taken concurrently. Approved for arts and sciences core curriculum: natural science.

MCDB 2150-3. Principles of Genetics. Introduces the behavior of genes and chromosomes in eukaryotic and prokaryotic organisms. Covers three areas: transmission genetics, molecular genetics, and population genetics. Attention is given to genetic mapping, recombinant DNA procedures, and gene expression. MCDB 2151 must be taken by MCDB or biochemistry majors and pre-health science students concurrently or when next offered. Prereq., MCDB 1150 or general biology. Approved for arts and sciences core curriculum: natural science.

MCDB 2840 (1-3). Lower-Division Independent Study. Instructor consent and independent study contract required. May be repeated for credit, but only 8 hours of MCDB 2840 plus MCDB 4840 can be counted toward graduation. Students with adequate prerequisites should take MCDB 4840. Coreq., MCDB 1150.

MCDB 3120-3. Cell Biology. Introduces modern cell biology. Includes molecular basis of cellular organization and function, cellular membrane systems, intracellular organelles, mechanisms of energy transduction, the cytoskeleton, extracellular matrix, and functional organization of genetic material. Recommended for students planning careers in health sciences. MCDB 3140 must be taken concurrently or when next offered by MCDB and distributed studies majors. Prereq., MCDB 2150 or EPOB 3200. Coreq., CHEM 1131.

MCDB 3140-2. Cell Biology Laboratory. One four-hour lab per week. Provides experience with and exposure to modern cell biology laboratory techniques. Topics include microscopy, immunocytochemistry, Western blotting, Southern blotting, and flow cytometry. This course does not use vertebrate animals. Coreq., MCDB 3120.

MCDB 3150-3. Biology of the Cancer Cell. Highlights dimensions of the cancer problem; cancer as a genetic/cellular disease; chemicals, viruses, and radiation as causes of cancer; cancer and diet; cancer epidemiology; cancer risk factors; proto-oncogenes, oncogenes, and cancer suppressor genes; and prevention of cancer. Prereq., MCDB 2150 or EPOB 3200, or instructor consent. Approved for arts and sciences core curriculum: natural science.

MCDB 3280-3. Molecular Cell Physiology. Analyzes cellular mechanisms from a molecular perspective. Examines molecules as machines that are the basis of cellular mechanisms. Uses animal systems’ physiology as examples. Prereq., MCDB 3120 and CHEM 1131.

MCDB 3350-3. Fertility, Sterility, and Early Mammalian Development. Describes the production of germ cells, ovulation, fertilization, reproductive cycles, controls of reproduction, early development of the embryo, methods of contraception, and causes and treatments of sterility. Recommended for students planning careers in the health sciences. Prereq., MCDB 1150, EPOB 1210, or instructor consent.

MCDB 3500-3. Molecular Biology. Studies how molecular techniques are being used to characterize genes and their expression. Topics include mechanisms of DNA replication, mutation and repair, recombination, prokaryotic and eukaryotic gene expression, transposable genetic elements, current applications of recombinant DNA procedures, and identification of human genes. Prereq., CHEM 1131, and either MCDB 2150 or EPOB 3200. Coreq., CHEM 3311 or 3351.

MCDB 4110 (1-3). Special Topics. Presents special topics in molecular, cellular, and/or developmental biology, usually given by visiting faculty, alone or in conjunction with MCDB faculty. Prereq., instructor consent.

MCDB 4130-3. Biological Electron Microscopy: Principles and Recent Advances. Covers basic mechanisms for imaging and recent advances used in current biological research, elements of electron optics, image optimization, resolution, radiation damage, various imaging modes (TEM, HVEM, SEM, STEM, STM), specimen quantitation and reconstruction (stereo and 3D), microanalysis, and electron diffraction. Specimen preparation treated only incidentally. Prereq., one of the following: MCDB 1150, EPOB 1220, MCDB 4500, PHYS 1120 or 2020, or instructor consent. Same as MCDB 5130 and PHYS 4130.

MCDB 4140-3. Plant Molecular Biology and Biotechnology. Introduces some of the frontiers in experimental plant research with applications in modern biotechnology, including genetics, hormonal control of growth, stress responses (heat, water, salt), host-pathogen systems (bacteria, fungi, viruses, viroids), plant defense mechanisms, plant cell tissue culture, and genetic engineering of plants. Prereq., MCDB 3120 and 3500, or instructor consent. Same as MCDB 5140. Approved for arts and sciences core curriculum: critical thinking.

MCDB 4300-3. Immunology. Emphasizes cellular and molecular mechanisms by which organisms protect themselves from pathogens and the experimental basis for our understanding of these processes. Discusses development, function and malfunction of T-cells, B-cells, and other components of the immune system, focusing on the human immune system. Prereq., MCDB 3120 and 3500.

MCDB 4350-3. Microbial Diversity and the Biosphere. Provides a molecular phylogeny-based perspective on microbial diversity and the interactions between organisms that result in the biosphere. Provides overview of recent methods and findings in microbial ecology, as well as computer-based workshop in molecular phylogeny. Prereq., CHEM 1131 or 1171, general biology, or instructor consent. Recommended prereq., EPOB 3400 and/or CHEM 3311. Same as MCDB 5350.

MCDB 4410-3. Human Molecular Genetics. Studies the human organism as a genetic system, including effect of mutation on protein structure and function, biochemical basis of human genetic disease, polymorphic gene loci, gene mapping and identification, gene
cloning and characterization, and impact of human genetics on medicine and society. Pre-req., MCDB 3500. Approved for arts and sciences core curriculum: critical thinking.

MCDB 4426-3. Cell Signaling and Developmental Regulation. Introduces several cell signaling processes and their biological functions. Students read and analyze original research articles to learn the thinking processes of scientific research. Writing assignments and oral presentations are required. Prereqs., MCDB 3120 and 3500, and CHEM 4711, or instructor consent. Same as MCDB 5426. Approved for arts and sciences core curriculum: critical thinking.

MCDB 4471-3. Mechanisms of Gene Regulation in Eukaryotes. Focuses on manifestations of regulated gene expression as seen in sex determination, viral pathogenesis, cancer, and other human diseases. Studies gene regulation at multiple steps, i.e., transcription, RNA processing, and translation. Discusses how viruses sabotage cellular machinery for their survival and how these discoveries directly impact our society. Written assignments and oral presentations are required. Prereq., MCDB 3500 or instructor consent. Same as MCDB 5471. Approved for arts and sciences core curriculum: critical thinking.

MCDB 4480-3. Great Literature in the Nucleic Acids. Students read, analyze, write about, and speak on the subjects presented by important papers from the original scientific literature on nucleic acid (RNA and DNA) biology. Prereq., MCDB 3500. Approved for arts and sciences core curriculum: critical thinking.

MCDB 4620-3. Vertebrate Developmental Biology. Analyzes vertebrate development, emphasizing molecular and cellular mechanisms. Topics include neural development, organogenesis, and sex determination in mammals, birds, amphibians, and fish. Covered from the perspective of experimental embryology and molecular biology. Students may receive credit for only one of MCDB 4620, 4650, or EPOB 3650. Prereqs., MCDB 3120 and 3500. Coreq., MCDB 4630.

MCDB 4630-2. Vertebrate Developmental Biology Laboratory. Lab for MCDB 4620. Studies live and prepared embryos from amphibians, chick, and mice. Topics include descriptive and experimental embryology and molecular methods applied to developmental biology problems. Students may receive credit for only one of MCDB 3650, 4630, 4660, and EPOB 3660. This course uses living vertebrate animals.

MCDB 4650-3. Developmental Biology. Analyzes development, emphasizing cellular, molecular, and genetic mechanisms. Topics include descriptive embryology, developmental control of gene expression in eukaryotic cells, mechanisms of differentiation and morphogenesis, and developmental genetics. Students may receive credit for only one of MCDB 4620, 4650, and EPOB 3650. Prereqs., MCDB 3120 and 3500, or instructor consent. Coreq., MCDB 4660. Same as EPOB 3650.

MCDB 4660-2. Developmental Biology Laboratory. Lab for MCDB 4650. Studies live and prepared embryos from a variety of organisms, including amphibia, chickens, nematodes, and fruit flies. Topics include descriptive and experimental embryology, developmental genetics, and molecular biology methods applied to developing systems. Students may receive credit for only one of MCDB 4630, 4660, and EPOB 3660. Coreq., MCDB 4650 or EPOB 3650. Same as EPOB 3660. This course uses living vertebrate animals and/or tissues.

MCDB 4750-3. Animal Virology. Encompasses the structure and replication of both lytic and transforming animal viruses. Emphasizes diversity of naturally occurring genomic structures and the resulting strategies of infection as well as the impact of viral epidemics on society. Includes critical analysis of primary research papers. Prereq., MCDB 3500 or instructor consent. Approved for arts and sciences core curriculum: critical thinking.

MCDB 4777-3. Molecular Neurobiology. Introduces the functional anatomy of the nervous system, and explores current knowledge regarding the molecular and genetic basis of the development and function of the nervous system. Studies recent insights into the molecular basis of neuro-degenerative diseases, in the last portion of the course. Prereqs., MCDB 3120 and 3500, or equivalent.

MCDB 4790-3. Experimental Embryology. Embryology is studied by considering experiments relevant to specific topics of early animal development. To best understand this material, the course emphasizes reading, interpretation, and discussion of research articles. Prereqs., MCDB 3120, and either EPOB 3650 or MCDB 3500. Approved for arts and sciences core curriculum: critical thinking.

MCDB 4840 (1-6). Upper-Division Independent Study. May be repeated for credit, but only 8 hours of MCDB 2840 plus MCDB 4840 can be counted toward graduation. Prereqs., MCDB 2150, instructor consent, and independent study contract.

MCDB 4850-2. Advanced Topics in Early Mammalian Development. In addition to lectures, involves student presentations on current research and literature in early mammalian embryogenesis. Emphasizes discussions of genomic and extrageneic forces that influence and direct development during the pre- and postfertilization periods. Prereqs., MCDB 4620 or 4650, EPOB 3650, or instructor consent.

MCDB 4970-3. Seminar on Physical Methods in Biology. Covers basic mechanisms and applications of physical methods used in current biological research, micropore analysis and EELS, elementary electron and x-ray crystallography, biomedical imaging (NM, MRI, PET, CAT), Fourier analysis, synchrotron radiation, EXAFS, neutron scattering, and novel ultramicroscopy techniques. Includes lectures, student presentations, and occasional demonstrations. Emphasis depends on student interest. Prereqs., MCDB 1050 or 3120 and/or PHYS 1120 and 1140 or 3010 and 3620, or instructor consent. Same as MCDB 5970 and PHYS 4970.

MCDB 4980-3. Honors Research. Provides faculty-supervised research for students who have been approved by the departmental honors committee. Normally taken during the semester before completion of the honors thesis. Prereqs., MCDB 4840 or comparable research experience, and a GPA of 3.20 or better.

MCDB 4990-3. Honors Thesis. Involves the preparation and defense of an honors thesis, based on faculty-supervised original research, including final phases of the research project. Prereqs., MCDB 4840, 4980, or comparable research experience, a GPA of 3.30 or better, and approval by the MCDB honors committee.

MCDB 5140-3. Plant Molecular Biology and Biotechnology. Instructor consent required. Same as MCDB 4140.

MCDB 5220-3. Molecular Genetics (Methods and Logic). Instructor consent required.

MCDB 5230-3. Gene Expression (Lecture and Discussion). Instructor consent required.

MCDB 5250-3. Topics in Developmental Genetics (Methods and Logic). Instructor consent required.
MCDB 5339-1. Cellular Adhesion, Cytoskeletal Organization, and Intercellular Signaling. Discusses research papers in the areas of cellular adhesion, cytoskeletal organization, and intercellular signaling, with specific reference to vertebrate systems. Students are required to analyze and present in discussion at least one paper each semester. Students also are required to read all of the presented papers and participate in classroom discussion. Prereq., instructor consent.

MCDB 5350-3. Microbial Diversity and the Biosphere. Same as MCDB 4350.

MCDB 5776-1. Scientific Ethics. Same as CHEM 5776.

MCDB 5780-2. Topics in Plant Cell Biology. Highlights discussions and reports on research advances in biological membranes, plant cell secretion, assembly of plant cell walls, protein targeting, and plant cell transformation. May be repeated for a total of 7 credit hours. Instructor consent required.

MCDB 6000-3. Introduction to Laboratory Methods. Introduces methodology and techniques used in biological research. Designed as a tutorial between a few students and one faculty member. Students are expected to read original research papers, discuss findings, and to plan and execute experiments in selected areas. Open only to MCDB graduate students. May be repeated for a total of 9 credit hours.

MCDB 6337-1. Cell Cycle Research. Cell cycle regulation is a major biological issue relevant to a number of disease states, including cancer. Surveys the current literature in the cell cycle field. Students present current publications; class participation in discussion is expected. Prereqs., MCDB 5210 and 5230.

MCDB 6338-1. Current Topics in Developmental Genetics and Signal Transduction. Discusses current research papers in the area of developmental biology and cell signaling. Each student is required to present at least one research paper and lead the discussion during presentation. Students also are required to read all presented papers and participate in discussions. Students learn the most advanced developments in the research fields, critically read current literature, participate in the thinking process of doing science, and develop the skill of presenting and discussing science materials. Prereq., instructor consent.

MCDB 6440 (1-3). Special Topics in MCD Biology. Acquaints students with various topics not normally covered in the curriculum. Offered intermittently or upon student demand, and often presented by visiting professors. May be repeated for a total of 4 credit hours.

MCDB 6940-3. Master’s Degree Candidate.

MCDB 6950 (1-6). Master’s Thesis. Students seeking a master’s degree should consult a departmental advisor. Plan I or Plan II is offered.

MCDB 7790 (1-3). Graduate Seminar. Prereq., instructor consent and independent study contract required. May be repeated for a total of 7 credit hours.

MCDB 7910-1. Seminar Practicum. Designed for graduate students to give oral presentations on their research, field questions, respond to critiques, and present background information. May be repeated for a total of 3 credit hours.

MCDB 8990 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of this catalog.

MUSEUM AND FIELD STUDIES

For additional course information, please call 303-492-5437 or send e-mail to mfsinfo@colorado.edu.

Independent Study

MUSM 4840 (1-3). Independent Study. Same as MUSM 5840.

MUSM 4900 (1-3). Independent Study. May be repeated for a total of 9 credit hours. Same as MUSM 5900.

MUSM 5840 (1-3). Graduate Independent Study. Same as MUSM 4840.

MUSM 5900 (1-3). Graduate Independent Study. Same as MUSM 4900.

Museum Studies

MUSM 4011-4. Introduction to Museum Studies. For majors in anthropology, biology, fine arts, geological sciences, history, or other museum-related subjects. Provides background in history and literature of museums, their objectives and methods, laboratory exercises in curatorialship, exhibition theory, and administration. Prereq., instructor consent. Same as MUSM 5011.

MUSM 4021 (2-3). Selected Museum Topics. Provides framework for student projects on varied museum topics (e.g., ethics of collecting, data management, the museum’s role in the community). Student projects include case study analysis, interviewing, and original presentations. Topics vary each semester. Prereq., instructor consent. Same as MUSM 5021.

MUSM 4030-3. Museum Education. Surveys and discusses the educational role of museums and informal learning centers. Issues include current trends, learning theories and styles, learning from objects, education programs, diverse audiences, museum/school partnerships, and the role of education in exhibit development. Prereq., instructor consent. Same as MUSM 5030.

MUSM 5021 (2-3). Selected Museum Topics. Prereq., instructor consent. Same as MUSM 4021.

MUSM 5030-3. Museum Education. Same as MUSM 4030.

MUSM 5031-3. Museums and the Public: Exhibit Development. Covers elements of exhibit development and design, up to production and evaluation of exhibit prototypes. Emphasizes team approach. Prereq., graduate standing and instructor consent.

MUSM 5041-3. Museum Administration. Covers theory of organizations and how it applies to museums, application of small business management and non-profit organizations to museums, marketing and development, and grant writing and funding strategies. Prereqs., graduate standing and instructor consent.

MUSM 5051-3. Collections Management. Deals specifically with curation and data management including acquisition practices and problems; organization, management, use, and preventative conservation of collections; and computer data management of collections. Prereqs., instructor consent, MUSM 5011, and appropriate level of computer literacy. Facility with computers must be demonstrated, or the student must complete an appropriate computer science course.

MUSM 6110-1. Seminar in Museum Issues. Addresses new topics/issues relevant to museum operations, such as professionalism, assessment, conservation, museums and multiculturalism, repatriation, and others. May be repeated for a total of 9 credit hours. Prereqs., graduate standing, instructor consent, and MUSM 4011/5011.

MUSM 6140-1. Advanced Topics and Trends. Discusses current topics and/or trends in the museum profession. Topics change an-
nually to reflect current topics and trends and the most current museum issues. Prereqs., graduate standing and instructor consent. Recommended prereqs., MUSM 5011 and 5051.

MUSM 6930 (2-4). Museum Internship. Provides experience in museums of different sizes, audiences, and subjects, including history, natural history, art, and children’s museums. Each student is supervised individually by a faculty member as well as the appropriate person in the cooperating museum. Prereq., instructor consent.

MUSM 6950 (1-6). Master’s Thesis in Museum and Field Studies. A thesis, which may be of a research, expository, critical, or creative type, is required of every master’s degree candidate under the thesis-option plan. Prereq., MUSM 5011, 5051, and one of MUSM 5030, 5031, or 5041.

MUSM 6960 (1-3). Master’s Project or Paper in Museum and Field Studies. A project or paper in the student’s discipline and related to some aspect of museum studies is required of every master’s degree candidate under the non-thesis-option plan. Prereq., MUSM 5011, 5041, 5051, and/or 5031.

Anthropology

MUSM 4462 (2-6). Museum Field Methods in Anthropology. Archaeological field techniques including excavation, mapping, recording, photography, interpretation, and field laboratory. May be repeated for a total of 6 credit hours. Same as MUSM 5462.

MUSM 4912-3. Museum Practicum in Anthropology. Students take part in curatorial procedures of the anthropology section of the museum: conservation, cataloguing, collection management, and administration. Prereq., MUSM 4011, 5011, or equivalent. Enrollment is limited; students should make arrangements during previous semester. Same as MUSM 5912.

MUSM 5462 (2-6). Museum Field Methods in Anthropology. May be repeated for a total of 6 credit hours. Same as MUSM 4462.

Botany

MUSM 4913-3. Museum Practicum in Botany. Students take part in curatorial procedures of the botany section of the museum: specimen preparation, labeling, identification, cataloguing, conservation, and collection management. Prereq., MUSM 4011, 5011, or equivalent. Enrollment is limited; students should make arrangements during previous semester. Same as MUSM 5913.

Geology

MUSM 4484-3. Museum Field Methods in Geology. Paleontological and paleoecological field techniques including collecting; recording of geographic, stratigraphic, and quarry information; preservation; and interpretation, including applicable readings. Designed for individuals who have some background in geology but little or no prior field experience. Same as MUSM 5484. Summer only.

MUSM 4914-3. Museum Practicum in Geology. Students take part in curatorial procedures of the geology section of the museum: field collection, specimen preparation, cataloguing, collection management, and a survey of current laws as they apply to specimens. Prereq., MUSM 4011, 5011, or equivalent. Enrollment is limited; students should make arrangements during previous semester. Same as MUSM 5914.

MUSM 5484-3. Museum Field Methods in Geology. Same as MUSM 4484.

MUSM 5914-3. Museum Practicum in Geology. Same as MUSM 4914.

Zoology

MUSM 4915 (2-3). Museum Practicum in Zoology. Students take part in basic curatorial procedures of the zoology section of the museum: relaxing, fixing, positioning, preserving, cataloguing, storing, and shipping. Also introduces students to the animal kingdom. Prereq., instructor consent. Same as MUSM 5915.

MUSM 5915 (2-3). Museum Practicum in Zoology. Same as MUSM 4915.

Entomology

MUSM 4916-3. Museum Practicum in Entomology. Students take part in curatorial procedures of the entomology section of the museum: field collection, specimen preparation, labeling, identification, rearing techniques, and exhibit preparation. Prereq., MUSM 4011, 5011, or equivalent. Enrollment is limited; students should make arrangements during previous semester. Same as MUSM 5916.

Museology

MUSM 4917 (1-3). Museum Practicum in Techniques. Students participate in museum public education functions that may include researching, planning, developing, and producing exhibits, traveling trunks, booklets, and other materials. May involve writing labels, molding and casting, conservation, and restoration. May be repeated for a total of 6 credit hours. Same as MUSM 5917.

MUSM 4937 (1-3). Museum Practicum in Techniques 1. May be repeated for a total of 6 credit hours. Same as MUSM 4917.

MUSM 5937 (1-3). Museum Practicum in Techniques 2. Same as MUSM 4937.

Music

The following courses offered in the College of Music are accepted for arts and sciences core curriculum credit. See College of Music chapter for full course descriptions.

EMUS 1832-3. Appreciation of Music. Approved for arts and sciences core curriculum: literature and the arts.

PEACE AND CONFLICT STUDIES

PACS 2500-3. Introduction to Peace and Conflict Studies. Introduces the field of peace and conflict studies. Examines causes and dynamics of conflict and violence (interpersonal to global), peace institutions and research, peace movements, nonviolence, and careers in conflict resolution and peacemaking.

PACS 2860-3. Nuclear War: Its Risks and Preventions. Gives students a broad, interdisciplinary perspective on what is perhaps the most complex problem ever to confront the human species. Focuses on dramatic differences of opinion regarding the prevention of nuclear war. Helps students develop the ability to think critically and analyze arguments, and to clarify their opinions about the role of nuclear weapons in maintaining national security.

PACS 3510-3. Ideology, Conflict, and Peace. Examines the origins, nature, and power of ideologies and the role specific ideologies, values, and belief systems play in the generation of conflict, violence, and war; the resolution of conflict; and the development of peace.

PACS 3800 (1-3). Topics in Peace and Conflict Studies. Content varies depending on instructor. May provide an overview of the field, cover scientific, philosophical, or historical approaches, or analyze a specific substantive topic.

PHILOLOGY

Specific class content varies by semester. Courses at the 1000 and 2000 levels have no prerequisites.

PHIL 1000-3. Introduction to Philosophy. Introduces fundamental topics of philosophy, e.g., knowledge, truth, universals, self, the mind-body problem, time, God, and value. Approved for arts and sciences core curriculum: ideals and values.

PHIL 1010-3. Introduction to Western Philosophy: Ancient. Develops three related themes: the emergence in antiquity of a peculiarly scientific mode of thinking; the place of religious belief within this developing scientific world view; and the force of ethical speculation within the culture and political climates of ancient Greece and Rome. PHIL 1010 and 1020 may be taken in either order. Approved for arts and sciences core curriculum: historical context.

PHIL 1020-3. Introduction to Western Philosophy: Modern. Introduces several philosophical texts and doctrines of 17th- and 18th-century Europe. Gives special attention to the connection between philosophical ideas and the wider historical milieu—social, political, and literary. PHIL 1010 and 1020 may be taken in either order. Approved for arts and sciences core curriculum: historical context.

PHIL 1100-3. Ethics. Introductory study of major philosophies on the nature of the good for humanity, principles of evaluation, and moral choice as they apply to contemporary moral problems. Approved for arts and sciences core curriculum: ideals and values.

PHIL 1400-3. Philosophy and the Sciences. Considers philosophical topics and concepts related to the natural sciences, such as science and pseudo-science; scientific method; the nature of explanation, theory, confirmation, and falsification; effect of science on basic concepts like mind, freedom, time, and causality; ethics of experimentation; and the relation of science to society. Approved for arts and sciences core curriculum: natural science.

PHIL 1600-3. Philosophy and Religion. Philosophical introduction to some of the central concepts and beliefs of religious traditions, focusing particularly on the question of the existence of God and on the relation between religious beliefs and moral beliefs. Approved for arts and sciences core curriculum: ideals and values.

PHIL 1700-3. Philosophy and the Arts. Considers philosophic questions involved in the analysis and assessment of artistic experiences and of the objects with which the arts, including the literary arts, are concerned.

PHIL 1750-3. Philosophy through Literature. Introduces philosophy through literature. Selected novels, plays, and short stories that exemplify traditional problems in philosophy are read and discussed.

PHIL 2140-3. Environmental Justice. Traditional and contemporary theories of justice are employed in order to critically analyze social and political issues that have important environmental dimensions. Assesses the relationship of justice and equity to the presuppositions of national and global environmental issues and policies.

PHIL 2200-3. Major Social Theories. Introductory study of major philosophies of the past in relation to political, economic, and social issues. Approved for arts and sciences core curriculum: ideals and values.

PHIL 2230-3. Law and Morality. Examines selected problems concerning the relation between law and morality, such as capital punishment, pornography, and civil disobedience. Approved for arts and sciences core curriculum: contemporary societies.

PHIL 2390-3. Philosophy and Psychology. Interdisciplinary course on issues where philosophy and psychology meet; for example, topics such as selfishness, motivation, psychotherapy, freedom, and human behavior are examined. Selected readings in philosophy and psychology are required.

PHIL 2440-3. Symbolic Logic. First course in mathematical logic. Topics include sentential logic, the logic of quantification, and some of the basic concepts and results of metalogic (interpretations, validity, and soundness).

PHIL 2610-3. From Paganism to Christianity. Offers a cultural history of Greek and Roman religion. Students read ancient text in translation and use evidence from archaeology to reconstruct the shift from paganism to Christianity in antiquity. Same as CLAS 2610. Ap-proved for arts and sciences core curriculum: ideals and values.

PHIL 2840 (1-3). Independent Study. May be repeated for a total of 8 credit hours. Pre-req., sophomore standing.
Note: All courses at the 3000 level require at least 12 hours of philosophy and sophomore standing, unless otherwise indicated.

PHIL 3000-3. History of Ancient Philosophy. Surveys selected figures in ancient Greek and Roman philosophy and in medieval philosophy. Philosophers studied may include the pre-Socratics, Plato, Aristotle, the Hellenistic philosophers, and such figures as Aquinas and Ockham. Pays attention to the larger cultural context that influenced these philosophers and that was, in turn, influenced by them. Restricted to sophomore philosophy majors and upper-division students. Approved for arts and sciences core curriculum: historical context.

PHIL 3010-3. History of Modern Philosophy. Introduces modern philosophy, focusing on the period from Descartes through Kant. In addition to careful analysis of philosophical arguments, attention is paid to the way in which philosophers responded to and participated in major developments in the 17th and 18th century, such as the scientific revolution. Restricted to sophomore philosophy majors and upper-division students. Approved for arts and sciences core curriculum: historical context.

PHIL 3110-3. Feminist Practical Ethics. Explores a variety of personal and public policy issues in the light of the basic feminist commitment to opposing women's subordination. Provides a sense of the ways in which a principled commitment to feminism may influence or be influenced by prevailing interpretation of contemporary ideals and values, and gives an opportunity for developing skills of critical analysis. Prereq., WMST 2000 or 2290. Same as WMST 3110. Approved for arts and sciences core curriculum: ideals and values, or critical thinking.

PHIL 3140-3. Environmental Ethics. Examines major traditions in moral philosophy to see what light they shed on value issues in environmental policy and the value presuppositions of the economic, ecological, and juridical approaches to the environment. Prereq., junior standing, or PHIL 1100, 1200, 2200, 3100, or 3200. Approved for arts and sciences core curriculum: ideals and values.

PHIL 3180-3. Critical Thinking: Contemporary Topics. Looks at a selected topic such as nuclear disarmament, racial and sexual discrimination, animal rights, or abortion and euthanasia by examining issues through the lens of critical philosophical analysis. Reviews the reasoning behind espoused positions and the logical connections and argument forms they contain. Restricted to juniors and seniors. Approved for arts and sciences core curriculum: critical thinking.

PHIL 3190-3. War and Morality. Focuses on moral issues raised by war as a human institution. What are the justifications, limits, and alternatives? Does the advent of nuclear weapons change the nature of war? Approved for arts and sciences core curriculum: ideals and values.

PHIL 3200-3. Social and Political Philosophy. Systematic discussion and analysis of such philosophic ideas as community, freedom, political power, and violence. Approved for arts and sciences core curriculum: ideals and values.

PHIL 3270-3. Epistemology. Studies two or three major philosophers. Prereq. three times on different philosophers.

PHIL 3280-3. Philosophy and Education. Offers a classroom focus on classic and contemporary theories in the philosophy of education, attention to teaching techniques specific to the discipline of philosophy, and a practicum involving hands-on teaching experience at area schools or at the summer philosophy institute. Restricted to students with 6 hours of philosophy. Prereq., instructor consent.

PHIL 3310-3. Cognitive Science. An interdisciplinary introduction to cognitive science, drawing from psychology, philosophy, artificial intelligence, neuroscience, and linguistics. Prereq.s, two of the following four courses: PSYC 2145, LING 2000, CSCI 1300, PHIL 2440. Same as PSYC/LING 3005, and CSCI 3702.

PHIL 3340-3. Epistemology. Studies some of the main topics of theory of knowledge, such as evidence, justification, prediction, explanation, skepticism, and concept acquisition. Prereq., 12 credit hours of philosophy, including PHIL 2440 and 3010. PHIL 3480 highly recommended.

PHIL 3410-3. History of Science: Ancients to Newton. Surveys the history of science up to Newton, including the emergence of scientific modes of thinking from religious and philosophical roots in the Near East and Greece to the development of these modes in the Middle Ages and Renaissance. Culminates with Isaac Newton and the 17th-century scientific revolution. Approved for arts and sciences core curriculum: historical context, or natural science.

PHIL 3430-3. History of Science: Newton to Einstein. The history of physical and biological science, from the epoch-making achievements of Charles Darwin in biology to the dawn of the 20th-century revolutions in physics, chemistry, and genetics. Deals with the success of the mechanical philosophy of nature and its problems. Approved for arts and sciences core curriculum: historical context, or natural science.

PHIL 3480-3. Critical Thinking and Writing in Philosophy. Focuses on the fundamental skills, methods, concepts, and distinctions that are essential for the study of philosophy. Covers the writing of philosophy papers, the reading of articles, and the extraction and evaluation of arguments. Restricted to junior or senior philosophy majors. Prereq. or coreq., PHIL 2440. Approved for arts and sciences core curriculum: critical thinking, or written communication.

PHIL 3600-3. Philosophy of Religion. Philosophical discussion of fundamental issues in religion, such as existence of God, religious experience, faith and reason, evil, immortality, and religious language. Approved for arts and sciences core curriculum: ideals and values.

PHIL 3700-3. Aesthetic Theory. Introduces major theories of aesthetics and contemporary discussions of problems, e.g., the nature of art and the problem of evaluations in art.

PHIL 3800-3. Open Topics in Philosophy. Variety of new courses at the 3000 level. See current departmental announcements for specific content. May be repeated for a total of 7 credit hours.

PHIL 3840 (1-3). Independent Study. May be repeated for a total of 8 credit hours. Prereq., junior standing.

Note: All courses at the 4000 level require at least 12 hours of philosophy and junior standing (with the exceptions of PHIL 4600 and 4830), unless otherwise indicated.

PHIL 4010-3. Single Philosopher. Intensive study of one systematic philosophy with attention to the scope, methods, and integrity accomplished by it. May be repeated for credit three times on different philosophers.

PHIL 4040-3. Studies in 20th-Century Philosophy. Studies two or three major philosophies prominent during the present century.

PHIL 4080-3. Introduction to Phenomenology. Examines the work of Edmund Husserl and subsequent phenomenologists (e.g., Heidegger, Sartre, Merleau-Ponty).

PHIL 4090-3. Kierkegaard. Primarily an analysis of selected texts of Soren Kierkegaard. Specific topics considered include Kierkegaard's notions of Christianity, faith, the Paradox, truth, reason, and history. Same as PHIL 5090.

PHIL 4110-3. Contemporary Moral Theory. Provides an in-depth look at some recent work in moral theory. Topics covered, varying from year to year, include: consequentialism and its critics; virtue theory; moral psychology; impartiality and the personal point of view. Prereq., PHIL 3100. Same as PHIL 5110.

PHIL 4200-3. Contemporary Political Philosophy. Provides a survey of recent approaches to political philosophy: liberalism (John Rawls, Ronald Dworkin); libertarianism (Robert Nozick); communitarianism (Michael Sandel, Alastair MacIntyre); and feminism (Alison Jaggar). Topics and readings may vary with instructor. May be repeated for a total of 6 credit hours on different topics. Prereqs., PHIL 2200 and 3200. Same as PHIL 5200.

PHIL 4250-3. Marxism. Historical and systematic study of principal themes of Marxist thought, from its Hegelian origins to its contemporary varieties, emphasizing the works of Marx and Engels.

PHIL 4260-3. Philosophy of Law. Considers various views of the nature of law, its role in society, and its relation to other disciplines. Investigation of philosophical commitments that underlie and affect legal conceptions and procedures. Same as PHIL 5260.

PHIL 4300-3. Philosophy of Mind. Discusses problems in the philosophy of mind, including the mind-body problem, knowledge of other minds, compatibility of free will and determinism, and such concepts as action, intention, desire, enjoyment, memory, imagination, dreaming, and knowledge. Prereqs., PHIL 2440, 3010, 3340, and 3480. Same as PHIL 5300.

PHIL 4360-3. Metaphysics. Traditional and contemporary theories of the basic categories of reality and the human relationship to it, including universals, substance, identity, change, mind and body, free will, and modality. Prereqs., PHIL 2440, 3010, 3340, and 3480. Same as PHIL 5360.

PHIL 4400-3. Philosophy of Science. Examines major concepts and problems of scientific thought: explanation, confirmation, causality, measurement, and theory construction. Prereq., PHIL 2440 or equivalent. Same as PHIL 5400.

PHIL 4440-3. Mathematical Logic. Introduces the fundamental concepts and procedures of mathematical logic. Prereq., PHIL 2440 or equivalent. Same as PHIL 5440.

PHIL 4450-3. History and Philosophy of Physics. Investigates the role of experiment in physics. Uses case studies in the history and philosophy of physics and in scientific methodology. Prereq., one year of physics or instructor consent. Same as PHIL 5450 and PHYS 4450. Approved for arts and sciences core curriculum: critical thinking.

PHIL 4600-1. Theology Forum Seminar. Discusses a variety of theological and philosophical topics. Some reading, much discussion, occasional guest speakers. Students may enroll for repeated credit with permission of instructor to a total of 3 hours. Prereq., instructor consent.

PHIL 4730-3. Philosophy and Literature. Examines various relations between philosophy and literature, ranging from the direct incorporation of philosophical doctrine into literature to literature as a distinctive way of practicing philosophy.

PHIL 4800-3. Open Topics in Philosophy. A variety of new courses at the 4000 level. See current departmental announcements for specific content. May be repeated for a total of 7 credit hours.

PHIL 4840 (1-3). Independent Study. May be repeated for a total of 8 credit hours. Prereq., senior standing.

PHIL 4950-3. Honors Thesis. May be repeated for a total of 7 credit hours.

Note: All courses at the 5000 and 6000 levels require graduate standing in philosophy unless otherwise indicated.

PHIL 5020-3. Topics in the History of Philosophy. May be repeated for a total of 7 credit hours.

PHIL 5080-3. Philosophy of Plato. May be repeated for a total of 7 credit hours. Same as CLAS 5800.
Our study of individual theologians. May be repeated for a total of 7 credit hours.

PHIL 5300-3. Philosophy of Mind. Same as PHIL 4300.

PHIL 5350-3. Analytic Philosophy. Surveys representative philosophers, methods, or problems in the 20th-century analytic tradition. May be repeated for a total of 7 credit hours.

PHIL 5360-3. Metaphysics. Same as PHIL 4360.

PHIL 5400-3. Philosophy of Science. Same as PHIL 4400.

PHIL 5440-3. Mathematical Logic. Same as PHIL 4440.

PHIL 5450-3. History and Philosophy of Science. Same as PHIL 4450 and PHYS 5450.

PHIL 5490-3. Philosophy of Language. Same as PHIL 4490.

PHIL 5600-3. Philosophy of Religion. Studies topics falling under philosophy of religion, such as proofs for God’s existence, religious language, mysticism, psychology of religion, modern theological movements, miracles, and study of individual theologians. May be repeated for a total of 7 credit hours.

PHIL 5700-3. Aesthetics. Analyzes the principal topics of aesthetics, including such issues as formal structure of aesthetics, the nature of critical judgments, and the status of the work of art. May be repeated for a total of 7 credit hours.

PHIL 5800-3. Open Topics in Philosophy. Variety of new courses at the 5000 level. See current departmental announcements for specific content. May be repeated for a total of 7 credit hours.

PHIL 5810 (1-3). Special Topics in Philosophy. Instructor meets regularly with three or more students to discuss special topics in philosophy. May be repeated for a total of 6 credit hours.

PHIL 5840 (1-3). Graduate Independent Study. May be repeated for a total of 7 credit hours.

PHIL 6000 (3-4). Seminar in Ancient Philosophy. Advanced topics in ancient philosophy. Examines selected classical texts or movements in an in-depth way. Topics vary, but may include: the Socratic dialogues; Plato’s later metaphysics; Aristotle’s ethical theory; Aristotle’s metaphysics; Stoicism; Hellenistic philosophy; and Neo-Platonism. Prereq., PHIL 3000 or equivalent. PHIL 5080 or 5081 recommended.

PHIL 6040-3. Seminar: Phenomenology. May be repeated for a total of 7 credit hours.

PHIL 6100-3. Seminar in Ethics. Intensive study of selected topics in ethical theory.

PHIL 6200-3. Seminar in Social and Political Philosophy. Provides an in-depth look at some particular topic in social and political philosophy, such as rights, political freedom, political obligation, or democracy.

PHIL 6310-3. Issues and Methods in Cognitive Science. Prereq., graduate standing or at least one course at the 3000-level or higher in computer science, linguistics, philosophy, or psychology. No background in computer science is presumed. Same as CSCI 6402, LING 6200, and PSYC 6200.

PHIL 6340-3. Seminar in Epistemology. Studies some of the main topics of epistemology, such as skepticism, foundations of knowledge, perception, introspection, belief, certainty, and analytic-synthetic distinctions.

PHIL 6380-3. Seminar in Metaphysics. Traditional and contemporary theories of the basic categories used to describe nature and the human relationship to it, including such concepts as substance, identity, space and time, causality, determination, and systematic ontology.

PHIL 6400-3. Seminar in Philosophy of Science. Topics connected with development of nature of science; structure of scientific theories; testing of hypotheses. Theory of decisions in science and ethics. Basic conceptions and models of abstraction in the history of science.

PHIL 6490-3. Seminar in Philosophy of Language. Studies some of the main topics in the philosophy of language, such as meaning and theories of meaning, translation, speech acts, rules of language, references, relevance of psycholinguistics, language and thought, and language and ontology.

PHIL 6940 (1-3). Master’s Candidate for Degree. May be repeated for a total of 7 credit hours.

PHIL 6950 (1-6). Master’s Thesis. May be repeated for a total of 7 credit hours.

PHIL 6960 (1-6). Master’s Research. May be repeated for a total of 7 credit hours.

PHIL 7415-2. Cognitive Science Research Practicum. Independent interdisciplinary research project for advanced graduate students pursuing a joint Ph.D. in an approved core discipline and cognitive science. Prereq., CSCI 6402, EDUC 6504, LING 6200, PHIL 6310, or PSYC 6200. Recommended prereq., CSCI 7762, EDUC 6505, LING 7762, PHIL 7310, or PSYC 7762. Same as PSYC/LING 7425, CSCI 7412, and EDUC 6516.

PHIL 8990 (1-10). Doctoral Dissertation. All doctoral students must register for for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of the catalog.

PHYSICS

PHYS 1000-3. Preparatory Physics. Introduces basic physics, emphasizing an analytical approach that prepares students for PHYS 1110 or PHYS 2010. Meets MAPS requirement in natural science: chemistry or physics. Prereq., one year of high school algebra or equivalent.

PHYS 1010-3. Physical Science for Non-Scientists 1. Lect. Topics range from Newtonian mechanics to modern physics. Requires quantitative work and laboratory experience. Prereq., high school algebra. Meets MAPS requirement for natural sciences: chemistry or physics. However, this course should not be taken for a MAPS deficiency in math. Approved for arts and sciences core curriculum: natural science, or quantitative reasoning and mathematical skills.

PHYS 1020-4. Physical Science for Non-Scientists 2. Three lect., one two-hour lab per week. Covers waves, electromagnetism, light, relativity, origins of atomic theory, quantum physics, and subatomic physics. Requires quantitative work and laboratory experience. Prereq., high school algebra and PHYS 1010. Approved for arts and sciences core curriculum: natural science, or quantitative reasoning and mathematical skills.

PHYS 1110-4. General Physics 1. Three lect., one rec. per week, plus three evening exams in the semester. First semester of three-semester sequence for science and engineering students. Covers kinematics, dynamics, momentum of particles and rigid bodies, work and energy, gravitation, simple harmonic motion, and introduction to thermodynamics. Coreq., APPM 1350 or MATH 1300. Approved for arts and sciences core curriculum: natural science.

PHYS 1120-4. General Physics 2. Three lect., one rec. per week, plus three evening exams in the semester. Second semester of three-semester introductory sequence for science and engineering students. Covers electricity and magnetism, wave motion, and
optics. Normally is taken concurrently with PHYS 1140. Prereq., PHYS 1110. Coreq., MATH 2300 or APPM 1360, and PHYS 1140. Approved for arts and sciences core curriculum: natural science.

PHYS 1140-1. Experimental Physics 1. One lec., one 2-hour lab per week. Prereq., PHYS 1110; coreq., PHYS 1120. Approved for arts and sciences core curriculum: natural science.

PHYS 1150-1. Experimental Physics 2. One lec., one 2-hour lab per week. To be taken concurrently with PHYS 1140 and PHYS 1120. For physics majors in plan 3. Registration by special arrangement with the Department of Physics.

PHYS 1170-4, 1180-4. Honors General Physics 1 and 2. Covers the same general topics that are taught in PHYS 1110 and 1120, however, the material is presented in significantly greater depth and at a more sophisticated level than in the non-honors sequence. Highly recommended for well-prepared students who intend to major in physics, chemistry, engineering, or related topics. Prereqs., one year of high school physics, GPA above 3.50, MATH 2300 or APPM 1360, and instructor consent or AP Physics C-Mechanics with a minimum exam score of 3. Recommended prereq., MATH 2400 or APPM 2350.

PHYS 1230-3. Light and Color for Nonscientists. Discusses light, color, vision, and perception. Covers reflection, refraction, lenses, and applications to photography and other methods of light sensing. Other topics include lasers and holography. Course is geared towards non-science majors. Approved for arts and sciences core curriculum: natural science.

PHYS 1240-3. Sound and Music. Explores the physical processes that underlie the diversity of sound and musical phenomena. Topics covered include the physical nature of sound, the perception of sound, the perception of pitch and harmony, musical instruments, synthesizers and samplers, and room acoustics. Non-mathematical; geared toward non-science majors. Approved for arts and sciences core curriculum: natural science.

PHYS 1600-4. Order, Chaos, and Complexity. Develops the foundations to understand new ideas in science, focusing on fractals and chaos in complex interacting systems. Topics include the historical perspective of fractal geometry, complex nonlinear systems, and the nature of uncertainty. Same as GEOL 1600. Approved for arts and sciences core curriculum: natural science, or quantitative reasoning and mathematical skills.

PHYS 2010-5, 2020-5. General Physics 1 and 2. Three demonstration lectures, one two-hour lab/rec. per week, plus three evening exams in the semester. PHYS 2010 covers mechanics, heat, and sound; PHYS 2020 covers electricity and magnetism, light, and modern physics. Elementary but thorough presentation of fundamental facts and principles of physics. Natural science majors with a knowledge of calculus and others taking calculus are urged to take instead PHYS 1110, 1120, PHYS 2130, and 2150. Prereq. for PHYS 2010 is ability to use high school algebra and elementary trigonometry; prereq. for PHYS 2020 is PHYS 2100. PHYS 2010 meets MAPS requirement for natural science: lab or non-lab. Approved for arts and sciences core curriculum: natural science.

PHYS 2130-3. General Physics 3. Lect. Third semester of introductory sequence for science and engineering students except physics majors and those studying computer applications in physics (for these, see PHYS 2170 below). Covers special relativity, quantum theory, atomic physics, solid state, and nuclear physics. Physics majors should take the PHYS 2140-2170 sequence instead of the PHYS 2130-2140 sequence. Prereq., PHYS 1120 and PHYS 1140; coreq., MATH 2400. Normally taken with PHYS 2150.

PHYS 2140-3. Methods of Theoretical Physics. Lect. Introduces mathematical techniques required for a quantitative understanding of phenomena of modern physics, including vector algebra and vector calculus, Fourier analysis, and some differential equations of physics. Computer applications in physics are also covered. Prereq., PHYS 1120; coreq., MATH 2400 or APPM 2350.

PHYS 2150-1. Experimental Physics. One lec., one 2-hour lab per week. Includes many experiments of modern physics, including atomic physics, solid state physics, electron diffraction, radioactivity, and quantum effects. Normally taken concurrently with PHYS 2130 or PHYS 2170 but students may take PHYS 2150 after taking PHYS 2130 or 2170. Prereq., PHYS 1120 and 1140.

PHYS 2160-1. Experimental Physics. One lec., one 2-hour lab per week. To be taken concurrently with PHYS 2150 and PHYS 2130. For physics majors in plan 3. Registration by special arrangement with the Department of Physics.

PHYS 2170-3. Foundations of Modern Physics. Three lec. per week. For physics majors in plans 1 and 2 and those studying computer applications in physics. Completes the three-semester sequence of general physics. Emphasizes developing skills for physics majors. Includes relativity, quantum mechanics, atomic structure. Normally taken concurrently with the laboratory PHYS 2150. Prereq., PHYS 2140. Coreq., MATH 2400 or APPM 2350.

PHYS 2810, 2820 (1-3). Special Topics in Physics. Various topics not normally covered in the curriculum; offered intermittently depending on student demand and availability of instructors. May be repeated for a total of 7 credit hours.

PHYS 2840, 2850, 2860 (1-3). Independent Study. Selected topics for undergraduate independent study. Subject matter to be arranged. May be repeated for a total of 7 credit hours.

PHYS 2900-4. Science, Computer Images, and the Internet. Computer classroom overview for non-specialists of how quantitative scientific information is visualized using color images. Covers Internet basics; graphics are downloaded and processed. Macintosh lab projects use Netscape, Photoshop, PowerPoint. Restricted to 18 students. Prereq., QRMS 1010 or 2380, or equivalent skill level. Approved for arts and sciences core curriculum: natural science.

PHYS 3050-3. Writing in Physics. Teaches strategies used in scientific writing with an emphasis on argument; reviews and reinforces essential writing skills; and provides experience in writing both academic and professional communications in a style appropriate to the literature of physics. Prereq., PHYS 2130 or 2170 and the lower-division core writing requirement. Approved for arts and sciences core curriculum: written communication.

PHYS 3070-3. Energy and the Environment. Contemporary issues in energy consumption and its environmental impact, including fossil fuel use and depletion; nuclear energy and waste disposal; solar, wind, hydropower, and other renewable sources; home heating; energy storage; fuel cells; and alternative transportation vehicles. Included are some basic physical concepts and principles that often constrain choices. No background in physics is required. Approved for arts and sciences core curriculum: natural science.

PHYS 3210-3. Analytical Mechanics. Lect. Covers Newtonian mechanics, including rigid body motion, coupled oscillators, central forces and scattering, and provides introduction to Lagrange’s and Hamilton’s equations. Prereq., PHYS 1120, 2140, and APPM 2360, or equivalent.

PHYS 3310-3. Principles of Electricity and Magnetism 1. Covers mathematical theory of electricity and magnetism, including electrostatics, magnetostatics, and polarized media, and provides an introduction to electromag-
NETIC FIELDS, WAVES, AND SPECIAL RELATIVITY. PRE-REQS., PHYS 2130 OR 2170, AND 2140.

PHYS 3320-3. PRINCIPLES OF ELECTRICITY AND MAGNETISM 2. CONTINUATION OF PHYS 3310. PRE-REQS., PHYS 3310.

PHYS 3330-2. JUNIOR LABORATORY. ONE LECT. AND ONE 3-HOUR LAB PER WEEK. COMBINES THE USE OF ELECTRONICS WITH APPROPRIATE TRANSDUCERS TO EXAMINE PHENOMENA IN THERMAL AND SOLID STATE PHYSICS, OPTICAL COMMUNICATION, AND NUCLEAR PARTICLE DETECTION. STUDENTS ACQUIRE BASIC SKILLS IN CIRCUIT-BUILDING AND IN USE OF MODERN ELECTRONIC RESEARCH INSTRUMENTS. THIS KNOWLEDGE IS APPLIED TO VARIOUS EXPERIMENTS THAT STUDENTS THEMSELVES DESIGN AND BUILD. CONCLUDES WITH A PROJECT AT WHICH RESULTS ARE PRESENTED BY THE STUDENT. PRE-REQS., PHYS 2130 OR 2170, AND 2150.

PHYS 3340-3. INTRODUCTORY RESEARCH IN OPTICAL PHYSICS. TWO LECT., ONE 3-HOUR LAB PLUS VARIABLE UNASSIGNED LABS EACH WEEK. STUDENTS DESIGN AND BUILD THEIR OWN EXPERIMENTS USING A MODULAR TYPE OF OPTICAL RESEARCH KIT. EXPERIMENTS COVER BASIC RESEARCH METHODS IN INSTRUMENT DESIGN, LASER PHYSICS, FOURIER OPTICS, HISTOGRAPHY, SPECTROSCOPY, AND INTERFEROMETRY. STUDENTS LEARN HOW TO PLAN MAJOR PROJECTS AND EVALUATE CRITICALLY THE SIGNIFICANCE OF RESULTS. COURSE CONCLUDES WITH A FOUR-WEEK MAJOR PROJECT. PRE-REQ., PHYS 3330. APPROVED FOR ARTS AND SCIENCES CORE CURRICULUM: CRITICAL THINKING.

PHYS 4130-3. BIOLOGICAL ELECTRON MICROSCOPY: PRINCIPLES AND RECENT ADVANCES. PRE-REQS., EPOB 1220, EPOB 1222, MCDB 1150, OR MCDB 4500/5500, OR PHYS 1120 OR 2020, OR INSTRUCTOR CONSENT. SAME AS PHYS 5130 AND MCDB 4130.

PHYS 4150-3. PLASMA PHYSICS. DISCUSSES THE FUNDAMENTALS OF PLASMA PHYSICS, INCLUDING PARTICLE MOTION IN ELECTROMAGNETIC FIELDS, wave propagation, collisions, diffusion, and resistivity. PRE-REQS., PHYS 1110-1120 AND MATH 2400 OR APPM 2350. COREQ., PHYS 3310.

PHYS 4230-3. THERMODYNAMICS AND STATISTICAL MECHANICS. STATISTICAL MECHANICS APPLIED TO MACROSCOPIC PHYSICAL SYSTEMS; THERMODYNAMICS, CLASSICAL THERMODYNAMIC SYSTEMS; APPLICATIONS TO SIMPLE SYSTEMS. EXAMINES RELATIONSHIP OF STATISTICAL THERMODYNAMIC POINTS OF VIEW. PRE-REQS., PHYS 3210 AND APPM 2360.

PHYS 4300-3. DYNAMICS OF FLUIDS. PRE-REQS., MATH 2400 OR APPM 2350, AND APPM 2360, PHYS 2310, 3310, AND 3320. SAME AS ASTR 4300.

PHYS 4340-3. SOLID-STATE PHYSICS. PRIMARILY FOR SENIOR PHYSICS MAJORS. DISCUSSES CRYSTAL STRUCTURE LATTICE DYNAMICS, BAND THEORY, SEMICONDUCTORS, AND FERROMAGNETISM. PRE-REQS., PHYS 3220 AND 4230. SAME AS ECEN 4345.

PHYS 4410-3. QUANTUM MECHANICS AND ATOMIC PHYSICS 2. LECT. EXTENDS QUANTUM MECHANICS TO INCLUDE PERTRUPTION THEORY AND ITS APPLICATION TO ATOMIC FINE STRUCTURE, INTERACTIONS WITH EXTERNAL FORCES, THE PERIODIC TABLE, AND DYNAMICAL PROCESSES INCLUDING ELECTROMAGNETIC TRANSITION RATES. PRE-REQ., PHYS 3220 AND 3320.

PHYS 4420-3. NUCLEAR AND PARTICLE PHYSICS. LECT. INTRODUCES STRUCTURE OF THE NUCLEUS, SPECTROSCOPY OF SUB-NUCLEAR PARTICLES, SCATTERING, REACTIONS, RADIOACTIVE DECAY, FUNDAMENTAL INTERACTIONS OF QUARKS AND LEPTONS. PRE-REQ., PHYS 4410. APPROVED FOR ARTS AND SCIENCES CORE CURRICULUM: CRITICAL THINKING.

PHYS 4430-3. INTRODUCTION TO RESEARCH IN MODERN PHYSICS. ONE LECT., ONE LAB PER WEEK TO BE TAKEN WITH PHYS 4410. EXPERIMENTS INTRODUCE STUDENTS TO REALITIES OF EXPERIMENTAL PHYSICS SO THEY GAIN A BETTER UNDERSTANDING OF THEORY AND AN APPRECIATION OF THE VAST AMOUNT OF EXPERIMENTAL WORK DONE IN THE PHYSICAL SCIENCES TODAY. PRE-REQS., PHYS 3220 AND 3320; coreq., PHYS 4410. SAME AS PHYS 5430. APPROVED FOR ARTS AND SCIENCES CORE CURRICULUM: CRITICAL THINKING.

PHYS 4450-3. HISTORY AND PHILOSOPHY OF PHYSICS. INVESTIGATES THE ROLE OF EXPERIMENT IN PHYSICS. INCLUDES CASE STUDIES IN THE HISTORY AND PHILOSOPHY OF PHYSICS AND IN SCIENTIFIC METHODOLOGY. PRE-REQS., PHYS 1020 AND 1120. SAME AS PHYS 5450 AND PHIL 4450. APPROVED FOR ARTS AND SCIENCES CORE CURRICULUM: CRITICAL THINKING.

PHYS 4510-3. OPTICS. BASIC ELECTROMAGNETIC THEORY OF LIGHT, USING MAXWELL'S EQUATIONS. EXAMPLES IN GEOMETRICAL OPTICS; EXTENSIVE APPLICATIONS IN PHYSICAL OPTICS INCLUDING DIFFRACTION AND POLARIZATION. SPECTRA, INCLUDING ZEEMAN EFFECT AND FLUORESCENCE. RECENT ADVANCES IN EXPERIMENTAL TECHNIQUES: MICROWAVES, LASERS, IMAGE CONVERTERS. PRE-REQ., PHYS 3320.

PHYS 4610-2, 4620-2, 4630-2. PHYSICS HONORS. STUDENTS ARE MATCHED WITH A FACULTY MEMBER AND WORK INDEPENDENTLY ON A RESEARCH TOPIC. TYPICALLY, THE HONORS PROGRAM LASTS THREE SEMESTERS. A SENIOR THESIS AND AN ORAL PRESENTATION OF THE WORK IS REQUIRED. REGISTRATION BY SPECIAL ARRANGEMENT WITH THE DEPARTMENT OF PHYSICS. PRE-REQ., 3.00 GPA.

PHYS 4800-1. FRONTIERS OF PHYSICS SEMINAR. SURVEYS SELECTED TOPICS OF CURRENT RESEARCH INTEREST IN PHYSICS. AFTER READING ARTICLES ON THE TOPICS, THE CLASS FORMULATES QUESTIONS AND DISCUSSES THE TOPICS WITH THE INSTRUCTOR AND GUEST EXPERTS. PRE-REQS., PHYS 3210 AND 3310. RECOMMENDED PRE-REQ., PHYS 2170. MAY BE REPEATED FOR A TOTAL OF 3 CREDIT HOURS.

PHYS 4810, 4820, 4830 (1-3). SPECIAL TOPICS IN PHYSICS. VARIOUS TOPICS NOT NORMALLY COVERED IN THE CURRICULUM; OFFERED INTERMITTENTLY DEPENDING ON STUDENT DEMAND AND AVAILABILITY OF INSTRUCTORS. MAY BE REPEATED FOR A TOTAL OF 7 CREDIT HOURS.

PHYS 4840, 4850, 4860 (1-3). INDEPENDENT STUDY. SELECTED TOPICS FOR UNDERGRADUATE INDEPENDENT STUDY. SUBJECT MATTER TO BE ARRANGED. MAY BE REPEATED FOR A TOTAL OF 7 CREDIT HOURS.

PHYS 4970-3. SEMINAR ON PHYSICAL METHODS IN BIOLOGY. PRE-REQS., PHYS 1120 OR 2020; OR EPOB 1060 OR EPOB 1020; OR INSTRUCTOR CONSENT. SAME AS PHYS 5970 AND MCDB 4970.

PHYS 5000-1. SEMINAR IN PLASMA PHYSICS. GRADUATE SEMINAR ON CURRENT PLASMA PHYSICS RESEARCH. REVIEWS THE GOALS AND TECHNIQUES OF RESEARCH IN AREAS OF PLASMA PHYSICS (CONTROLLED FUSION, NUMERICAL SIMULATIONS, SOLAR AND SPACE PHYSICS). DISCUSSES CURRENT TOPICS AND RESEARCH LITERATURE IN DEPTH. MAY BE REPEATED FOR A TOTAL OF 4 CREDIT HOURS TO MEET CANDIDACY REQUIREMENT. PRE-REQ., GRADUATE STANDING OR INSTRUCTOR CONSENT.

PHYS 5030-3, 5040-3. INTERMEDIATE MATHEMATICAL PHYSICS 1 AND 2. SURVEYS CLASSICAL MATHEMATICAL PHYSICS, STARTING WITH COMPLEX VARIABLE THEORY AND FINITE DIMENSIONAL VECTOR SPACES. TOPICS IN ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS, THE SPECIAL FUNCTIONS, BOUNDARY VALUE PROBLEMS, POTENTIAL THEORY, AND FOURIER ANALYSIS. PRE-REQS., PHYS 5030 ARE MATH 4310 AND 4320, OR EQUIVALENT. PRE-REQ., PHYS 5040 IS PHYS 5030. SAME AS MATH 5030 AND 5040.

PHYS 5130-3. BIOLOGICAL ELECTRON MICROSCOPY: PRINCIPLES AND RECENT ADVANCES. PRE-REQS., EPOB 1220, MCB 1150, 4500, OR PHYS 1120 OR 2020, OR INSTRUCTOR CONSENT. SAME AS PHYS 4130.

PHYS 5141-3. ASTROPHYSICAL AND SPACE PLASMAS. COVERS MAGNETOHYDRODYNAMICS AND A FEW RELATED AREAS OF PLASMA PHYSICS APPLIED TO SPACE AND ASTROPHYSICAL SYSTEMS, INCLUDING PLANETARY MAGNETOPHERES AND IONOSPHERES, STARS, AND INTERSTELLAR GAS IN GALAXIES. PRE-REQS., GRADUATE STANDING IN ASTROPHYSICAL AND PLANETARY SCIENCE, OR PHYSICS. SAME AS ASTR 5140.

PHYS 5150-3. INTRODUCTORY PLASMA PHYSICS. INCLUDES BASIC PHENOMENA OF IONIZED GASES, STATIC AND DYNAMIC SHIELDING, LINEAR WAVES, INSTABILITIES, PARTICLES IN FIELDS, COLLISIONAL PHENOMENA, FLUID EQUATIONS, COLLISIONLESS BOLTZMANN EQUATIONS, LANDAU DAMPING, SCATTERING AND ABSORPTION OF RADIATION IN PLASMAS, ELEMENTARY NONLINEAR PROCESSES, WKB WAVE THEORY, CONTROLLED THERMONUCLEAR FUSION CONCEPTS, ASTROPHYSICAL APPLICATIONS, AND EXPERIMENTAL PLASMA PHYSICS (LABORATORY). PRE-REQ., PHYS 3310. SAME AS ASTR 5150.

PHYS 5210-3. THEORETICAL MECHANICS. VARIATIONAL PRINCIPLES, LAGRANGE'S EQUATIONS,

PHYS 5250-3, 5260-3. Introduction to Quantum Mechanics 1 and 2. Quantum phenomena, relation to classical physics, Schrödinger and Heisenberg picture, application to problems, approximation techniques; angular momentum; scattering theory; Pauli spin theory. Coreq. for PHYS 5250 is PHYS 5210. Coreq. for PHYS 5260 is PHYS 7310.

PHYS 5430-3. Introduction to Research in Modern Physics. One lect., one lab per week. Experiments in nuclear physics, atomic physics, and condensed matter introduce students to variety of techniques useful in contemporary research. Recommended for students with limited background in lab work. Same as PHYS 4430.

PHYS 5450-3. History and Philosophy of Physics. Same as PHYS 4450 and PHIL 5450.

PHYS 5770-3. Gravitational Theory (Theory of General Relativity), Lect. Presents Einstein’s relativistic theory of gravitation from geometric viewpoint; gives applications to astrophysical problems (gravitational waves, stellar collapse, etc.).

PHYS 5840, 5850, 5860 (1-3). Selected Topics for Graduate Independent Study. Subject matter to be arranged. May be repeated for a total of 7 credit hours.

PHYS 6650 (1-3). Seminar in Geophysics. Same as GEOL 6650 and ASTR 6650.

PHYS 6940 (1-3). Master’s Degree Candidate.

PHYS 6950 (1-6). Master’s Thesis. Approved problem in theoretical or experimental physics under the direction of staff members. Intended to introduce the student to procedures in research and development work. Work of an original nature expected.

PHYS 7160-3. Intermediate Plasma Physics. Continuation of PHYS 5150. Topics vary yearly but include nonlinear effects such as wave coupling, quasilinear relaxation, particle trapping, nonlinear Landau damping, collisionless shocks, solutions; non-neutral plasmas; kinetic theory of waves in a magnetized plasma; anisotropy; in-homogeneity; radiation—ponderomotive force, parametric instabilities, stimulated scattering; plasma optics; kinetic theory and fluctuation phenomena. Prereq., PHYS 5150 or instructor consent. Same as ASTR 7160.

PHYS 7240-3. Advanced Statistical Mechanics. Introduces current research topics in statistical mechanics. Topics vary from year to year and may include phase transitions, critical phenomena, nonequilibrium phenomena, dense fluids, dynamical systems, plasma physics, or quantum statistical mechanics. Prereqs., PHYS 7230.

PHYS 7270-3. Introduction to Quantum Mechanics 3. Radiation theory; relativistic wave equations with simple applications; introduction to field theory and second quantization.

PHYS 7280-3. Advanced Quantum Theory. Quantum theory of fields, elementary particles, symmetry laws, and topics of special interest. Prereq., PHYS 7270 or instructor consent.

PHYS 7310-3, 7320-3. Electromagnetic Theory 1 and 2. Electromagnetic fields; applications of Maxwell’s equations to electromagnetic wave propagation, and fundamental properties of light; relativistic electrodynamics, radiation theory. Prereq. for PHYS 7310 is PHYS 5030; coreq., PHYS 5260.

PHYS 7710-3. Nuclear Physics. Intrinsic properties of nuclei and the nucleon-nucleon interaction, nuclear models, scattering of nucleons by nuclei in terms of an optical model, and nuclear reactions.

PHYS 7730-3. Theory of Elementary Particles. Systematics of elementary particles; quantum numbers, Lorentz group and spin; the S-matrix and invariant amplitudes; analytical properties of amplitudes; dispersion relations; dynamical calculation of quantum numbers and masses; elementary particle spectroscopy; higher symmetries.

PHYS 7810, 7820, 7830 (1-3). Special Topics in Physics. Various topics not normally covered in the curriculum; offered intermittently depending on student demand and availability of instructors. May be repeated for a total of 7 credit hours.

PHYS 7840, 7850, 7860 (1-3). Selected Topics for Graduate Independent Study. Subject matter to be arranged. May be repeated for a total of 7 credit hours.

PHYS 8990 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of the catalog.

POLITICAL SCIENCE

American

PSCI 1101-3. The American Political System. Emphasizes interrelations among levels and branches of government, formal and informal institutions, processes, and behavior. Meets MAPS requirement for social science: general or U.S. history. Approved for arts and sciences core curriculum: contemporary societies or United States context.

PSCI 1111-1. Introduction to Political Science Research: American Politics. Introduces students to some simple techniques political scientists use to evaluate evidence. Students learn how to formulate testable hypotheses, examine data for evidence of support of their hypotheses, and think about and test possible rival explanations.

PSCI 2101-3. Introduction to Public Policy Analysis. Studies policy-making processes in American government, factors shaping public decision, and issues and questions relevant to political inquiry.

PSCI 2111-3. Introduction to Urban Studies. Surveys different perspectives on urbanization
and urban life from an interdisciplinary perspective, emphasizing the economic, spatial, and political dimensions of urban conditions and their planning and policy implications. Required for the certificate in urban studies.

PSCI 3013-3. Political Parties and Pressure Groups. Highlights the practice of party politics in the United States, including the nature, structure, organization, and functions of political parties and pressure groups. Analyzes pressure politics and political behavior. Prereq., PSCI 1101.

PSCI 3041-3. The American Congress. Provides intensive examination of the role of Congress in American government, including congressional elections, representation, the organization of Congress, and congressional policy making. Examines larger context of congressional politics, including political parties, the president, and interest groups. Prereq., PSCI 1101.

PSCI 3051-3. Public Opinion and Political Behavior. Examines measurement of public opinion and evaluation of its impact on governmental policy formation, including survey research techniques and field work in opinion sampling. Prereq., PSCI 1101.

PSCI 3061-3. State Government and Politics. Examines politics in the American states from a comparative and historical perspective. Considers major political actors—interest groups, citizens ("direct democracy"), and political parties, as well as central institutions, in the state political arena. Also focuses on major state public policy concerns. Approved for arts and sciences core curriculum: United States context.

PSCI 3071-3. Urban Politics. Examines the structure of political, social, and economic influence in urban areas. Focuses on the relationship of the political system to governmental, social, and economic institutions and the contemporary policy processes in American cities. Prereq., PSCI 1101 or 2111. Approved for arts and sciences core curriculum: United States context.

PSCI 3101-3. Black Politics. Examines structure of political, social, and economic influence in urban areas. Focuses on the relationship of political processes to governmental, social, and economic institutions and contemporary policy processes in American cities. Prereq., PSCI 1101. Same as BLST 3101. Approved for arts and sciences core curriculum: cultural and gender diversity, or contemporary societies.

PSCI 3171-3. Government and Capitalism in the United States. Examines competing theoretical approaches to questions related to origins, development, and purposes of modern government in the United States; particular attention paid to impact of transformations in the underlying structure of the capitalist economy. Approved for arts and sciences core curriculum: United States context.

PSCI 3201-3. The Environment and Public Policy. Considers constitutional, political, and geographic factors in development of public policy affecting the use of natural resources and management of the environment; organization, procedures, and programs for use of natural resources; and administration of environmental policies. Prereq., PSCI 1101 or ENVS/EVOC major.

PSCI 4091-3. Comparative Urban Politics. Comprehensively analyzes urban systems in different political/economic settings and Third World countries. Gives special attention to political and economic factors shaping urbanization processes and distinctive policy issues in these different settings. Prereq., PSCI 1101 and 3071 recommended.

PSCI 4111-3. Urban Problems and Public Policies. Critically examines public policies designed to deal with major social, economic, and political problems facing contemporary American cities. Emphasizes evaluation of urban programs in welfare, education, crime, housing, and urban economic vitality. Prereq., PSCI 1101.

PSCI 4131-3. Latinos and the U.S. Political System. Examines the political status and activities of Mexican Americans and other Latino groups (Cuban Americans and Puerto Ricans) in the U.S. Presents theoretical frameworks. Also covers historical experiences and socioeconomic status of several Latino groups; Latino political attitudes and behaviors; Latino efforts to influence the major national, state, and local institutions of the American government; and public policy concerns of Latinos. Recommended prereq., PSCI 1101. Same as CHST 4133. Approved for arts and sciences core curriculum: cultural and gender diversity.

PSCI 4241-3. Constitutional Law 1. Focuses on the nature and scope of American constitutional principles as developed by the U.S. Supreme Court: federalism, jurisdiction of the federal courts, separation of powers, the taxing power, and the commerce power. Involves the case method. Prereq., PSCI 1101 and junior or senior standing.

PSCI 4251-3. Constitutional Law 2. Continuation of PSCI 4241. Emphasizes war power, powers of the President, citizenship, the Bill of Rights, and the Civil War amendments. Involves the case method. Not open to freshmen. Prereq., PSCI 1101 or instructor consent.

PSCI 4281-3. Legal Systems. Compares the criminal justice systems around the world in order to see how each functions and how each system reflects political and historical traditions, including the civil law tradition that dominates Europe and South America, the common law system that exists in the United States and in most English-speaking countries, and the criminal justice system in Japan.

PSCI 4341-3. Political Communication, Persuasion, and Public Policy. Addresses the idea of political communication as a central aspect of policymaking and the issues related to how the inability to develop persuasive political arguments in particular circumstances
invites policy failure. Examines aspects of political communication as it applies to citizens, political decisionmakers, and specific public policies. Prereq., PSCI 1101 and junior or senior standing, or instructor consent.

PSCI 4701-3. Symbolic Politics. Introduces uses and abuses of symbols as instruments and indicators of political change. Recommended prereq., junior or senior standing. Approved for arts and sciences core curriculum: critical thinking.

PSCI 4711-3. Selected Policy Problems. Integrates general principles of policy inquiry with documents and other literature on specific problems in public policy, in order to evaluate courses of action. May be repeated for a total of 6 credit hours on different topics. Open only to juniors and seniors. Approved for arts and sciences core curriculum: critical thinking.

PSCI 4721-3. Rethinking American Politics. Examines the political history and development of the United States of America. Looks at the particular policy choices we have made and examines the future political agenda. Recommended prereq., junior or senior standing and PSCI 1101. Approved for arts and sciences core curriculum: critical thinking.

PSCI 4731-3. Progress and Problems in American Democracy. Closely examines the various understandings of democracy, the arguments for and against democracy, and the progress of and prospects for democratic politics in the United States. Particular attention is paid to economic, social, and political developments in the United States that affect popular sovereignty, political equality, and liberty. Prereq., junior or senior standing. Approved for arts and sciences core curriculum: critical thinking.

PSCI 4741-3. American Goals, Spending, and Revenues. Discusses how the American political system allocates resources to public programs and how revenues are raised, who gets what, and who pays how much. Prereq., junior or senior standing. Approved for arts and sciences core curriculum: critical thinking.

PSCI 4751-3. The Politics of Ideas. Examines theoretical arguments and case studies of interactions of ideas, interests, and institutions in policymaking. Analyzes processes through which ideas come to the public agenda, how institutional settings shape those ideas, and why some ideas and interests are more successful. Prereq., junior or senior standing. Approved for arts and sciences core curriculum: critical thinking.

PSCI 4761-3. Rethinking Political Values. Encourages intellectual discipline and critical thinking by examining pressing political values from multiple analytic perspectives. Enables students to participate in oral and written discussions. Prereq., junior or senior standing. Approved for arts and sciences core curriculum: critical thinking.

PSCI 4841 (1-3). Independent Study—American. Subjects are chosen and arrangements are made to suit the needs of each student. Independent study is for upper-division students who have completed 9 credit hours of political science and who have an overall GPA of at least 3.00. Not more than 6 credit hours of independent study may be credited toward the minimum requirements in the political science major. A special independent study approval agreement form must be obtained from the department. May be repeated for a total of 7 credit hours. Prereq., PSCI 1101.

PSCI 5011-3. Seminar: American Politics. Primarily for students who have taken an undergraduate course in American politics. Emphasizes preparation of research papers and literature in the field. Same as PSCI 7011.

PSCI 5021-3. Latinos and U.S. Politics. Examines in depth the theoretical and empirical literature assessing the political situation and activities of Latinos (Mexican-Americans, Puerto Ricans, Cuban Americans, and others) in the U.S. Stresses original research. Same as PSCI 7021.

PSCI 5031-3. Seminar: Political Attitudes and Behavior. Provides an intensive examination of topics in political attitudes and behavior such as political participation, ideology, voting, and elite behavior. Reviews methodology of behavioral research and introduces ICPSR data archive and computer-based research. Same as PSCI 7031.

PSCI 5041-3. Seminar: The Presidency. Offers an intensive examination and preparation of research papers on historical, functional, and constitutional aspects of the presidency. Gives attention to literature on the presidential system and to analytical comparisons with other executive systems. Same as PSCI 7041.

PSCI 5051-3. Seminar: The United States Congress. Comprehensively examines literature and selected research topics concerning the United States Congress. Same as PSCI 7051.

PSCI 5091-3. Politics of Social Movements and Interest Groups. Examines theoretical and empirical research on American interest groups and social movements. Emphasizes relative power of such interests and their ability to bring about changes in national policy and political institutions. Same as PSCI 7091.

PSCI 5111-3. Seminar: American Political Institutions. Intensive examination of the structure and rules of different political institutions in the United States. Explores both the changing approaches to the study of American political institutions as well as many of the major research topics on the presidency, Congress, the judiciary, and the bureaucracy. Same as PSCI 7111.

PSCI 5121-3. Black Leadership and Public Policy. Examines the writings of African-American political leaders, public policy critics, and politicians who have influenced black politics and society since 1900. Explores the ideas and leadership of W.E.B. DuBois, E. Franklin Frazier, Martin Luther King, and others. Same as PSCI 7121.

PSCI 5151-3. American Subnational Politics and Government. Provides a comprehensive overview of the issues and literature concerning American “subnational” politics. Considers three bodies of literature: American federalism and intergovernmental relations, state politics, and urban/local politics. Also examines a number of policy issues. Same as PSCI 7151.

PSCI 5901 (1-3). Topics in Political Science. Same as PSCI 7901. May be repeated for a total of 7 credit hours.

PSCI 6901 (1-3). Graduate Research Topic. Independent research in a topic of special interest. Arrangements are made to suit needs of each student. Not a free option; must be approved by student’s advisor and department chair. Does not count as a seminar. May be repeated for a total of 7 credit hours. Same as PSCI 8901.

PSCI 6951 (1-4). Master’s Thesis. May be repeated for a total of 7 credit hours.

PSCI 7021-3. Latinos and U.S. Politics. Same as PSCI 5021.

PSCI 7031-3. Seminar: Political Attitudes and Behavior. Same as PSCI 5031.

PSCI 7051-3. Seminar: The United States Congress. Same as PSCI 5051.

PSCI 7091-3. Politics of Social Movements and Interest Groups. Same as PSCI 5091.

PSCI 7121-3. Black Leadership and Public Policy. Same as PSCI 5121.

PSCI 7901 (1-3). Topics in Political Science. May be repeated for a total of 7 credit hours. Same as PSCI 5901.

PSCI 8901 (1-3). Graduate Research Project. May be repeated for a total of 7 credit hours. Same as PSCI 6901.

PSCI 8991 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of the catalog.

Comparative

PSCI 2012-3. Introduction to Comparative Politics. Examines the concepts of how most countries confront common political questions, including how to gain popular support, what kinds of political institutions are most appropriate, and how to distribute burdens and benefits to different segments of the population. Concentrates on learning to compare different political systems and provides illustrative examples from several industrialized and non-industrialized countries. Approved for arts and sciences core curriculum: comparative societies.

PSCI 3062-3. Revolution and Political Violence. Studies, discusses, and evaluates alternative theoretical frameworks for the analysis of revolution and political violence. Theoretical material is firmly couched in case situations, such as ethnic class and colonial, urban, racial, and religious conflicts. Students may not receive credit for both PSCI 3062 and PSCI 3064. Prereq., PSCI 1101, PSCI 2012, or IAFS 1000.

PSCI 3082-3. Political Systems of Sub-Saharan Africa. Analyzes post-independence and post-cold-war change in Sub-Saharan Africa and provides intensive case studies of selected countries exemplifying each type with South Africa seen as a special case. Prereq., PSCI 2012 or IAFS 1000. Approved for arts and sciences core curriculum: contemporary societies.

PSCI 4002-3. Western European Politics. Comparatively analyzes developments of the political systems and processes of European democracies. Emphasizes contemporary institutions, decision making patterns, and policy issues. Special attention to challenges to welfare systems. Strongly recommended prereq., PSCI 2012 or IAFS 1000. Approved for arts and sciences core curriculum: contemporary societies.

PSCI 4012-3. Global Development. Examines Third World political, economic, and sociocultural development in the context of international political and economic forces. Discusses the meaning of development, why it occurs in some countries and not in others, and policy proposals for facilitating it. Prereq., PSCI 2012, ECON 2020, IAFS 1000, or one upper-division PSCI course. Students do not receive credit for both PSCI 4012 and PSCI 4732. Same as INVS 4732. Approved for arts and sciences core curriculum: contemporary societies.

PSCI 4062-3. The Emerging Democracies of Central and Eastern Europe. Studies developments in the Soviet satellites and Yugoslavia, their governmental organizations, and their relation to the Soviet Union and the West. Prereq., PSCI 2012 or IAFS 1000. Students do not receive credit for both CEES 4000 and PSCI 4062. Approved for arts and sciences core curriculum: contemporary societies.

PSCI 4102-3. The Government and Politics of Israel. Studies historical and contemporary responses by Jews to conditions of diaspora and statehood. Emphasizes Israel's political culture, governmental structure and processes, and party politics. Also looks at problems of integration, defense, and relations with the diaspora Jewish community. Prereq., PSCI 2012 or IAFS 1000.

PSCI 4122-3. The Military in Politics: Latin America and the U.S. Analyzes the causes and consequences of military intervention in politics, contrasting patterns of civil-military relations, and the problem of democratic control of the armed forces. Focuses on the Latin American military, with secondary attention to U.S. military. Prereq., PSCI 2012 or IAFS 1000, and PSCI or ROTC major.

PSCI 4272-3. The Political Economy of Industrial Societies. Considers how political power is used to achieve economic ends and to shape the operations of market economies. Focuses on economic conflicts as political contexts, and explores how politics shape the course of economic development as well as the basis of social and political life. Prereq., PSCI 2012 or IAFS 1000, and ECON 2020 recommended. Approved for arts and sciences core curriculum: contemporary societies.

PSCI 4732-3. Critical Thinking in Development. Analyzes the same subject matter as PSCI 4012, requiring students to critically evaluate explanations of the success or failure of development and policy proposals for facilitating it that are presented in assigned or optional readings or in student papers. Prereq., PSCI 2012 or IAFS 1000, ECON 2020 and 2020, and one upper-division PSCI course. Students do not receive credit for both PSCI 4012 and PSCI 4732. Same as INVS 4732. Approved for arts and sciences core curriculum: critical thinking or contemporary societies.

PSCI 4792-3. Issues on Latin American Politics. Studies several Latin American countries in some depth including history and contemporary politics. Teaches students to listen to and evaluate different sides of political controversies, and critically evaluate arguments. Prereq., PSCI 2012 or IAFS 1000, and junior or senior standing. Approved for arts and sciences core curriculum: critical thinking.

PSCI 4842 (1-3). Independent Study—Comparative. Subjects chosen and arrangements made to suit needs of each student. Independent study is for upper-division students who have completed 9 credit hours of political science and who have an overall GPA of at least 3.00. Not more than 6 credit hours of independent study may be credited toward the minimum requirements in the political science major. Special independent study approval agreement form must be obtained from the department. May be repeated for a total of 7 credit hours. Prereq., PSCI 2012 or IAFS 1000.

PSCI 5012-3. Seminar: Comparative Political Systems. Discusses current literature on
comparative politics including theoretical and methodological issues. Same as PSCI 7012.

PSCI 5022-3. Seminar in Political and Economic Development. Covers domestic political and economic development in Latin America, Africa, and Asia, as well as interactions with the global economy. Includes defining, explaining, and prescribing policies for successful development, and comparing the experiences of developing and industrialized countries. Same as PSCI 7022.

PSCI 5042-3. Seminar: Comparative Politics—Western Europe. Focuses on comparative analysis of changes in political institutions and processes and their impact on macroeconomic policies, e.g., growth, employment, redistribution, and welfare. Includes an examination and writing of research papers on selected topics on industrial democracies, especially those of Western Europe. Same as PSCI 7042.

PSCI 5062-3. The Politics of Ethnicity. Explores the political aspects of pluralism, ethnonationalism, separatism, and related phenomena. Examines theories of ethnic mobilization, conflict, and accommodation in the context of political development and “nation-building.” Includes cross-policy comparisons and case studies of multiethnic societies in the developed and developing world. Prereq., at least one course in comparative politics. Same as PSCI 7062.

PSCI 5072-3. Seminar: Comparative Politics—Sub-Saharan Africa. Stresses comparisons among African political systems as well as with other areas of the world, and on explanation of change. Includes writing and discussion of analytical literature reviews and research papers on various aspects of political change in Sub-Saharan Africa. Same as PSCI 7072.

PSCI 5082-3. Subordinate Protest and Democratization. Considers traditional studies of democratic development and democratization. Topics covered include the definition of democracy, characteristic dilemmas, and limitations; the classical European view of democratization; democratic and nondemocratic characteristics of different social classes; contributions to democracy made by the popular classes; and transitions to democracy and subordinate groups and protest in the democratization process. Same as PSCI 7082.

PSCI 5092-3. Comparative Human Rights and Repression. Provides students with an understanding of human rights and repression in a comparative perspective. Deals extensively with conceptual issues, theoretical explanations, and diverse techniques of studying the subject. Same as PSCI 7092.

PSCI 5112-3. Seminar: Comparative Political Parties and Interest Groups. Critically examines topics relating to social forces, parties, and interest groups. Analyzes concepts, theories, and case studies with particular emphasis on Western political systems. Also examines party systems in comparison and the role of groups and the determinants of group politics. Same as PSCI 7112.

PSCI 5142-3. Political Economy in Industrial Democracies. An advanced seminar that examines the structure of political and economic relations in several advanced democracies. Specifically examines a series of historical, institutional, and cultural theories that purport to explain these differences. Same as PSCI 7142.

PSCI 5902 (1-3). Topics in Political Science. May be repeated for a total of 7 credit hours. Same as PSCI 7902.

PSCI 6902 (1-3). Graduate Research Topic. Guides independent research on a topic of special interest. Arrangements made to suit needs of each student. Not a free option; must be approved by student’s advisor and department chair. Does not count as a seminar. May be repeated for a total of 7 credit hours. Same as PSCI 8902.

PSCI 6952-4. Master’s Thesis. May be repeated for a total of 7 credit hours.

PSCI 7042-3. Seminar: Comparative Politics—Western Europe. Same as PSCI 5042.

PSCI 7062-3. The Politics of Ethnicity. Prereq., at least one course in comparative politics. Same as PSCI 5062.

PSCI 7072-3. Seminar: Comparative Politics—Sub-Saharan Africa. Same as PSCI 5072.

PSCI 7082-3. Subordinate Protest and Democratization. Same as PSCI 5082.

PSCI 7092-3. Comparative Human Rights and Repression. Same as PSCI 5092.

PSCI 7112-3. Seminar: Comparative Political Parties and Interest Groups. Same as PSCI 5112.

PSCI 7142-3. Political Economy in Industrial Democracies. Same as PSCI 5142.

PSCI 7902 (1-3). Topics in Political Science. May be repeated for a total of 7 credit hours. Same as PSCI 5902.

PSCI 8902 (1-3). Graduate Research Topic. May be repeated for a total of 7 credit hours. Same as PSCI 6902.

PSCI 8992 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of this catalog.

International Relations

PSCI 2223-3. Introduction to International Relations. Introduces the field of international relations, with general survey of the theories, histories, and problems of historical and contemporary relations among state and nonstate actors. Approved for arts and sciences core curriculum: contemporary societies.

PSCI 3143-3. Problems in International Relations. Analyzes the various theoretical and policy challenges facing the post-Cold War world, with an emphasis on examining alternative conceptions of and approaches to such challenges. Prereq., PSCI 2223. Approved for arts and sciences core curriculum: contemporary societies.

PSCI 4173-3. International Organization. Analyzes international organizations to determine whether they are an effective instrument for achieving peace and security and for the promotion of human welfare. Prereq., PSCI 2223.

PSCI 4183-3. International Law. Investigates the body of law that regulates relations between nation states and provides a framework for the solving of common problems. Explores its nature and effectiveness as well as its adaptability to a changing environment. Prereq., PSCI 2223.

PSCI 4213-3. Europe in the International System. Covers European and Atlantic regionalism. Discusses such communities as the Council of Europe, NATO, EFTA, and OECD, and provides a detailed examination of the European Union. Looks at theories of
integration, problems of partnership and interdependence, rival nationalism and strategic doctrines, and problems of the post-Cold War era. Prereq., PSCI 2223.

PSCI 4263-3. Advanced Seminar: International Affairs. Provides an interdisciplinary course to help majors in international affairs bring together, review, and apply what they have learned in their IA courses in the various disciplines and geographic areas. Emphasizes interrelationship between fact and theory. Prereq., PSCI 2223. For seniors only; instructor consent required.

PSCI 4703-3. Alternative World Futures. Aims to help students think about the future of the world in a systematic way. Focuses on alternative projections and policies dealing with major problems. Prereq., PSCI 2223 and junior or senior standing. Approved for arts and sciences core curriculum: critical thinking.

PSCI 4843 (1-3). Independent Study—International Relations. Subjects chosen and arrangements made to suit needs of each student. Independent study is for upper-division students who have completed 9 credit hours of political science and who have an overall average of at least 3.00. Not more than 6 credit hours of independent study may be credited toward the minimum requirements in the political science major. Special independent study approval agreement form must be obtained from the department. May be repeated for a total of 7 credit hours. Prereq., PSCI 2223.

PSCI 5013-3. Seminar: International Relations. Reviews salient literature on international relations, and subsequent presentation and critical discussion of analytical studies. Allows students wide latitude in substantive and methodological approaches. Emphasizes changing trends and efforts to understand the bases for cooperation and conflict. Required of all Ph.D. students majoring in political science during their first year of residence. Same as PSCI 7013.

PSCI 5053-3. War and Peace. Allows for a systematic treatment of theories, concepts, and data addressing the conditions and processes of international conflict, violence, and stability, with attention to historical and contemporary cases. Same as PSCI 7053.

PSCI 5063-3. Psychological Approaches to International Relations. Surveys the roles of psychological processes in the formulation and conduct of foreign policy. Examples include attribution theory, cognition, decision making, and personality. Same as PSCI 7063.

PSCI 5073-3. Seminar: Global Political Economy. Introduces graduate students to concepts, theories, and data used to study the global system from a political-economic framework. Examines world systems analysis, regime change theory, and dependency theory with respect to operation of the exchange and power relationship within the contemporary world system. Same as PSCI 7073.

PSCI 5113-3. Advanced Readings in International Relations. Provides an advanced readings course for international relations graduate students. Acts as a capstone course for those preparing to take the Ph.D. comprehensive exams, and is intended to provide in-depth knowledge about core areas of international relations scholarship. Prereq., PSCI 5013. Same as PSCI 7113.

PSCI 5223-3. Continuities and Changes in the Modern World Economy. Introduces the topics of globalization and democratization from an interdisciplinary perspective. Examines major changes to the global political economy and explores their implications for local, national, regional, and international political and economic processes. Prereq., graduate standing in PSCI, GEOG, SOCY, or ECON. Same as PSCI 7223, GEOG 5222, and SOCY 5223.

PSCI 5333-3. Globalization and Democratization: An Introduction. Introduces research on globalization and democratization from an interdisciplinary perspective. Examines ongoing interdisciplinary research on the global political economy. Students learn about ongoing research, critique current efforts, and design their own research project. Prereq., graduate standing in PSCI, ECON, GEOG, or SOCY. Same as PSCI 7333, SOCY 5333, and GEOG 5332.

PSCI 5903 (1-3). Topics in Political Science. Not a free option; must be approved by the student’s advisor and department chair. Does not count as a seminar. May be repeated for a total of 7 credit hours. Same as PSCI 7903.

PSCI 6903 (1-3). Graduate Research Topic. Independent research in a topic of special interest. Arrangements made to suit needs of each student. Not a free option; must be approved by student’s advisor and department chair. Does not count as a seminar. May be repeated for a total of 7 credit hours. Same as PSCI 8903.

PSCI 6953-4. Master’s Thesis. May be repeated for a total of 7 credit hours.

PSCI 7013-3. Seminar: International Relations. Same as PSCI 5013.

PSCI 7053-3. War and Peace. Same as PSCI 5053.

PSCI 7063-3. Psychological Approaches to International Relations. Same as PSCI 5063.

PSCI 7113-3. Advanced Readings in International Relations. Prereq., PSCI 5013 or 7013. Same as PSCI 5113.

PSCI 7223-3. Continuities and Changes in the Modern World Economy. Prereq., graduate standing in PSCI. Same as PSCI 5223 and ECON 8323.

PSCI 7903 (1-3). Topics in Political Science. Same as PSCI 5903. May be repeated for a total of 7 credit hours.

PSCI 8903 (1-3). Graduate Research Topic. May be repeated for a total of 7 credit hours. Same as PSCI 6903.

PSCI 8993 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of the catalog.

Political Theory

PSCI 2004-3. Survey of Western Political Thought. Studies main political philosophies and political issues of Western culture, from antiquity to 20th century. Approved for arts and sciences core curriculum: ideals and values.

PSCI 2074-3. Quantitative Research Methods. Introduces quantitative research methods used in political science. Focuses on basic tools of analysis: data collection, processing, and eval-
uation, with special attention to survey techniques. Includes elite and case study analysis; aggregate, cluster, and content analysis; and the use of computers in political research. Prereq., PSCI 1101, 2223, or 2012. Approved for arts and sciences core curriculum: quantitative reasoning and mathematical skills.

PSCI 3054-3. American Political Thought. Highlights the development of American political theories and ideas from colonial period to present. Can also be taken for American field credit. Prereq., PSCI 2004 recommended. Approved for arts and sciences core curriculum: United States context, or ideals and values.

PSCI 4024-3. Senior Seminar—Theory. Intensively analyzes and discusses major theories and issues of both contemporary political thought and the history of political philosophy. The topic is announced by the instructor, but might include analysis of concepts (justice, human rights, democracy, etc.) or major theories. Emphasizes advanced discussion plus individual research. Prereq., PSCI 2004.

PSCI 4094-3. Classical Greek Political Thought. Studies the main representatives of political philosophy in antiquity (Plato, Aristotle, Cicero) and the most important concepts and values of ancient political thought. Same as CLAS 4041, HIST 4041, PHIL 4210. Prereq., PSCI 2004, CLAS/HIST 1051, CLAS/HIST 1061, HIST 1010, or PHIL 3000.

PSCI 4704-3. Politics and Language. Explores the use of language in politics. Examines in depth the political nature and meaning of language, including its significance, philosophy, and practice. Prereq., junior or senior standing recommended. Approved for arts and sciences core curriculum: critical thinking.

PSCI 4714-3. Liberalism and Its Critics. Examines contemporary arguments for and against liberalism. Focuses on the analysis, evaluation, and understanding of the philosophical contributions to this debate. Gives special attention to the concepts of justice, freedom, equality, and individualism. Prereq., junior or senior standing. Approved for arts and sciences core curriculum: critical thinking.

PSCI 4734-3. Politics and Literature. Broadly examines political topics as they are presented in important literary works and analyzes the possibilities involved in using the literary mode to present political teachings. Prereq., junior or senior standing. Approved for arts and sciences core curriculum: critical thinking.

PSCI 4844 (1-3). Independent Study—Theory. Subjects and arrangements suit individual student needs. Independent study is for upper-division students who have completed 9 credit hours of political science and who have an overall GPA of at least 3.00. Not more than 6 credit hours of independent study may be credited toward the minimum requirements in the political science major. Special independent study approval agreement form must be obtained from the department. May be repeated for a total of 7 credit hours. Prereq., PSCI 2004.

PSCI 5004-3. Seminar: Political Theory. Allows for intensive research in and presentation of selected topics. Introduces students to the broad context within which political ideas arise. Deals with classical and modern thought. Same as PSCI 7004.

PSCI 5024-3. Seminar: Selected Political Theories. Familiarizes students with selected political philosophies or theories in classical or modern political thought. Same as PSCI 7024.

PSCI 5904 (1-3). Topics in Political Science. May be repeated for a total of 7 credit hours.

PSCI 6904 (1-3). Graduate Research Topic. Independent research in a topic of special interest. Arrangements made to suit needs of each student. Not a free option; must be approved by student’s advisor and department chair. Does not count as a seminar. May be repeated for a total of 7 credit hours. Same as PSCI 8904.

PSCI 6954-4. Master’s Thesis. May be repeated for a total of 7 credit hours.

PSCI 7024-3. Seminar: Selected Political Theories. Same as PSCI 5024.

PSCI 8904 (1-3). Graduate Research Topic. May be repeated for a total of 7 credit hours. Same as PSCI 6904.

PSCI 8994 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of the catalog.

Empirical Theory and Research Methodology

PSCI 5075-3. Introduction to Professional Political Science. Introduces graduate students to intellectual foundations and historical development of political science; epistemologies, subfields, intellectual approaches, methodological strategies of the discipline; and ethics and norms of professional conduct. Same as PSCI 7075.

PSCI 5085-4. Introduction to Political Science Data Analysis. Provides intensive experience with quantitative techniques commonly employed in political science research. Examines fundamental design issues comparing experimental and post-hoc observational design; builds on a review of multivariate regression, inferential statistics, and causal modeling. Students undertake substantive research projects employing cross-sectional and times series data generated via different methodologies. Requires lab instruction in the use of the computer in quantitative applications of political science research. Prereq., graduate standing in social science or history. Same as PSCI 7085.

PSCI 5095-3. Advanced Political Data Analysis. Provides advanced training in empirical and analytic methods of political analysis. Covers general multivariate linear (regression) model as employed in political science. Also covers variety of dynamic approaches to empirical analysis (stochastic models, time series, and simulation). Prereq., instructor consent. Same as PSCI 7095 and GEG 5095/7095.

PSCI 5125-3. Seminar: Conflict Behavior—The Politics of Violence. Surveys historical, theoretical, and empirical analyses of violent conflict behavior, including causes and consequences of riots, terrorism, revolution, international war, and intervention. Enrollment recommended in both semesters of the two-semester sequence. Same as PSCI 7125.

PSCI 5145-3. Basic Formal Methods in Political Science. Introduces the application and role of models in political science (domestic and international politics), in areas such as voting, committees, power, decision making, and war and peace. Models include applications of set theory, elementary probability, games, and systems analysis. Prereq., PSCI 5085, 5095, or instructor consent. Same as PSCI 7145.

PSCI 5905 (1-3). Topics in Political Science. May be repeated for a total of 7 credit hours. Same as PSCI 7905.

PSCI 6905 (1-3). Graduate Research Topic. Offers the opportunity for independent research in a topic of special interest. Arrangements made to suit needs of each student. Not a free option; must be approved by student’s advisor and department chair. Does not count as a seminar. May be repeated for a total of 7 credit hours. Same as PSCI 8905.

PSCI 6955-4. Master’s Thesis. May be repeated for a total of 7 credit hours.

PSCI 7075-3. Introduction to Professional Political Science. Same as PSCI 5075.

PSCI 7085-4. Introduction to Political Science Data Analysis. Prereq., graduate standing in social science or history. Same as PSCI 5085.

PSCI 7095-3. Advanced Political Data Analysis. Same as PSCI 5095 and GEG 5095/7095.

PSCI 7905 (1-3). Topics in Political Science. May be repeated for a total of 7 credit hours. Same as PSCI 5905.

PSCI 8905 (1-3). Graduate Research Topic. May be repeated for a total of 7 credit hours. Same as PSCI 6905.

PSCI 8995 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of this catalog.

Public Policy

PSCI 5016-3. Introduction to the Policy Sciences. Provides an introduction to the policy sciences as a distinctive tradition within the policy field. Emphasizes the use of conceptual tools to improve analysis of complex problems. Teaches problem-solving framework that students apply to an issue of their choice. Same as PSCI 7016.

PSCI 5026-3. The Problem Orientation. Teaches basic problem-solving framework for policy analysis. Emphasizes applications to develop policy recommendations for issues selected by students. Includes group projects. Same as PSCI 7026.

PSCI 5036-3. Introduction to Policy Sciences: The Decision Process. Provides policy sciences frameworks for analyzing policy problems and evaluating policy alternatives, and for analyzing policy processes and designing political strategies to influence those processes in the direction of the preferred alternative. Emphasizes applications to problems selected by students for term projects. Same as PSCI 7036.

PSCI 5056-3. Readings in Public Policy. Explores diverse approaches to policy choice, change, and learning processes. Overviews literature on policy determinants and typologies, policy subsystems, innovation and diffusion, agenda setting, implementation, problem definition and social construction, policy design, institutional analysis, and policy and democratic values. Same as PSCI 7056.

PSCI 5066-3. Argument, Persuasion, and Public Policy. Addresses the issues revolving around the fact that the audiences for policy arguments are typically a number of some-what autonomous “policy communities” and an inability to persuade relevant audiences invites failure and frustration. Consequently, the course examines a number of types of policies in terms of what seems to persuade and why. Same as PSCI 7066.

PSCI 5116-3. Context-Sensitive Research Methods. Prepares students to conduct research on topics where data is not obvious or not easily available. Encompasses variations in context and setting as part of data observations. Methods include interviewing protocols, interpretive methods, cluster analyses, case study methodologies, and textual analyses. Same as PSCI 7116.

PSCI 6906 (1-3). Graduate Research Topic. Provides the opportunity for independent research in topic of interest. Arrangements made to suit needs of each student. Not a free option; must be approved by student’s advisor and department chair. Does not count as a seminar. May be repeated for a total of 7 credit hours. Same as PSCI 8906.

PSCI 6956 (1-4). Master’s Thesis. May be repeated for a total of 7 credit hours.

PSCI 7016-3. Introduction to the Policy Sciences. Same as PSCI 5016.

PSCI 7026-3. The Problem Orientation. Same as PSCI 5026.

PSCI 7056-3. Readings in Public Policy. Same as PSCI 5056.

PSCI 7066-3. Argument, Persuasion, and Public Policy. Same as PSCI 5066.

PSCI 8906 (1-3). Graduate Research Topic. May be repeated for a total of 7 credit hours. Same as PSCI 6906.

PSCI 8996 (1-10). Doctoral Dissertation. Provides the opportunity for independent research in a topic of special interest. Arrangements are made to suit the needs of each particular student. Not a free option; must be approved by student’s advisor and department chair. Does not count as a seminar. May be repeated for a total of 7 credit hours. Same as PSCI 8907.

PSCI 8997 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of this catalog.

General

PSCI 4028-3. Special Topics. Offers subjects not covered by existing courses. Offered when the department approves a special topic. May be repeated for a total of 12 credit hours for different topics.

PSCI 4718-3. Honors Political Science Seminar. Involves writing and discussion of selected topics in political science. Critically reviews the major methodological and conceptual features of the discipline. Students begin their honors papers in the seminar. Prereq., GPA of at least 3.50. Approved for arts and sciences core curriculum: critical thinking.

PSCI 4848 (1-3). Independent Study. Subjects chosen and arrangements made to suit needs of each student. Independent study is for upper-division students who have completed 9 credit hours of political science and who have an overall average of at least 3.00. Not more than 6 credit hours of independent study may be credited toward the minimum requirements in the political science major. Special independent study approval agreement form must be obtained from the department. May be repeated for a total of 7 credit hours.

PSCI 4938 (3-6). Internship in Government. Working individually under the guidance of a
public official, students are assigned to projects selected for their academic suitability and value to the official. Biweekly seminar is held by the instructor to evaluate experiences, discuss relevant readings, or present project papers. Since prior approval by both the instructor and the public official is required, prospective students should make their interest known before early registration. May be repeated for a total of 6 credit hours. Prereq., PSCI 1101.

PSCI 5008-1. Teaching Political Science 1. First in a sequence of three courses designed to train graduate teachers in the essentials of political science teaching and provide a background in theories of political science teaching and practical skills development in discipline-specific education. Same as PSCI 7008.

PSCI 5018-1. Teaching Political Science 2. Second in a sequence of three courses designed to train graduate teachers in the essentials of political science teaching and provide a background in theories of political science teaching and development in discipline-specific education. Same as PSCI 7018.

PSCI 7008-1. Teaching Political Science 1. Same as PSCI 5008.

PSCI 7018-1. Teaching Political Science 2. Prereq., PSCI 7008 recommended. Same as PSCI 5018.

PSCI 7028-1. Teaching Political Science 3. Third in a sequence of three courses designed to train graduate teachers in the essentials of political science teaching and provide a background in theories of political science teaching and practical skills development in discipline-specific education. Prereqs., PSCI 7008 and PSCI 7018 recommended.

PSYCHOLOGY

PSYC 2700-3. Psychology of Contemporary American Women. Surveys psychological theory and research concerning contemporary American women. Deals with such issues as masculine bias in American culture, sex difference in cognitive functioning and personality, psychological conflict for women between career and home, and, finally, specific areas pertaining to women’s mental health. Prereq., PSYC 1001 or WMST 2000. Same as WMST 2700. Approved for arts and sciences core curriculum: cultural and gender diversity.

PSYC 4220-3. Language and Mind. Studies processes of perceiving speech, interpreting it as meaningful, and expressing intentions to communicate as utterances. Emphasizes roles of the brain and of perceptual and motor systems. Writing, gestural, and animal communicative systems also are treated. Prereq., PSYC 1001 and LING 2000. Same as LING 4220.

PSYC 4560-3. Language Development. Examines the development of language in childhood and into adult life, emphasizing the role of environment and biological endowment in learning to communicate with words, sentences, and narratives. Prereqs. or coreqs., PSYC 1001 and LING 2000. Same as LING 4560 and SLHS 4560.

PSYC 4700-3. Women and Mental Health. Examines mental health issues of women by focusing on theories of female personality development. Explores theory and research pertaining to women and psychopathology and to women as patients in traditional and nontraditional forms of treatment. Prereq., PSYC 2700, WMST 2000, or WMST 2700. Same as WMST 4700.

PSYC 4740-3. Biology of Amphibians and Reptiles. Focuses on comparative morphology, taxonomy, ecology, behavior, and geographic distribution of amphibians and reptiles. Prereq., EPOB 1210 and 1220 or PSYC 1001 and 2012. Same as EPOB 4740 and PSYC 5740.

PSYC 5740-3. Biology of Amphibians and Reptiles. Prereq., instructor consent. Same as PSYC 4740 and EPOB 5740.

General

Many of the following courses have controlled enrollment by application. Please check with the departmental office in Muenzinger D243 for further information.

PSYC 1001 (3-4). General Psychology. Three hours lec. and one hour rec. per week. Surveys major topics in psychology: perception, development, personality, learning and memory, and biological bases of behavior. Students may participate as subjects for several hours in ongoing research. Meets MAPS requirement for social science: general. Prereq., PSYC 1001 or WMST 2000. Same as WMST 2700. Approved for arts and sciences core curriculum: cultural and gender diversity.

PSYC 2841 (1-3). Independent Study (Lower Division). Pass/fail only. May be repeated for a total of 6 credit hours. Restricted to psychology majors. Prereq., freshman or sophomore standing.

PSYC 3001-3. Honors Seminar 1. Focuses on research design. Each student prepares an original, detailed research proposal, which can become the honors thesis. Open only to students who have been accepted into the psychology departmental honors program. Prereq., consent of psychology honors director.

PSYC 3101-4. Statistics and Research Methods in Psychology. Three hours lec. and one two-hour lab per week. Introduces descriptive and inferential statistics and their roles in psychological research. Topics include correlation, regression, t-test, analysis of variance, and selected nonparametric statistics. Recommended prereq., MATH 1000 or equivalent. Similar to PSYC 2101. Students may not get credit for both PSYC 2101 and 3101.

PSYC 4001-3. Honors Seminar 2. Surveys contemporary issues, explores current controversies, and examines in detail selected topics in psychology. Open to juniors and seniors in the department’s honors program and to others who have a GPA of 3.00 or better. Prereq., instructor consent. Approved for arts and sciences core curriculum: critical thinking.

PSYC 4011 (1-6). Senior Thesis. Critically reviews some aspect of psychological literature, scholarly analysis of a major psychological issue, and/or empirical research project. See the psychology honors director for further information. May be repeated for a total of 6 credit hours.

PSYC 4511-3. History of Psychology. Includes outline of development of psychological theories since the Greek philosophers, the story of experimental psychology and its problems, and schools of psychological thinking. Students read original sources in English and English translations. Restricted to juniors and seniors.

PSYC 4521-3. Critical Thinking in Psychology. Allows students to “expand their powers” as they think about psychological problems, or about how psychological knowledge and techniques can be applied to pressing political, economic, biological, quantitative, and social issues. Encourages intellectual discipline and critical thinking about concepts and ideas; enables students to participate in oral and written discussion. May be repeated for a total of 6 credit hours, provided the topics vary. Restricted to psychology seniors. Approved for arts and sciences core curriculum: critical thinking.

PSYC 4541 (1-6). Special Topics in Psychology. Studies and analyzes special interest topics from the broad and diversified field of psychology. Particular section content is determined by instructor. May be repeated for a total of 6 credit hours, provided the topics vary. Same as PSYC 5541.

PSYC 4841 (1-6). Independent Study (Upper Division). Pass/fail only. May be repeated for a total of 8 credit hours. Restricted to psychology majors. Prereq., junior or senior standing.

PSYC 4911-3. Teaching of Psychology. Students receive concrete experience in teaching general psychology under supervision of a psychology faculty member. Alternative pedagogical strategies are discussed. Students must submit an application to the undergraduate advising center.
PSYC 4931-3. Field Placement Internship. Offers valuable volunteer experience through a supervised field placement. Provides hands-on insight into the decisions and issues that confront professionals in psychology and related fields. Restricted to psychology majors. Prereq., completion of 15 or more hours of psychology course work.

PSYC 5541 (1-6). Special Topics in Psychology. Prereq., instructor consent. Same as PSYC 4541.

PSYC 6841 (1-3). Independent Study. May be repeated for a total of 7 credit hours. Prereq., graduate standing.

PSYC 6851 (1-3). Independent Study. May be repeated for a total of 7 credit hours. Prereq., graduate standing.

PSYC 6941-3. Master’s Degree Candidate. May be repeated for a total of 7 credit hours.

PSYC 6951 (1-6). Master’s Thesis. May be repeated for a total of 7 credit hours.

PSYC 7051-2. Research Practicum. Discusses ongoing, current research projects, and students formulate and complete an empirical study of their own. For cognitive and social psychology graduate students. Prereq., instructor consent.

PSYC 7281-2. Mathematical Theories in Psychology. Offers a seminar on topics in mathematical theories of psychology. Specific topics vary depending on interests of students and instructors. May be repeated for a total of 8 credit hours.

PSYC 7291-3. Multivariate Analysis. Familiarizes students with scientific concepts, matrix theory, and computer techniques of multivariate analyses for psychological research. Topics include cluster and factor analysis, multiple regression, and discriminant functions. Emphasizes research technology rather than mathematical theory. Prereq., instructor consent.

PSYC 7521-3. History and Theory. Surveys chronological development of psychology, emphasizing theories. Provides opportunity for intensive examination of a few selected topics, which differ from year to year. Prereq., instructor consent.

PSYC 8991 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School chapter.

Biological

PSYC 4021-7. Biological Psychology 1. Surveys biological bases of learning, motivation, emotion, sensory processes and perception, movement, comparative animal behavior, sexual and reproductive activity, instinctual behavior, neurobiology of language and thought, and neurophysiology and neuroanatomy in relation to behavior. Prereq., completion of 12 or more hours of college work. Approved for arts and sciences core curriculum: natural science.

PSYC 4052-4. Behavioral Neuroscience. Intensive survey of the morphological, neurochemical, and physiological aspects of behavior. One lab./rec. section per week required. Prereq., one of the following sequences of courses: PSYC 2012 and 2022; MCB 1150 and 2150; MCB 1150 and EPOB 1220; EPOB 1210 and 1220; CHEM 1111 and CHEM 1131; PHYS 1010 and 1020, or PHYS 2010 and 2020. Same as PSYC 5052.

PSYC 4072-3. Clinical Neuroscience: A Clinical and Pathological Perspective. Provides basic science background for understanding the mechanism of behavioral disturbances resulting from brain damage. Emphasizes pathophysiological neuroanatomy, neurophysiology, and neuropharmacology, which is essential for understanding problems related to health and disease. Prereq., one of the following sequences of courses: PSYC 2012 and 2022; EPOB 1210 and 1220; MCB 1150 and 2150, or MCB 1150 and EPOB 1220. Same as PSYC 5072.

PSYC 4092-3. Hormones and Behavior. Represents application of endocrinological concepts and techniques to problems of motivation and behavior. Prereq., junior or senior standing. Same as PSYC 5092.

PSYC 4112-3. Behavioral Genetics Laboratory. Provides laboratory experience in behavioral genetics. Students train in one or more aspects of data collection and interpretation, read research papers, contribute nine hours per week to a research project in behavioral genetics, and write a report. Prereq., PSYC 3102 or 4102.

PSYC 4122-3. Quantitative Genetics. Surveys principles of genetics of quantitative characteristics. Topics include gene frequencies, effects of mutation, migration, and selection. Also looks at correlations among relatives, heritability, inbreeding, crossbreeding, and selective breeding. Prereq., PSYC 2101 or 3101, and PSYC 3102 or 4102. Same as PSYC 5122.

PSYC 4132-3. Behavioral Neuropharmacology. Offers an advanced course in neuroscience, considering chemical transmission in detail. Topics include endocrinology as well as the mechanism of action of psychoactive drugs, cellular neurochemistry, and special topics in neuroscience research. Explains how psychologists use drugs to study learning, attention, motivation, and abnormal behavior. Prereq., PSYC 4052 or 5052. Same as PSYC 5132.

PSYC 5062-4. Functional Neurochemistry. Examines mechanisms of neuronal signaling in experimental literature in areas of transmitter synthesis, transport, secretion, turnover, reuptake, and postsynaptic effect. Other special topics included. Prereq., PSYC 4092, MCB 4190 or EPOB 4220, and instructor consent.

PSYC 5082-2. Seminar: Biological Psychology. Special topics concerning biological bases of behavior. Prereq., PSYC 4052 and instructor consent.

PSYC 5112-3. Concepts in Behavioral Genetics. Examines selected topics in greater detail than is possible in the comprehensive undergraduate course in behavioral genetics (PSYC 4102). Topics covered may include inheritance of behavioral characteristics from perspectives of pharmacogenetics, transmission genetics, biochemical genetics, and evolutionary genetics. May be repeated for a total of 9 credit hours. Prereq., instructor consent.

PSYC 5262-3. Mammalian Neuroanatomy. Covers microscopic anatomy and function of different brain regions. Emphasizes correlation between structure and function, particularly at cellular and synaptic level. Course includes brain dissection, description of neuroanatomical and neurohistological techniques, and an introduction to the ultrastructure of neurons. Prereq., PSYC 4052, MCDB 4190, or EPOB 4220, and instructor consent.

PSYC 5272-3. Neuronal Plasticity. Describes changes that occur in the nervous systems as a result of lesions, altered environment, and during development. These changes are examined relative to their significance for the organism, and to underlying mechanisms. Prereq., understanding of behavioral plasticity and recovery of function, and instructor consent.

PSYC 7012 (0-3). Research in Behavioral Genetics. Individual research projects. May be repeated for a total of 7 credit hours.

PSYC 7102-2. Seminar: Behavioral Genetics. Intensive study of selected topics in behavioral genetics. Emphasizes recent research. Attention to both human and animal studies. May be repeated for a total of 7 credit hours. Prereq., instructor consent.

Clinical
PSYC 2303-3. Psychology of Adjustment. Surveys concepts bearing upon processes of normal psychological adjustment, with emphasis on the concepts to understand common human problems in personal growth and relationships with others.

PSYC 2653-2. Child Psychology Practicum. Initiates volunteer work with children in local day-care centers, nursery schools, community youth organizations, or the like. Requires periodic training sessions and discussion group meetings with agency and departmental staff. Coreq., PSYC 2643.

PSYC 3313-4. Psychopathology. Three hours lec. and two hours rec. per week. Analyzes major theories of personality and behavioral disorders. Restricted to junior and senior psychology majors. Prereq., PSYC 1001 or instructor consent. Students will not receive credit for this course if they have already received credit for PSYC 4303 or 4313.

PSYC 4303-3. Abnormal Psychology. Examines borderline disorders as extreme variations of the normal personality. Focuses on major functional and organic disorders, theories of mental disorders, and methods of psychotherapy. Not open for credit to those who have credit for PSYC 3313 or 4313. Prereq., PSYC 1001.

PSYC 4423-3. Research Problems in Clinical Psychology. Examines research issues relevant to the field of clinical psychology and mental health for the purpose of developing familiarity with substantive and methodological problems facing the field. Prereq., instructor consent for undergraduates. Same as PSYC 5423.

PSYC 4453-3. Developmental Psychopathology. The first semester of this year-long course provides an integration of child development, developmental psychopathology, and clinical interventions for children. Focuses on the conceptual convergence between applied developmental psychology and child clinical psychology. Prereq., instructor consent for undergraduates. Same as PSYC 5453.

PSYC 4733-4. Psychological Testing and Assessment. Provides an overview of issues central to testing and assessment of psychological constructs, including types of evaluation instruments currently in use in the field, their applications, and design. Prereq., PSYC 1001 and 3101, or PSYC 2101.

PSYC 5433-3. Adult Psychopathology. Intensively surveys major theories, research findings, and behavioral characteristics associated with deviant reaction patterns. Prereq., instructor consent.

PSYC 7503-3. Developmental Child Clinical Assessment. Provides clinical psychology students with a theoretical understanding and skills to conduct a comprehensive review of psychological and developmental functioning. Includes assessment from a variety of sources and contexts, including testing. Prereq., PSYC 5453 and enrollment in the clinical psychology graduate program.

PSYC 7653-3. Child Psychotherapy. The second semester in this year-long course builds upon concepts in PSYC 5453 to explore the theoretical and empirical bases for understanding child psychopathology and intervention. Prereq., PSYC 5453 and instructor consent.

PSYC 7673-3. Adult Psychotherapy. Discusses selected topics in the field of psychotherapy, including content consideration and pertinent research. Topics vary from semester to semester. Prereq., instructor consent.

PSYC 7683-3. Objective Testing in Clinical Psychology. Focuses on administering and interpreting objective test results commonly used in clinical psychology practice. Probable inventories used are MMPI, SCII, WISC, WAIS, plus other objective measures where relevant. Uses case study format. Prereq., instructor consent.

PSYC 7693-3. Personality Measurement. Covers theory and practice primarily in areas of individual personality testing. Involves intensive field work and report writing. Prereq., instructor consent.

PSYC 7703-3. Seminar: Clinical Psychology. Offers selected topics in the area of clinical psychology. May be repeated for a total of 12 credit hours. Prereq., instructor consent.

PSYC 7713-3. Practicum in Clinical Psychology. Provides direct clinical experience for Ph.D. candidates in clinical psychology.
only. May be repeated for a total of 7 credit hours.

PSYC 7773-3. Professional Issues and Ethics in Prevention and Intervention. Focuses on ideographic study of attitudes, values, and personality characteristics of individuals using data obtained from personal interviews. Covers theory and practice of various interviewing approaches. Open to Ph.D. candidates in clinical psychology only.

Developmental

PSYC 4114-3. Educational Psychology and Adolescent Development. Examines the principles of educational and adolescent psychology and development that play a significant role in analyzing and understanding the complex processes in middle and secondary school classrooms. Course has both theoretical and practical dimensions. Same as EDUC 4112.

PSYC 4684-3. Developmental Psychology. In-depth consideration of human developmental processes across the life span. Includes coverage of the major topics in human development, such as physical, cognitive, social, and personality development. Restricted to juniors and seniors. Prereq., PSYC 1001.

PSYC 7764-1. Readings and Research in Cognitive Science. Involves interdisciplinary reading of innovative theories and methodologies of cognitive science. Prereq., graduate standing. Same as EDUC 6505, PHIL 7310, CSCI 7762, and LING 7762.

Experimental

PSYC 2145-3. Cognition and Perception Core. Introduces the study of cognitive processes of human beings: sensation, perception, attention, pattern recognition, memory, learning, language, visual thought, reasoning, problem solving, and decision making. Discusses applications to education, human factors, human computer interaction, law, and other areas of psychology. Prereqs., PSYC 1001 strongly recommended.

PSYC 3005-3. Cognitive Science. Introduces cognitive science, drawing from psychology, philosophy, artificial intelligence, neuroscience, and linguistics. Studies the linguistic relativity hypothesis, consciousness, categorization, linguistic rules, the mind-body problem, nature versus nurture, conceptual structure and metaphor, logic/probem solving and judgment. Emphasizes the nature, implications, and limitations of the computational model of mind. Prereqs., two of the following: PSYC 2145, LING 2000, CSCI 1300, and PHIL 2440. Same as LING 3005, PHIL 3310, and CSCI 3702.

PSYC 3105-3. Experimental Methods in Psychology. Introduces the use of experimental procedures in psychology. Students learn about the logic and design of experiments, the meaning of psychological data, how to analyze and interpret data, and the role of theory in psychology. Prereqs., PSYC 1001, and 2101 or 3101. PSYC 2145 recommended. Approved for arts and sciences core curriculum: critical thinking.

PSYC 4135-4. Judgment and Decision Making. One lab, three lectures per week. Introduces the study of judgment and decision making processes (estimation, prediction and diagnosis, choice under certainty, and risky decision making) and the methods that have been developed to improve these processes (statistical modeling, decision analysis, and expert systems). Prereqs., PSYC 1001, and 2101 or 3101. Same as PSYC 5135.

PSYC 4145-4. Cognitive Psychology. Offers an advanced course in human cognitive processes. Focuses on attention pattern recognition, memory, learning, language, visual thought, reasoning, problem solving, and decision making. Discusses major theories and ideas in terms of the research they have inspired. Emphasis varies with instructor. One lab per week; research project required. Prereqs., PSYC 1001, 2101, and 2145, or 3101. Same as PSYC 5145.

PSYC 4165-4. Psychology of Perception. One lab, three lec. per week. Analyzes peripheral and central mechanisms involved in the transduction and interpretation of experience. Gives special attention to vision and audition; major theories in these areas are discussed in terms of research they have inspired. Prereqs., PSYC 1001, and 2101 or 3101.

PSYC 4175-4. Computational Cognitive Neuroscience. Offers an introduction to cognitive neuroscience (how the brain gives rise to thought) using computer simulations based on the neural networks of the brain. Covers a full range of cognitive phenomena including perception and attention, learning and memory, language, and higher-level cognition based on both large-scale cortical neuroanatomy and detailed properties of cortical neural networks. One lab per week. Prereqs., PSYC 1001, 2012, 2145, and 3101. Same as PSYC 5175.

PSYC 4205-4. Psychology of Learning. One lab per week. Discusses conditions of learning in animals and humans as found in experimental literature. Prereqs., PSYC 1001, and 2101 or 3101.

PSYC 4385-3. Ethology and Comparative Psychology. Discusses behavior of representative members of each animal phylum. Emphasizes ontogeny of behavior as well as phylogeny. Prereq., PSYC 1001 or EPOB 1210. Same as PSYC 5385.

PSYC 4505-3. Behavior of Zoo Animals. Examines behavioral research conducted at zoos of the world. Emphasizes courtship and copulation, offspring development, socialization, intellectual processes, and animal communication. Prereqs., PSYC 1001, 2101 or 3101, EPOB 1210, and 1220. Same as PSYC 5505.

PSYC 5135-4. Judgment and Decision Making. Same as PSYC 4135.

PSYC 5145-4. Cognitive Psychology. Prereq., instructor consent. Same as PSYC 4145.

PSYC 5175-4. Computational Cognitive Neuroscience. Prereq., instructor consent. Same as PSYC 4175.

PSYC 5185-3. Cognitive Processes in Reading. Explores both normal and disabled reading development from cognitive, neurological, genetic, social, and educational perspectives.

PSYC 5385-3. Ethology and Comparative Psychology. Prereq., instructor consent. Same as PSYC 4385.

PSYC 5505-3. Behavior of Zoo Animals. Same as PSYC 4505.

PSYC 5665-3 and 5675-3. Proseminar: Advanced Experimental Psychology. Provides an advanced and intensive survey of topics in experimental psychology. General areas are conditioning and learning, and cognitive psychology. Prereq., instructor consent.

PSYC 5685-3. Proseminar: Advanced Experimental Psychology. Offers an advanced and intensive survey of topics in experimental psychology. General areas include sensation and perception, and history and theory. Prereq., instructor consent.

PSYC 5765-3. Issues and Methods in Cognitive Psychology. Provides an advanced introduction to research in cognitive psychology, designed primarily for graduate psychology students. Includes basic experimental methodology and design, advanced topics in statistics, and methods for a special topic in cognitive psychology (topic varies). Prereqs., graduate enrollment in psychology or extensive background in cognitive psychology and statistics, and instructor consent.

PSYC 5815-3. Proseminar: Thinking and Problem Solving. Introduces graduate students to the empirical and theoretical analysis of higher mental processes, such as problem solving; deductive, inductive, and analogical reasoning; choice; and decision making. Prereq., instructor consent.

PSYC 7215-3. Seminar: Experimental Psychology. Offers an advanced seminar dealing with different specialized topics, at the discretion of the instructor, in different years. Topics chosen are within the broad range of experimental psychology. Prereq., instructor consent.

PSYC 7315-2. Advanced Research Seminar on Human Memory. Addresses topics in the experimental psychology of human memory. Content varies from semester to semester, de-
pending on interests of faculty and students. A sample topic is the long-term retention of skills. Prereq., graduate standing in psychology or related disciplines.

PSYC 7415-2. Cognitive Science Research Practicum. Independent, interdisciplinary research project in cognitive science for advanced graduate students pursuing a joint Ph.D. in an approved core discipline and cognitive science. Research projects integrate at least two areas within the cognitive sciences, e.g., psychology, computer science, linguistics, education, and philosophy. Prereq., CSCI 6402, EDUC 6504, LING 6200, PHIL 6310, or PSYC 6200. Recommended prereq., CSCI 7762, EDUC 6505, LING 7762, PHIL 7310, or PSYC 7762. Same as LING 7415, PHIL 7415, and CSCI 7412.

Social

PSYC 2406-3. Social Psychology of Ethnic Groups. Focuses on social-psychological approaches to a study of American ethnic-minority groups, using both traditional and contemporary perspectives on race, ethnicity, and culture of the individual or groups being studied. Prereq., PSYC 1001.

PSYC 2456-3. Social Psychology of Social Problems. Examines social psychological aspects of a variety of issues, ranging from problems of poverty or minority status to topics such as prejudice, drug use, student protest, and patterns of sexual behavior.

PSYC 2606-3. Social Psychology. Covers general psychological principles underlying social behavior. Analyzes major social psychological theories, methods, and topics, including attitudes, conformity, aggression, attraction, social perception, helping behavior, and group relations. Prereq., PSYC 1001. Similar to PSYC 4406; students may not receive credit for both 2606 and 4406. Approved for arts and sciences core curriculum: contemporary societies.

PSYC 3006-3. Psychology of Money: Propaganda, Seigniorage, Cognition, and Personal Economic Decision Making. Explores the various ways that money has influenced human affairs from the earliest use of metal coins through the contemporary emergence of electronic money. Lectures are supplemented with exhibits drawn from the CU coin cabinet. Prereq., PSYC 1001.

PSYC 4376-4. Research in Social Psychology. Designed primarily for psychology majors interested in learning about research methodology. Topics include research design, data collection and data analysis, and written research reports. Prereqs., PSYC 1001, 2101 or 3101, and 2606 or 4406.

PSYC 4456-3. Psychology of Personality. Offers a psychological study of structure, organization, and development of the person as a whole. Analysis of major theories, methods, and research, including topics such as emotion, motivation, temperament, inner experience, identity and the self, personality change, and the influence of sociocultural context. Restricted to juniors and seniors.

PSYC 4606-3. Advanced Topics in Social Psychology. In-depth study of selected topics in social psychology. Particular section content each semester is determined by the instructor. May be repeated for credit twice, provided the topics vary. Prereqs., PSYC 1001, 2101 or 3101, and PSYC 2606.

PSYC 5606-3. Proseminar: Social-Personality Psychology. Provides a thorough introduction to methods and theories in social psychology concerned with topics such as the self, social cognition, judgment and decision making, attitude formation and change, small group processes, inter-group relations, health and social psychology, and others. Prereq., instructor consent. May be repeated for a total of 7 credit hours.

PSYC 7536-2. Personality and Social Psychology. Selected topics in the area of social-personality psychology. Students may register for more than one section of this course within the term and/or within their graduate career. These seminars may be on one of the following topics: stereotyping and person perception, social psychology and self, social psychology of problem behavior, health and social psychology, race and ethnic identity, or groups and small group organization. May be repeated for a total of 8 credit hours. Prereq., instructor consent.

RELIGIOUS STUDIES

RLST 1620-3. Religious Dimension in Human Experience. Studies religion as individual experience and social phenomenon. Examines varieties of religious language (symbol, myth, ritual, scripture) and of religious experience (Asian, Western, archaic). Approved for arts and sciences core curriculum: ideals and values.

RLST 2200-3. Religion and Dance. Religions in cultures around the world frequently engage in dance. By focusing on dances and forms of movement, religious beliefs and meanings can be seen and appreciated. Studies select religious cultures from around the world. Theory is developed to interrelate religion and dance. Approved for arts and sciences core curriculum: literature and the arts, or ideals and values.

RLST 2210-1. Religion and Dance Studio. Comparative study of the dances of two cultures (possibly varying), including instruction in elementary dance movement and the cultural, historical, and religious contexts of the dances. Complements RLST 2200. Coreq., RLST 2200.

RLST 2400-3. Religion and Contemporary Society. Studies the nature of contemporary American society from various theoretical perspectives in religious studies. Gives attention to the impact of secularization and to the religious elements found in aspects of secular life (e.g., politics, literature, education, and recreation). Approved for arts and sciences core curriculum: contemporary societies.

RLST 2450-3. Self, Society, and Spirituality since the Sixties. Looks at religious expression in the U.S. in the 1960s counterculture, with special attention to the relation between self and society. Examines the impact of the counterculture on current popular ideas about religion, self, and society. Approved for arts and sciences core curriculum: United States context, or ideals and values.

RLST 2500-3. Religions in the United States. Explores the development of various religions within the shaping influences of American culture, including separation of church and state, the frontier experience, civil religion, and the interaction of religions of indigenous peoples, immigrants, and African Americans. Approved for arts and sciences core curriculum: United States context, or ideals and values.

RLST 2600-3. World Religions: Western. Introduces literature, beliefs, practices, and institutions of Judaism, Christianity, and Islam, in historical perspective. Approved for arts and sciences core curriculum: ideals and values.

RLST 2610-3. World Religions: India. Introduces the literature, beliefs, practices and institutions of Hinduism, Buddhism, Jainism, and Sikhism, in historical perspective. Approved for arts and sciences core curriculum: ideals and values.

RLST 2700-3. American Indian Religious Traditions. Introduces religions of the peoples indigenous to the Americas. Concerns include ritual, mythology, and symbolism occurring throughout these many cultures in such areas as art, architecture, cosmology, shamanism, sustenance modes, trade, and history. Same as AIST 2700. Approved for arts and sciences core curriculum: ideals and values, or cultural and gender diversity.
RLST 2800-3. Women and Religion. Examines roles of women in a variety of religious traditions including Judaism, Christianity, Hinduism, Buddhism, and goddess traditions. Same as WMST 2800. Approved for arts and sciences core curriculum: cultural and gender diversity.

RLST 2840 (1-3). Independent Study. May be repeated for a total of 8 credit hours.

RLST 3020-3. Advanced Writing in Religious Studies. A seminar for religious studies majors that emphasizes the development of writing skills for use inside as well as outside the academy. Writing assignments are focused on one or more core topics in religious studies. Restricted to RLST majors. Approved for arts and sciences core curriculum: written communication.

RLST 3125-3. Black Religious Life in America. Emphasizes the four principle periods in the growth and expansion of the black church: African traditional religion to the end of the American Civil War; development stage; traditional stage; and the contemporary period. Same as BLST 3125. Approved for arts and sciences core curriculum: contemporary societies or ideals and values.

RLST 3250-3. Gandhi: Life and Teaching. Studies the life and teaching of Mohandas Gandhi, through reading and discussion of primary sources. Focused on Gandhi’s religion and his impact as a religious leader. Approved for arts and sciences core curriculum: ideals and values.

RLST 3300-3. Indian Buddhism. Studies selected aspects of Buddhist tradition in India, including the life of the Buddha, development of the early community, Buddhist contemplative tradition, early Buddhist philosophy and psychology, and origins and development of Indian Mahayana Buddhism.

RLST 3510-3. Australian Religions. Examines the Arunta of the Central Desert. Highlights the relationship between religion and landscape and the historical development of the area by non-aboriginal Australians. Also examines the impact of Australian aboriginal studies on the history of modern Western thought. Approved for arts and sciences core curriculum: cultural and gender diversity.

RLST 3520 (1-3). Religion and Dance Studies. Studies dancing in religious cultures to appreciate how it functions to enact religious beliefs, effect social change, shape moods and motivations, and forge personal and group identity. Prereq., RLST 2200 or instructor consent.

RLST 3600-3. Islam. Introduces Islamic beliefs and practices through an examination of the Qur’an, Muhammad’s life, ritual duties, law and theology, mysticism, and social institutions.

RLST 3700-3. Religion and Psychology. Examines the relation between religion and psychology in the understanding of human nature. Considers a variety of contemporary theories and models in both psychology and religious studies. Approved for arts and sciences core curriculum: critical thinking.

RLST 3820-3. Topics in Religious Studies. Intensive study of a selected area or problem in religious studies. May be repeated for a total of 9 credit hours as topics change.

RLST 3830-3. Perspectives on the Study of Religion. Offered each fall semester. Surveys basic approaches to the study of religion. Students read and respond to seminal works in religious studies selected by faculty members, who visit class for discussions. Students also visit several religious communities in the Boulder/Denver region. Restricted to and required for junior and senior RLST majors.

RLST 4020-3. Topics in Biblical Christianity. Studies Christian origins, treatment of the historical person of Jesus, and theological perspectives of the New Testament. Emphasizes methodology, e.g., textual criticism, literary criticism, and form criticism. Variable topics include synoptic gospels, John, and Pauline writing. May be repeated for total of 9 credit hours as topics change. Prereq., 6 credit hours of RLST courses at any level or instructor consent. Same as RLST 5020.

RLST 4030-3. Religions in America. Studies various religious movements in the U.S. and other parts of the Americas. Includes American religion and religions, religion and nationalism, revitalization and religion, and Asian religions in America. May be repeated for a total of 9 credit hours as topics change. Prereq., 6 hours of RLST courses at any level or instructor consent. Same as RLST 5030.

RLST 4050-3. Topics in Christian Studies. Studies a particular topic in Christian theology and culture such as early Christianity, medieval Christianity, Christianity in the United States, women and Christianity, liberation theology, Christianity and literature, and modern Christian thought. May be repeated for a total of 9 credit hours as topics change. Prereq., 6 hours of RLST courses at any level or instructor consent. Same as RLST 5050.

RLST 4200-3. Topics in Hinduism. Examines in depth central themes, schools of thought, and movements in Hinduism, such as myth and ritual, renunciation, Vedanta, and 19th-century Renaissance. May be repeated for a total of 9 credit hours as topics change. Prereq., 6 hours of RLST courses at any level or instructor consent. Same as RLST 5200.

RLST 4250-3. Topics in Buddhism. Examines in depth central themes, schools of thought, and movements in Buddhism, such as Theravada in Southeast Asia, Mahayana and Tantrayana thought, Zen, and Buddhism in America. May be repeated for a total of 9 credit hours as topics change. Prereq., 6 hours of RLST courses at any level including RLST 3300 or instructor consent. Same as RLST 5250.

RLST 4300-3. Topics in Native American Religions. Examines a topic (varies at different offerings) focusing on religions of peoples indigenous to the Americas. May consider mythology: shamanism and medicine; trickster, clown, and fool; and crisis cult movements. May be repeated for a total of 9 credit hours as topics change. Prereqs., RLST 2700 and 3 additional credit hours of RLST course work or instructor consent. Same as RLST 5300.

RLST 4350-3. Native American Religions: Regional Studies. Studies religion(s) of a single native North American tribe or geographic region within context of history and culture of the tribe. May be repeated for a total of 9 credit hours as topics change. Prereq., 6 hours of RLST courses at any level or instructor consent. Same as RLST 5350.
RLST 4750-3. Islam in the Modern World. Globally surveys Islam, covering religion and politics; Islam and the West; the Islamic revival and its varied forms in Iran, Indonesia, Libya, and Pakistan; development and change; the status of women; and media and academic stereotyping. Prereq., 6 credit hours of religious studies at any level or instructor consent. Same as RLST 5550.

RLST 4760-3. Sufism. Studies origins and aims of Islamic mysticism, with concentration on the thought and practice of Al-Hujwiri, Al-Ghazali, Rumi, and others. Prereq., 6 credit hours of religious studies at any level or instructor consent. Same as RLST 5750 and CHIN 4750.

RLST 4800-3. Critical Studies in Religion. Focuses on a current issue or area of research in the study of religion. Students analyze the way theories develop and learn to develop their own critical analysis. Topics vary, e.g., comparative kingship, colonialism, ritual theories, feminist analysis. May be repeated for a total of 6 credit hours. Approved for arts and sciences core curriculum: critical thinking.

RLST 4810-3. Honors Thesis. Required for students who elect departmental honors. Students write an honors thesis based on independent research under the direction of a faculty member.

RLST 4820-3. Interdisciplinary Seminar on Religion: Topics. Variable topics in religion, drawing from a variety of disciplines and methodologies as they shed light on specific traditions and issues. May be repeated for a total of 9 credit hours as topics change. Prereq., 6 credit hours of religious studies at any level or instructor consent. Same as RLST 5820.

RLST 4830-3. Senior Majors Seminar. Topics and instructors vary. Brings advanced majors together in order to focus their major experience on significant topics and issues of common interest. Restricted to majors.

RLST 4840 (1-6). Senior Independent Study. May be repeated for a total of 8 credit hours.

RLST 5020-3. Topics in Biblical Christianity. May be repeated for a total of 9 credit hours. Same as RLST 4020.

RLST 5030-3. Religions in America. May be repeated for a total of 9 credit hours. Prereq., graduate standing and 6 hours of RLST or instructor consent. Same as RLST 4030.

RLST 5040 (1-3). Religion and the Internet. Ongoing editorial writing and technical maintenance of the on-line journal that is initiated and operated by religious studies graduate students. Includes study of philosophical and theoretical issues, as well as technical training. May be repeated for a total of 3 credit hours.

RLST 5050-3. Topics in Christian Studies. May be repeated for a total of 9 credit hours. Prereq., graduate standing and 6 RLST hours, or instructor consent. Same as RLST 4050.

RLST 5200-3. Topics in Hinduism. May be repeated for a total of 9 credit hours. Prereq., graduate standing and 6 RLST hours, or instructor consent. Same as RLST 4200.

RLST 5250-3. Topics in Buddhism. May be repeated for a total of 9 credit hours. Prereq., 6 hours RLST course work including background in Buddhism, or instructor consent. Same as RLST 4250.

RLST 5300-3. Topics in Native American Religions: Regional Studies. May be repeated for a total of 9 credit hours. Prereq., graduate standing and 6 RLST hours, or instructor consent. Same as RLST 4350.

RLST 5550-3. Religion, War, and Peace in U.S. History. Prereq., graduate standing and 6 RLST hours, or instructor consent. Same as RLST 4550.

RLST 5750-3. Taoism. Same as RLST 4750 and CHIN 5750.

RLST 5760-3. Sufism. Prereq., 6 RLST hours or instructor consent. Same as 4760.

RLST 5820-3. Interdisciplinary Seminar on Religion. Prereq., 6 RLST hours or instructor consent. May be repeated for a total of 9 credit hours as topics change. Same as RLST 4820.

RLST 5840 (1-6). Independent Study. May be repeated for a total of 8 credit hours.

RLST 6830-3. Approaches to the Study of Religion. Provides advanced orientation in academic study of religion, focusing on methods and theories. Historical, phenomenological, and social scientific approaches are examined, in context of history and present state of the discipline. Prereq., RLST graduate status.

RLST 6840 (1-6). Independent Study. May be repeated for a total of 8 credit hours.

RLST 6850-3. Comparative Studies in Religion. Focuses on theories and methods of comparative study in religion through an examination of at least two distinct traditions (e.g., public worship in Judaism and Islam; pilgrimage in Hinduism and Christianity). May be repeated for a total of 6 credit hours as topics change. Prereq., must be RLST graduate student.

RLST 6940 (1-3). Master’s Degree Candidate.

RLST 6950 (1-6). Master’s Thesis.

SEWALL RESIDENTIAL ACADEMIC PROGRAM

SEWL 2020-1. Conversations on America. Required of all students enrolled in AMST 2000 or 2010. Consists of a series of three or four special lectures that further explore and supplement material covered in AMST 2000 and 2010.

SEWL 2021-3. Conversations on America Writing Seminar. Complements the Sewall Conversations on America lecture series. Students read essays by this year’s speakers for content and as writing models, then develop narrative, analytical, and argumentative essays of their own. Emphasizes critical thinking and organizational skills as well as the importance of revision. Approved for arts and sciences core curriculum: written communication.

SOCIOLGY

Sociology courses numbered at the 1000- and 2000-level are designed for first- and second-year students (fewer than 56 credit hours). Sociology courses numbered at the 3000- or 4000-level are restricted to students with 56 credit hours or more, or those with instructor consent.

SOCY 1031-3. Introduction to Social Psychology. Surveys social psychology with special attention given to theories such as psychoanalysis, symbolic interactionism, culture and personality, and structural-functionalism.

SOCY 1841 (1-6). Independent Study in Sociology. May be repeated for a total of 7 credit hours.

SOCY 1931-3. Sociology of Education Internship. Provides an academically supervised opportunity for lower-division students to intern
in classrooms of innovative teachers and serve as staff members of a “hands-on” learning center, devised and administered cooperatively by the sociology department and local schools.

SOCY 2011-3. Contemporary Social Issues and Human Values. Explores contemporary societies on a global scale. Focuses on such issues as capitalism, socialism, race and ethnic problems, sex discrimination, poverty and the concentration of wealth, crime and deviance, human rights and human values, peace and war.

SOCY 2031-3. U.S. Values, Social Problems, and Change. Examines U.S. society from the perspective of values and theories of social change. Considers such problems as distribution of power, unemployment, poverty, racism and sexism, the changing role of the family, and drugs. Approved for arts and sciences core curriculum: ideals and values.

SOCY 2041-3. The Social Construction of Reality. Analyzes the human environment as a human product. Studies how all things that construct the objective social facts of our social world are created, reproduced, maintained, and distributed by specific human interaction processes.

SOCY 2051-3. Sociology of Sport. Looks at the role of sport in contemporary society, examining the function of sport, socialization of the values and power hierarchies in sport, progression through sport, race and sport, and gender and sport.

SOCY 2061-3. Introduction to Social Statistics. Introduces students to quantitative analysis of social phenomena. Emphasizes understanding and proper interpretation of graphs, measures of central tendency, dispersion, and association, and statistical significance to students with limited mathematical background.

SOCY 2091-3. Topics in Sociology. Variety of courses taught by visiting and regular faculty. See current departmental announcements for specific content. Students may receive credit for this course up to three times for different topics.

SOCY 3041-3. Self and Consciousness. Explores human development from a psychosocial perspective, focusing on the interplay between psychological patterns and social forms. Issues such as personal image, shadow, and transformation are studied within the larger context of the individual versus the collective forces leading to conformity. Prereqs., SOCY 1001 and either 2001, 3001, or 3011.

SOCY 3091-3. Environment and Society. Focuses on influences of both natural and built environments upon human behavior and social organization; microenvironments and their influence on individuals; the impact of macroenvironments on societal organization; and environmental movements. Prereqs., SOCY 1001 and either 2001, 3001, or 3011.

SOCY 3101-3. Sociology of Religion. Studies his-historically and cross-culturally the causes of modernization and its effects upon the individual, the family, and economic and political institutions. Prereqs., SOCY 1001 and either 2001, 3001, or 3011.

SOCY 3141-3. Social Movements in the U.S. The philosophical foundations, new values, motivations for joining, leadership, strategies, organization dynamics, public response, and reasons for success and failure of social movements are the primary foci. A look at organized attempts to contest traditional ideas and values regarding the relationship of human organization and activities to various movements. Prereqs., SOCY 1001 and either 2001, 3001, or 3011.

SOCY 3151-3. Self in Modern Society. Using a variety of eastern and western perspectives, explores how modern social institutions and culture shape our personal experiences, how personal experiences can affect the nature of those institutions and culture, and how strategies can be developed for achieving balance between the individual and society. Prereqs., SOCY 1001 and either 2001, 3001, or 3011. Approved for arts and sciences core curriculum: United States context, or ideals and values.

SOCY 3201-3. Introduction to Research Methods. Introduces students to social science research, selected topics in the philosophy of science and methods. Emphasizes use of library resources, research design, hypothesis construction, methods of data collection, verbal and written reports, observational techniques, unobtrusive methods (content analysis, secondary analysis), measurement, scaling, and report writing. Prereqs., SOCY 1001, 2001, and either 2001, 3001, or 3011.

SOCY 3301-3. Survey Methods. Teaches quantitative research methods and, particularly, methods of survey research. Topics include sampling, interviewing, schedule construction, data analysis, computer methods, index construction, and statistical analysis. Students participate in a survey project, design, collect data, and prepare a research paper on the basis of collected data. Prereqs., SOCY 1001, 2001, and either 2001, 3001, or 3011.

SOCY 3401-3. Field Methods. Emphasizes the development of skills to prepare students to conduct qualitative sociological research. Emphasizes ethnographic techniques, including intensive interviewing, direct observation, coding, participant observation, and report writing. Students conceive and execute a field research project with data collection, analysis, and a report. Prereqs., SOCY 1001, 2001, and either 2001, 3001, or 3011.

SOCY 4041-3. The Creative Self. Experimental approach to the creative process that fosters experimentation outside of conventional patterns of thinking and expression, and explores the use of imagination and creative thinking in problem-solving, writing, and art. Prereqs., SOCY 1001 and either 2001, 3001, or 3011.

SOCY 4081 (1-3). Sociology of Education. Analyzes the school as a social organization. Among topics considered are power and control in the school; classroom organization and procedures and their relation to learning and personality development in students; roles of educators; and reciprocal relations of school and community. Prereqs., SOCY 1001 and either 2001, 3001, or 3011.

SOCY 4121-3. Sociology of Religion. Discusses the social origin of religion, its significance as a cultural factor and as a form of social control in contemporary society, and its
relationship to other institutions. Prereqs., SOCY 1001 and either 2001, 3001, or 3011.

SOCY 4461-3. Critical Thinking in Sociology. Examines a sociological topic in depth, covering such issues as theory, methods, social structure, social processes, social change, and social policy, emphasizing writing, reading, and critical thinking. Restricted to senior SOCY majors. Prereqs., SOCY 1001 and either 2001, 3001, or 3011. Approved for arts and sciences core curriculum: critical thinking.

SOCY 4841 (1-6). Independent Study in Sociology. Upper-division variable credit. May be repeated for a total of 7 credit hours. Restricted to majors. Instructor consent required. Prereqs., SOCY 1001 and either 2001, 3001, or 3011.

SOCY 4911-3. Teaching Sociology. Students participate in a teaching seminar under the supervision of a faculty member. Includes pedagogical strategies for implementing concrete educational goals and encouraging higher levels of creativity and analysis in a large, lower-division class. Emphasizes mentorship and personal development. Prereqs., SOCY 1004 and instructor consent.

SOCY 4931 (1-6). Social Action Internship. Provides an academically supervised opportunity for junior and senior sociology majors to work in public or private organizations. Focuses on the sociology of education, institution building, and social change in educational settings. Interns work in specially devised learning centers. Restricted to majors. Prereqs., SOCY 1001, and either 2001, 3001, or 3011.

SOCY 5011-3. Contemporary Theory. Surveys post-World War II sociological theory emphasizing such theories as functionalism, symbolic interactionism, exchange theory, conflict theory, and phenomenology.

SOCY 5021-3. Data Analysis. Examines modern methods of quantitative and qualitative data analysis such as regression analysis, causal modeling, computer methods, content analysis, and written presentation of findings.

SOCY 5031-3. Research Design. Principles and practice of quantitative and qualitative research, including the nature of scientific explanation, the relationship between theory and research, research design, measurement problems, sampling questionnaire construction, interviewing, ethnographic methods, and statistical analysis.

SOCY 5121-3. Ethnographic Research Methods. Students are trained in the systematic observation of people in situations, finding them where they are, staying with them in a role acceptable to them that allows intimate observations of their behavior, and reporting it in ways useful to social science but not harmful to those observed.

SOCY 5141-3. Sociolinguistics. Research seminar incorporating theories of language use in society and in social scientific inquiry together with practical experience in observing, recording, and analyzing actual language data from some arena of social action chosen by the student.

SOCY 5161 (1-3). Special Topics. May be repeated for a total of 9 credit hours.

SOCY 5171-3. Issues in Contemporary Political and Social Theory. Analysis of contemporary issues in political and social theory. Includes discussion of alternative philosophies of science, methodologies and approaches to the problems of human action, social structure, and social order. Prereqs., graduate standing and SOCY 5001, 5011, 5021, 5031, or PSCI 5075.

SOCY 5221-3. Ethnographic Analysis. Drawing on data gathered through participation, observation, and in-depth interviewing, students focus on developing theoretical analyses and exploring classical and post-modern ethnographic writing formats. Students present and revise their papers as well as review journal articles. Prereqs., graduate standing and SOCY 5121, or instructor consent.

SOCY 5321-3. Sociology of Ideas. Examines how social structures and beliefs mutually influence each other through a critical analysis of classical and modern sociological theories and methods. Prereqs., graduate standing and instructor consent.

SOCY 5531-3. Seminar in Social Psychology. Studies the individual in social context. Focuses on theoretical perspectives and substantive issues specific to sociological and social psychology, including socialization, the self, social roles, language, deviance, gender, collective behavior, group processes, attitudes and behavior, social norms, and conformity.

SOCY 5601-3. Advanced Data Analysis. Extends general linear regression model to consider residual analysis, curvilinearity and interaction, and includes completion of a written research paper. Prereqs., graduate standing and SOCY 5021.

SOCY 5841 (1-6). Independent Study in Sociology. Graduate variable credit. Prereq., instructor consent. May be repeated for a total of 7 credit hours.

SOCY 6821-1. Graduate Sociology Forum 1. Introduces first-year graduate students to the full range of substantive topics, research programs, and other projects in which graduate sociology faculty are engaged. Provides a forum in which issues of the discipline are presented and discussed. Features weekly presentations by graduate sociology faculty. Prereq., graduate standing.

SOCY 6831-1. Graduate Sociology Forum 2. Introduces first-year graduate students to the full range of substantive topics, research programs, and other projects in which graduate sociology faculty are engaged. Provides a forum in which issues of the discipline are presented and discussed. Features weekly presentations by graduate sociology faculty. Prereq., graduate standing.

SOCY 6841 (1-6). Guided Research in Sociology. May be repeated for a total of 7 credit hours. Prereq., graduate standing.

SOCY 6941 (1-6). Candidate for Degree for Master’s Thesis.

SOCY 6951 (1-4). Master’s Thesis.

SOCY 8991 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School portion of the catalog.

Population and Health Issues

SOCY 3022-3. Sociology of Chicanos and Mexican Americans. Surveys contemporary sociological studies of Chicanos, and theories used to understand and explain their status. Issues covered include population growth, socioeconomic status, reverse discrimination, Chicana feminism, and U.S.-Mexico relations. Prereqs., SOCY 1001 and either 2001, 3001, or 3011. Same as CHST 3023.

SOCY 5012-3. Population Issues, Problems, and Policies. Presents relations between population and society, covers contemporary perspectives, and atttends to theoretical and empirical substance. Focuses on mortality, fertility, and migration, the major demographic areas, with reviews of specific demographic phenomena and controversies.

Health and Medicine

SOCY 5223-3. Continuities and Changes in the Modern World Economy. Introduces the topics of globalization and democratization from an interdisciplinary perspective. Examines major changes to the global political economy and explores implications for local, national, regional, and international political and economic processes. Same as GEOG 5222 and PSY 5223. Prereq., graduate standing in economics, geography, political science, or sociology.

SOCY 5333-3. Globalization and Democratization: An Introduction. Introduces research on globalization and democratization from an interdisciplinary perspective. Examines ongoing interdisciplinary research on the global political economy. Students learn about ongoing research, critique current efforts, and design their own research project. Prereq., graduate standing in PSCI, ECON, GEOG, or SOCY. Same as PSCI 5333 and GEOG 5332.

Criminology

SOCY 1004-3. Deviance in U.S. Society. Examines deviant groups in the U.S., emphasizing existing theory and research about such issues as deviant careers, deviant lifestyles and behavior, and processes of social control. Approved for arts and sciences core curriculum: ideals and values.

SOCY 2004-3. Topics in Criminology. Variety of courses in criminology taught by visiting lecturers. See current departmental announcements for specific content. May be repeated for a total of 9 credit hours.

SOCY 2043-4. Law and Society. Introduces the field of law and society. The first half of the course reviews basic empirical research on legal institutions in contemporary American society. The second half reviews broad theoretical perspectives in law and society. Recommended prereq., SOCY 1001.

SOCY 2024-3. The Treatment of Offenders. Studies principles of treating offenders, including attitude formation and change, group dynamics, behavior modification, skill development, work programs, and social reeducation. Prereqs., SOCY 1001 and either 2001, 3001, or 3011. Approved for arts and sciences core curriculum: contemporary societies.

SOCY 4084-3. The American Criminal Justice System. Examines thought reform, influence, and social control. Examines thought reform (i.e., coercive persuasion, brainwashing) and extreme forms of social control in the former Soviet Union, China, and in American cult organizations. Issues of recruitment, management, and the evolution of violence and terrorism are addressed. Prereqs., SOCY 1001 and either 2001, 3001, or 3011. Recommended prereq., SOCY 4031.

SOCY 4934-3. Internship in Community Corrections 1. Students gain professional experience with offender treatment practices and evaluation research approaches in community corrections settings. Topics include theory and practice in probation and parole programming, half-way house program structure and management, and other community correction op-

SOCY 5035-3. Social Stratification. Same as SOCY 4035.

SOCY 5055-3. Modern Marxist Social Theory. Analyzes recent Marxist theories of class structure, exploitation, political economy, alienation, culture, and the state as discussed in the work of Althusser, Gramsci, Lukacs, Mandel, Marcuse, Roemen, and others.

SOCY 5085 (1-3). Topics in Social Conflict. Visiting conflict management specialists examine the theory/practice relationship from the perspective of the professional third-party neutral. Explores family disputes, environmental and resource conflict, and international and civil wars. May be repeated for a total of 9 credit hours.

SOCY 5205-3. Collective Action. Studies collective action in its primary forms: movements for social change; religious movements; and civil resistance to military occupation and political repression. Emphasizes movement leadership, ideology, organizational process and structure, and use of nonviolent action. Prereqs., graduate standing and instructor consent.

SOCY 5615-3. Teaching in Sociology. Students learn how to teach sociology more effectively while developing depth in a new content area and a clearer sense of the field. Each student chooses a content area within sociology as the basis for planning a course and developing and practicing different teaching techniques. Prereqs., enrollment in SOCY graduate program and completion of graduate-teach-program fall intensive.

SOCY 5915-3. Conflict Management Practice. Students learn conflict management skills in field placements with governmental, educational, industrial, and mediation organizations.

Sex and Gender

SOCY 1016-3. Sex, Gender, and Society 1. Examines status and power differences between the sexes at individual and societal levels. Emphasizes historical cross-cultural context of gender roles and status, and reviews major theories of gender stratification. Same as WMST 1016. Approved for arts and sciences core curriculum: cultural and gender diversity.

SOCY 2026-3. Men and Masculinity. Studies the historical development, cross-cultural definition, and social construction of masculinity. Emphasizes contemporary definitions of masculinity and the impact on these definitions. Approved for arts and sciences core curriculum: cultural and gender diversity.

SOCY 3016-3. Marriage and the Family in U.S. Society. Examines marriage and the family historically and cross-culturally within the U.S. Emphasizes changing roles and family structures. Also examines alternatives to the nuclear family and traditional marriage to explore new definitions of family. Prereq., SOCY 1001 and either 2001, 3001, or 3011. Same as WMST 3016. Approved for arts and sciences core curriculum: United States context.

SOCY 3046-3. Topics in Sex and Gender. Faculty present courses based on their area of expertise and specialization in the field of sex and gender. Students should check current sociology department notices of course offerings for specific topics. Students may receive credit for this course up to three times for different topics. Prereqs., SOCY 1001 and either 2001, 3001, or 3011.

SOCY 4016-3. Sex, Gender, and Society 2. Studies status and power differences between the sexes at individual, group, and societal levels. Examines empirically established psychological sex differences, and reviews biological, psychological, and sociological explanations for gender differences. Prereqs., SOCY 1001 and either 2001, 3001, or 3011. Same as WMST 4016.

SOCY 4086-3. Family and Society. Studies the changing relationship between the family and the economic structure, historically and sociologically. Examines households that differ from...
the nuclear family, taking into account the political, social, ideological, demographic, and economic determinants of family formation. Prereqs., SOCY 1001 and either 2001, 3001, or 3011. Same as SOCY 5086 and WMST 4086.

SOCY 5006-3. Sociology of Sex and Gender. Provides theoretical and empirical examination of sex stratification, sex role differentiation, and sex differences in socialization, personality, institutions, and culture.

SOCY 5036-3. Feminist Theory. Examines the main schools of feminist thought and their impact upon sociological theories. Also examines current feminist theoretical debates (e.g., on the relationship between class, gender, and race/ethnicity, on identity politics and subjectivity) and their relevance for feminist sociology. Prereq., graduate standing.

SOCY 5086-3. Family and Society. Same as SOCY 4086.

SPANISH AND PORTUGUESE

Spanish

Students must receive a grade of C- or better in order to enroll in the next level of a foreign language. Students will not receive credit for a lower-level course in foreign language instruction taken after credit has been given for a higher-level course in the same language sequence. For example, students will not receive credit for SPAN 1010 after they have passed SPAN 2110.

SPAN 1000-3. Cultural Difference through Hispanic Literature. For freshmen only. Organized around the general topic of cultural differences. Focuses on a related issue such as gender or history articulated in the literature of Spain, Latin America, and the Hispanic United States. Taught in English; students read selected literary texts in English from the various traditions. Does not count towards the Spanish major. Approved for arts and sciences core curriculum: literature and the arts.

SPAN 1010-5. Beginning Spanish 1. Offers students a firm command of Spanish grammar. Grammar is used as a point of departure for development of oral skills. Reading and writing are stressed to a lesser degree. Attendance at the language laboratory may be mandatory. Similar to SPAN 1150.

SPAN 1020-5. Beginning Spanish 2. Continuation of SPAN 1010. Attendance at the language laboratory may be mandatory. Prereq., SPAN 1010 with a grade of C- or better, or placement. Similar to SPAN 1150.

SPAN 1150-8. Intensive First-Year Spanish. An intensive beginning course covering the same material as SPAN 1010 and 1020. Not open to students with credit in SPAN 1010 and 1020. Attendance at the language laboratory may be mandatory.

SPAN 2110-3. Second-Year Spanish 1. Grammar review. Emphasizes reading, writing, and speaking skills. Attendance at the language laboratory may be mandatory. Prereq., SPAN 1010 or 1150 with a grade of C- or better, or placement. Similar to SPAN 2150. Meets MAPS requirement for foreign language.

SPAN 2120-3. Second-Year Spanish 2. Grammar review. Emphasizes reading, writing, and speaking skills. Attendance at the language laboratory may be mandatory. Prereq., SPAN 2110 with a grade of C- or better, or placement. Similar to SPAN 2150.

SPAN 2150-5. Intensive Second-Year Spanish. Intensive review of grammar and other subjects covered in SPAN 2110 and 2120. Attendance at the language laboratory may be mandatory. Not open to students with credit in SPAN 2110 and 2120. Prereq., SPAN 1010 or 1150 with a grade of C- or better, or placement. Similar to SPAN 2150.

SPAN 3000-5. Advanced Spanish Language Skills. Transitional course that introduces students to the Spanish major and improves their writing skills. Involves composition, reading, and to a lesser extent, conversation. Prereq., SPAN 2120 or 2150 with a grade of C- or better, the equivalent, or placement.

SPAN 3001-3. Spanish Conversation. Emphasizes vocabulary acquisition and speaking fluency. Through structured and carefully monitored individual, group, and class work, students achieve enduring language growth and meaningful acculturation that otherwise could only be achieved through an extended stay in an Hispanic country. Prereq., SPAN 2120 or 2150 with a grade of C- or better, the equivalent, or placement.

SPAN 3040-3. Professional Spanish for Business 2. Includes writing, interpreting, and elementary translation. Some attention given to writing of resumes and application letters, as well as to the entire job-search process. Prereq., SPAN 3000 and 3030.

SPAN 3050-3. Spanish Phonology and Phonetics. Designed to teach some of the methods, techniques, and tools of descriptive linguistics as they apply to articulatory phonetics. Students analyze important contrasts between sounds of Spanish and English by means of phonetic transcription. Prereq., SPAN 3000.

SPAN 3100-3. Literary Analysis. Students read short stories and other brief narrative texts, critical and creative essays, short plays, and poems to facilitate the acquisition of critical skills in identification of basic ideological and formalistic issues within texts being studied. Prereq., SPAN 3000 or equivalent. Approved for arts and sciences core curriculum: critical thinking.

SPAN 3120-3. Advanced Spanish Grammar. Analysis of texts from morphological and syntactic perspectives. Structural and semantic characteristics of major features of Spanish are studied at the sentence level. Use of these grammatical features is then studied in selected literary texts. Prereq., SPAN 3000 or equivalent.

SPAN 3210-3. The Cultural Heritage of Latin America. Examines literary, artistic, and philosophical currents in Latin America beginning with pre-Columbian indigenous cultures and continuing to the present. Prereq., SPAN 3000.

SPAN 3310-3. 20th-Century Spanish Literature. Surveys leading writers of Spain from 1898 until the present. Prereq., SPAN 3100.

SPAN 4000-3. Hispanic and Native American Culture of the Southwest. Does not count for major. Taught in English. Same as SPAN 5000 and CHST 4000.

SPAN 4060-3. Problems of Business Translation in Spanish 1. Develops skills in English-Spanish and Spanish-English translation
Examines course above SPAN 3000. Prereq., SPAN 3100, 3120, and an additional course above SPAN 3000.

SPAN 4110-3. Hispanic Women Writers. Discusses the image of women in Spanish literature through the centuries using works by representative female writers. Prereq., SPAN 3100, 3120, and an additional course above SPAN 3000.

SPAN 4150-3. Masterpieces of Spanish Literature to 1700. Treats major literary tendencies of Spanish literature from its origins to the end of the Baroque period. Prereq., SPAN 3100, 3120, and an additional course above SPAN 3000.

SPAN 4160-3. Masterpieces of Spanish Literature: 1700 to Present. Requires a reading of selected masterpieces and an examination of major movements and figures in the literature of Spain from 1700 to the present. Prereq., SPAN 3100, 3120, and an additional course above SPAN 3000.

SPAN 4170-3. Masterpieces of Spanish American Literature to 1898. Examines major works of Spanish American literature from the colonial period to the late 19th century. Emphasizes major figures and their works. Prereq., SPAN 3100, 3120, and an additional course above SPAN 3000.

SPAN 4180-3. Masterpieces of Spanish American Literature: 1898 to Present. Examines major works of Spanish American literature from late 19th century to present. Prereq., SPAN 3100, 3120, and an additional course above SPAN 3000.

SPAN 4220 (1-3). Special Topics in Spanish and/or Spanish American Literature. Examines intensively particular topics or issues concerning Spanish and/or Spanish American literature selected by the instructor. May be repeated for a total of 7 credit hours. Prereq., SPAN 3100, 3120, and an additional course above SPAN 3000.

SPAN 4430-3. Special Topics in Hispanic Linguistics. Examines intensively particular topics or issues concerning Hispanic linguistics selected by the instructor. May be repeated for a total of 9 credit hours on different topics. Prereq., SPAN 3100, 3120, and an additional course above 3000.

SPAN 4450-3. Introduction to Hispanic Linguistics. Introduces students to the main areas of inquiry within the field of Hispanic linguistics. Topics to be covered include speech and language, phonetics and phonology, morphology and syntax, semantics, linguistic change and variation, and Spanish spoken in the United States. Prereq., SPAN 3100, 3120, and an additional course above 3000. Same as SPAN 5450.

SPAN 4500-3. Methods of Teaching Hispanic Literature and Cultures. Introduces the methodologies associated with teaching Hispanic literature and culture in the secondary schools. Prereq., SPAN 3100, 3120, and an additional course above SPAN 3000. Same as SPAN 5500.

SPAN 4620-3. Cervantes. Reading and analysis of selected works by Cervantes. Prereq., SPAN 3100, 3120, and an additional course above SPAN 3000.

SPAN 4650-3. Methods of Teaching Spanish. Familiarizes students with current methodology and techniques in foreign language teaching. Peer-teaching coupled with opportunity to teach mini-lessons provide students with actual teaching experience in the foreign language classroom. Prereq., SPAN 3100, 3120, an additional course above SPAN 3000, and admission to the teacher certification program or departmental approval. Same as SPAN 5650.

SPAN 4660-6. High School Spanish Teaching. Part of supervised secondary school teaching required for state certification to teach Spanish. These hours do not count toward student hours in the major nor in the total departmental hours allowed. The credit is pass/fail only. Prereq., SPAN 4650/5650.

SPAN 4840 (1-3). Independent Study. Departmental approval required. May be repeated for a total of 7 credit hours.

SPAN 4930 (1-4). Languages Internship for Professions. Participants interested in public service or management-oriented careers in government or business are able to work as interns in public sector agencies or in private industry, on campus or abroad. Instructor consent required. Prereq., SPAN 3100 and 3200, an additional course above SPAN 3000, and departmental approval.

SPAN 4970-1. Bibliography and Methods of Literary Research. Designed to provide a background in fundamental literary bibliographical research tools. Considers standard library works on the subject and others that are little-known to facilitate research efforts of students insofar as location and identification of critical studies are concerned. Predominant style sheets available to Spanish researchers also are discussed in detail. Prereq., graduate standing or departmental consent.

SPAN 4980-1. Theories and Methods of Language Learning and Pedagogy for Teaching Assistants and Graduate Part-Time Instructors. Required, intensive mini-course for teaching assistants in Spanish and Portuguese. Provides teachers with the opportunity to learn about language learning theory and pedagogy. Prereq., graduate standing or departmental consent.

SPAN 4990-3. Spanish Honors Thesis. May be repeated for a total of 7 credit hours. Prereq., 18 hours of upper-division Spanish (3.00 GPA overall and 3.50 GPA in Spanish).

SPAN 5000-3. Hispanic and Native American Culture of the Southwest. Same as SPAN 4000. Taught in English.

Note: All Spanish seminars may be retaken for credit; provided the subject differs from one course to another.

SPAN 5120 (1-3). Seminar: Spanish Literature and/or Spanish American Literature. Selected topics in Spanish and/or Spanish American literature. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental consent. Same as SPAN 7120.

SPAN 5130 (1-3). Seminar: Critical Approaches to Hispanic Literature. Treats various topics and genres, as needs and resources dictate. Gives special attention to theoretical and critical analysis of Hispanic literature with greatest emphasis on contemporary trends. Genres might include narrative, poetry, and theatre. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental consent. Same as SPAN 7130.

SPAN 5140-3. Seminar: Spanish Literature, Medieval Period. Studies medieval works, authors, and themes, with consideration of principal influences from other literatures. Reading in Old Spanish. May be repeated for a total of 7 credit hours. Prereq., graduate standing and SPAN 5420 or 7420 or instructor consent. Same as SPAN 7140.

SPAN 5200-3. Seminar: Spanish Literature, Renaissance and Baroque. Treats various topics, as needs and resources dictate. Special attention to developing historical and current theoretical and critical background of each topic. Representative topics might include Renaissance poetry in Spain, Cervantes, Don Quixote and Novelas ejemplares, picaresque novel, and the Spanish comedia of the 17th century. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental consent. Same as SPAN 7200.

SPAN 5210 (2-4). Seminar: Spanish Literature and Cultures of the Southwest. Same as SPAN 7210.
SPAN 5220 (1-3). Seminar: Spanish Literature, 20th Century. Treats various topics, as needs and resources dictate. Gives special attention to developing historical and current theoretical and critical background of each topic. Representative topics might include the generation of 1898, poetry of the 20th century, pre-Civil War novel, and post-Civil War novel. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental consent. Same as SPAN 7220.

SPAN 5300 (2-4). Seminar: Spanish American Literature, Colonial Period and/or 19th Century. Treats various topics, as needs and resources dictate. Gives special attention to developing historical and current theoretical and critical background of each topic. Representative topics might include pre-Columbian literature, colonial prose and narrative, colonial poetry, romantic novel, the realist and naturalist novel and short story, 19th-century poetry, and gaucho literature. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental consent. Same as SPAN 7300.

SPAN 5320 (1-3). Seminar: 20th-Century Spanish American Literature. Treats various topics, as needs and resources dictate. Gives special attention to developing historical and current theoretical and critical background of each topic. Representative topics might include modernism, theatre, the essay, the regional novel, the novel of the Mexican Revolution, the modern novel, contemporary theatre, and contemporary poetry. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental consent. Same as SPAN 7320.

SPAN 5400 (2-4). Seminar: Spanish Phonology. Topics within Spanish phonology are treated, as needs and resources dictate. Gives special attention to different schools and contemporary theoretical developments. Representative topics might include generative phonology applied to Spanish, Spanish phonology for college teaching, and different schools of Spanish phonology. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental consent. Same as SPAN 7400.

SPAN 5410 (2-4). Seminar: Spanish Syntax. Treats topics within Spanish syntax, each requiring a semester’s study, as needs and resources dictate. Gives special attention to different schools and contemporary theoretical developments. Representative topics may include generative/transformational grammar applied to Spanish, fundamental problems in Spanish syntax, and different schools of Spanish syntax. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental consent. Same as SPAN 7410.

SPAN 5420 (2-4). Seminar: History of the Spanish Language. Treats topics within the history of the Spanish language, as needs and resources dictate. Concerned with linguistic evolution of Spanish from neo-Latin to its present status as a world language; considers important historic, linguistic, literary, and cultural currents. Representative topics might include a diachronic study of Spanish linguistic forms, the extension of Spanish to the New World, and linguistic and literary texts in Old Spanish. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental consent. Same as SPAN 7420.

SPAN 5430 (1-3). Seminar: Hispanic Linguistics. Studies a major topic from an area such as phonology, syntax, history of the Spanish language, Hispanic linguistics and literature, or applied Hispanic linguistics. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental consent. Same as SPAN 7430.

SPAN 5440-3. Seminar: Trends in Hispanic Linguistics. Provides an overview of major trends and issues in Hispanic linguistics, including phonology, syntax, dialectology, sociolinguistics, discourse analysis, text linguistics, semiotics, history of the Spanish language, language acquisition, and applied linguistics. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental consent. Same as SPAN 7440.

SPAN 5450-3. Introduction to Hispanic Literature Linguistics. Prereq., graduate standing. Same as SPAN 4450.

SPAN 5460-3. Topics in Spanish Applies Linguistics. Treats topics within the scope of Spanish first and second language acquisition and the speech of bilinguals. Other topics include contrasting linguistics, interlingual stages of learning, and code-switching as they relate to language acquisition. Prereq., graduate standing or instructor consent. Same as SPAN 7460.

SPAN 5500-3. Seminar: Methods of Teaching Hispanic Literature and Cultures. Prereq., graduate standing in Spanish or departmental consent. Same as SPAN 4500.

SPAN 5650-3. Methods of Teaching Spanish. Prereq., SPAN 3100, 3120, and an additional course above SPAN 3000 plus admission to the teacher certificate program or departmental consent. Same as SPAN 4650.

SPAN 6840 (1-3). Independent Study. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental approval.

SPAN 6940 (1-3). Master’s Degree Candidate. Prereq., graduate standing in Spanish or departmental approval.

SPAN 6950 (1-6). Master’s Thesis. Prereq., graduate standing in Spanish or departmental approval.

SPAN 7120 (1-3). Seminar: Spanish Literature and/or Spanish American Literature. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental approval. Same as SPAN 5120.

SPAN 7130 (1-3). Seminar: Critical Approaches to Hispanic Literature. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish and SPAN 5420/7420 or departmental approval. Same as SPAN 5130.

SPAN 7140-3. Seminar: Spanish Literature, Medieval Period. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental approval. Same as SPAN 5140.

SPAN 7200-3. Seminar: Spanish Literature, Renaissance and Baroque. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish, or departmental approval. Same as SPAN 5200.

SPAN 7210 (2-4). Seminar: Spanish Literature, 18th and/or 19th Centuries. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental approval. Same as SPAN 5210.

SPAN 7220 (1-3). Seminar: Spanish Literature, 20th Century. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental approval. Same as SPAN 5220.

SPAN 7300 (2-4). Seminar: Spanish American Literature, Colonial Period and/or 19th Century. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental approval. Same as SPAN 5300.

SPAN 7320 (1-3). Seminar: 20th-Century Spanish American Literature. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental approval. Same as SPAN 5320.

SPAN 7400 (2-4). Seminar: Spanish Phonology. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental approval. Same as SPAN 5400.

SPAN 7410 (2-4). Seminar: Spanish Syntax. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental approval. Same as SPAN 5410.

SPAN 7420 (2-4). Seminar: History of the Spanish Language. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental approval. Same as SPAN 5420.

SPAN 7430 (1-3). Seminar: Hispanic Linguistics. May be repeated for a total of 7 credit
hours. Prereq., graduate standing in Spanish or departmental approval. Same as SPAN 5430.

SPAN 7440-3. Seminar: Trends in Hispanic Linguistics. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental approval. Same as SPAN 5440.

SPAN 8840 (1-3). Independent Study. May be repeated for a total of 7 credit hours. Prereq., graduate standing in Spanish or departmental approval.

SPAN 8890 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School chapter of this catalog. Prereq., graduate standing in Spanish or departmental approval.

Portuguese

Students must receive a grade of C- or better in order to enroll in the next level of a foreign language. Students will not receive credit for a lower-level course in foreign language instruction taken after credit has been given for a higher-level course in the same language sequence. For example, students will not receive credit for PORT 1010 after they have passed PORT 2110.

PORT 1010-5. Beginning Portuguese 1. Offers students a firm command of Portuguese grammar. Uses grammar as point of departure for development of oral skills. Reading and writing stressed to lesser degree. Attendance at language laboratory may be mandatory. Similar to PORT 1150.

PORT 1020-5. Beginning Portuguese 2. Continuation of PORT 1010. Prereq., PORT 1010 with a grade of C- or better, or placement. Similar to PORT 1150.

PORT 1150-8. Intensive Beginning Portuguese. Intensive review of the structures normally covered in PORT 1010 and 1020. Attendance at language laboratory may be mandatory. Not open to students with credit in PORT 1010 and 1020. Prereqs., placement and departmental approval.

PORT 2110-3. Second-Year Portuguese 1. Includes grammar review and a study of Portuguese and Brazilian culture, civilization, literature, and art. Prereq., PORT 1020 or 1150 with a grade of C- or better, or placement. Similar to PORT 2150. Meets MAPS requirement for foreign language.

PORT 2120-3. Second-Year Portuguese 2. Includes grammar review and a study of Portuguese and Brazilian culture, civilization, literature, and art. Prereq., PORT 2110 with a grade of C- or better, or placement. Similar to PORT 2150.

PORT 2150-5. Intensive Second-Year Portuguese. Intensive review of structures normally covered in PORT 2110 and 2120. Not open to students with credit in PORT 2110 and 2120. Prereqs., PORT 1020 or 1150 with a grade of C- or better or placement, and departmental approval. Meets MAPS requirement for foreign language.

PORT 2350-3. Portuguese for Spanish Speakers. Intensive introduction to the Portuguese language for those able to speak Spanish. Prereq., five semesters of college Spanish or equivalent. SPAN 3000, placement, or departmental approval.

PORTE 4030-3. Topics: Luso-Brazilian Civilization. Designed to examine particular topics or issues concerning Portuguese and/or Brazilian culture. May be repeated for a total of 7 credit hours. Prereq., PORT 2120, 2150, or 2350, with a grade of C- or better, or equivalent. Same as PORT 5030.

PORT 4110-3. Survey of Brazilian Literature. Examines major works of Brazilian literature. Prereq., PORT 2120 or 2150 or 2350, with a grade of C- or better, or equivalent. Same as PORT 5110.

PORT 4150-3. Survey of Portuguese Literature. Examines major works of Portuguese literature. Prereq., PORT 2120, 2150, or 2350, with a grade of C- or better, or equivalent. Same as PORT 5150.

PORT 4220-3. Special Topics in Luso-Brazilian and/or African Literature. Designed to examine intensively particular topics or issues concerning the literatures of Portugal, Brazil, and/or the African countries of Portuguese colonization. May be repeated for a total of 7 credit hours. Prereq., PORT 2110 or 2150 or 2350 with a grade of C- or better. Same as PORT 5220.

PORT 4840 (1-3). Independent Study. May be repeated for a total of 7 credit hours. Prereq., departmental approval.

PORT 5030-3. Topics: Luso-Brazilian Civilization. May be repeated for a total of 7 credit hours. Same as PORT 4030.

PORT 5110-3. Survey of Brazilian Literature. Same as PORT 4110.

PORT 5220-3. Special Topics in Luso-Brazilian and/or African Literature. May be repeated for a total of 7 credit hours. Prereq., departmental approval. Same as PORT 4220.

PORT 5850 (1-3). Independent Study. May be repeated for a total of 7 credit hours. Prereqs., graduate standing and departmental approval.

SPEECH, LANGUAGE, AND HEARING SCIENCES

Didactic: All-Department

SLHS 1010-3. Disabilities in Contemporary American Society. Addresses the issue that fifty percent of all individuals experience disability in their lifetime. Introduces students to the social, cultural, psychological, economic, political, legal, and health-care issues related to society and individuals with disabilities. Approved for arts and sciences core curriculum: contemporary societies or ideals and values.

SLHS 2000-3. Introduction to Communication Disorders. Surveys communication disorders, including hearing impairments, learning disabilities, and speech-language disorders, as well as an introduction to basic speech and hearing science.

SLHS 2010-3. Science of Human Communication. Discusses how human communication—the process by which a thought is transmitted from the brain of a speaker to the brain of a listener—involves a complex interaction of acoustics, anatomy, physiology, neuropsychology, and psychology. Approved for arts and sciences core curriculum: natural science.

SLHS 2100-3. Statistics for Research in Human Communication Sciences. Examines basic statistics for understanding and evaluating research in communication sciences, including parametric and non-parametric inferential statistics and single subject designs using data examples from speech, language, and hearing fields.

SLHS 4000-3. Multicultural Aspects of Communication Differences and Disorders. Examines perceptions and attitudes regarding differences in communication as a function of cultural-linguistic diversity. Discusses implications of differing verbal and nonverbal communication styles of various cultural groups in terms of professional responsibilities. Prereqs., upper-division standing and a minimum of 60 credit hours. Approved for arts and sciences core curriculum: critical thinking.

SLHS 4100 (1-3). Special Topics in Speech, Language, and Hearing Sciences. Studies selected topics in speech, language, hearing sciences, communication disorders, and other professional issues.

SLHS 4560-3. Language Development. Covers the development of language in childhood and into adult life, emphasizing the role of environment and biological endowment in learning to communicate with words, sentences, and narratives. Prereqs., PSYC 1001
and LING 2000. Same as LING 4560 and PSYC 4560.

SLHS 5000-3. Scientific Methods in SLHS. Familiarizes students with basic methodologies and research designs employed in the field. Focuses on critical reading of research papers and design of experiments. At least one research project is conducted and written as part of the course requirements.

SLHS 5020-3. Computer Applications in SLHS. Familiarizes students with basic concepts of computers and how they are applied in the field. Emphasizes analysis of typical SLHS problems, their computer-based solutions, and skills to utilize programs.

SLHS 5110-3. Clinical Theory and Practice. Reviews models and theoretical perspectives regarding communication disorders with application to the clinical processes of assessment, intervention, counseling, and efficacy of intervention. Focuses on issues, challenges, and skills related to working with consumers of speech-language pathology and audiology services and their families, cultural competence, legal and ethical practices, teaming, and collaborative service delivery. Prereq., graduate standing.

SLHS 6000 (1-3). Problems in Speech, Language, and Hearing Sciences. Studies selected topics related to the theory and management of communication disorders and theoretical, scientific information related to speech, language, and hearing. May be repeated for a total of 7 credit hours.

SLHS 6940 (1-3). Candidate for Degree.

SLHS 6950 (1-4). Master’s Thesis.

SLHS 7000-3. Research Designs in Human Communication Sciences and Disorders. Offers an advanced seminar in research designs for human behavior—efficacy, ethnographic, single-subject, quasi-experimental, and experimental designs. Designed to familiarize students with terminologies and research designs frequently used in speech-language-hearing areas. Prereq., basic statistics.

SLHS 7250-3. Research Methods in Language Development. Covers advanced methods of conducting research in language development and acquired disorders. Students design a research project that includes elicitation tasks, transcription, and data coding and analysis. Explores child language data archives and computer-based analysis programs. Same as LING 7250. Prereq., LING/PSYC/SLHS 4560, or instructor consent.

SLHS 8990 (1-10). Doctoral Dissertation. All doctoral students must register for not fewer than 30 hours of dissertation credit as part of the requirements for the degree. For a detailed discussion of doctoral dissertation credit, refer to the Graduate School chapter of this catalog.

Didactic: Speech-Language Pathology

SLHS 4502-2. Language Disorders: Child and Adult. Discusses how language disorders can result from problems with cognitive, linguistic, and/or discourse processing. Addresses the theoretical framework of language dysfunction while drawing upon real clinical examples of language disorders that have been observed in children and adults. Prereq., SLHS 4560.

SLHS 4512-3. Speech Disorders: Voice, Cleft Palate, Motor Disorders, Stuttering. Emphasizes stuttering, clefting, voice disorders, and motor disorders. Discusses research, evaluation, and treatment pertaining to each of these four disorder areas. Prereq., SLHS 3136.

SLHS 5242-3. Language Disorders in School-Age Children. Addresses the nature, assessment, and treatment of developmental language disorders in school-age children. Prereq., graduate standing and undergraduate background in SLHS.

SLHS 5252-3. Acquired Language Disorders in Adults. Introduces the neural bases and medical etiologies of acquired language disorders in adults, explores the ways in which normal language processing may become disordered, and studies current methods of evaluation and treatment design. Prereq., graduate standing and undergraduate background in SLHS.

SLHS 5332-3. Cleft Palate and Voice Disorders. Examines the anatomical and physiological bases for normal and disordered velopharyngeal and laryngeal function. Familiarizes students with evaluation and treatment of the speech of individuals with cleft lip and palate and laryngeal-based voice disorders.

SLHS 6362-3. Seminar: Research in Stuttering. Emphasizes issues related to research of child and adult stuttering. Discusses the neurophysiology, psychology, and phenomenology. Encourages students to explore other topics in stuttering that are of particular interest. Prereq., SLHS 5362.

Didactic: Audiology

SLHS 4704-3. Audiological Evaluation. Studies basic principles and techniques of hearing evaluation, including pure-tone, speech, immittance, and advanced audiometry; hearing conservation in hospital, school,
and industrial settings; and identification and evaluation of auditory pathologies. Required projects in screening and pure-tone audiometry. Prereq., SLHS 3136.

SLHS 4714-3. Audiological Rehabilitation. Covers basic principles and techniques related to the habilitation and rehabilitation of individuals who are deaf or hard of hearing: amplification, speech, language, auditory, speech reading, and educational issues. Prereq., SLHS 4704.

SLHS 5644-3. Communication of the Hearing Impaired. Familiarizes students with theories and processes of the communication of individuals with hearing loss from infancy through geriatrics. Prereqs., SLHS 4704 and 4714, or equivalent.

Didactic: American Sign Language

Students will not receive credit for a lower level course in foreign language instruction taken after credit has been given for a higher level course in the same language sequence. For example, students will not receive credit for SLHS 2315 if it is taken after they have passed SLHS 2305.

SLHS 2305-4. American Sign Language 1. Introduces basic sign vocabulary, grammatical structures of ASL, and the culture of deaf people. Classes are taught using ASL without the use of spoken English.

SLHS 2315-4. American Sign Language 2. Develops more complex vocabulary and grammatical structures, and an understanding of deaf culture. Classes are taught using ASL without the use of spoken English. Prereq., SLHS 2305 or equivalent.

SLHS 4035-3. The Linguistic Structure of American Sign Language. Reviews the theoretical and practical aspects of ASL grammatical structure, the sociolinguistics of ASL, and the development of ASL as a normal first language. Focuses on ASL literature and expository text as sources for complex grammatical structures Prereq., LING 2000; SLHS 2325 recommended. Same as SLHS 5035.

SLHS 5035-3. The Linguistic Structure of American Sign Language. Reviews the theoretical and practical aspects of ASL grammatical structure, the sociolinguistics of ASL, and the development of ASL as a normal first language. Focuses on ASL literature and expository text as sources for complex grammatical structures Prereq., LING 2000; SLHS 2325 recommended. Same as SLHS 4035.

SLHS 5045-3. Discourse Analysis of American Sign Language. Provides an introduction to discourse analysis, focusing on ASL and English discourse. Topics include general discourse issues such as discourse analysis approaches, natural data analysis, technology for research in spoken and signed languages; and topics specific to ASL, including transcription in ASL, use of space and spatial mapping, involvement strategies, discourse structures, narrative, coherence and cohesion, framing, and interaction strategies. Emphasizes relevance of these topics to teaching ASL and/or interpreting. Prereq., SLHS 5035.

SLHS 5055-3. Assessing First and Second Language Skills in American Sign Language. Introduces students to the concepts of assessment and evaluation of language skills. Focusses on assessment of second language skills of ASL students, with some discussion of assessment of first language skills in deaf children and interpreting students. Introduces general approaches to second language testing and types of language assessment, and provides the ASL and/or interpreting teacher with practical information about assessing second language skills in the classroom. Topics include types, purpose, reliability, and validity of assessment; issues of test construction, administration, and grading; and differentiating language skills from interpreting skills during assessment. Prereq., SLHS 5035 (or similar course). Recommended prereq., SLHS 5045.

Didactic: Speech-Hearing Science

SLHS 3136-5. Speech and Hearing Science. Examines the anatomical and physiological components of the human speech and hearing mechanism—respiration, phonation, articulation, and audition. Integrates acoustics of sound production, transmission, and auditory perception. Labs include making clinically relevant measurements, e.g., respiratory function, vocal pitch, intensity. Prereqs., EPOB 3420 or PSYC 2012 and 2022.

SLHS 6006-3. Advanced Hearing Science. Provides advanced study in hearing science, including physical, physiological, and psychological acoustics of both normal and impaired auditory systems. Prereq., graduate standing in SLHS; undergraduate course work in biology or anatomy.

SLHS 8206-3. Perception/Production Theories in Human Communication Sciences and Disorders. Provides an advanced seminar in perception/production theories in human communication sciences and disorders. Familiarizes students with current perception theories related to the auditory/visual system and production theories related to the motor/auditory/visual system. Prereq., doctoral student standing or instructor consent.

Practica

SLHS 4918-2. Introduction to Clinical Practice. Introduces students to the clinical process and its key components and issues. Students participate in supervised observation with individuals with speech, language, and/or hearing problems. Prereq. or coreqs., SLHS 4502 or 4512, and junior or senior standing. Controlled enrollment.

SLHS 4938 (1-6). Internship: Speech-Language Intervention. Provides a supervised clinical experience with children who have communication challenges enrolled in the Child...
Learning Center programs; individuals demonstrating communication disorders as a cotherapy in the Speech, Language, and Hearing Center; or off-campus experience in an affiliated hospital or public school program. Prereq., SLHS 4918 or instructor consent.

SLHS 5878 (1-3). Practicum 1: Speech-Language-Learning Appraisal. Provides a supervised clinical experience on campus in appraisal of speech, language, and learning disorders after training at the observational level. Prereq., graduate enrollment in SLHS.

SLHS 5898 (1-4). Practicum 1: Speech-Language-Learning Intervention. Offers on-campus and off-campus supervised clinical practice in management of speech-language-learning disorders in children and adults. May be repeated for a total of 6 credit hours. Prereq., graduate enrollment in SLHS.

SLHS 5918 (1-3). Practicum 1: Audiology Appraisal. Offers a supervised clinical experience on campus in appraisal of hearing of children and adults. Prereq., SLHS 4704 and 4714 or equivalent.

SLHS 5928 (1-3). Practicum 1: Conservation of Hearing. Provides a supervised clinical experience off campus in the organization and administration of hearing conservation programs in schools and/or industry. Coreq., SLHS 5524.

SLHS 6918-5. Practicum 2: Speech-Language-Learning Internship. Gives an off-campus experience in a clinical or hospital setting that provides in-depth practice in management of communication disorders of children and adults. May be repeated for a total of 10 credit hours.

SLHS 6928-5. Practicum 2: Public School Internship. Provides an off-campus supervised experience providing extended and in-depth practice involving school-age children in a school classroom. May be repeated for a total of 10 credit hours.

SLHS 6938-5. Practicum 2: Audiology Internship. Offers an off-campus experience in a school, hospital, or clinic setting which provides in-depth appraisal and/or rehabilitation practice with hearing-impaired individuals. May be repeated for a total of 10 credit hours.

SLHS 7928-3. Practicum 3: Clinical Administration.

SLHS 8918-3. Practicum 3: Classroom Instruction.

SLHS 8928-3. Practicum 3: Research Coordination.

Independent Study

SLHS 4849 (1-4). Independent Study for Undergraduates. May be repeated for a total of 7 credit hours. Prereq., departmental consent.

SLHS 5849 (1-4). Independent Study 1, M.A. May be repeated for a total of 7 credit hours.

SLHS 5859 (1-4). Independent Study 2, M.A. May be repeated for a total of 7 credit hours.

SLHS 7849 (1-4). Independent Study 1, Ph.D. May be repeated for a total of 7 credit hours.

SLHS 7859 (1-4). Independent Study 2, Ph.D. May be repeated for a total of 7 credit hours.

THEATRE AND DANCE

History/Dramaturgy/Directing

THTR 1011-3. Development of Theatre 1: Forms of Classical Theatre and Drama. Examines the interaction of dramatic literature and performance in classical forms of European and Asian theatre, including Greek, Roman, Indian, Japanese, Medieval, and Renaissance Europe. Approved for arts and sciences core curriculum: literature and the arts.

THTR 3011-3. Development of the American Musical Theatre. Studies the American musical theatre heritage and its relation to the continually changing social milieu. Examines productions, their creators, and performers. Prereq., junior or senior standing; recommended prerequisite, 3 credit hours in THTR, DNCE, or MUSC. Approved for arts and sciences core curriculum: literature and the arts.

THTR 3031-3. Development of Theatre 3: 20th-Century International Drama. Introduces 20th-century international drama. Discusses selected plays by major African, Asian, and European authors and explores different dramatic traditions and their increasing interactions throughout the 20th century. Videotapes and slides are used.

THTR 4021-3. Development of Theatre 4: American Theatre and Drama. Explores issues in American theatre and drama in the 19th and 20th centuries. Prereqs., junior or senior standing and at least 12 hours of THTR course work. Similar to THTR 4001. Approved for arts and sciences core curriculum: critical thinking.

THTR 4041-3. Women and Theatre of the 20th Century. Explores a body of 20th-century dramatic literature central to the study of women and theatre as well as the study of 20th-century cultural history from a cross-national and multiracial feminist perspective. Major playwrights, particularly women from Asia, Africa, and Europe, are read and discussed. Recommended prereq., THTR 3031. Same as THTR 5041 and WMST 4041.

THTR 4051-3, Playwriting. Introductory course in craft of playwriting; primary focus on technique of developing short plays. Instructor consent required.

THTR 4081-3. Senior Seminar. Intellectual and conceptual capstone course for theatre and dance majors. Course promotes integration of ideas regarding history, criticism, and theory in performance and production. All inquiry throughout the semester relates to the theme of “creative process.” Approved for arts and sciences core curriculum: critical thinking.

THTR 5031-3. Russian Theatre. Studies Russian theatre history and the development of Russian drama from the 18th century to the present. Taught in translation.

THTR 5051-3. Special Topics in Theatre History. Detailed study of a particular topic in theatre history (e.g., an era, a style, a country, or an organization). Topic specified in Registration Handbook and Schedule of Courses. May be repeated for a total of 9 credit hours on different topics.

THTR 5071-3. Perspectives on Directing. Advanced study of theory and practice of stage directing through examination of the work of leading directors, analysis of texts, and classroom exercises. Prereq., previous directing course work and/or directing experience.

Note: The following courses are open to graduate students only.

THTR 6001-3. Theatre Dramaturgy. Students work as production dramaturgs for the Colorado Shakespeare Festival, developing detailed textual, historical, and critical research...
for CSF productions, participating in education and outreach programs, and writing production-related articles for publication.

THTR 6011-3. On-Stage Studies: Classical and Neoclassical Drama. Studies classical and neoclassical drama in performance, with particular attention to 20th-century productions and the critical and scholarly responses to these productions.

THTR 6021-3. On-Stage Studies: Elizabethan and Jacobean Drama. Studies Elizabethan and Jacobean dramatic texts as playscripts for performance, with particular attention to contemporary Shakespeare criticism and landmark Shakespeare productions over the last two centuries.

THTR 6031-3. On-Stage Studies: American Theatre and Drama. Studies American drama in performance, with particular attention to critical and scholarly responses to landmark productions of American "classics."

THTR 6041-3. On-Stage Studies: Modern European Drama. Studies modern European drama in performance, with particular attention to critical and scholarly responses to landmark productions of modern "classics."

THTR 6051 (1-3). Production Research and Practicum: Directing. Allows students to undertake a production project, normally within the major theatre season, that requires detailed preparatory research, testing of ideas, and public presentation. Students work under faculty supervision and prepare a documented written report and evaluation of the research, rehearsal, and performance process. Prereq., advanced course work in directing, and approval by the student's advisor. See department's variable credit guidelines.

THTR 6071-3. Seminar: Perspectives on Acting. The art of acting is examined through the study of acting theories and practices developed during major periods of theatre history. Examines the variety of theories about acting that remain today.

THTR 6081-3. Seminar in American Theatre: Lesbians and Gays. Studies the portrayal of lesbians and gays in mainstream American theatre during the 20th century, as well as the contributions of gay and lesbian theatre artists during the same period.

THTR 6091 (1-3). Production Research and Practicum: Dramaturgy. Students undertake a dramaturgical project, normally within the mainstage season, requiring detailed preparatory research, testing of ideas, and public presentation of theories and concepts in practice. Students work under faculty supervision and prepare a documented written report of their project. Prereq., advanced course work in dramatic literature and approval by advisor.

Performance

THTR 1003-3. Beginning Acting. Teaches the basic principles of acting to non-theatre majors, focusing on relaxation, concentration, improvisation, use of imagination, actions, objectives, initial monologue and scene work, and basic terms and concepts of process work for the actor. In addition to required texts, there is a required reading list of plays.

THTR 2003-3. Beginning Acting with Experience. Emphasizes principles of acting, focusing on exercises in relaxation, talking and listening, use of images, actions and objectives, and basic concepts of process work. In addition to required texts, there is a required reading list of plays.

THTR 2013-3. Performance of Literature. Students learn to perceive literary form and content and to translate that perception into classroom performances of selected modern plays and stories. Performances, both solo and ensemble, embody literary texts diverse in terms of gender and ethnicity. Prereq., 15 credit hours, and THTR 1003/2003 or 2043.

THTR 2043-3. Voice for the Stage. Natural resources of the human voice and body are studied as artistic resources for the performing artist. Designed to examine both the process and products of vocal and physical craft work. Prereq., THTR 2003 or instructor consent.

THTR 3013-4. Studio 1: Acting Process—Technique. In-depth study of the acting process. Focusses on developing the actor's technique. Explores the craft elements of acting, as well as text analysis. Prereq., sophomore standing and admission to the B.F.A. program in acting.

THTR 3023-4. Studio 2: Acting Process—Scene Study. Continued development of acting technique and tools for play analysis, with particular emphasis on American realism from the 1930s to early 1960s. Prereq., THTR 3013 or instructor consent.

THTR 3043-3. Advanced Voice for the Stage. Continues the work begun in THTR 2043. Studies advanced vocal and physical techniques with the goal of integrating these skills into the working process of the performing artist. Prereq., THTR 2043 and theatre major, or instructor consent. Coreq., THTR 3013.

THTR 3053-3. Intermediate Acting. Continuation of the techniques introduced in the beginning acting course (THTR 2003). Emphasizes monologues and scene study of contemporary plays. Explores basic techniques in developing a character. In addition to required texts, there is a required reading list. Prereq., THTR 1003 or 2003 or 2043.

THTR 4003-3. Advanced Acting. Acting principles and techniques learned in prerequisite courses are adapted and applied to a range of selected scenes of both contemporary and period plays. Emphasizes developing the necessary craft elements to fulfill textual demands. Prereq., THTR 2023 or 3053, and 2043.

THTR 4013-4. Studio 3: Shakespeare. In-depth study of Shakespearean texts from the perspective of their demands on the actor, including the conventions and performance styles of Elizabethan theatre. Prereq., THTR 3013 and 3023 or instructor consent.

THTR 4073-3. Performing Voices of Women. Explores theories underlying the "feminine voice," varied perspectives in prose and poetry, ways of embodying these voices and perspectives in performance forms, and ultimately the students' own voices through creation of autobiographical performance pieces (some to be presented for student audiences). Open to both men and women. Prereq., instructor consent.

THTR 4083-3. Studio 4: Contemporary British and American Theatre. Studies selected authors and plays, as well as professional issues in contemporary British and American theatre, and the demands made on the actor. Prereqs., THTR 3013, 3023, 4013, or instructor consent.

THTR 4093-4. Studio 5: Ibsen, Shaw, and Chekhov. In-depth study of selected texts by three major progenitors of modern theatre. Emphasizes the world views and conventions implicit in the texts and how these shape the actor’s vocal and physical choices. Prereqs., THTR 3013, 3023, 4013, or instructor consent.

THTR 6003 (1-3). Production Research and Practicum: Acting. Allows students to undertake an acting project, normally within the major theatre season, that requires detailed preparatory research, testing of ideas, and public presentation. Students work under faculty supervision and prepare a documented written report and evaluation of the research, rehearsal, and performance process. For graduate students only. Prereq., advanced studies in acting and approval by the student's advisor. See department's variable credit guidelines.

Theatre Design and Technology

THTR 2005-3. Introduction to Technical Production 1. Introduces technical production elements and procedures, including materials, organization, methods, and equipment to realize theatrical scenery, properties, lighting, and sound designs. Coreq., THTR 2015, which provides practical application of lectures and work on assigned projects.

THTR 2025-3. Introduction to Technical Production 2: Lab. One three hour lab per week providing practical hands-on experience in preparation of costumes and accessories for theatre and dance productions. Coreq., THTR 2025.

THTR 2065-3. Computer Applications in the Performing Arts. Introduces software and program uses of computers in spreadsheet, database, CAD, and word processing through projects in arts management, budgeting, and design. Course is taught on both IBM and Mac platforms. Prereqs., typing skills and basic computer skills.

THTR 2085-3. History of Western Fashion. Surveys topics in western dress from ancient civilizations to contemporary time: the garments, accessories, materials, and technologies of personal adornment in the context of philosophical, political, social, and technological change. Priority given to majors.

THTR 3015-3. Scene Design 1. Introduces the craft of stage design through the application of design principles and theory in which students undertake design projects. Prereq., THTR 3005 or instructor consent.

THTR 3055-3. Stage Lighting Design 1. Introduces the craft of stage lighting design through the application of design principles and theory in which students undertake design projects. Prereq., THTR 2005 and 2015.

THTR 3075 (1-3). Advanced Technical Projects. Practical course in the application of design theory in which students undertake design projects. Prereq., THTR 3035 or instructor consent.

THTR 4005-3. Costume Design 2. Advanced studio course building on experiences and techniques studied in THTR 3005, with additional emphasis on portfolio quality rendering technique and stage production technology as it affects and is effected by the designer. Prereq., THTR 3005.

THTR 4015-3. Scene Design 2. Advanced projects in theatrical scene design. Provides intensive practice in sketching, rendering, drafting and model-building. Emphasizes portfolio development and preparing the student designer for graduate training or professional work. Prereq., THTR 3015 or instructor consent.

THTR 4025-3. Costume Construction. Includes techniques for the patterning and construction of contemporary and period costumes. Hands-on format covers techniques, materials, and equipment particular to theatrical production. Prereq., THTR 2025 or instructor consent.

THTR 4035-3. Scene Painting. Introduces the craft of scene painting through practice projects. Sessions are in a studio format. Students are trained in traditional methods of scenic art, including layout, representational painting, trompe l’oeil, faux finishing, and related skills. Students are taught about proper tool use and care, paint products, and the profession. Prereq., THTR 3015 or instructor consent.

THTR 4055-3. Stage Lighting Design 2. Assumes a basic knowledge of stage lighting; concentrates on advanced technology, processes, and design projects. Prereq., THTR 3055.

THTR 4065 (1-3). Advanced Design Projects. Practical course in the application of design theory in which students undertake design projects. Prereq., THTR 3035 or instructor consent.

THTR 4085-3. Theatre Management. Concentrates on theory and practice of management aspects of the performing arts, emphasizing theatre and dance. Includes marketing, budgeting, house and stage management, audience development, grant writing, unions, and season development. Includes practical experience. Prereq., THTR 2005. Students may not receive credit for both THTR 3065 and 4085. Same as THTR 5085.

THTR 4095 (1-3). Special Topics in Theatre Design and Technology. Intensive study of specialized topics in theatre technology and design. Topic and credits specified in the Registration Handbook and Schedule of Courses. Prereq., instructor consent. See department’s variable credit guidelines. May be repeated for a total of 6 credit hours.

THTR 4135-3. Technical Direction 1. Examines the process of and technology for producing theatrical scenery on a limited production timeline. Prereqs., THTR 3035 and QRMS 1010. Recommended prereq., THTR 3015 or 3055.

THTR 5085-3. Theatre Management. Same as THTR 4085.

THTR 6005 (1-3). Production Research and Practicum: Designing. Allows students to undertake a design project, normally within the major theatre season, that requires detailed preparatory research, testing of ideas, and public presentation of theories and concepts in practice. Students work under faculty supervision, and prepare a documented written report and evaluation of the research, design, and realization process—as well as fully rendered designs and/or plots. Projects may be in costumes, lights, or scenery. For graduate students only. Prereqs., advanced studies in design and approval of student’s advisor. See department’s variable credit guidelines.

Shakespearean Production

Offered in summer only.

THTR 3037 (2-3). Shakespeare Practicum. Students are assigned to work with production artisans of the Colorado Shakespeare Festival. While there are many possible areas, production designs for each season determine the number of available positions. May substitute for one semester of THTR 3035. Prereq., THTR 2005, 2015, 2025, and instructor consent.

THTR 4047-3. Shakespeare in Production. Detailed study of script analysis, directing concepts, staging and criticism of plays being produced by the Colorado Shakespeare Festival.

THTR 4057-3. Shakespeare in Performance. Studies Shakespeare’s plays in performance with special attention to the way in which key performance elements have been addressed in 20th-century productions. Focuses on the plays produced by the Colorado Shakespeare Festival.
Festival. Prereq., upper-division or graduate-level status.

Special Courses in Theatre

THTR 1009-3. Introduction to Theatre. Introduces the varieties of theatrical art, past and present, contributions of the various theatrical artists to the total production, and the place of theatre art in today’s society. Readings, lectures, and attendance at university theatre productions. Designed for nonmajors. Approved for arts and sciences core curriculum: literature and the arts.

THTR 3849 (1-3). Independent Study. May be repeated for a total of 3 credit hours.

THTR 4009-3. Strategies of Teaching Theatre. Specifically designed for teachers at the elementary, middle school, and secondary levels. Focuses on developing effective, innovative performance-based strategies for teaching theatre.

THTR 4019 (3-12). Touring Theatre. Participation in Colorado Caravan Touring Theatre Program. See department’s variable credit guidelines.

THTR 4029 (3-12). Touring Theatre Dance. Participation in Colorado Caravan Touring Theatre Dance Program. See department’s variable credit guidelines. May be repeated for a total of 12 credit hours.

THTR 4039-3. Musical Theatre Repertory. Developed around the learning of complete scenes, songs and dances that are representative of the major periods and styles within musical comedy from the 1920s to the present. Emphasizes in-class performance. Ad- mission by audition. Same as THTR 5039.

THTR 4049 (1-4). Problems in Theatre. Opportunity for students to explore, upon consultation with the instructor, areas in the theatre that the normal sequence of offerings may not allow. May be repeated for a total of 4 credit hours. Same as THTR 5049. See department’s variable credit guidelines.

THTR 4059-3. Open Topics in Theatre and Drama. Covers topics not otherwise listed in the curriculum. Topics for each semester are specified in the Registration Handbook and Schedule of Courses.

THTR 4849 (1-3). Independent Study. May be repeated for a total of 3 credit hours.

THTR 5049 (1-4). Problems in Theatre. May be repeated for a total of 4 credit hours. Same as THTR 4049.

THTR 5849 (1-3). Independent Study. May be repeated for a total of 6 credit hours.

THTR 6009-1. Research Strategies and Techniques. Examines research methodolo-
DNCE 2400-2. Theatre Dance Forms. Each class begins with a dance warm-up designed to increase strength, flexibility, and coordination. This is followed by dance sequences based on social dance forms of the 20th century and discussion of their use in musical theatre choreography.

DNCE 2510-2. African-American Dance 2. Continuation of DNCE 2500. Technique and rhythms explore various Caribbean, African, and dance forms of the Americas not taught in DNCE 2500. Music, history, and folklore help to enhance the dance and provide a total cultural experience. Same as BLST 2410.

DNCE 3160-1. Intermediate Ballet. Covers the general vocabulary of classical ballet technique and enchainements of medium complexity. Multiple pirouettes in all positions are required. Audition required. May be repeated for a total of 8 credit hours.

DNCE 3290-1. Jazz 2. Continuation of DJazz 2. Studies coordination, rhythm, style, and advanced body part isolation in depth, emphasizing performance. Phrases are longer and more complex. Offered summers only at Perry-Mansfield Performing Arts Camp. May be repeated for a total of 2 credit hours.

DNCE 4180-1. Advanced Ballet. Advanced professional-level classical ballet, covering the complete vocabulary. Enchainements are of complex structure. Tour de force work required. Audition required. May be repeated for a total of 8 credit hours.

DNCE 4200-1. Advanced Jazz Dance Technique. For advanced dancers who want to expand their technical skills in the jazz form. Each class includes a standing warm-up, floorwork for strength and flexibility, adagio combination for line and balance, and a locomotor combination for turns, leaps, rhythm, and fast footwork. Emphasizes technique, musicality, style, and performance. Enrollment by audition only. Same as DNCE 5260.

DNCE 5260-1. Advanced Jazz Dance Technique. Enrollment by audition only. Restricted to graduate students. Same as DNCE 4260.

Major Technique

The following undergraduate dance courses are designed for dance majors. Enrollment by audition only.

DNCE 1091-1. Modern 1. Introduces basic skills of modern dance. In-class technique work increases muscle strength, flexibility, and coordination. Offered summers only at Perry-Mansfield Performing Arts Camp. May be repeated for a total of 2 credit hours.

DNCE 2021-2. Beginning Modern Dance for Majors. May be repeated for a total of 16 credit hours.

DNCE 2091-1. Modern 2. Continuation of Modern 1. A developmental sequence of modern dance technique designed to refine the technical/expressive skills required of the professional dancer. Offered summers only at Perry-Mansfield Performing Arts Camp. May be repeated for a total of 2 credit hours.

DNCE 2191-1. Ballet 2. Intermediate ballet, covering the complete vocabulary of classical ballet technique. Enchainements are of complex structure. Offered summers only at Perry-Mansfield Performing Arts Camp. May be repeated for a total of 2 credit hours.

DNCE 3041-2. Intermediate Modern Dance for Majors. May be repeated for a total of 16 credit hours.

DNCE 3091-1. Modern 3. Continuation of Modern 2. A developmental sequence of modern dance technique designed to refine the technical/expressive skills required of the professional dancer. Offered summers only at Perry-Mansfield Performing Arts Camp. May be repeated for a total of 2 credit hours.

DNCE 3190-3. Ballet Practicum. Practical studio training in ballet at the advanced/professional level with a professional company. May be repeated for a total of 4 credit hours. Prereqs., DNCE 2140, 3160, or 4180.

DNCE 3191-1. Ballet 3. A ballet class of advanced level covering the complete vocabulary of classical ballet. Enchainements are of complex structure and tour de force work is required. Offered summers only at the Perry-Mansfield Performing Arts Camp. May be repeated for a total of 2 credit hours.

DNCE 6101-1. Advanced Graduate Ballet. May be repeated for a total of 6 credit hours.

DNCE 6101-2. Advanced Graduate Ballet. Prereqs., DNCE 2140, 3160, or 4180. May be repeated for a total of 16 credit hours.

DNCE 5101-1. Intermediate Graduate Ballet. Prereqs., DNCE 2022 and 2033. May be repeated for a total of 6 credit hours.

DNCE 5101-2. Intermediate Graduate Ballet. Restricted to graduate students. Same as DNCE 5260.

Production

DNCE 2012-2. Dance Production 2. Provides practical experience in producing formal and semi-formal concerts. Introduces and provides basic familiarity with production and promotional responsibilities, theatrical equipment and systems, and backstage and front-of-house duties and procedures. Restricted to dance majors.

DNCE 2022-2. Dance Production 2. Establishes awareness of supporting technical theatre arts available to the choreographer; provides practical hands-on introduction to systems and equipment; and provides vocabulary with which the choreographer communicates with lighting designer and technicians. Restricted to dance majors.

DNCE 5052 (1-3). Studio Concert. Restricted to dance majors with 87 credit hours or more.

Composition

DNCE 2013-2. Dance Improvisation. An opportunity for students to develop skills of dance improvisation through the exploration of structured movement problems. Students study selected contemporary dance artists whose work stresses improvisation in performance and/or as a training vehicle. Restricted to dance majors.

DNCE 2033-3. Beginning Composition. Introduces the basic elements of dance composition through compositional studies evolved from readings, discussion, and improvisation. Restricted to dance majors.

DNCE 3043-3. Intermediate Dance Composition. Opportunity for students to increase knowledge and understanding of dance composition elements as they relate to group forms, theme, development, and phrase manipulation. Restricted to dance majors. Prereqs., DNCE 2021 and 2033.

DNCE 4013-2. Contact Improvisation. Contact improvisation is the practice of spontaneously generating movement guided by moment-to-moment physical contact and sharing of weight between two or more dancers. Class work includes contact improvisation skills: rolling, falling, giving and taking weight, and use of momentum and gravity. Skills are developed in both duets and larger groups. Same as DNCE 5013.

DNCE 4053-3. Advanced Dance Composition. In-depth approach to composition emphasizing personal invention, solo and group forms; styles based on historical art forms; exploration of the evaluative process. Restricted to dance majors. Prereqs., DNCE 3041 and 3043. Same as DNCE 5053.

DNCE 5013-2. Contact Improvisation. Restricted to graduate students. Same as DNCE 4013, with the addition of graduate papers and a project.

Note: The following graduate-level courses are open only to graduate dance majors.

DNCE 5001-2. Modern Dance for Graduate Students. May be repeated for a total of 12 credit hours.

DNCE 5101-1. Intermediate Graduate Ballet. May be repeated for a total of 6 credit hours.

DNCE 6101-1. Advanced Graduate Ballet. May be repeated for a total of 6 credit hours.
DNCE 5037-3. Advanced Dance Composition. Restricted to graduate students in dance. Same as DNCE 4053, with the addition of graduate papers and/or a project.

DNCE 4073-3. Choreography. Covers in-depth practical and theoretical approaches to dance composition for graduate students; solo and group forms; and analysis of historical and contemporary dance works. May be repeated for a total of 6 credit hours with different instructors. Restricted to graduate students in dance.

Music

DNCE 2041-2. Rhythmic Analysis and Accompaniment. Emphasizes elements of rhythm in relation to dance. Experiences with rhythmic drills, rhythmic notation, and percussion accompaniment for the modern dance class comprise the body of the course. Restricted to dance majors.

DNCE 3024-2. Musical Resources for Dance. Surveys basic musical notation and terminology, elements and forms of music, and historical styles, supported by guided listening to representative works within Western musical tradition. Special emphasis on 20th-century techniques and on the relationship of various music to dance. Restricted to dance majors. Coreq., DNCE 2014 or instructor consent.

DNCE 5054-3. West African Music and Dance. Studies music and dance of selected West African cultures. Uses both the academic inquiry tradition of lectures and research as well as the traditional African methodology of music and dancing. Combines intellectual and creative learning experiences. Enrollment by instructor consent. Same as MUSC 5012.

DNCE 5004-3. Music and Dance Seminar: Collaboration. Investigates selected aspects of rhythm, accompaniment, and musical resources for dance and applications to performance, choreography, and teaching. Topics may include movement analysis and rhythmic clarity, self-accompaniment, working with accompanist/composer, relationship of music to dance, and survey of 20th-century compositional techniques. Restricted to graduate students in dance. Prereq., dance/music experience, or instructor consent.

Movement Analysis

DNCE 1005-3. Movement Awareness and Injury Prevention for the Dancer. Helps dancers understand the prevention and care of common injuries associated with their art. Through various body therapy techniques, anatomy, and kinesiology, students learn to reduce tension, improve body usage, and enhance their performance. Restricted to dance majors.

DNCE 4015-3. Movement Analysis. Introduces Rudolf Laban’s theories of movement and exposes several body therapies to heighten students’ awareness of movement as a multifaceted (neuromuscular/spatial/dynamic) event. Emphasizes refinement of movement, observation skills, and improvement of performance. Restricted to dance majors. Prereq., DNCE 1005. Same as DNCE 5015.

DNCE 5015-3. Movement Analysis. Restricted to graduate students. Same as DNCE 4015.

Education

DNCE 4016-3. Creative Dance for Children. Methods course for prospective teachers of creative dance for children. Lectures, readings, and laboratory experiences are followed by observation and teaching in primary grades. Restricted to dance majors. Same as DNCE 5016.

DNCE 4036-3. Methods of Teaching Dance. Practical experience in teaching modern dance to the young adult follows theoretical grounding in specific teaching methods. Examines values and goals of dance in education and fundamental movement principles as related to the teaching of technique and improvisation. Restricted to dance majors. Prereq., DNCE 2013, 2014, 2033, and 4015. Same as DNCE 5036.

DNCE 5016-3. Creative Dance for Children. Restricted to graduate students. Same as DNCE 4016 with addition of readings and a paper.

DNCE 5036-3. Methods of Teaching Dance. Restricted to graduate students in dance. Same as DNCE 4036 with addition of readings and a paper.

DNCE 6016-3. Teaching Lab: Modern Dance. Provides opportunity to apply principles and skills introduced in DNCE 5036. Participating students share the responsibility for teaching a lab class that meets twice a week. Focuses on analysis and evaluation of teaching skills. Restricted to graduate students.

DNCE 6056-2. Dance Administration. Examines current trends, issues, and problems of dance at colleges, in secondary education, in the community, and professional dance. Explores curriculum development and educational dance trends along with other topics such as freelance work, grant writing, and dance advocacy. Restricted to graduate students in dance.

History

DNCE 4017-3. History and Philosophy of Dance. Studies dance as a social, economic, and artistic force from primitive times to the early 1900’s, emphasizing the development of dance as a theatre art in western civilization. Restricted to students with 57 credit hours or more. Same as DNCE 5017. Approved for all arts and sciences core curriculum: literature and the arts.

DNCE 4027-3. Dance in the 20th Century. Covers the development of modern dance and ballet from 1900 to the present through lectures, discussions, critical reviews, and films. Restricted to dance majors. Same as DNCE 5027.

DNCE 5017-3. History and Philosophy of Dance. Restricted to graduate students. Same as DNCE 4017 with addition of graduate papers and/or a project.

DNCE 5027-3. Dance in the 20th Century. Restricted to graduate students. Same as DNCE 4027 with addition of graduate papers and/or a project.

Performance

DNCE 1908-1. Performance Practicum. Students learn and perform a dance choreographed by a faculty member for an informal and/or formal presentation. May be repeated for a total of 3 credit hours.

DNCE 2098-1. Performance/Repertory. Students learn and perform dances from the repertory of guest artists. Offered summers only. May be repeated for a total of 3 credit hours.

DNCE 4018-2. Performance Improvisation Techniques. Explores movement and vocal improvisational techniques to enhance creative and performance skills. Helps individuals discover and make accessible the diversity of the human instrument and develops practical tools to broaden expressive range. Same as DNCE 5018. Enrollment by instructor consent.

DNCE 4038-3. Dance Repertory. Learning and performing dances from the repertory of current faculty members, artists-in-residence, and upon occasion from the repertory of historic modern dancers. Same as DNCE 5038. Dance majors may repeat for a total of 6 credit hours with different instructors. Enrollment by audition only.

DNCE 4128-1. Pointe and Variation. For the more advanced classical ballet student. Entails working on ‘pointe’ and learning dances from Classical, Romantic, and Neo-Classical ballets. Enrollment by audition only. May be repeated for a total of 2 credit hours. Same as DNCE 5128.

DNCE 5018-2. Performance Improvisation Techniques. Restricted to graduate students. Same as DNCE 4018 with the addition of written analysis and creative assignments. Enrollment by instructor consent.
DNCE 5038-3. Dance Repertory. Same as DNCE 4038 except graduate students are required to keep a log of the learning process involved in repertory to document and analyze each work in terms of stylistic differences, musical/sound accompaniment, and trends. Dance majors may repeat for a total of 6 credit hours with different instructors. Enrollment by audition only. Restricted to graduate students.

DNCE 5048-3. Touring Dance Ensemble. Provides students with practical performing and teaching experience. Students design a lecture/demonstration to be performed at primary and secondary schools throughout the state. In addition, Touring Dance Theatre members teach creative movement classes at the schools. Undergraduate students: see THTR 4029. Enrollment by audition only. Restricted to graduate students.

DNCE 5128-1. Pointe and Variation. By audition only. Students should have previous experience. Restricted to graduate students. May be repeated for a total of 2 credit hours. Same as DNCE 4128.

Philosophy and Independent Study

DNCE 1029-3. Dance as a Universal Language. Introduces non-Western dance that demonstrates an appreciation for dance throughout the world. This world view of dance is studied as a universal, historical, cross-cultural art form through the process of research, interpretation, criticism, and creative activity. Enrollment by audition only. Approved for arts and sciences core curriculum: literature and the arts.

DNCE 2849 (1-3). Independent Study. Involves creative or scholarly investigation of an area of interest to the student not addressed in the curriculum. Work must be arranged with and advised by a faculty member. May be repeated for a total of 7 credit hours.

DNCE 3029-3. Looking at Dance. Examines the inner workings of the art of dance from the varying perspectives of audience, performer, and choreographer. Encourages a more informed, and therefore a more responsive, viewing of dance as an art form. Approved for arts and science core curriculum: literature and the arts.

DNCE 3849 (1-3). Independent Study. Same as 2849, at the junior level. May be repeated for a total of 7 credit hours.

DNCE 4849 (1-3). Independent Study. Same as 2849, at the senior level. May be repeated for a total of 7 credit hours.

DNCE 4909-2. Problems in Dance. Explores current topics and research in relation to teaching methods, performance, and criticism that the normal sequence of offerings may not allow. Same as DNCE 5909. May be repeated for a total of 7 credit hours.

DNCE 4919 (1-3). Dance Practicum. Project in dance under supervision of senior faculty. May be repeated for a total of 3 credit hours. Same as DNCE 5919.

DNCE 4939 (1-3). Dance Internship. Provides an opportunity for upper-division dance majors to serve apprenticeships in the community in work areas related to their major interests and career goals. Internships are available in areas such as arts administration, dance therapy, and technical production. Prereq., 30 credit hours in dance.

DNCE 5849 (1-3). Independent Study. May be repeated for a total of 7 credit hours. Same as 2849, at the graduate level.

DNCE 5909-2. Problems in Dance. May be repeated for a total of 7 credit hours. Same as DNCE 4909.

DNCE 5919 (1-3). Dance Practicum. Same as DNCE 4919.

DNCE 6009-1. Research Strategies and Techniques. Restricted to graduate students. Same as THTR 6009.

DNCE 6019-3. Readings in Dance. Surveys dance literature including an opportunity for graduate students to familiarize themselves with resources, current publications, theoretical materials, and professional organizations in dance. Restricted to graduate students in dance.

DNCE 6049-3. Seminar: Dance. Intensive study of selected topics related to the art of dance, dance criticism, dance aesthetics, and dance in relationship to the other arts (performing and visual) with an emphasis on contemporary trends. Restricted to graduate students in dance.

DNCE 6949 (1-4). Candidate for Degree.

DNCE 6959 (1-4). Master’s Thesis.

DNCE 6969 (3-6). The Graduate Project. Provides the opportunity for synthesizing the graduate experience through the execution of a project related to the student’s major area of interest. Project must be approved by the graduate faculty advisor.

UNIVERSITY WRITING PROGRAM

UWRP 1150-3. Introductory Composition: Expository Writing. For students who have already mastered the basic conventions of written English, but still require instruction in expository and analytical writing. Emphasizes organization and clarity. All sections are conducted as workshops; that is, student papers are discussed at every class meeting. Students write several short essays, revising each several times. Meets MAPS requirement for English. Approved for arts and sciences core curriculum: written communication.

UWRP 1250-3. Introductory Composition: Argumentative Writing. For students who require instruction in stating an argumentative thesis and defending it. All sections conducted as workshops; that is, student papers are discussed at every class meeting. Students are required to revise their papers frequently throughout the term. Students enrolling at the freshman level should assess their own skills and choose the course (UWRP 1150 or 1250) appropriate to their needs. Meets MAPS requirement for English. Approved for arts and sciences core curriculum: written communication.

UWRP 1840 (1-3). Independent Study.

UWRP 3020-3. Topics in Writing. Each instructor assigns two or more readings on a given topic. Students choose an essay, abstract its argument, analyze it, and agree or disagree with the author. They thus learn the principal modes of academic rhetoric: description, analysis, and argument. Restricted to arts and sciences majors only. Approved for arts and sciences core curriculum: written communication.

UWRP 3030-3. Writing on Science and Society. Through selected readings and daily writing assignments, students examine ethical and social issues that arise in science and technology. Focusing on critical thinking, analytical and argumentative writing, and oral presentation, the course emphasizes effective communication with non-technical audiences. Classes are conducted as workshops. Restricted to junior and senior engineering students and junior and senior physical and biological science majors. Approved for arts and sciences core curriculum: written communication.

UWRP 3040-3. Writing on Business and Society. Through selected readings and daily writing assignments, students examine ethical and social issues that arise in business. Focusing on critical thinking, analytical and argumentative writing, and oral presentation, the course emphasizes effective communication with non-technical audiences. Classes are conducted as workshops. Restricted to junior and senior business or economics majors. Approved for arts and sciences core curriculum: written communication.

UWRP 3050-3. Advanced Composition: Argument. First in a sequence of four intensive writing workshops for accomplished student writers, irrespective of major. Addresses the many arts of persuasion, which include appeals not only to reason, but also to emotion. Students are taught how to coordinate parts of a complicated proof, how to qualify a problematic thesis, and how to discover and challenge fallacies in the arguments of others. Prereq., instructor consent.
UWRP 3090 (1-3). Open Topics in Writing: Advanced. An advanced topics course providing intensive, specialized writing instruction in selected topics. May be repeated for a total of 6 credit hours if the topics are different. Check with the program for semester offerings. Prereq., UWRP 3020 or 3030, or instructor consent.

UWRP 3840 (1-3). Independent Study.

UWRP 5050-3. Graduate Composition: Writing About ________. These topic-oriented graduate courses are for students engaged in writing theses, articles, or applications for grant support. Students are taught how to temper the jargon of academic prose, so that their writing is clear without being elementary, and concise without being elliptical. The courses do not apply to the minimum number of hours required for graduate degrees on the Boulder campus. Prereq., instructor consent.

WESTERN AMERICAN STUDIES

CAMW 2001-3. The American West. Students tour the cultural, social, and natural features of the American West, based on readings and presentations by guest faculty across disciplines. Designed as the foundation course in the Western American Studies certificate program. Approved for arts and sciences core curriculum: United States context.

CAMW 4001-3. Seminar on the American West. An interdisciplinary capstone seminar for the Western American Studies certificate program, taught by faculty teams. Applies a selected natural science, social science, or humanities topic to the American West and addresses how westerners can make and sustain viable landscapes and communities. Recommended prereq., CAMW 2001 and completion of western studies certificate electives. Same as NRLN 4001. Approved for arts and sciences core curriculum: critical thinking.

WOMEN’S STUDIES

WMST 2000-3. Introduction to Feminist Studies. Examines women’s roles from interdisciplinary and cross-cultural perspectives with a goal of evaluating theoretical explanations for the differential access to power among men and women. Also examines the intersection of gender, race, and class through topics such as psychology, sociology, work and the economy, history, and social change. Meets MAPS requirement for social science: general. Approved for arts and sciences core curriculum: cultural and gender diversity.

WMST 2020-3. Social Construction of Femininities and Masculinities. Examines the impact of race, ethnicity, social class and sexual orientation on the social construction of femininities and masculinities. Studies key issues as they arise over the course of the life cycle, e.g. sexual identity, work/family conflicts, violence, dating and relationships, etc. Approved for arts and sciences core curriculum: cultural and gender diversity.

WMST 2050-3. Women and Society. Examines theories that explain the social construction of gender and the subordination of women in a multicultural context. Topics include women of color and feminism, language constructs, and women in developing countries. Approved for arts and sciences core curriculum: cultural and gender diversity.

WMST 2300-3, 2310-3. Topics in Women Studies. Examines, at an introductory level, selected topics in women studies. Content varies by semester and reflects relevant contemporary issues in women studies scholarship. May be repeated for a total of 6 credit hours.

WMST 2400-3. History of Women and Social Activism. Provides a survey of U.S. history through the eyes of women activists. Combines readings in history, autobiography, and literature to examine women’s impact on social, political, and cultural change in the U.S. Moves chronologically to discuss colonization, slavery, immigration, urbanization, socialism, suffrage, workers’ rights, art activism, civil rights movements, and contemporary feminisms. Recommended prereq., WMST 2000 or 2600. Approved for arts and sciences core curriculum: United States context.

WMST 2500-3. History of the U.S. Feminist Movement. Provides a historical survey of the U.S. feminist movement. Covers 19th-century endeavors for women’s rights, the woman suffrage and progressive reform efforts during the early 20th century, the resurgence of feminist thought and activism during the 1960s, and continuing feminist efforts. Approved for arts and sciences core curriculum: United States context.

WMST 2600-3. Gender, Race, and Class in Contemporary U.S. Society. Introduces the main forms of domination in U.S. society around gender, class, and race relations. Examines intersections of the relations and influences in institutions and everyday life. Particular attention is given to women of color perspectives and resistance to domination. Approved for arts and sciences core curriculum: contemporary societies.

WMST 2700-3. Psychology of Contemporary American Women. Surveys psychological theory and research concerning contemporary American women. Deals with such issues as masculine bias in American culture, sex difference in cognitive functioning and personality, psychological conflict for women between career and home, and, finally, specific areas pertaining to women’s mental health. Prereq., WMST 2000 or PSYC 1001. Same as PSYC 2700. Approved for arts and sciences core curriculum: cultural and gender diversity.

WMST 3000-3. Workplace Diversity. Addresses issues related to an increasing diversity in society and the workplace and the need for new forms of awareness, knowledge, and competencies. Focuses on four dimensions of diversity: race/ethnicity, gender, sexual orientation, and age. Students are required to examine these issues at four levels: personal, interpersonal, institutional, and cultural. Prereq., WMST 2000 or 2050.

WMST 3090-3. Critical Thinking in Feminist Theory. Examines the concepts, ideas, arguments, and assumptions that inform major texts in feminist theory through close reading, class discussion, and writing papers. Emphasizes developing reading and writing skills to interpret theoretical arguments. Prereq., WMST 2000 and junior or senior standing. Approved for arts and sciences core curriculum: critical thinking.

WMST 3100-3. Feminist Theories. Explores a variety of alternative systematic accounts of, and explanations for, gender inequities. Social norms of both masculinity and femininity are analyzed in relation to other axes of inequality such as class, sexuality, race/ethnicity, neo-colonialism, and the domination of nonhuman nature. Prereq., WMST 2000.

WMST 3110-3. Feminist Practical Ethics. Explores a variety of personal and public policy issues in light of basic feminist commitment to opposing women’s subordination. Provides students not only with a deeper understanding of the specific issues discussed but also with a sense of the ways in which a principled commitment to feminism may influence and be influenced by prevailing interpretations of contemporary ideals and values (such as freedom, equality, and community). Provides an opportunity to develop skills of critical analysis useful in a wide range of contexts. Prereq., WMST 2000 or 2290, and junior or senior standing. Same as PHIL 3110. Approved for arts and sciences core curriculum: ideas and values and critical thinking.

WMST 3200-3. Religion and Feminist Thought. Examines the origin of patriarchal culture in the theology and practices of Judaism and Christianity. Explores attitudes and beliefs concerning women as Judeo-Christian culture impacts gender roles and gender stratification through reading and discussion. Women’s religious experience is studied from the perspective of feminist interpretations of religiosity. Prereq., WMST 2000 or WMST/RLST 2800.

WMST 3300-3. Women and the Legal System. Explores the role of women in the legal system by looking at women as jurors, witnesses, law students, lawyers, law professors, and judges. Two areas of the law are examined that impact women in particular: divorce and sexual assault. Prereq., WMST 2000 and junior or senior standing.

WMST 3314-3. Violence Against Women and Girls. Focuses on aspects of the victimization of women and girls that are "gendered," namely sexual abuse and intimate partner abuse. In addition to gender, the importance of race, class, and sexuality is explored. Same as SOCY 3314.

WMST 3400-3. Gender, Personality, and Culture. Explores the relationship among gender, culture, and personality. Brings together the disciplines of psychology and sociology in the study of gender and personality formation through investigation of psychoanalytic theory and the social environment. Prereq., WMST 2000 or 2700, and junior or senior standing.

WMST 3500-3. Global Gender Issues. Introduces global gender issues, such as the gendered division of labor in the global economy, migration, women's human rights, environmental issues, gender violence in war, women in the military, nationalism and feminism, and the representation of the "Third World" in the United States. Offers students the opportunity to broaden their perspectives beyond the borders of the United States. Recommended prereq., WMST 2000, 2050, or 2800.

WMST 3600-3. History of Latinas: Social Movements and Art Activism. Drawing from work produced by and about Latinas, discusses the social and cultural construction of race and ethnicity, the function of nationalism, the politics of migration and citizenship, Latina literary production and theory, historical trends, Latina feminist theory, activism and the academy, and Latina/o political organizing. Prereq., WMST 2000 or 2600.

WMST 3656-3. History of Women in Progressive Social Movements. Explores women's involvement in the United States and international peace and feminist and civil rights movements of the 19th and 20th centuries. Teaches research methods by using a variety of primary and secondary sources and writing an original research paper. Prereq., WMST 2000 or HIST 1015 or 1025. Same as HIST 3656. Approved for arts and sciences core curriculum: critical thinking.

WMST 3700-3. Topics in Women Studies. Examines selected topics in women studies. Content varies by semester and reflects relevant contemporary issues in women studies scholarship, e.g., women working, women and health, mothers and daughters in literature, and women, war, and peace in literature. Prereq., WMST 2000 or 2600. May be repeated for a total of 6 credit hours for different topics.

WMST 3710-3. Topics in Global Studies. Content varies by semester and reflects relevant issues in global feminist scholarship (e.g., women and Islam, or global women writers). May be repeated for a total of 6 credit hours. Prereq., WMST 2000 or 2600.

WMST 3730-3. Third World and the Politics of Development. Examines women's contributions to household and national economies. Includes women in the home and the work force, women in agricultural production, women's health as a development concept, migration and urbanization, women and education, political and historical aspects of development, and the status of women, development policy, and planning. While the course examines women in general, it focuses primarily on African women. Prereq., WMST 2000 or 2600 and junior or senior standing.

WMST 3800-3. Advanced Writing in Feminist Studies. Provides an expository writing course that offers training in analytical and descriptive skills, structures of argument, critical thinking, the rhetoric of persuasion, and the development of a personal voice. Readings and papers focus on basic issues in gender studies. Prereq., WMST 2000 and junior or senior standing. Approved for arts and sciences core curriculum: written communication.

WMST 3930 (1-6). Women Studies Internship. Matches selected students with supervised internships in local businesses and human service and government agencies. Internships focus on women's issues (e.g., affirmative action, services to abused women). Students meet a minimum of twice monthly with the instructor, keep a journal, and submit a final paper. May be repeated for a total of 6 credit hours. Prereq., 6 hours of course work in WMST and 30 cumulative hours.

WMST 4000-3. Senior Seminar: Special Topics. Provides an advanced interdisciplinary course organized around specific topic, problem, or issue relating to women in culture and society (such as feminist theology, women and the law, and the social psychology of women). Course work includes discussion, reading, and written projects. May be repeated for a total of 6 credit hours for different topics. Prereqs., WMST 2000 and junior or senior standing.

WMST 4020-3. Senior Research Seminar. Allows for group work on research projects related to women (such as oral histories of women in management). Introduces students to basic research techniques, develops research skills, and contributes to knowledge of contemporary and historical Rocky Mountain women. May be repeated for a total of 7 credit hours. Prereqs., WMST 2000 and junior or senior standing.

WMST 4200-3. Contemplation, Poetry, and Self. This interdisciplinary course focuses on contemplative practices across several spiritual traditions, ecstatic poetry—poetry that describes mystical states—and historic and contemporary ideas of self—including the gendered self—as articulated in Eastern and Western philosophy, psychology, and literature. Same as ENGL 4200.

WMST 4300-3. International Sex Trade. Studies the commercial trade of sexual labor in the global economy, examining theories and assumptions about sexual-economic exchanges and gendered and racialized relations of power in the sex trade. Emphasizes prostitution. Recommended prereq., WMST 2600 or 3100.

WMST 4636-3. Lesbian and Gay History: Culture and Politics and Social Change in the U.S. Considers current theoretical approaches to the history of sexuality and traces the changing meaning of same-sex sexuality in the U.S. through investigation of lesbian and gay identity formation, community development, politics, and “queer” cultural resistance. Prereqs., WMST 2000 and 2600, and junior or senior standing. Same as HIST 4636.
WMST 4700-3. Women and Mental Health. Examines mental health issues of women by focusing on theories of female personality development. Looks at theory and research pertaining to women and psychopathology and to women as patients in traditional and nontraditional forms of treatment. Prereq., WMST/PSYC 2700 or WMST 2000. Same as PSYC 4700.

WMST 4800-3. Capstone Seminar. Encourages students to sum up, evaluate, and develop a project based on their experiences as women studies majors or certificate students. Students collect materials from their previous women studies courses and write a narrative that describes the process of their learning and evaluates that process. They complete a project that extends their previous work, and then present their projects to other members of the class. Prereq., senior standing and women studies major.

WMST 4840 (1-6). Independent Study. May be repeated for a total of 7 credit hours.

WMST 4950-3. Honors Research. For qualified WMST majors working on the research phase of departmental honors. Prereqs., junior/senior standing and 3.30 overall GPA.

WMST 4999 (1-3). Senior Honors Thesis. Qualified WMST majors may write an honors thesis, an in-depth research paper on a topic chosen by the student. Thesis hours available to majors only after successfully completing the research phase.

WMST 5010-3. Feminist Methodology. Explores themes that emerge in research across a range of disciplines. They include experience and interpretation, the social position of the researcher, language and argument structure, knowledge and power, bias and objectivity, and the ethics and politics of research. Required for WMST graduate certificate.

WMST 5090-3. Feminist Theories. Begins with a reconsideration of the 19th-century antecedents of contemporary Anglophone feminist theory, but primary focus on debates of the last 25 years. Theme throughout is gender, how gender should be understood, and how it interacts with our understandings of class, race, embodiment, sexuality, and knowledge. Required for WMST graduate certificate. May be repeated for a total of 6 credit hours.

Cross-Listed Courses by Discipline: Anthropology
WMST 2080-3. Anthropology of Gender. Same as ANTH 2080.

Chicano Studies

Classics
WMST 2100-3. Women in Ancient Greece. Same as CLAS 2100.

WMST 2110-3. Women in Ancient Rome. Same as CLAS 2110.

English
WMST 1260-3. Introduction to Women’s Literature. Same as ENGL 1260.

WMST 3267-3. Women Writers. Same as ENGL 3267.

WMST 4277-3. Topics in Women’s Literature. Same as ENGL 4277.

Ethnic Studies
WMST 3670-3. Immigrant Women in the Global Economy. Same as ETHN 3670, CHST 3670, and AAST 3671.

Fine Arts

Geography
WMST 3672-3. Gender and Global Economy. Same as GEOG 3672.

History

WMST 4616-3. History of Women in the United States to 1890. Same as HIST 4616.

WMST 4619-3. Women in Asian History. Same as HIST 4619.

WMST 4626-3. History of Women in the United States since 1890. Same as HIST 4626.

Honors
WMST 3004-3. Women in Education. Same as HNRS 3004.

LGBT Studies

Philosophy
WMST 2290-3. Philosophy and Women. Same as PHIL 2290.

Political Science

Religious Studies
WMST 2800-3. Women and Religion. Same as RLST 2800.

Russian
WMST 4471-3. Women in 20th-Century Russian Culture. Same as RUSS 4471.

Sociology
WMST 1006-3. The Social Construction of Sexuality. Same as SOCY 1006.

WMST 2016-3. Sex and Gender in Futuristic Literature. Same as SOCY 2016.

WMST 4016-3. Sex, Gender, and Society 2. Same as SOCY 4016.

WMST 4086-3. Family and Society. Same as SOCY 4086.

Theatre

FACULTY

American Studies

JANICE PECK, Co-director; Associate Professor, School of Journalism and Mass Communication, B.A., University of Utah; M.A., University of Washington; Ph.D., Simon Fraser University.

ERIKA L. DOSS, Co-director; Professor of Fine Arts. B.A., Ripon College; M.A., Ph.D., University of Minnesota.

ALEX S. LUBIN, Instructor. B.A., Evergreen State College; M.A., University of Massachusetts at Boston; Ph.D., University of Minnesota.

Anthropology

DARNA L. DUFOUR, Department Chair; Professor. B.S., Northeastern University; M.A., Ph.D., State University of New York at Binghamton.

BOULOS AYAD, Professor. B.A., M.A., Ph.D., Cairo University (Egypt); M.A., University of Einshams (Egypt).
DOUGLAS B. BAMFORTH, Associate Professor. B.A., University of Pennsylvania; M.A., Ph.D., University of California, Santa Barbara.

ILISA BARBASH, Assistant Professor. B.A., Middlebury College; M.A., University of Southern California.

DAVID A. BRETERNITZ, Professor Emeritus.

ALICE M. BRUES, Professor Emerita.

CATHERINE M. CAMERON, Assistant Professor. B.A., University of California, Berkeley; M.A., University of New Mexico; Ph.D., University of Arizona.

LINDA S. CORDELL, Director of the University Museum; Professor. B.A., George Washington University; M.A., University of Oregon; Ph.D., University of California, Santa Barbara.

HERBERT H. COVERT, Associate Professor. B.A., University of Massachusetts; M.A., Arizona State University; Ph.D., Duke University.

FRANK W. EDDY, Associate Professor Emeritus.

DONNA M. GOLDSTEIN, Assistant Professor. B.S., Cornell University; Ed.M., Harvard Graduate School of Education; Ph.D., University of California, Berkeley.

DAVID LEE GREENE, Professor. B.A., M.A., Ph.D., University of Colorado.

ROBERT A. HACKENBERG, Professor Emeritus.

JAMES J. HESTER, Professor Emeritus.

ARTHUR A. JOYCE, Assistant Professor. B.A., University of Delaware; M.A., Ph.D., Rutgers University.

DOROTHEA V. KASCHUBE, Professor Emerita.

ALEC J. KELSO, Professor Emeritus.

GOTTFRIED O. LANG, Professor Emeritus.

STEVEN HENRY LEKSON, Assistant Professor; Curator of Museum Studies. B.A., Case Western Reserve University; M.A., Eastern New Mexico University; Ph.D., University of New Mexico.

J. TERENCE McCABE, Associate Professor. B.A., University of Notre Dame; M.A., Ph.D., State University of New York, Binghamton.

DENNIS B. McGILVRAY, Associate Professor. B.A., Reed College; M.A., Ph.D., University of Chicago.

JAMES RUSSELL McGOODWIN, Professor. B.B.A., M.B.A., Ph.D., University of Texas.

RICHARD Y. NISHIKAWA, Assistant Dean for Curricular Affairs, College of Arts and Sciences; Assistant Professor Attendant Rank. A.B., University of California, Santa Cruz; Ph.D., University of Washington.

MICHELLE L. SAUTHER, Assistant Professor. B.A., Montana State University; M.A., Arizona State University; Ph.D., Washington University.

PAUL SHANKMAN, Associate Professor. B.A., University of California, Santa Barbara; Ph.D., Harvard University.

PAYSON D. SHEETS, Professor. B.A., M.A., University of Colorado; Ph.D., University of Pennsylvania.

LUCIEN TAYLOR, Assistant Professor. B.A., University of Cambridge, U.K.; M.A., University of Southern California; Ph.D., University of California, Berkeley.

DENNIS P. VAN GERVEN, Director, Honors Program; Professor. B.A., University of Utah; M.A., Ph.D., University of Massachusetts.

DEWARD E. WALKER, JR., Professor (joint with the Department of Ethnic Studies). B.A., Ph.D., University of Oregon.

Applied Mathematics

HARVEY SEGUR, Department Chair; Professor. B.S., Michigan State University; M.S., Ph.D., University of California, Berkeley.

MARK J. ABLOWITZ, Professor. B.S., University of Rochester; Ph.D., Massachusetts Institute of Technology.

JEROLD BEBERNES, Professor. B.S., M.A., Ph.D., University of Nebraska.

GREGORY BEYLKIN, Professor. B.S., M.S., University of Leningrad; Ph.D., Courant Institute of Mathematical Sciences, N.Y.U.

AMY BIESTERFELD, Instructor. B.S., Michigan State University; M.S., Ph.D., University of California, Los Angeles.

JEM CORCORAN, Assistant Professor. B.S., Colorado State University; M.S., Purdue University; Ph.D., Colorado State University.

JAMES H. CURRY, Professor. B.A., M.A., Ph.D., University of California, Berkeley.

ANNE DOUGHERTY, Associate Chair; Senior Instructor. B.S., Texas Christian University; M.S., Oregon State University; Ph.D., University of Wisconsin.

ROBERT EASTON, Professor. B.S., M.S., Ph.D., University of Wisconsin.

BENGST FORNBERG, Professor. Ph.D., Uppsala University.

KEITH JULIEN, Assistant Professor. B.S., Kings College, University of London; Ph.D., Churchill College, Cambridge University.

CONGMIN G. LI, Associate Professor. B.S., University of Science and Technology of China; M.S., Institute of System Sciences; Ph.D., Courant Institute of Mathematical Science, N.Y.U.

THOMAS MANTEUFFEL, Professor. B.S., University of Wisconsin; M.S., Ph.D., University of Illinois.

STEVEN MCCORMICK, Professor. B.A., San Diego State College; Ph.D., University of Southern California.

JAMES D. MEISS, Professor. B.S., University of Washington; M.A., Ph.D., University of California, Berkeley.

JOHN WILLIAMSON, Professor. B.A., Macalester College; M.A., Ph.D., University of Minnesota.

Asian Studies

STEPHEN SNYDER, Director; Associate Professor of Japanese. B.A., Michigan State University; M.A., Columbia University; Ph.D., Yale University.

Astrophysical and Planetary Sciences

J. MICHAEL SHULL, Department Chair; Professor. B.S., California Institute of Technology; M.A., Ph.D., Princeton University.

THOMAS R. AYRES, Research Professor. A.B., Harvard College; Ph.D., University of Colorado.

FRANCES BAGENAL, Associate Chair; Professor. B.Sc., University of Lancaster, England; Ph.D., Massachusetts Institute of Technology.

JOHN BALLY, Professor. B.S., University of California, Berkeley; M.S., Ph.D., University of Massachusetts, Amherst.

CHARLES A. BARTH, Professor. B.S., Lehigh University; M.A., Ph.D., University of California, Los Angeles.

MICHHELL C. BEGELMAN, Professor. A.B., A.M., Harvard University; Ph.D., Cambridge University.

JEFFREY O. BENNETT, Lecturer. M.S., M.S., University of Colorado.

ALBERT L. BETZ, Lecturer. Ph.D., University of California, Berkeley.

THOMAS J. BOGDAN, Associate Professor Adjunct. Ph.D., University of Chicago.

PATRICIA BORNAMANN, Lecturer. Ph.D., University of Colorado.

ALEXANDER BROWN, Lecturer. B.Sc., Ph.D., University of St. Andrews, Scotland.

NICHOLAS BRUMMELL, Assistant Research Professor. Ph.D., Imperial College, University of London.

ROBIN CANUP, Lecturer. B.S., Duke University; M.S., Ph.D., University of Colorado.
WEBSTER C. CASH, Professor. S.B., Massachusetts Institute of Technology; Ph.D., University of California, Berkeley.

CLARK CHAPMAN, Lecturer. B.A., Harvard College; M.S., Ph.D., Massachusetts Institute of Technology.

PAUL CHARBONNEAU, Assistant Professor Adjunct. M.Sc., Ph.D., University of Montreal.

JOSHUA E. COLWELL, Lecturer. Ph.D., University of Colorado.

PETER S. CONTI, Professor Emeritus.

GEORGE A. DULK, Professor Emeritus.

ERICA ELLINGSON, Assistant Professor. B.S., Massachusetts Institute of Technology; Ph.D., University of Arizona.

ROBERT ERGUN, Associate Professor. B.S., M.S., Cornell University; Ph.D., University of California, Berkeley.

LARRY W. ESPOSITO, Professor. S.B., Massachusetts Institute of Technology; Ph.D., University of Massachusetts.

ROY H. GARSTANG, Professor Emeritus.

PETER A. GILMAN, Professor Adjunct. B.A., Harvard College; M.S., Ph.D., Massachusetts Institute of Technology.

JASON GLENN, Assistant Professor. B.S., University of New Mexico; Ph.D., University of Arizona.

NICKOLAY G. GNedin, Assistant Professor. M.S., Leningrad Polytechnical Institute; Ph.D., Princeton University.

JAMES GREEN, Associate Professor. B.S., Stanford University; M.A., Ph.D., University of California, Berkeley.

DAVID H. GRINSPOON, Associate Professor Adjunct. B.A., B.S., Brown University; Ph.D., University of Arizona.

ANDREW J. S. HAMILTON, Associate Professor. B.A., St. Catherine’s College, Oxford; M.Sc., Liverpool University and Queen Mary College, London University; Ph.D., University of Virginia.

CARL J. HANSEN, Professor Emeritus.

AMANDA HENDRIX, Lecturer. B.S., California Polytechnic State University; M.S., Ph.D., University of Colorado.

THOMAS E. HOLZER, Professor Adjunct. B.A., Pomona College; Ph.D., University of California, San Diego.

ARTHUR J. HUNDAUSEN, Lecturer. Ph.D., University of Washington.

STEVEN W. LEE, Lecturer. Ph.D., Cornell University.

HAROLD F. LEVISON, Lecturer. A.B., Franklin and Marshall College; M.S., Ph.D., University of Michigan.

JEFFREY L. LINSKY, Research Professor. B.S., Massachusetts Institute of Technology; M.A., Ph.D., Harvard University.

KEITH B. MacGREGOR, Lecturer. B.A., Cornell University; Ph.D., Massachusetts Institute of Technology.

J. McKIM MALVILLE, Professor. B.S., California Institute of Technology; Ph.D., University of Colorado.

WILLIAM E. McCLINTOCK, Lecturer. B.A., M.A., Ph.D., Johns Hopkins University.

RICHARD A. McCRAY, Distinguished Professor. B.S., Stanford University; M.A., Ph.D., University of California, Los Angeles.

ROBERT PAPPALARDO, Assistant Professor. B.A., Cornell University; Ph.D., Arizona State University.

CAROLYN PORCO, Professor Adjunct. B.S., State University of New York; Ph.D., California Institute of Technology.

WAYNE PRIYOR, Lecturer. A.B., University of California, Berkeley; M.S., Ph.D., University of Colorado.

CORAL R. RANDALL, Lecturer. M.S., Ph.D., University of California, Santa Cruz.

BO REIPURTH, Research Professor. Ph.D., Copenhagen University.

GARY J. ROTTMAN, Lecturer. B.A., Rockefeller College; M.S., Ph.D., Johns Hopkins University.

DAVID W. RUSCH, Lecturer. B.S., Loras College; Ph.D., University of Colorado.

NICHOLAS SCHNEIDER, Associate Professor. B.S., Dartmouth College; Ph.D., University of Arizona.

THEODORE P. SNOW, JR., Professor. B.A., Yale College; M.S., Ph.D., University of Washington.

STANLEY C. SOLOMON, Professor Attendant Rank. M.S., Ph.D., University of Michigan.

THEODOR W. SPEISER, Professor Emeritus.

S. ALAN STERN, Associate Professor Adjunct. B.S., M.S., University of Texas; Ph.D., University of Colorado.

A. IAN STEWART, Professor Attendant Rank. B.Sc., Ph.D., Queens University, Ireland.

GLEN STEWART, Lecturer. Ph.D., University of California, Los Angeles.

JOHN T. STOCHE, Professor. A.B., Princeton University; Ph.D., University of Arizona.

GARY E. THOMAS, Professor Emeritus.

JURI TOOMRE, Professor. B.S., M.S., M.Sc., Massachusetts Institute of Technology; Ph.D., Trinity College, Cambridge University.

WILLIAM WARD, Professor Adjunct. B.S., University of Missouri at Kansas City; Ph.D., California Institute of Technology.

JAMES W. WARWICK, Professor Emeritus.

ELLEN G. ZWEBEL, Professor. A.B., University of Chicago; Ph.D., Princeton University.

Atmospheric and Oceanic Sciences

O. BRIAN TOON, Director; Professor. A.B., University of California, Berkeley; Ph.D., Cornell University.

ANDREW M. MOORE, Associate Director; Associate Professor. B.Sc., University of London; Ph.D., Oxford University.

JOAN ALEXANDER, Lecturer. B.S., Purdue University; M.S., Ph.D., University of Colorado at Boulder.

JOHN T. ANDREWS, Professor of Geological Sciences. B.A., Ph.D., Nottingham University, England; M.Sc., McGill University, Canada.

WAYNE M. ANGEVINE, Lecturer. M.S., Ph.D., University of Colorado at Boulder.

LINNEA M. AVALONE, Assistant Professor. B.S. Massachusetts Institute of Technology; M.A., Ph.D., Harvard University.

SUSAN K. AVERY, Professor of Electrical and Computer Engineering. B.S., Michigan State University; M.S., Ph.D., University of Illinois.

ROGER G. BARRY, Professor of Geography. B.A., University of Liverpool, England; M.Sc., McGill University, Canada; Ph.D., University of Southampton, England.

JOHN BIRKS, Professor of Chemistry. B.S., University of Arkansas; M.S., Ph.D., University of California, Berkeley.

PETER BLANKEN, Assistant Professor of Geography. Ph.D., University of British Columbia.

WILLIAM BLUMEN, Professor. B.S., M.S., Florida State University; Ph.D., Massachusetts Institute of Technology.

GORDON BONAN, Adjoint Associate Professor. Ph.D., University of Virginia.

JUDITH CURRY, Professor of Aerospace Engineering. B.S., Northern Illinois University; Ph.D., University of Chicago.

WILLIAM J. EMERY, Professor of Aerospace Engineering. B.S., Brigham Young University; Ph.D., University of Hawaii.

K. FRANKLIN EVANS, Associate Professor. B.S., M.S., California Institute of Technology; M.S., Ph.D., Colorado State University.

JEFFREY FORBES, Professor of Aerospace Engineering. B.S., University of Rhode Island; M.S., University of Illinois; Ph.D., Harvard University.

DAVID C. FRITTS, Lecturer. B.A., Carleton College; M.S., Ph.D., University of Illinois.
B.A., B.S., California State University, Fullerton; Institute of Technology.

ROBERT I. GROSSMAN, Lecturer. B.S., Duke University; M.S., Ph.D., Colorado State University.

WEIQUIN HAN, Lecturer. B.S., Nanjing Institute of Meteorology; M.S., Chinese Academy of Meteorological Sciences; Ph.D., Nova SE University.

JOHN E. HART, Professor. B.S., Amherst College; M.A., Ph.D., Massachusetts Institute of Technology.

LAKSHMI H. KANTHA, Professor of Aerospace Engineering. B.S., M.S., Bangalore University, India, Ph.D., Massachusetts Institute of Technology.

RICHARD A. KEEN, Lecturer. M.S., Ph.D., University of Colorado at Boulder.

GEORGE N. KILADIS, Lecturer. M.A., Ph.D., University of Colorado.

MARGARET ANNE LEMONE, Professor Adjoint. Ph.D., University of Washington.

JULIUS LONDON, Professor Emeritus.

AMANDA H. LYNCH, Assistant Professor. B.Sc., Monash University; Ph.D., University of Melbourne.

JAMES A. MASLANIK, Assistant Research Professor. B.S., M.E.P.C., Pennsylvania State University; Ph.D., University of Colorado.

MURRY L. SALBY, Professor. B.S., Ph.D., Georgia Institute of Technology.

IRINA N. SOKOLIK, Associate Professor. M.S., Moscow Institute of Physics and Technology; Ph.D., Russian Academy of Sciences.

SUSAN SOLOMON, Professor Adjoint. B.S., Illinois Institute of Technology; M.S., Ph.D., University of California, Berkeley.

KONRAD STEFFEN, Professor of Geography. Ph.D., Swiss Federal Institute of Technology.

GARY E. THOMAS, Professor of Astrophysical and Planetary Sciences. B.S., New Mexico State University; Ph.D., University of Pittsburgh.

MARGARET A. TOLBERT, Associate Professor of Chemistry. A.B., Grinnell College; M.S., University of California; Ph.D., California Institute of Technology.

DARIN W. TOOHEY, Associate Professor. B.A., B.S., California State University, Fullerton; M.S., Ph.D., Harvard University.

VERONICA VAIIDA, Professor of Chemistry. B.S., Brown University; Ph.D., Yale University.

THOMAS T. WARNER, Research Professor. B.S., M.Ed., M.S., Ph.D., Pennsylvania State University.

PETER J. WEBSTER, Professor. B.S., Royal Melbourne Institute of Technology; Ph.D., Massachusetts Institute of Technology.

JEFFREY B. WEISS, Associate Professor. B.S., University of Illinois; MA., Ph.D., University of California, Berkeley.

Bibliography

LORI ARP, Program Director; Head, Central Reference; Associate Professor. B.A., M.S.I.T.S., University of Illinois at Urbana.

KEITH E. GRESHAM, Associate Professor. B.J., University of Texas at Austin; M.Libr., University of Washington.

JOSEPH YUE, Senior Instructor. B.A., M.L.I.S., University of Hawaii at Manoa.

Central and East European Studies

PADRAIC J. KENNEY, Director; Associate Professor. A.B., Harvard College; M.A., University of Toronto; Ph.D., University of Michigan.

Chemistry and Biochemistry

CARL ANTHONY KOVAL, Department Chair; Professor. B.S., Juniata College; Ph.D., California Institute of Technology.

NATALIE AHN, Associate Professor. B.S., University of Washington; Ph.D., University of California, Berkeley.

MARGARET R. ASIRVATHAM, Senior Instructor. B.Sc., M.Sc., University of Madras, India; Ph.D., Kansas State University.

VERONICA M. BIERBAUM, Research Professor. B.A., Catholic University of America; Ph.D., University of Pittsburgh.

JOHN WILLIAM BIRKS, Professor. B.S., University of Arkansas; M.S., Ph.D., University of California, Berkeley.

MARVIN H. CARUTHERS, Distinguished Professor. B.S., Iowa State University; Ph.D., Northwestern University.

THOMAS R. CECH, Distinguished Professor. B.A., Grinnell College; Ph.D., University of California, Berkeley.

LIN CHEN, Assistant Professor. B.S., Beijing University; Ph.D., Harvard University.

STANLEY J. CRISTOL, Distinguished Professor Emeritus.

JOSEPH DE HEER, Professor Emeritus.

CHARLES H. DEPUY, Professor Emeritus.

MANCOURT DOWNING, Professor Emeritus.

DANIEL DUBOIS, Professor Adjoint. B.A., Indiana Central College; Ph.D., Ohio State University.

MARY C. DUBOIS, Professor. B.E., Creighton College; Ph.D., Ohio State University.

G. BARNEY ELLISON, Professor. B.S., Trinity College; Ph.D., Yale University.

JOSEPH J. FALKE, Professor. B.A., Earlham College; Ph.D., California Institute of Technology.

R. RAY FALL, Professor. A.B., Ph.D., University of California, Los Angeles.

STEVEN M. GEORGE, Professor. B.S., Yale University; Ph.D., University of California, Berkeley.

JAMES A. GOODRICH, Assistant Professor. B.S., University of Scranton; Ph.D., Carnegie Mellon University.

RANDALL HALCOMB, Assistant Professor. B.S., University of Alabama; Ph.D, Yale University.

JOHN HAGADORN, Assistant Professor. B.S., University of Oregon; Ph.D., University of California, Berkeley.

MELVIN HANNA, Professor Emeritus.

JAMES T. HYNES, Professor. B.A., Catholic University of America; Ph.D., Princeton University.

DAVID M. JONAS, Assistant Professor. B.S., University of California, Berkeley; Ph.D., Massachusetts Institute of Technology.

EDWARD L. KING, Professor Emeritus.

TAD H. KOCHEL, Professor. B.S., Ohio State University; Ph.D., Iowa State University.

ROBERT KUCHTA, Associate Professor. B.A., Cornell University; Ph.D., Brandeis University.

STEPHEN R. LEONE, Professor Adjunct. B.A., Northwestern University; Ph.D., University of California, Berkeley.

W. CARL LINEBERGER, Distinguished Professor. B.E.E., M.S.E.E., Ph.D., Georgia Institute of Technology.

XUEDONG LIU, Assistant Professor. B.S., Shandong University, Jinan; M.S., Chinese Academy of Sciences; Ph.D., University of Wisconsin–Madison.

JOHN SAWYER MEEK, Professor Emeritus.

JOSEF MICHL, Professor. M.S., Charles University; Ph.D., Czechoslovak Academy of Sciences.

DAVID J. NESBITT, Professor Adjunct. B.A., Harvard College; Ph.D., University of Colorado.

ARLON D. NORMAN, Associate Dean for Natural Sciences, College of Arts and Sciences; Professor. B.S., University of North Dakota; Ph.D., Indiana University.

ARTHUR NOZIK, Professor Adjunct. B.Ch.E., Cornell University; M.S., Ph.D., Yale University.

JOHN T. OHLSON, Instructor. B. Phil, Ph.D., Northwestern University.

IRENE M. OTA, Assistant Professor. B.S., Ph.D., University of California, Los Angeles.

ARTHUR PARDI, Professor. A.B., University of California, San Diego. Ph.D., University of California, Berkeley.
ROBERT P. PARSON, Professor. Sc.B., Brown University; M.S., Ph.D., University of Michigan.

KEVIN S. PETERS, Professor. B.S., University of Oklahoma; Ph.D., Yale University.

CORTLANDT G. PIERPONT, Professor. B.S., Columbia University; Ph.D., Brown University.

AKKIHBBAL RAVISHANKARA, Professor. Adjoint. B.Sc., M.Sc., University of Mysore, India; Ph.D., University of Florida.

KATHERYN RESING, Research Associate Professor. B.A., Washburn University; M.A., University of Kansas; Ph.D., University of Washington.

KATHY L. ROWLEN, Associate Professor. B.S., Grand Valley State University; Ph.D., University of Colorado at Boulder.

TAREK SAMMAKIA, Associate Professor. B.S., University of North Carolina; Ph.D., Yale University.

HARRISON SHULL, Professor Emeritus.

ROBERT E. SIEVERS, Director, Global Change and Environmental Quality Program; Professor. B. Chem., University of Tulsa; M.S., Ph.D., University of Illinois.

REX T. SKODJE, Professor. B.A., Harvard University; Ph.D., University of Arizona.

PIETER TANS, Professor Adjoint. Drs., Ph.D., Rijksuniversiteit Groningen, Netherlands.

BERT MILLS TOLBERT, Professor Emeritus.

MARGARET TOLBERT, Professor. A.B., Grinnell College; M.S., University of California, Berkeley; Ph.D., California Institute of Technology.

OLKE C. UHLENBECK, Professor. B.S., University of Michigan; Ph.D., Harvard University.

VERONICA VAIDA, Professor. B.S., Brown University; Ph.D., Yale University.

DAVID M. WALBA, Professor. B.S., University of California, Berkeley; Ph.D., California Institute of Technology.

HAROLD F. WALTON, Professor Emeritus.

IRWIN B. WILSON, Professor Emeritus.

DEBORAH S. WUTTKE, Assistant Professor. B.S., University of Rochester; Ph.D., California Institute of Technology.

Classics

PETER E. KNOX, Department Chair; Professor. A.B., Harvard College; Ph.D., Harvard University.

DIANE A. CONLIN, Assistant Professor. B.A., State University of New York, Stony Brook; M.A., Ph.D., University of Michigan.

ELSPETH R. M. DUSINBERRE, Assistant Professor. A.B., Harvard University; Ph.D., University of Michigan.

HAROLD D. EVJEN, Professor Emeritus.

ERNST A. FREDRICKSMEYER, Professor Emeritus.

JOHN C. GIBERT, Associate Professor. B.A., Yale University; Ph.D., Harvard University.

BARBARA A. HILL, Senior Instructor. B.A., M.A., University of Michigan.

JOHN N. HOUGH, Professor Emeritus.

PETER HUNT, Assistant Professor. B.A., Swarthmore College; M.A., University of Colorado at Boulder; Ph.D., Stanford University.

JOY K. KING, Associate Professor Emerita.

NOEL E. LENSKI, Assistant Professor. B.A., Colorado College; M.A., Ph.D., Princeton University.

SUSAN H. PRINCE, Assistant Professor. B.A., Yale University; B.A., Oxford University; Ph.D., University of Michigan.

ECKART E. W. SCHÜTRUMPF, Professor. Ph.D., University of Marburg; Habilitation in Classics, University of Marburg.

CHRISTOPHER J. SHIELDS, Professor. B.A., M.A., Bowling Green State University; Ph.D., Cornell University.

ARIANA E. TRAILL, Assistant Professor. B.A., University of Toronto; M.A., Ph.D., Harvard University.

TERPSICORI H. TZAVELLA-EVJEN, Professor Emerita.

Communication

GERARD A. HAUSER, Department Chair; Professor. B.A., Canisius College; M.A., Ph.D., University of Wisconsin.

BRENDA J. ALLEN, Associate Professor. B.A., Case Western Reserve University; M.A., Ph.D., Howard University.

JOHN WAITE BOWERS, Professor Emeritus.

DAVID BULLER, Professor Adjunct. B.A., West Virginia University; M.A., Auburn University; Ph.D., Michigan State University.

WARD CHURCHILL, Professor (Joint Appointment with Ethnic Studies). B.A., M.A., Sangamon State University.

ROBERT T. CRAIG, Associate Professor. B.A., University of Wisconsin; M.A., Ph.D., Michigan State University.

DONALD K. DARNELL, Professor Emeritus.

STANLEY A. DEETZ, Professor. B.S., Manchester College; M.A., Ph.D., Ohio University.

MICHELE H. JACKSON, Assistant Professor. B.A., Macalester College; M.A., Ph.D., University of Minnesota.

BARBARA S. JONES, Professor Emerita.

STANLEY E. JONES, Professor. B.A., M.A., University of Iowa; Ph.D., Northwestern University.

TIMOTHY R. KUHN, Assistant Professor. B.A., M.A., University of Minnesota–Twin Cities; Ph.D., Arizona State University.

CURTIS D. LeBARON, Assistant Professor. B.A., Brigham Young University; M.A., University of Utah; Ph.D., University of Texas.

PEGGY A. RHINE, Instructor Emerita.

ANNA L. SPRADLIN, Senior Instructor. B.A., Tabor College; M.Ed., M.A., Wichita State University; Ph.D., University of Denver.

BRYAN C. TAYLOR, Associate Professor. B.A., University of Southern California.

ELAINE V. TOMPKINS, Senior Instructor Emerita.

PHILLIP K. TOMPKINS, Professor Emeritus.

KAREN TRACY, Professor. B.S., Pennsylvania State University; M.A., Bowling Green State University; Ph.D., University of Wisconsin.

APRIL R. TREES, Assistant Professor. B.A., Eastern Montana College; M.A., Ph.D., University of Washington.

CINDY H. WHITE, Assistant Professor. B.A., M.A., Texas Tech University; Ph.D., University of Arizona.

Communication Disorders and Speech Science

Comparative Literature and Humanities

Core Faculty

PAUL GORDON, Department Chair; Associate Professor. B.A., State University of New York at Buffalo; Ph.D., Yale University.

JEFFREY COX, Professor. B.A., Wesleyan University; Ph.D., University of Virginia.

SHIRLEY CARNAHAN, Instructor. B.A., University of California, Santa Barbara; M.A., California State University; Ph.D., University of Colorado, Boulder.

MICHAEL du PLESSIS, Assistant Professor of English. B.A., University of Pretoria; B.A., M.A., University of the Witwatersrand; Ph.D., University of Southern California.

DAVID FERRIS, Associate Professor. B.A., University of Leeds, England; Ph.D., SUNY-Buffalo.

JILLIAN HEYDT-STEVENSON, Assistant Professor. B.A., University of Colorado at Boulder; M.A., University of Iowa; Ph.D., University of Colorado at Boulder.
VERNON H. MINOR, Professor of Fine Arts. B.A., Kent State University; M.A., Ph.D., University of Kansas.

Participating Faculty

ADELEKE ADEEKO, Associate Professor of English. B.A., M.A., University of Ife, Nigeria; Ph.D., University of Florida.

LEOPOLDO BERNUCCI, Associate Professor of Spanish and Portuguese. B.A., University of Sao Paulo; M.A., Ph.D., University of Michigan.

CHRISTOPHER BRAIDER, Associate Professor of French and Italian. B.A., Ph.D., Trinity College, Dublin.

VICTORIA B. CASS, Associate Professor of East Asian Languages and Civilizations. B.A., Cornell University; M.A., Yale University; Ph.D., University of California, Berkeley.

ANDREW COWELL, Assistant Professor of French. B.A., Harvard University; M.A., Ph.D., University of California, Berkeley.

FREDERICK DENNY, Professor of Religious Studies. A.B., College of William and Mary; B.D., Andover Newton Theological School; M.A., Ph.D., University of Chicago Divinity School.

CLAIRE J. FARAGO, Professor of Fine Arts. B.A., Wellesley College; M.A., Brown University; Ph.D., University of Virginia.

GINA FISCH-FRIEDMAN, Assistant Professor of French. B.A., Université de Neuchâtel; Ph.D., City University of New York.

RHONDA GARELICK, Assistant Professor of French and Italian. B.A., Ph.D., Yale University.

HOWARD C. GOLDBLATT, Professor of East Asian Languages and Civilizations. B.A., Long Beach State College; M.A., San Francisco State University; Ph.D., Indiana University.

DAVID L. GROSS, Professor of History. B.A., St. Ambrose College; M.A., Ph.D., University of Wisconsin.

GERARD A. HAUSER, Professor of Communication. B.A., Canisius College; M.A., Ph.D., University of Wisconsin.

SUZANNE JUHASZ, Professor of English. B.A., Bennington College; M.A., Ph.D., University of California, Berkeley.

RICARDO LANDEIRA, Professor of Spanish and Portuguese. B.A., M.A., Arizona State University; Ph.D., Indiana University.

JANET LUNGSTRUM, Associate Professor of Germanic and Slavic Languages and Literatures. B.A., University of London; M.A., University of Pennsylvania; Ph.D., University of Virginia.

DENNIS McGILVRAY, Associate Professor of Anthropology. B.A., Reed College; M.A., Ph.D., University of Chicago.

NINA MOLINARO, Associate Professor of Spanish and Portuguese. B.A., Scripps College; M.A., Ph.D., University of Kansas.

WARREN F. MOTTE, JR., Professor of French and Italian. B.A., University of Pennsylvania; Maitrise des Lettres, Université de Bordeaux; M.A., Ph.D., University of Pennsylvania.

JAMES W. PALMER, Professor of Film Studies. B.A., Dartmouth College; M.A., Ph.D., Claremont Graduate School.

CHARLES L. PROUDFIT, Professor of English. A.B., M.A., Ph.D., University of Michigan.

KATHRYN RIOS, Assistant Professor of English. B.A., University of California; M.A., Ph.D., Cornell University.

JULIUS E. RIVERS, JR., Professor of English. B.A., University of California, M.A., Ph.D., Cornell University.

ELIZABETH ANN ROBERTSON, Associate Professor of English. B.A., Barnard College; B.A., Cambridge University; M.A., M.Phil., Columbia University.

LAUREL RASPILICA RODD, Professor of East Asian Languages and Civilizations. B.A., DePauw University; M.A., Ph.D., University of Michigan.

RIMGAILA SALYS, Professor of Germanic and Slavic Languages and Literatures. B.A., University of Pennsylvania; M.A., Ph.D., Harvard University.

RICHARD J. SCHOECK, Professor Emeritus of Humanities.

ECKART E. SCHÜTRUMPF, Professor of Classics. Ph.D., University of Marburg; Habilitation in Classics, University of Marburg.

CHRISTOPHER SHIELDS, Professor of Philosophy. B.A., M.A., Bowling Green State University; Ph.D., Cornell University.

STEPHEN SNYDER, Associate Professor of East Asian Languages and Civilizations. B.A., Michigan State University; M.A., Columbia University; Ph.D., Yale University.

MADELINE K. SPRING, Associate Professor of East Asian Languages and Civilizations. B.A., Antioch College; Ph.D., University of Washington.

PAUL V. THOMPSON, Professor Emeritus of Humanities.

ERIC WHITE, Associate Professor of English. B.A., Columbia University; M.A., Ph.D., University of California, Berkeley.

HAIPING YAN, Assistant Professor of Theatre and Dance. B.A., Fudan University; M.A., Ph.D., Cornell University.

East Asian Languages and Civilizations

LAUREL RASPILICA RODD, Department Chair; Professor of Japanese. B.A., DePauw University; M.A., Ph.D., University of Michigan.

VICTORIA B. CASS, Associate Professor of Chinese. B.A., Cornell University; M.A., Yale University; Ph.D., University of California, Berkeley.

KUAN-YI ROSE CHANG, Director, Anderson Language Technology Center; Assistant Professor Attendant Rank. B.A., Wesleyan; M.A., Southern Illinois University; Ph.D., Purdue University.

FANG-YI CHAO, Instructor of Chinese. B.A., Tsing Hua University, Taiwan; M.A., Tunghai University, Taiwan; Ph.D., Ohio State University.

HOWARD GOLDBLATT, Professor of Chinese. B.A., Long Beach State College; M.A., San Francisco State University; Ph.D., Indiana University.

FAYE YUAN KLEEMAN, Assistant Professor of Japanese. B.A., Soochow University, Taiwan; M.A., Ochanomizu University; Ph.D., University of California, Berkeley.

TERRY F. KLEEMAN, Associate Professor of Chinese and Religious Studies. B.A., University of Miami; M.A., University of British Columbia; Ph.D., University of California, Berkeley.

PAUL W. KROLL, Professor of Chinese. B.A., M.A., Ph.D., University of Michigan.

STEPHEN MILLER, Assistant Professor of Japanese. B.A., Ohio State University; M.A., Columbia University; Ph.D., University of California, Los Angeles.

WILLIE T. NAGAI, Assistant Professor Emeritus.

KYOKO SAEGUSA, Senior Instructor in Japanese. B.A., Japan Women’s University; M.A., Arizona State University.

STEPHEN SNYDER, Director of Asian Studies; Associate Professor of Japanese. B.A., Michigan State University; M.A., Columbia University; Ph.D., Yale University.

MADELINE K. SPRING, Associate Professor of Chinese. B.A., Antioch College; Ph.D., University of Washington.

KUMIKO TAKAHARA, Associate Professor of Japanese. B.A., M.A., University of the Sacred Heart; M.A., University of Edinburgh; Ph.D., University of London.

DONALD SIGURDSON WILLIS, Professor Emeritus.

MINGLANG ZHOU, Assistant Professor of Chinese. B.A., Guangzhou Institute of Foreign Languages; M.A., Hunan University; M.A., Portland State University; Ph.D., Michigan State University.
Economics

ANN M. CARLOS, Department Chair; Professor. B.A., M.A., University College, Dublin; Ph.D., University of Western Ontario.

MARTIN BOILEAU, Assistant Professor. B.S., M.S., Université du Québec à Montréal; Ph.D., Queen’s University at Kingston.

JOSE J. CANALS-CERDA, Assistant Professor. B.S., University of Valencia; M.A., Ph.D., University of Virginia.

CHARLES DEBARTOLOMÉ, Associate Professor. B.A., Cambridge University; M.B.A., Wharton Graduate School, University of Pennsylvania; Ph.D., University of Pennsylvania.

YONGMIN CHEN, Assistant Professor. B.S., Zhejiang Institute of Technology; M.A., People’s University of China; Ph.D., Boston University.

JAMES E. DUGAN, Professor Emeritus.

NICHOLAS E. FLORES, Assistant Professor. B.A., University of Texas at Austin; M.A., M.S., Ph.D., University of California, San Diego.

FRED R. GLAHE, Professor. B.S., M.S., Ph.D., Purdue University.

PHILIP E. GRAVES, Professor. B.A., Indiana University; M.A., Ph.D., Northwestern University.

MICHAEL J. GREENWOOD, Professor. B.A., De Paul University; M.A., Ph.D., Northwestern University.

CHARLES W. HOWE, Professor Emeritus.

FRANK S. T. HSIAO, Associate Chair for Graduate Studies; Professor. B.A., M.A., National Taiwan University; M.A., Ph.D., University of Rochester.

MURAT F. IYIGUN, Assistant Professor. B.S., Hacettepe University, Turkey; M.B.A., A.M., Boston University; Ph.D., Brown University.

ECKHARD JANEB, Assistant Professor. B.A., University of Kiel; Ph.D., University of Bonn.

WILLIAM H. KAEMPFER, Associate Vice Chancellor for Academic Affairs, Budget, and Planning; Professor. B.A., College of Wooster; M.A., Ph.D., Duke University.

JANE H. LILLYDAHL, Professor. B.A., Denison University; M.A., Ph.D., Duke University.

JAMES R. MARKUSEN, Director, Carl McGuire Center for International Studies; Professor. B.A., Ph.D., Boston College.

KEITH E. MASKUS, Professor. B.A., Knox College; M.A., Ph.D., University of Michigan.

CARL W. MCGUIRE, Professor Emeritus.

TERRA G. MCKINNISH, Assistant Professor. B.A., University of Richmond; M.S., Ph.D., Carnegie Mellon University.

ROBERT F. McNOWN, Associate Chair for Undergraduate Studies; Professor. B.A., University of California, Los Angeles; Ph.D., University of California, San Diego.

EDWARD R. MOREY, Professor. B.A., University of Denver; M.A., University of Arizona; Ph.D., University of British Columbia.

IRVING MORRISSETT, Professor Emeritus.

WYN F. OWEN, Professor Emeritus.

BARRY W. POULSON, Professor. B.A., Ohio Wesleyan University; M.A., Ph.D., Ohio State University.

JOHN P. POWELSON, Professor Emeritus.

JACK ROBLES, Assistant Professor. B.A., University of California, Berkeley; Ph.D., University of California, San Diego.

DON E. ROPER, Professor. B.S., Texas Tech University; M.A., Northwestern University; Ph.D., University of Chicago.

THOMAS F. RUTHERFORD, Associate Professor. B.S., Yale University; M.S., Ph.D., Stanford University.

LAWRENCE SENESH, Professor Emeritus.

LARRY D. SINGELL, Professor. B.A., Eastern Nazarene College; M.A., Ph.D., Wayne State University.

BERNARD UDIS, Professor Emeritus.

DONALD M. WALDMAN, Professor. B.A., Cornell University; M.A., Ph.D., University of Wisconsin.

JEFFREY S. ZAX, Director, Center for Economic Analysis; Professor. B.A., Ph.D., Harvard University.

English

JOHN ALLEN STEVENSON, Department Chair; Associate Professor. B.A., Duke University; Ph.D., University of Virginia.

ADELEKE ADEKO, Associate Professor. B.A., M.A., University of Ife, Nigeria; Ph.D., University of Florida.

FREDERICK LUIS ALDAMA, Assistant Professor. B.A., University of California, Berkeley; Ph.D., Stanford University.

JOE AMATO, Assistant Professor. B.S., Syracuse University; M.A., D.Arts, University of Albany, State University of New York.

DONALD C. BAKER, Professor Emeritus.

BRUCE BASSOFF, Professor. B.A., Brandeis University; M.A., Columbia University; Ph.D., City University of New York.

L. MICHAEL BELL, Associate Professor. A.B., Harvard College; Ph.D., Harvard University.

LUCIA BERLIN, Assistant Professor Emerita.

MARTIN E. BICKMAN, Professor. A.B., Amherst College; M.A.T., Harvard University; M.A., Ph.D., University of Pennsylvania.

RONALD BILLINGSLEY, Associate Professor. B.A., University of Redlands; M.A., Ph.D., University of Oregon.

ARTHUR M. BOARDMAN, Professor Emeritus.

ANNA CAMPBELL BRICKHOUSE, Assistant Professor. B.A., University of Virginia; M.A., M.Phil., Ph.D., Columbia University.

DOUGLAS A. BURGER, Associate Professor. B.A., Colorado State College; M.A., Ph.D., Lehigh University.

LORNA DEE CERVANTES, Associate Professor. B.A., San Jose State University.

JACK H. CROUCH, Professor Emeritus.

JEFFREY DESHELL, Assistant Professor. B.A., M.A., University of Colorado at Boulder; Ph.D., State University of New York at Buffalo.

J. WALLACE DONALD, Professor Emeritus.

MICHAEL dePULESSIS, Assistant Professor. B.A., University of Pretoria; B.A., M.A., University of Witwatersrand; Ph.D., University of Southern California.

KATHERINE EGGERT, Associate Professor. B.A., Rice University; M.A., Ph.D., University of California, Berkeley.

JANE GARRITY, Assistant Professor. A.B., M.A., Ph.D., University of California, Berkeley; M.A., Queens Mary College, University of London.

SIDNEY GOLDFARB, Professor. A.B., Harvard College.

NAN GOODMAN, Associate Professor. B.A., Princeton University; M.A., University of California, Berkeley; J.D., Stanford University; Ph.D., Harvard University.

JOHN N. GRAHAM, Associate Professor. A.B., Middlebury College; M.A., Ph.D., New York University.

JEREMY F. GREEN, Assistant Professor. B.A., Wadham College, Oxford; Ph.D., Cambridge University.

ELISSA SCHAGRIN GURALNICK, Professor. A.B., University of Pennsylvania; M. Phil., Ph.D., Yale University.

JILLIAN HEYDT-STEVENSON, Assistant Professor. B.A., University of Colorado; M.A., University of Iowa; Ph.D., University of Colorado.

LINDA HOGAN, Professor. B.A., M.A., University of Colorado.

BRUCE W. HOLSINGER, Assistant Professor. B.A., B.M.A., University of Michigan; M.A., University of Minnesota; Ph.D., Columbia University.

KELLY K. HURLEY, Associate Professor. B.A., Reed College; Ph.D., Stanford University.
LEWIS SAWIN, Professor Emeritus.

RICHARD J. SCHOECK, Professor Emeritus.

CHARLES LABARGE SQUIER, Professor Emeritus.

RONALD SUKENICK, Professor. B.A., Cornell University; M.A., Ph.D., Brandeis University.

CHARLOTTE SUSSMAN, Associate Professor. B.A., Yale University; M.A., Ph.D., Cornell University.

ERIC WHITE, Associate Professor. B.A., University of California, Santa Cruz; M.A., University of Michigan; Ph.D., Harvard University.

R.L. WIDMANN, Associate Professor. B.A., University of Wisconsin; A.M., Ph.D., University of Illinois.

MARK WINOKUR, Associate Professor. B.A., Brandeis University; M.A., Ph.D., University of California, Berkeley.

JOHN H. WRENN, Professor Emeritus.

CONSTANCE WRIGHT, Professor Emerita.

SUE A. ZEMKA, Associate Professor. B.A., Saint Louis University; Ph.D., Stanford University.

Environmental, Population, and Organismic Biology

ROBERT C. EATON, Department Chair; Professor. M.S., University of Oregon; B.A., Ph.D., University of California, Riverside.

WILLIAM ADAMS, III, Associate Professor. M.A., University of Kansas; Ph.D., Australian National University.

DAVID M. ARMSTRONG, Professor. B.S., Colorado State University; M.A.T., Harvard University; Ph.D., University of Kansas.

JOHN M. BASEY, Senior Instructor. B.A., California State University, Stanislaus; M.S., Ph.D., University of Nevada.

ANNE C. BEKOFF, Professor. B.A., Smith College; Ph.D., Washington University.

MARC BEKOFF, Professor. A.B., Ph.D., Washington University; M.A., Hofstra University.

RUTH A. BERNSTEIN, Associate Professor. B.S., University of Wisconsin; Ph.D., University of California, Los Angeles.

CARL E. BOCK, Professor. A.B., Ph.D., University of California, Berkeley.

JANE H. BOCK, Professor Emerita.

ERIK K. BONDE, Professor Emeritus.

M. DEANE BOWERS, Professor. B.A., Smith College; Ph.D., University of Massachusetts.

WILLIAM BOWMAN, Associate Professor. B.A., University of Colorado; M.S., San Diego State University; Ph.D., Duke University.

MICHAEL D. BREED, Professor. B.A., Grinnell College; M.A., Ph.D., University of Kansas.

JOHN H. BUSHNELL, JR., Professor. B.A., Vanderbilt University; M.S., Ph.D., Michigan State University.

CYNTHIA CAREY, Professor. A.B., M.A., Occidental College; Ph.D., University of Michigan.

HARRISON CARPENTER, Instructor. B.S., Ferris State University; M.S., Michigan Technological University.

SHARON K. COLLINGE, Assistant Professor, (joint with Environmental Studies program) B.A., Kansas State University; M.S., University of Nebraska, Lincoln; Ph.D., Harvard University.

DAVID W. CRUMPACKER, Professor Emeritus.

ALEXANDER CRUZ, Professor. B.S., City College of New York; Ph.D., University of Florida.

MILFORD F. CUNDIFF, Associate Professor. B.A., Ph.D., University of Colorado.

BARBARA DEMMIG-ADAMS, Professor. B.A., Ph.D., Dr. rer. nat. habil., Universität Würzburg, Germany.

ALAN de QUEIROZ, Assistant Professor. A.B., University of California; Ph.D., Cornell University.

RANDOLPH DIDOMENICO, Senior Instructor. B.A., Ph.D., University of Colorado at Boulder.

PAMELA K. DIGGLE, Associate Professor. B.A., University of California, Santa Barbara; M.S., University of California, Riverside; Ph.D., University of California, Berkeley.

WILLIAM E. FRIEDMAN, Professor. A.B., Oberlin College; Ph.D., University of California, Berkeley.

TODD T. GLEESON, Associate Vice Chancellor for Academic Affairs; Professor. B.S., University of California, Riverside; Ph.D., University of California, Irvine.

MICHAEL C. GRANT, Associate Vice Chancellor for Undergraduate Education; Director, Norlin Scholars Program; Professor. B.A., M.A., Texas Tech University; Ph.D., Duke University.

RUTH E. HEISLER, Senior Instructor. B.S., University of Minnesota; M.A., University of Colorado.

RICHARD E. JONES, Professor Emeritus.

CAROL KEARNS, Senior Instructor. B.S., Southampton College; M.S. University of New Hampshire; Ph.D., University of Maryland.

MARGIE KREST, Senior Instructor. B.A., Ohio University; M.A., Northeastern University.

THOMAS LEMIEUX, Senior Instructor. B.A., California State University, Sacramento; M.A., University of California, Berkeley.

WILLIAM M. LEWIS, JR., Director, Center for Limnology (CIRES); Professor. B.S., University of North Carolina; Ph.D., Indiana University.
YAN B. LINHART, Professor. B.S., Rutgers University; M.F., Yale University; Ph.D., University of California, Berkeley.

CAROL B. LYNCH, Dean of the Graduate School and Associate Vice Chancellor for Research; Professor. A.B., Mount Holyoke College; M.A., University of Michigan; Ph.D., University of Iowa.

ROBERT G. LYNCH, Professor. B.S., Grove City College; M.A., University of Michigan; Ph.D., University of Iowa.

ANDREW MARTIN, Assistant Professor. B.S., University of Arizona; M.S., Ph.D., University of Hawaii.

JEFFREY B. MITTON, Professor. B.A., University of Connecticut; Ph.D., State University of New York, Stony Brook.

RUSSELL K. MONSON, Professor. B.S., M.S., Arizona State University; Ph.D., Washington State University.

JORG A. MORENO, Instructor. B.S., Cornell University; Ph.D., University of Colorado.

HARVEY NICHOLS, Professor. B.A., Manchester University, England; Ph.D., Leicester University, England.

DAVID O. NORRIS, Professor. B.S., Baldwin-Wallace College; Ph.D., University of Washington.

ROBERT W. PENNAK, Professor Emeritus.

THOMAS RANKER, Associate Professor. B.A., California State University, Sacramento; M.A., Humboldt State University; Ph.D., University of Kansas.

STEVEN K. SCHMIDT, Associate Chair; Professor. B.S., Boise State University; M.S., Colorado State University; Ph.D., Cornell University.

TIMOTHY R. SEASTEDT, Professor. B.A., University of Montana; M.S., University of Alaska; Ph.D., University of Georgia.

SAM SHUSHAN, Professor Emeritus.

HOBART M. SMITH, Professor Emeritus.

GREGORY K. SNYDER, Professor. B.S., California State University, Arcata; M.S., California State University, San Diego; Ph.D., University of California, Los Angeles.

CHARLES H. SOUTHWICK, Professor Emeritus.

DAVID STOCK, Assistant Professor. B.S., Texas A&M University; Ph.D., University of Illinois.

ERIC R. STONE, Instructor. B.S., University of Vermont; M.S., Colorado State University; Ph.D., Idaho State University.

ALAN TOWNSEND, Assistant Professor. B.A., Amherst College; Ph.D., Stanford University.

PEI-SAN TSAI, Assistant Professor. B.S., Texas A&M University; M.A., Ph.D., University of California, Berkeley.

CAROL A. WESSMAN, Associate Professor. B.S., Colorado State University; M.S., Ph.D., University of Wisconsin, Madison.

JOHN T. WINDELL, Professor Emeritus.

PAUL W. WINSTON, Professor Emeritus.

Environmental Studies

JAMES WC. WHITE, Director; Associate Professor of Geological Sciences. B.S., Florida State University; M.A., M.Phil., Ph.D., Columbia University.

ADRIENNE ANDERSON, Instructor. B.A., Southern Methodist University.

GREGORY ASNER, Assistant Professor (joint with the Department of Geological Sciences). B.S., M.A., Ph.D., University of Colorado at Boulder.

PETER BLANKEN, Assistant Professor (joint with the Department of Geography). B.S., M.S., McMaster University; Ph.D., University of British Columbia.

SHARON COLLINGE, Assistant Professor (joint with the Department of EPO Biology). B.A., Kansas State University; M.S., University of Nebraska at Lincoln; Ph.D., Harvard University.

DALE MILLER, Instructor. B.A., University of Colorado at Denver.

Ethnic Studies

EVELYN HU-DeHART, Chair; Professor. B.A., Stanford University; Ph.D., University of Texas at Austin.

WARD CHURCHILL, Professor. B.A., M.A., Sangamon State University.

JUALYNNE E. DODSON, Associate Professor. B.S., M.A., Ph.D., University of California, Berkeley.

ELISA FACIO, Associate Professor. B.A., University of Santa Clara; M.A., Ph.D., University of California, Berkeley.

RACHEL HARDING, Instructor. B.A., M.F.A., Brown University; Ph.D., University of Colorado at Boulder.

LANE R. HIRABAYASHI, Professor. B.A., California State College, Sonoma; M.A., Ph.D., University of California, Berkeley.

WILLIAM M. KING, Professor. B.A., Kent State University; M.A., University of Akron; Ph.D., Syracuse University.

KENNETH M. ORONA, Assistant Professor. B.A., University of New Mexico; M.A., University of Colorado; Ph.D., Yale University.

LISA SUN-HEE PARK, Assistant Professor. B.A., Trinity University; M.A., Ph.D., Northwestern University.

DAVID NAGUIB PELLOW, Assistant Professor. B.A., University of Tennessee, Knoxville; M.A., Ph.D., Northwestern University.

DEWARD WALKER, Professor. B.A., Ph.D., University of Oregon.

Film Studies

SURANJAN GANGULY, Director; Associate Professor. B.A., University of California; M.A., Jadavpur University; Ph.D., Purdue University.

ERNESTO ACEVEDO-MUNOZ, Assistant Professor. B.A., University of Puerto Rico; M.A., Ph.D., University of Iowa.

MELINDA BARLOW, Assistant Professor. Ph.D., New York University.

BRUCE F. KAWIN, Professor. A.B., Columbia University.

MARIAN KEANE, Assistant Professor. B.A., Wells College; M.A., New York University.

JAMES PALMER, Director of World Affairs Conference; Professor. B.A., Dartmouth College; M.A., Ph.D., Claremont Graduate School.

PHILIP SOLOMON, Associate Professor. B.A., University of New York, Binghamton; M.A., Massachusetts College of Art.

DON YANNACTO, Lecturer. B.A., University of Colorado.

Fine Arts

ALBERT ALHADEFF, Associate Professor. A.B., Columbia University; M.A., Ph.D., New York University.

MARK AMERIKA, Assistant Professor. B.A., University of Florida; M.F.A., Brown University.

RONALD M. BERNIER, Professor. B.A., University of Minnesota; M.A., University of Hawaii and East-West Center; Ph.D., Cornell University.

GLENN B. CHAMBERLAIN, Professor Emeritus.

H. SCOTT CHAMBERLIN, Associate Professor. B.A., San Francisco State University; M.F.A., New York State College of Ceramics at Alfred University.

ALBERT CHONG, Associate Professor. B.F.A., School of Visual Arts, New York; M.F.A., University of California, San Diego.
CLINTON C. CLINE, Professor. B.A., M.A., California State University, Long Beach.

BARBARA COLEMAN, Instructor. B.A., University of Michigan; M.A., University of Colorado, Boulder; Ph.D., University of Minnesota, Minneapolis.

DIANE A. CONLIN, Assistant Professor (joint with the Department of Classics). A.B., State University of New York; A.M., Ph.D., University of Michigan.

ROBERT E. DAY, Professor Emeritus.

KIM DICKERY, Assistant Professor. B.F.A., Rhode Island School of Design; M.F.A., New York State College of Ceramics at Alfred University.

ERIKA L. DOSS, Professor. B.A., Ripon College; M.A., Ph.D., University of Minnesota.

LUIS E. EADES, Professor Emeritus.

ROBERT R. ECKER, Professor. B.S., Slippery Rock State College; M.F.A., Pennsylvania State University.

CLAIRE J. FARAGO, Professor. B.A., Wellesley College; M.A., Brown University; Ph.D., University of Virginia.

CHARLES S. FORSMA, Professor. B.A., M.F.A., University of California, Davis.

SUZANNE R. FOSTER, Professor Emerita.

FRANCIS J. GECK, Professor Emeritus.

LINDA S. HERRITT, Professor. B.F.A., Ohio State University; M.F.A., University of Montana.

JOHN D. HOAG, Professor Emeritus.

KEN IWAMASA, Associate Professor. B.A., M.A., California State University, Long Beach.

JAMES A. JOHNSON, Professor. B.F.A., Massachusetts College of Art; M.F.A., Washington State University.

JERRY W. KUNKEL, Professor. B.S., Ashland College; M.F.A., Southern Illinois University.

EUGENE E. MATTHEWS, Professor Emeritus.

KAY MILLER, Associate Professor. B.S., University of Houston; B.F.A., M.F.A., University of Texas.

VERNOR H. MINOR, Professor. B.A., Kent State University; M.A., Ph.D., University of Kansas.

THOMAS J. POTTER, Professor Emeritus.

CHARLES A. QUALLEY, Professor Emeritus.

JEANNE QUINN, Assistant Professor. B.A., Oberlin College; M.F.A., University of Washington.

CELESTE L. REHM, Associate Professor. B.A., Monmouth College; M.F.A., Pratt Institute.

GEORGE RIVERA, Associate Professor. B.A., M.A., University of Houston; Ph.D., State University of New York.

GARRISON ROOTS, Professor. B.F.A., Massachusetts College of Art; M.F.A., Washington University, St. Louis.

ANTONETTE ROSATO, Associate Professor. B.F.A., University of Cincinnati; M.F.A., Claremont Graduate School.

JOHN FRANKLIN SAMPSON, Professor Emeritus.

ALEX J. SWEETMAN, Associate Professor. B.A., New York University; M.F.A., State University of New York at Buffalo.

FREDERICK C. TRUCKSESS, Professor Emeritus.

LUIS VALDOVINO, Associate Professor. B.F.A., Ohio University; M.F.A., University of Illinois.

AMY L. VANDERSALL, Professor Emerita.

MELANIE WALKER, Associate Professor. B.A., San Francisco State University; M.F.A., Florida State University, Tallahassee.

JOHN B. WILSON, Professor Emeritus.

LYNN ROBERT WOLFE, Professor Emeritus.

ELIZABETH A. WOODMAN, Professor Emerita.

GEORGE F. WOODMAN, Professor Emeritus.

French and Italian

French

CHRISTOPHER BRAIDER, Department Chair; Associate Professor. B.A., Ph.D., Trinity College, Dublin.

JACQUES BARCHILON, Professor Emeritus.

PATRICIA BRAND, Senior Instructor. B.A., Bates College; M.A., Ph.D., University of Colorado.

ANDREW COWELL, Assistant Professor. B.A., Harvard University; M.A., Ph.D., University of California, Berkeley.

GINA FISCH-FREEDMAN, Assistant Professor. Licence ès Lettres, University of Neuchâtel; Ph.D., City University of New York.

JULIA B. FREY, Professor. B.A., Antioch College; M.A., University of Texas; M.Phil., Ph.D., Yale University.

FREDE JENSEN, Professor Emeritus.

SAMUEL JUNOD, Assistant Professor. Licence ès Lettres, Diplôme d’Études Supérieures, University of Geneva; Ph.D., Johns Hopkins University.

EDGAR N. MAYER, Professor Emeritus.

MILDRED P. MORTIMER, Professor. B.A., Brooklyn College; M.A., Harvard University; Ph.D., Columbia University.

WARRN F. MOTTE, JR., Professor. M. des L, Université de Bordeaux; B.A., M.A., Ph.D., University of Pennsylvania.

Italian

VALERIO FERME, Assistant Professor. B.A., Brown University; M.A., Indiana University; Ph.D., University of California, Berkeley.

GRAZIANA G. LAZZARINO, Professor. Laurea, University of Genoa, Italy.

SUZANNE MAGNANINI, Assistant Professor. B.A., Washington University; M.A., Ph.D., University of Chicago.

LOUIS TENENBAUM, Professor Emeritus.

Geography

GARY L. GAILE, Department Chair; Professor. B.A., M.A., C. Phil., Ph.D., University of California, Los Angeles.

ROGER G. BARRY, Director, World Data Center-A for Glaciology (Cires). Professor. B.A., University of Liverpool, England; M.Sc., McGill University, Canada; Ph.D., University of Southampton, England.

SUSAN W. BEATTY, Associate Professor. B.S., Emory University; Ph.D., Cornell University.

ANTHONY J. BEBBINGTON, Assistant Professor. B.A., Cambridge University; M.A., Ph.D., Clark University.

PETER BLANKEN, Assistant Professor (joint with Environmental Studies program). B.Sc., M.Sc., McMaster University; Ph.D., University of British Columbia.

BARBARA P. BUTTENFIELD, Associate Professor. B.A., Clark University; M.A., University of Kansas; Ph.D., University of Washington.

T. NELSON CAINE, Professor. B.A., M.A., University of Leeds, England; Ph.D., Australian National University.

THOMAS CHASE, Assistant Professor. B.A., M.S., Ph.D., Colorado State University.

ELIZABETH DUNN, Assistant Professor. B.A., University of Rochester; M.A., University of Chicago; Ph.D., Johns Hopkins University.

KENNETH A. ERICKSON, Professor Emeritus.

KENNETH F. FOOTE, Professor. B.A., University of Wisconsin; M.A., Ph.D., University of Chicago.

NICHOLAS HELBURN, Professor Emeritus.

A. DAVID HILL, Professor Emeritus.

JAMES O. HUFF, Professor. B.A., Dartmouth; M.A., Ph.D., Northwestern University.

TIMOTHY S. OAKES, Assistant Professor. B.A., Colby College; M.A., Ph.D., University of Washington.

JOHN V. O’LOUGHLIN, Professor. B.A., National University of Ireland; M.S., Ph.D., Pennsylvania State University.
JOHN PITLICK, Associate Professor. B.Sc., University of Washington; M.Sc., Ph.D., Colorado State University.

HORACE F. QUICK, Professor Emeritus.

WILLIAM E. RIEBSAME, Associate Professor. B.S., Florida State University; M.S., University of Utah; Ph.D., Clark University.

ANDREI ROGERS, Director, Population Program (IBS). Professor. B.Arch., University of California, Berkeley; Ph.D., University of North Carolina.

RACHEL SILVEY, Assistant Professor. B.A., University of California, Santa Cruz; M.A., Ph.D., University of Washington.

ALBERT W. SMITH, Professor Emeritus.

LYNN A. STAEHELI, Associate Professor. B.A., University of Washington; M.S., Pennsylvania State University; Ph.D., University of Washington.

KONRAD STEFFEN, Professor. M.A., Ph.D., Swiss Federal Institute of Technology (ETH), Zurich.

THOMAS T. VEBLEN, Professor. A.B., M.A., Ph.D., University of California, Berkeley.

JAMES L. WESCOAT, JR., Professor. B.L.A., Louisiana State University; M.A., Ph.D., University of Chicago.

GILBERT F. WHITE, Gustavson Distinguished Professor Emeritus; Director Emeritus, Institute of Behavioral Sciences.

MARK W. WILLIAMS, Associate Professor. B.A., Ph.D., University of California, Santa Barbara.

BRUCE F. CURTIS, Professor Emeritus.

JOHN DREXLER, Associate Professor Attendant Rank. B.S., Western Illinois University; M.S., Ph.D., Michigan Technological University.

DON L. EICHER, Professor Emeritus.

G. LANG FARMER, Professor. B.A., University of California, San Diego; Ph.D., University of California, Los Angeles.

RAYMOND C. FLETCHER, Research Professor. B.S., Massachusetts Institute of Technology; M.Sc., Ph.D., Brown University.

SHEMIN GE, Associate Professor. B.S., Wuhan University of Technology, China; M.A.Sc., The University of British Columbia, Canada; M.A., Ph.D., Johns Hopkins University.

ALEXANDER F. H. GOETZ, Director of CSES; Professor. B.S., M.S., Ph.D., California Institute of Technology.

BRUCE M. JAKOSKY, Professor. B.S., UCLA; M.S., Ph.D., California Institute of Technology.

CRAIG JONES, Associate Professor. B.S., California Institute of Technology; Ph.D., Massachusetts Institute of Technology.

CARL KISSLINGER, Professor Emeritus.

MARY J. KRAUS, Professor. B.S., Yale University; M.S., University of Wyoming; Ph.D., University of Colorado.

EDWIN E. LARSON, Professor Emeritus.

HENRIETTE LAUXTSEN, Instructor. B.A., M.A., Ph.D., University of Colorado.

ALAN P. LESTER, Instructor. B.S., University of Oregon; Ph.D., University of Colorado.

MARK F. MEIER, Professor Emeritus.

GIFFORD H. MILLER, Professor. B.A., Ph.D., University of Colorado.

STEPHAN J. MOJZIS, Assistant Professor. B.A., M.A., Boston University; Ph.D., Scripps Institute of Oceanography.

PETER MOLNAR, Professor. B.A., Oberlin College; Ph.D., Columbia University.

KARL J. MUELLER, Assistant Professor. B.S., M.S., San Diego State University; Ph.D., University of Wyoming.

JAMES L. MUNOZ, Professor Emeritus.

KATHRYN L. NAGY, Associate Professor. B.S., University of Delaware; M.S., Brown University; Ph.D., Texas A&M.

PETER ROBINSON, Curator of Geology, University Museum; Professor. B.S., M.S., Ph.D., Yale University.

DON RUNNELL, Professor Emeritus.

ANNE SHEEHAL, Associate Professor. B.S., University of Kansas; Ph.D., Massachusetts Institute of Technology.

DENA M. SMITH, Assistant Professor. B.A., University of California at Santa Cruz; Ph.D., University of Arizona.

JOSEPH R. SMYTH, Professor. B.S., Virginia Polytechnic Institute; M.S., Ph.D., University of Chicago.

HARTMUT A. W. SPETZLER, Professor. B.S., M.S., Trinity University; M.S., Ph.D., California Institute of Technology.

JAMES P. SYVITSKI, Director of INSTAAR; Professor. B.Sc., H.B.Sc., Lakehead University; Ph.D., University of British Columbia.

THEODORE R. WALKER, Professor Emeritus.

PAUL WEIMER, Director of EMARC; Bruce D. Benson Associate Professor of Petroleum Geology. B.A., Pomona College; M.S., University of Colorado at Boulder; Ph.D., University of Texas at Austin.

JAMES W. C. WHITE, Director, Environmental Studies Program; Associate Professor. B.S., Florida State University; M.A., M. Phil., Ph.D., Columbia University.

Germanic and Slavic Languages and Literatures

Germanic

THOMAS A. HOLLWECK, Department Chair; Associate Professor. M.A. equiv., University of Munich; Ph.D., Emory University.

RICHARD BLOCK, Assistant Professor. B.A., Duke University; M.A., University of Washington; Ph.D., Northwestern University.

WESLEY V. BLOMSTER, Professor Emeritus.

ADRIAN DEL CARO, Professor. B.A., University of Minnesota, Duluth; M.A., Ph.D., University of Minnesota, Minneapolis.

KANDACE EINBECK, Assistant Professor. B.A., Swarthmore College; M.A., University of New Hampshire; Ph.D., University of Connecticut.

ROBERT FIRESTONE, Assistant Professor Emeritus.

INGER-JOHANNE GERWIG, Senior Instructor Emerita.

CLIFTON D. HALL, Associate Professor Emeritus.

BRIAN A. LEWIS, Assistant Professor. B.A., University of London; Ph.D., University of Wisconsin.

V. SHERRY MAYBERRY, Instructor. B.A., M.A., University of Colorado.

PATRICIA A. SCHINDLER, Instructor. B.A., University of Michigan; M.A., University of Colorado.

ANN C. SCHMIESING, Assistant Professor. B.A., Willamette University; M.A., University of Washington; Ph.D., Cambridge University.

F. MICHELNE VAN RIEMSDIJK, Instructor. B.A., University of Bergen, Norway; M.A., University of Minnesota.

JANET WARD, Associate Professor. B.A., University of London; M.A., University of Pennsylvania; Ph.D., University of Virginia.

Slavic

ELENA Y. KOSTOGLODOVA, Instructor. B.A., Uppsala College; M.A., University of Colorado.

C. NICHOLAS LEE, Professor Emeritus.

MARK N. LEIDERSMAN, Assistant Professor. B.A., M.A., Ph.D., Ural State University.

LAURA J. OLSON, Assistant Professor. B.A., State University of New York; M.A., Indiana University; Ph.D., Yale University.

D. L. PLANK, Professor Emeritus.

ARTEMII ROMANOV, Assistant Professor. B.A., M.A., Ph.D., Leningrad University.

RIMGAILA SALYS, Professor. B.A., University of Pennsylvania; M.A., Indiana University; Ph.D., Georgetown University.

EARL D. SAMSPON, Associate Professor Emeritus.

History

THOMAS W. ZEILER, Department Chair; Associate Professor. B.A., Emory University; M.A., Ph.D., University of Massachusetts.

FRED W. ANDERSON, Associate Professor. B.A., Colorado State University; A.M., Ph.D., Harvard University.

VIRGINIA D. ANDERSON, Associate Professor. B.A., University of Connecticut; M.A., University of East Anglia; A.M., Ph.D., Harvard University.

VINCENT W. BEACH, Professor Emeritus.

LEE CHAMBERS-SCHILLER, Associate Professor. B.A., Wellesley College; M.A., Ph.D., University of Michigan.

CARL C. CHRISTENSEN, Professor Emeritus.

VINE DELORIA, JR., Professor Emeritus.

ABIGAIL DYER, Assistant Professor. A.B., Vassar College; M.A., M.Phil., Ph.D., Columbia University.

BARBARA A. ENGEL, Professor. B.A., City College of New York; M.A., Harvard University; Ph.D., Columbia University.

STEVEN A. EPSTEIN, Professor. B.A., Swarthmore College; B.A., M.A., Cambridge University; A.M., Ph.D., Harvard University.

ROBERT J. FERRY, Associate Professor. B.A., University of Colorado; M.A., Ph.D., University of Minnesota.

STEPHEN FISCHER-GALATI, Distinguished Professor Emeritus.

JULIA GREENE, Associate Professor. B.A., University of Michigan; M.A., Ph.D., Yale University.

DAVID L. GROSS, Professor. B.A., St. Ambrose College; M.A., Ph.D., University of Wisconsin.

CAMILLE GUERIN-GONZALES, Associate Professor. A.B., M.A., Ph.D., University of California, Riverside.

MARTHA HANNA, Associate Professor. B.A., University of Wisconsin; M.A., University of Toronto; Ph.D., Georgetown University.

BOYD H. HILL, JR., Professor Emeritus.

ROBERT HOHLFELDER, Professor. A.B., Bowdoin College; M.A., Ph.D., Indiana University.

JAMES P. JANKOWSKI, Professor. B.A., University of Buffalo; M.A., Ph.D., University of Michigan.

SUSAN L. JOHNSON, Assistant Professor. B.A., Carthage College; M.A., Arizona State University; Ph.D., Yale University.

SUSAN D. JONES, Assistant Professor. A.B., Harvard University; D.V.M., University of Illinois; M.A., Ph.D., University of Pennsylvania.

PADRAIC J. KENNEY, Associate Professor. A.B., Harvard College; M.A., University of Michigan; Ph.D., University of Toronto; Ph.D., University of Michigan.

SUSAN K. KENT, Professor. B.S., Suffolk University; M.A., Ph.D., Brandeis University.

JOYCE CHAPMAN LEBRA, Professor Emerita.

PATRICIA NELSON LIMERICK, Professor. B.A., University of California, Santa Cruz; M.A., M.Phil., Ph.D., Yale University.

ERIC T.L. LOVE, Assistant Professor. B.A., Brown University; M.A., Ph.D., Princeton University.

GLORIA L. MAIN, Associate Professor. B.A., San Jose State University; M.A., State University of New York at Stony Brook; Ph.D., Columbia University.

JACKSON T. MAIN, Professor Adjunct. B.A., M.A., Ph.D., University of Wisconsin.

RALPH MANN, Associate Professor. B.A., Duke University; M.A., Ph.D., Stanford University.

MARJORIE K. McINTOSH, Distinguished Professor. A.B., Radcliffe College; M.A., Ph.D., Harvard University.

CHIDIEBERE A. NWABAANI, Assistant Professor, B.A., University of Ilorin; M.A., University of Ibadan; Ph.D., University of Toronto.

GEORGE H. PHILLIPS, Professor Emeritus.

MARK A. PITTINGER, Associate Professor. B.A., Denison University; M.A., Ph.D., University of Michigan.

ROBERT A. POIS, Professor. B.A., Grinnell College; M.A., Ph.D., University of Wisconsin.

EDWARD G. RUESTOW, Associate Professor Emeritus.

HOWARD LEE SCAMEHORN, Professor Emeritus.

ROBERT D. SCHULZINGER, Professor. B.A., Columbia University; M.Phil., Ph.D., Yale University.

LAWRENCE F. SILVERMAN, Professor Emeritus.

DAVID N. SPIRES, Instructor. B.A., University of Wisconsin-Madison; M.A., Ph.D., University of California, Berkeley.

MARCA A. YONEMOTO, Assistant Professor. B.A., M.A., Ph.D., University of California, Berkeley.

Honors

DENNIS VAN GERVEN, Director; Professor. B.A., University of Utah; M.A., Ph.D., University of Massachusetts.

E. CHRISTIAN KOPPF, Associate Professor. B.A., Haverford College; Ph.D., University of North Carolina.

LAURI H. MCNOWN, Senior Instructor. B.A., M.A., Ph.D., University of Colorado.

PAUL STROM, Kittredge Honors Program Director; Senior Instructor. B.A., University of Colorado; M.Div., Austin Presbyterian Theological Seminary; Ph.D., University of Denver.

CLAUDIA VAN GERVEN, Senior Instructor; B.A., University of Massachusetts, Amherst; M.A., University of Kentucky; Ph.D., University of Colorado.

Humanities

See Comparative Literature and Humanities.

International Affairs

ROBERT D. SCHULZINGER, Program Director; Professor of History. B.A., Columbia University; M.Phil., Ph.D., Yale University.

ELIZABETH DUNN, Assistant Professor (joint with the Department of Geography). B.A., University of Rochester; M.A., University of Chicago; Ph.D., Johns Hopkins University.

VICTORIA A. HUNTER, Senior Instructor. B.A., Mount Holyoke College; Ph.D., University of Colorado at Boulder.
ECKHARD JANEB, Assistant Professor (joint
with the Department of Economics). B.A., University
of Kiel; Ph.D., University of Bonn.

ROLAND C. PARIS, Assistant Professor (joint
with the Department of Political Science). B.A.,
University of Toronto; Diploma, University of
Paris, Sorbonne; M. Phil., Cambridge University;
Ph.D., Yale University.

International and National Voluntary Service Training
(INVST)

JAMES V. DOWNTON, JR., Co-Director;
Professor of Sociology. B.A., California State
University, Sacramento; Ph.D., University of
California, Berkeley.

RICHARD KRAFT, Co-Director; Professor of
Education. B.A., Wheaton College; M.Ed.,
Northern Illinois University; Ph.D., Michigan
State University.

SEANA LOWE, Program Director. B.A., Deni-
son University.

GAIA MIKA, Associate Director; Instructor
and University Psychologist. B.A., University of
California, Berkeley; M.A., Ph.D., University of
Colorado at Boulder.

Kinesiology and Applied Physiology

RUSSELL L. MOORE, Department Chair; Pro-
fessor. B.S., University of California, Davis; M.S.,
Ph.D., Washington State University.

FRANCES R. BASCOM, Professor Emerita.

RALPH E. BIBLER, Professor Emeritus.

FREDERICK W. BIERHAUS, Professor Emeritus.

MARIE E. BOYKO, Instructor. B.A., Cornell
University; M.A., University of Colorado.

WILLIAM C. BYRNES, Graduate Coordina-
tor; Associate Professor. B.S., Manhattan Col-
lege; M.A., Appalachian State University; Ph.D.,
University of Wisconsin.

ARThUR L. DICKINSON, Professor Emeritus.

CORNELLIA EDMONDS, Professor Emerita.

ROGER M. ENOKA, Professor. Dip. P.E.,
University of Otago, New Zealand; M.S., Ph.D.,
University of Washington.

MONIKA R. FLESHNER, Assistant Professor.
B.S., Iowa State University; M.A., Ph.D., University
of Colorado at Boulder.

JOHN STUART FOWLER, Associate
Professor Emeritus.

LAURENCE S. GREENE, Senior Instructor.
B.A., M.A., Florida State University; Ph.D.,
University of South Carolina.

WILLIAM C. LAM, Professor Emeritus.

ROBERT S. MAZZEO, Associate Professor.
B.S., North Carolina State University; M.A.,
Wake Forest University; Ph.D., University of
California, Berkeley.

DALE PAUL MOOD, Professor. B.S., M.A.,
Ph.D., University of Iowa.

FRANK C. POTTS, Professor Emeritus.

FRANK BERNARD PRENTUP, Professor Emeritus.

WALDEAN ROBICHAUX, Professor Emerita.

DOUGLAS R. SEALS, Professor. B.S., William
Jewell College; M.S., Ph.D., University of Wiscon-
sin, Madison.

DAVID E. SHERWOOD, Undergraduate
Coordinator; Associate Professor. A.B., M.A.,
San Diego State University; Ph.D., University of
Southern California.

Latin American Studies

ROBERT J. FERRY, Program Director; Associate
Professor of History. B.A., University of Colorado;
M.A., Ph.D., University of Minnesota.

Linguistics

BARBARA A. FOX, Department Chair; Profes-
sor. B.A., M.A., Ph.D., University of California,
Los Angeles.

ALAN BELL, Associate Professor. S.B., Mas-
sachusetts Institute of Technology; M.S., Ph.D.,
Stanford University.

ZYGMUNT FraJZyNgIER, Professor. M.A.,
Ph.D., University of Warsaw; M.A., University
of Ghana.

JULE GOMEz de GARCIA, Instructor. B.A.,
Pomona College; M.A., University of Colorado,
Denver; Ph.D., University of Colorado, Boulder.

DANIEL JURAFSKY, Assistant Professor. B.A.,
Ph.D., University of California, Berkeley.

LISE MENN, Professor. B.A., Swarthmore Col-
lege; M.A., Brandeis University; M.A., Ph.D.,
University of Illinois.

LAURA A. MICHAELIS, Assistant Professor.
B.A., M.A., Ph.D., University of California,
Berkeley.

DAVID S. ROOD, Professor. A.B., Cornell
University; M.A., Ph.D., University of Califor-
nia, Berkeley.

KUMIKO TAKAHARA, Associate Professor Emerita.

ALLAN R. TAYLOR, Professor Emeritus.

Mathematics

PETER D. ELLIOTT, Department Chair;
Professor. B.S., University of Bristol; Ph.D.,
University of Cambridge.

LAWRENCE W. BAGGETT, Professor. B.S.,
Davidson College; M.S., Ph.D., University of
Washington.

WILLIAM E. BRIGGS, Professor Emeritus.

GORDON E. BROWN, Associate Professor.
B.S., California Institute of Technology; Ph.D.,
Cornell University.

JEANNE CLELLAND, Assistant Professor.
B.S., M.A., Ph.D., Duke University.

RICHARD CLELLAND, Assistant Professor.
B.A., University of Pennsylvania; M.A., Ph.D.,
Duke University.

GEORGE F. CLEMENTS, Professor Emeritus.

ROBERT W. ELLINGWOOD, Professor Emeritus.

HOMER G. ELLIS, Associate Professor. B.A.,
M.A., Ph.D., University of Texas.

CARLA FARDI, Associate Professor. Laurea,
University of Florence; Ph.D., University of
Maryland.

JEAN GILLETTE FERRIS, Professor Emerita.

JEFFREY S. FOX, Professor. B.A., Mas-
sachusetts Institute of Technology; Ph.D., Un-
iversity of California, Berkeley.

WATSON B. FULKS, Professor Emeritus.

ROBERT K. GOODRICH, Professor. B.A.,
Ph.D., University of Utah.

DAVID R. GRANT, Professor. A.B., Princeton
University; Ph.D., Massachusetts Institute of
Technology.

KARL E. GUSTAFSON, Professor. B.S.,
Eng.), B.S., Bus.), University of Colorado;
Ph.D., University of Maryland.

HENRY G. HERMES, Professor Emeritus.

JOHN H. HODGES, Professor Emeritus.

RICHARD A. HOLLEY, Professor. B.S., M.A.,
University of New Mexico; Ph.D., Cornell
University.

WILLIAM B. JONES, Professor Emeritus.

KEITH A. KEARNES, Assistant Professor.
B.S., M.S., University of California, Riverside;
Ph.D., University of California, Berkeley.

ROY BEN KRIEGH, Professor Emeritus.

SERGEI KUZNETSOV, Assistant Professor.
Dipl., Moscow St. University; Ph.D., Institute of
Mathematics of Ukrainian Academy of Sciences,
Kiev, Mathematics and Physics; Doctor of Physics
and Mathematics, Vilnius St. University, Lithua-
nia.
GUOLIANG YU, Associate Professor. B.S., Zhejiang, China; M.S., Sichuan, China; Ph.D., State University of New York, Stony Brook.

Medieval and Early Modern Studies

KATHERINE EGGERT, Program Co-Director; Associate Professor of English, B.A., Rice University; M.A., Ph.D., University of California, Berkeley.

CLAIRE J. FARAGO, Program Co-Director; Professor of Fine Arts, B.A., Wellesley College; M.A., Brown University; Ph.D., University of Virginia.

Molecular, Cellular, and Developmental Biology

LESLEY A. LEINWAND, Department Chair; Professor, B.S., Cornell University; Ph.D., Yale University.

LOIS A. ABBOTT, Senior Instructor. B.A., Cornell; Ph.D., University of Colorado.

KAREN L. BEVER, Assistant Dean, College of Arts and Sciences; Assistant Professor Attendant Rank. B.S., Ph.D., University of Southern California.

MARY A. BONNEVILLE, Professor Emerita.

ROBERT E. BOSWELL, Associate Professor. B.A., Marietta College; Ph.D., University of Colorado.

THOMAS R. CECH, Distinguished Professor (joint appointment with Chemistry and Biochemistry). B.A., Grinnell College; Ph.D., University of California, Berkeley.

SHELLEY D. COPLEY, Associate Professor. A.B., Radcliffe College; Ph.D., Harvard University.

KATHLEEN J. DANNA, Associate Professor. B.A., New Mexico Institute of Mining and Technology; Ph.D., Johns Hopkins University.

MARK W. DUBIN, Professor. B.A., Amherst College; Ph.D., Johns Hopkins University.

MIRCEA FOTINO, Professor Attendant Rank. Licence-des-Sciences, University of Paris; Ph.D., University of California, Berkeley.

NANCY A. GUILD, Associate Professor. B.A., Colorado College; Ph.D., University of Colorado.

RICHARD G. HAM, Professor. B.S., California Institute of Technology; Ph.D., University of Texas.

MIN HAN, Associate Professor. B.S., Peking University; Ph.D., UCLA.

KEVIN R. JONES, Assistant Professor. B.S., University of Illinois, Urbana; Ph.D., University of California, Berkeley.

TAMIKO KANO-SUEoka, Professor Attendant Rank. B.A., Kyoto University; M.A., Radcliffe College; Ph.D., University of Illinois.

MICHAEL W. KLYMKOWSKY, Professor. B.S., Pennsylvania State University; Ph.D., California Institute of Technology.

JENNIFER K. KNIGHT, Instructor. B.A., Cornell University; Ph.D., University of Michigan.

KENNETH S. KRAUTER, Professor. B.S., State University of New York, Stony Brook; Ph.D., Albert Einstein College of Medicine.

PETER L. KUEMPEL, Professor. B.S., Massachusetts Institute of Technology; Ph.D., Princeton University.

JACQUELINE E. LEE, Assistant Professor. B.S., University of Wisconsin; Ph.D., Columbia University.

JENNIFER M. MARTIN, Assistant Research Professor. B.A., University of California, Davis; Ph.D., University of Washington.

DAVID N. MASTRONARDE, Associate Professor Attendant Rank. B.A., Amherst College; Ph.D., University of Colorado.

EDWIN H. McConkey, Professor Emeritus.

J. RICHARD McINTOSH, Distinguished Professor. A.B., Harvard College; Ph.D., Harvard University.

GREG ODORIZZI, Assistant Professor. B.S., Texas Tech University; Ph.D., University of California, San Diego.

BRADLEY B. OLWIN, Associate Professor. B.A., University of California, San Diego; Ph.D., University of Washington.

NORMAN R. PACE, Professor. B.A., Indiana University; Ph.D., University of Illinois.

BRIAN PARR, Assistant Professor. B.A., Haverford College; M.A., Cornell; M.S., University of Virginia; Ph.D., Cornell University.

ROBERT O. POYTON, Professor. A.B., Brown University; Ph.D., University of California, Berkeley.

DAVID M. PRESCOTT, Distinguished Professor. B.A., Wesleyan University; Ph.D., University of California, Berkeley.

MEREDITH RUNNER, Professor Emeritus.

RAVINDRA SINGH, Assistant Professor. B.Sc. H.A.U., Hisar, India; Ph.D., Baylor College of Medicine.

L. ANDREW STAHELIN, Professor. Dipl. Narw., Ph.D., Swiss Federal Institute of Technology.

GRETCHEN H. STEIN, Associate Professor Attendant Rank. A.B., Brown University; Ph.D., Stanford University.

TIN TIN SU, Assistant Professor. B.A., Mount Holyoke College; Ph.D., Carnegie Mellon University.
NOBORU SUEOKA, Professor Emeritus.
JONATHAN VAN BLERKOM, Research Professor. B.S., City College of New York; Ph.D., University of Colorado.
MARK WINEY, Associate Professor. B.S., Syracuse University; Ph.D., University of Wisconsin, Madison.
WILLIAM B. WOOD, III, Professor. A.B., Harvard College; Ph.D., Stanford University.
DING XUE, Assistant Professor. B.S. University of Science and Technology of China; Ph.D., Columbia University.
MICHAEL J. YARUS, Professor. B.A., Johns Hopkins University; Ph.D., California Institute of Technology.

Museum and Field Studies
LINDA S. CORDELL, Director of the University Museum; Professor of Anthropology. B.A., George Washington University; M.A., University of Oregon; Ph.D., University of California, Santa Barbara.
M. DEANE BOWERS, Associate Professor of Natural History; Curator of Entomology. B.A., Smith College; Ph.D., University of Massachusetts.
CHARLES COUNTER, Senior Instructor Adjunct in Museology and Exhibits Coordinator. M.A., Otis/Parsons School of Design.
ALAN deQUEIROZ, Assistant Professor of Biology; Curator of Vertebrates. A.B., University of California, Berkeley; M.S., Ph.D., Cornell University.
ROBERT GURALNIK, Curator of Invertebrate Zoology. B.A., Ph.D., University of California, Berkeley.
JAMES S. H. HAKALA, Senior Instructor and Education Coordinator. B.S., Western Michigan University; M.A.T., George Washington University.
JUDITH A. HARRIS, Associate Professor of Natural History. B.A., University of California, Berkeley; Ph.D., Cambridge University.
ROSANNE HUMPHREY, Instructor in Museology and Assistant Curator of Zoology. B.A., University of New Mexico.
STEVE LEKSON, Assistant Professor of Anthropology; Curator of Museum and Field Studies. B.A., Case Western Reserve; M.A., Eastern New Mexico University; Ph.D., University of New Mexico.
NANCY W. MARKHAM, Visiting Instructor. B.A., M.A., University of Colorado at Denver; Ph.D., University of Colorado at Boulder.
TOM A. RANKER, Associate Professor of Natural History; Curator of Botany. B.A., California State University, Sacramento; M.A., Humboldt State University; Ph.D., University of Kansas.
PETER ROBINSON, Professor of Natural History; Curator of Geology. B.S., M.S., Ph.D., Yale University.
HUGO G. RODECK, Professor of Natural History Emeritus.
JOHN R. ROHNER, Professor of Natural History Emeritus.
LEONARD G. BOONIN, Professor Emeritus.
JUDITH A. HARRIS, Associate Professor. B.A., University of Colorado, Santa Cruz; Ph.D., University of Arizona.
WILLIAM A. WEBER, Professor of Natural History Emeritus.
SHI-KUEI WU, Professor of Natural History Emeritus.

Philosophy
GRAHAM JAMES ODDIE, Department Chair; Professor. B.A., University of Otago, New Zealand; Ph.D., University of London.
Hazel E. Barnes, Robert B. Hawkins Distinguished Professor of Humanities Emerita.
George Bealer, Professor. Ph.D., University of California, Berkeley.
David Boonin, Assistant Professor. B.A., Yale University; Ph.D., University of Pittsburgh.
Leonard G. Boonin, Professor Emeritus.
Luc Bovens, Associate Professor. L.L.S., Katholieke Universiteit Leuven; M.A., Ph.D., University of Minnesota.
John Robb Carnes, Professor Emeritus.
Gabriela Carone, Assistant Professor. Licenciate in Phil., University of Buenos Aires, Argentina; Ph.D., King’s College, University of London.
Carol E. Cleland, Associate Professor. B.A., University of California, Santa Barbara; Ph.D., Brown University.
Lawson Crowe, Professor Emeritus.
John Andrew Fisher, Professor. B.S., Ph.D., University of Minnesota.
James Paterson Frank, Professor Emeritus.
Robert Hanna, Associate Professor. B.A., Victoria College, University of Toronto; M. Phil., Ph.D. Yale University.
David Hawkins, Distinguished Professor Emeritus.
Michael Huemer, Assistant Professor. B.A., University of California, Berkeley; Ph.D., Rutgers University.
Alison M. Jaggar, Professor. B.A., University of London; M.Litt., University of Edinburgh; Ph.D., State University of New York at Buffalo.
Phyllis Kenevan, Professor Emerita.
James P. Kimble, Jr., Professor Emeritus.
Stephen Leeds, Professor. A.B., Harvard College; Ph.D., Massachusetts Institute of Technology.
Edward J. Machle, Professor Emeritus.
Diane Mayer, Senior Instructor. B.A., Smith College; Ph.D., University of Colorado at Boulder.
Ed L. Miller, Professor. B.A., M.A., Ph.D., University of Southern California; Dr. Theol., University of Basel.
Paul John William Miller, Professor Emeritus.
Claudia Mills, Associate Professor. B.A., Wellesley College; Ph.D., Princeton University.
Wesley Morriston, Associate Professor. B.A., Queen’s University of Belfast; Ph.D., Northwestern University.
John Ogden Nelson, Professor Emeritus.
James W. Nickel, Professor. B.A., Tabor College; Ph.D., University of Kansas.
Robert Pasnau, Assistant Professor. B.A., University of Pennsylvania; Ph.D., Cornell University.
Robert Rogers, Professor Emeritus.
William Sacksteder, Professor Emeritus.
Christopher J. Shields, Professor. B.A., M.A., Bowing Green State University; Ph.D., Cornell University.
Howard E. Smolker, Professor Emeritus.
Daniel Stoljar, Assistant Professor. B.A., University of Sydney, Australia; Ph.D., Massachusetts Institute of Technology.
Michael Tooley, Professor. B.A., University of Toronto; Ph.D., Princeton University.
Adam Vinuela, Assistant Professor. B.A., Hunter College; Ph.D., City University of New York.
Wayne Waxman, Assistant Professor. B.A., University of California, Los Angeles; M.A., Ph.D., University of California, Santa Barbara.
Forrest Williams, Professor Emeritus.

Physics
John P. Cumalat, Department Chair; Professor. B.A., M.A., Ph.D., University of California, Santa Barbara.
Dana Z. Anderson, Professor. B.S.E.E., Cornell University; Ph.D., University of Arizona.
ANTON ANDREEV, Assistant Professor. Ms.Sc., Moscow Institute of Physics' Technology; M.Sc., Johns Hopkins University; Ph.D., Massachusetts Institute of Technology.

NEIL ASHBY, Professor. B.A., University of Colorado; M.A., Ph.D., Harvard University.

DAVOR BALZAR, Lecturer. B.Sc., M.Sc., Ph.D., University of Zagreb, Croatia.

ANTHONY R. BARKER, Associate Professor. A.B. and A.M., Harvard; Ph.D., University of California, Santa Barbara.

ALBERT ALLEN BARTLETT, Professor Emeritus.

DAVID BARTLETT, Professor. A.B., Harvard University; A.M., Ph.D., Columbia University.

PAUL BEALE, Professor. B.S., University of North Carolina; Ph.D., Cornell University.

PETER BENDER, Professor Adjunct. B.S., Rutgers University; M.A., Ph.D., Princeton University.

JOHN L. BOHN, Assistant Research Professor. B.S., Ph.D., University of Chicago.

JEFFREY T. BRACK, Lecturer. B.S., Western Washington University; M.S., Ph.D., University of Colorado at Boulder.

WESLEY E. BRITTIN, Professor Emeritus.

JOHN R. CARY, Professor. B.A., University of California, Irvine; M.A., Ph.D., University of California, Berkeley.

DAVID H. CHRISTENSEN, Lecturer. B.Sc. and M.S., Florida State University; Ph.D., University of Colorado at Boulder.

ALAN E. CLARK, Lecturer. B.S., M.S., University of Wisconsin; Ph.D., University of Michigan.

NOEL A. CLARK, Professor. B.S., M.S., John Carroll University; Ph.D., Massachusetts Institute of Technology.

TRACY S. CLEMENT, Lecturer. B.S., M.S., Ph.D., Rice University.

MARK W. COFFEY, Lecturer. B.S., University of Iowa; Ph.D., Courant Institute of Mathematical Sciences and Iowa State University.

JOHN COOPER, Professor Emeritus.

ERIC A. CORNELL, Professor Adjunct. B.Sc., Stanford; Ph.D., MIT.

DAVID H. COWARD, Lecturer. B.S., Cornell University; M.S., Ph.D., Stanford University.

STEVEN T. CUNDIFF, Assistant Professor Adjunct. B.A., Rutgers University; M.S., Ph.D., University of Michigan.

SENARATH P. DE ALWIS, Associate Professor. B.Sc., University of London; Ph.D., University of Cambridge.

THOMAS A. DEGRAND, Associate Chair, Undergraduate Study; Professor. B.S., University of Tennessee; Ph.D., Massachusetts Institute of Technology.

DANIEL DESSAU, Assistant Professor. B.S., Rice University; Ph.D., Stanford University.

KENNETH DOUGLAS, Lecturer. B.A., M.S., University of Chicago; Ph.D., University of Colorado.

JOSEPH DREITLEIN, Professor Emeritus.

MICHAEL DUBSON, Senior Instructor. B.S., University of Illinois, Urbana; Ph.D., Cornell.

GORDON DUNN, Professor Adjunct. B.S., Ph.D., University of Washington.

ERIC ROBERT ENGDALH, Lecturer. B.S., Rensselaer Polytechnic Institute; Ph.D., Saint Louis University.

KENNETH M. EVenson, Lecturer. B.S., Montana State University; M.S., Ph.D., Oregon State University.

JAMES FALLER, Professor Adjunct. A.B., Indiana University; M.A., Ph.D., Princeton University.

WILLIAM T. FORD, Professor. B.A., Carleton College; Ph.D., Princeton University.

ALLAN D. FRANKLIN, Professor. A.B., Columbia College; Ph.D., Cornell University.

DAVID C. FRITTS, Lecturer. B.A., Carleton College; M.S., Ph.D., University of Illinois.

ALAN C. GALLAGHER, Lecturer. B.S., Purdue University; Ph.D., Columbia University.

ROY HENRY GARSTANG, Professor Emeritus.

SYDNEY GELTMAN, Professor Adjunct. B.S., M.S., Ph.D., Yale University.

IVAN C. GETTING, Lecturer. B.A., Harvard; M.S., University of California, Los Angeles.

SARAH L. GILBERT, Lecturer. B.S., University of Hawaii; Ph.D., University of Michigan.

DAVID R. GORDON, Professor. B.S., University of California at Berkeley.

JOSEPH J. GORDON, Professor Emeritus.

MATTHEW A. GLASER, Assistant Professor. B.S., University of Nebraska; Ph.D., University of Colorado at Boulder.

RONALD R. GOLDEN, Lecturer. B.A., University of Chicago; Graduate Student.

BRETT R. GOLDMAN, Professor. A.B., Princeton University; Ph.D., Harvard University.

CHRIS H. GREENE, Professor. B.S., University of Nebraska; M.S., Ph.D., University of Chicago.

JOHN L. HALL, Lecturer. B.S., M.S., Ph.D., Carnegie Institute of Technology.

ANNA HASENFRATZ, Professor. M.S., Ph.D., L. Eotvos University, Budapest.

ALLEN M. HERMANN, Professor. B.S., Loyola University; M.S., Notre Dame University; Ph.D., Texas A & M.

MURRAY J. HOLAND, Assistant Professor. B.Sc., M.Sc., Auckland University; Ph.D., Oxford University.

LEO HOLLBERG, Lecturer. M.S., Ph.D., Lorand Eotvos University, Budapest.

MIHALY HORDANYI, Associate Professor. M.S., Ph.D., Lorand Eotvos University, Budapest.

CARL IDDINGS, Professor. A.B., Harvard College; Ph.D., California Institute of Technology.

DEBORAH S. JIN, Assistant Professor Adjunct. A.B., Princeton University; Ph.D., University of Chicago.

HENRY KAPTEYN, Professor. B.S., Harvey Mudd; M.A., Princeton University; Ph.D., University of California at Berkeley.

EDWARD R. KINNEY, Associate Professor. S.B., Ph.D., Massachusetts Institute of Technology.

JACK J. KRAUSHAR, Professor Emeritus.

PETER DALE KUNZ, Professor Emeritus.

STEPHEN R. LEONE, Lecturer. B.A., Northwestern University; Ph.D., University of California, Berkeley.

ANATOLI LEVCHIN, Lecturer. B.A., M.S., Moscow University; Ph.D., Institute of Physics of the Earth, Academy of Science USSR (IPE); D.Sc., IPE, Moscow.

JUDAH LEVINE, Professor Adjunct. A.B., Yeshiva College; M.S., Ph.D., New York University.

DAVID A. LIND, Professor Emeritus.

JOSEPH E. MACLENNAN, Assistant Professor. B.S., Rhodes University; M.S., Ph.D., University of Colorado at Boulder.

K.T. MAHANTHAPPA, Professor. B.Sc., Central College at Bangalore; M.S., Delhi University; Ph.D., Harvard University.

STANLEY C. MILLER, JR., Professor Emeritus.

MASATAKA MIZUSHIMA, Professor Emeritus.

RICHARD C. MOCKLER, Professor Emeritus.

CHRISTOPHER R. MONROE, Lecturer. S.B., MIT; Ph.D., University of Colorado at Boulder.

MARGARET MURNANE, Professor. B.S., M.S., University College, Cork, Ireland; Ph.D., University of California at Berkeley.

URIEL NAUENBERG, Professor. B.S., Columbia University.

RONALD H. ONO, Lecturer. B.Sc., University of Hawaii; M.A., Ph.D., State University of New York at Stony Brook.
WILLIAM J. O' Sullivan, Professor Emeritus.
SCOTT E. PARKER, Assistant Professor. B.S., University of Wisconsin, Madison; Ph.D., University of California, Berkeley.
J O H N D. P E R K I N S, Lecturer. A.B., Harvard University; Ph.D., Massachusetts Institute of Technology.
R. JEROME PETERSON, Assistant Vice Chancellor for Research; Professor. B.S., Ph.D., University of Washington.
PAUL E. PHILLIPSON, Professor Emeritus.
STEVEN J. POLLOCK, Professor Emeritus.
J O H N C. PRICE, Associate Professor. B.S., Yale University; Ph.D., Stanford University.
LEO RADZHOVSKY, Associate Professor. B.S., M.S., Rensselaer Polytechnic Institute; M.A., Ph.D., Harvard.
JAMES C. RAINWATER, Lecturer. B.A., Ph.D., University of Colorado.
PATRICIA RANKIN, Associate Professor. B.Sc., M.B., University of California, San Diego.
WILLIAM A. RENSE, Professor Emeritus.
BRIAN W. RIDLEY, Professor Emeritus.
ROBERT RISTINEN, Professor Emeritus.
MICHAEL H. RITZWOLLER, Associate Professor. A.B., Marquette University; M.A., University of Illinois; M.S., University of Wisconsin; Ph.D., University of California, San Diego.
SCOTT H. ROBERTSON, Professor. B.S., Ph.D., Cornell University.
CHARLES T. ROGERS, Associate Professor. B.Sc., Ph.D., Cornell University.
DAVID A. RUDMAN, Lecturer. B.Sc., M.S., Ph.D., Stanford University.
J O H N B. RUNDLE, Professor (joint with CIERES). B.S.E., Princeton University; M.S., Ph.D., University of California, Los Angeles.
JAMES R. SHEPARD, Associate Chir, Graduate Studies; Professor. B.S., Yale University; Ph.D., University of Colorado.
JAMES G. SMITH, Professor Attendant Rank. B.S., Massachusetts Institute of Technology; Ph.D., University of California, San Diego.
R O D M A N S M Y T H E, Professor Emeritus.
ROBIN TUCKER STEBBINS, Associate Research Professor. B.A., Wesleyan University; M.S., Ph.D., University of Colorado at Boulder.
RAUL A. STERN, Professor. B.S., University of Wisconsin; Ph.D., University of California, Berkeley.
J O H N R. T A Y L O R, Professor. B.A., Cambridge University; Ph.D., University of California, Berkeley.
J O H N M. W A H R, Professor. B.S., University of Michigan; M.S., Ph.D., University of Colorado.
C A R L E. W I E M A N, Distinguished Professor. B.S., Massachusetts Institute of Technology; Ph.D., Stanford University.
W A L T E R W Y S S, Professor. Dipl. Phys. Dr. Sc. Nat. ETh, University of Zurich, Switzerland.
Y U N Y E, Assistant Professor Adjoint. B.S., Jiao Tong University at Shanghai; M.S., University of New Mexico; Ph.D., University of Colorado at Boulder.
C H R I S Z A F I R A T O S, Professor Emeritus.

Political Science

J. S A M U E L F I T C H, Department Chair; Professor. B.A., Randolph-Macon College; M.A., M.Ph., Ph.D., Yale University.
E. S C O T T A D L E R, Assistant Professor. B.A., University of Michigan; M.A., M.Phil., Ph.D., Columbia University.
V A N E S S A B A I R D, Assistant Professor. B.A., Ph.D., University of Houston.
F R A N C I S A. B E E R, Professor. A.B., Harvard College; M.A., Ph.D., University of California, Berkeley.
R O N A L D D. B R U N N E R, Professor. B.A., Ph.D., Yale University.
S I M O N E E. C H A M B E R S, Associate Professor. B.A., McGill University; M.A., Ph.D., Columbia University.
S T E V E C H A N, Professor. B.A., Tulane University; M.A., Ph.D., University of Minnesota.
C L A U D I O C I O F F I - R E V I L L A, Professor. B.A., Instituto Patria, Mexico City; Doctoral Laureate, University of Florence; Ph.D., State University of New York.
S U S A N E. C L A R K E, Professor. B.A., California State College at Fullerton; M.A., University of Southern California; Ph.D., University of North Carolina.
A N N E N. C O S T A I N, Associate Vice President for Human Relations and Risk Management; Professor. A.B., Brown University; M.A., Ph.D., Johns Hopkins University.
W. D O U G L A S C O S T A I N, Senior Instructor. B.A. (HONS), University of British Columbia; M.A., Ph.D., Johns Hopkins University.
C H R I S T I A N A. D A V E N P O R T, Associate Professor. B.A., Clark University; M.A., Ph.D., SUNY Binghamton.
D E N N I S R. E C K A R T, Associate Professor. A.B., M.A., University of California, Davis; Ph.D., University of California, Los Angeles.
H E N R Y F. G O O D N O W, Professor Emeritus.
E D W A R D S. G R E E N B E R G, Professor. B.A., M.A., Miami University, Ohio; Ph.D., University of Wisconsin.
R O D N E Y E. H E R O, Professor. B.S., Florida State University; M.A., Ph.D., Purdue University.
J E F F R E Y K O P S T E I N, Associate Professor. B.A., M.A., Ph.D., University of California, Berkeley.
D A V I D L E B L A N G, Assistant Professor. B.A., Florida State University; Ph.D., Vanderbilt University.
M A R K L I C H B A C H, Professor. B.A., University of New York; M.A., Brown University; Ph.D., Northwestern University.
D A V I D R. M A P E L, Associate Professor. B.A., Colorado College; M.Sc., London School of Economics; M.A., Ph.D., Johns Hopkins University.
C O N R A D L. M c B R I D E , Professor Emeritus.
J O H N P. McIVER, Associate Professor. A.B., Cornell University; M.A., Ph.D., Indiana University.
H O R S T M E W E S, Associate Professor. B.A., Beloit College; M.A., Ph.D., University of Chicago.
K I M B E R L Y N I L E S, Assistant Professor. B.A., Cornell University, M.A., Ph.D., UCLA.
R O L A N D C. P A R I S, Assistant Professor. B.A., University of Toronto; Diploma, University of Paris, Sorbonne; M.Phil., Cambridge University; Ph.D., Yale University.
E D W A R D J. R O Z E K, Professor Emeritus.
W I L L I A M S A F R A N, Professor. A.B., M.A., City College of New York; Ph.D., Columbia University.
J A M E S R. S C A R R I T T, Professor. A.B., Princeton University; Ph.D., Northwestern.
W. A. E. S K U R N I K, Professor Emeritus.
R O Y A L D A N I E L S L O A N, JR., Associate Professor Emeritus.
S V E N H. S T E I N M O, Associate Professor. B.A., University of California, Santa Cruz; M.A., M.P.H., Ph.D., University of California, Berkeley.
W A L T E R J. S T O N E, Professor. B.A., University of San Francisco; M.A., University of Colorado; Ph.D., University of Michigan.
T H A D D E U S J. T E C Z A, Senior Instructor. B.A., Roosevelt University; Ph.D. University of Colorado.

DONALD A. WEATHERLEY, Associate Chair; Associate Professor. B.S., M.A., Northwestern University; Ph.D., Stanford University.

HERBERT P. ALPERN, Professor. B.S., City College of New York; M.A., University of Oregon; Ph.D., University of California, Irvine.

MARIE T. BANIGH, Professor. B.A., M.A., Tufts University; Ph.D., University of Chicago.

DANIEL S. BARTH, Professor. B.A., Boston University; M.A., Ph.D., University of California, Los Angeles.

IRENE BLAIR, Assistant Professor. B.A., Loma Linda University; M.S., M.Phil., Ph.D., Yale University.

ELAINE A. BLECHMAN, Professor. B.A., M.A., Ph.D., University of California, Los Angeles.

BERNARD L. BLOOM, Professor Emeritus.

LYLE E. BOURNE, JR., Professor. B.A., Brown University; M.S., Ph.D., University of Wisconsin.

ANGELA D. BRYAN, Assistant Professor. B.A., University of California, Los Angeles; M.A., Ph.D., Arizona State University.

SERGE CAMPEAU, Assistant Professor. B.S., McGill University; M.S., Ph.D., Yale University.

GREGORY CAREY, Associate Professor. B.A., Duquesne University; M.A., Graduate Faculty, New School for Social Research; Ph.D., University of Minnesota.

DESMOND S. CARTWRIGHT, Professor Emeritus.

DAVID A. CHISZAR, Professor. B.A., M.S., Ph.D., Rutgers University.

LERITA M. COLEMAN, Associate Professor. B.A., University of California, Santa Cruz; Ph.D., Harvard University.

ALLAN C. COLLINS, Professor. B.S., M.S., Ph.D., University of Wisconsin.

LINDA W. CRAIGHEAD, Professor. B.A., Vanderbilt University; M.S., Ph.D., Pennsylvania State University.

WADE EDWARD CRAIGHEAD, Professor. A.A., Freed-Hardeman College; B.A., Abilene Christian College; M.A., Ph.D., University of Illinois, Champaign-Urbana.

EDWARD J. CROTHERS, Associate Professor. A.B., Ph.D., Indiana University.

TIM CURRAN, Assistant Professor. B.A., M.A., Ph.D., University of Oregon.

JOHN C. DeFRIES, Professor. B.S., M.S., Ph.D., University of Illinois.

EVA FIFKOVA, Professor Emeritus.

JOHN R. FORWARD, Associate Professor. B.A., University of Melbourne, Australia; Ph.D., University of Michigan.

EUGENE S. GOLLIN, Professor Emeritus.

KENNETH R. HAMMOND, Professor Emeritus.

LEWIS O. HARVEY, JR., Professor. B.A., Williams College; M.S., Ph.D., Pennsylvania State University.

O. J. HARVEY, Professor Emeritus.

REID HASTIE, Professor. B.A., Stanford University; M.A., University of California, San Diego; Ph.D., Yale University.

ALICE F. HEALY, Professor. A.B., Vassar College; Ph.D., Rockefeller University.

THERESA D. HERNANDEZ, Associate Professor. B.A., Ph.D., University of Texas, Austin.

JOHN K. HEWITT, Professor. B.Sc., M.Sc., University of Birmingham, England; Ph.D., University of London.

KENT E. HUTCHISON, Assistant Professor. B.S., M.S., Ph.D., Oklahoma State University.

TIFFANY A. ITO, Assistant Professor. B.A., University of California, Los Angeles; Ph.D., University of Southern California.

RICHARD JESSOR, Professor. B.A., Yale University; M.A., Columbia University; Ph.D., Ohio State University.

THOMAS E. JOHNSON, Professor. B.Sc., Massachusetts Institute of Technology; Ph.D., University of Washington.

CHARLES M. JUDD, Professor. B.A., Yale University; M. Div., Union Theological Seminary; M.A., Ph.D., Columbia University.

D. BRETT KING, Senior Instructor. B.S., M.S., Ph.D., Colorado State University.

WALTER KINTSCH, Professor. B.A., Teachers College, Feldkirch, Austria; M.A., Ph.D., University of Kansas.

THOMAS K. LANDAUER, Professor. B.A., University of Colorado; M.A., Ph.D., Harvard University.

STEVEN F. MAIER, Professor. B.A., New York University; M.A., Ph.D., University of Pennsylvania.

DIANE K. MARTICHUSKI, Senior Instructor. B.S., Lamar University; M.S., Ph.D., Colorado State University.

DOROTHY R. MARTIN, Professor Emerita.

DONALD J. MASON, Associate Professor Emeritus.

GARY H. McCLELLAND, Professor. B.A., University of Kansas; M.A., Ph.D., University of Michigan.

DAVID J. MIKLOWITZ, Professor. B.A., Brandeis University; M.A., Ph.D., University of California, Los Angeles.

RAYMOND C. MILES, Professor Emeritus.

AKIRA MIYAKE, Assistant Professor. B.A., Osaka University; M.S., Ph.D., Carnegie-Mellon University.

RICHARD K. OLSON, Professor. B.A., Macaf College; M.A., Ph.D., University of Oregon.

RANDALL CHARLES O’REILLY, Assistant Professor. B.A., Harvard University; Ph.D., Carnegie Mellon University.

PETER G. OSSORIO, Professor Emeritus.

PETER G. POLSON, Professor. B.S., A.B., Stanford University; Ph.D., Indiana University.

ALBERT RAMirez, Associate Director of the BUENO Center; Associate Professor. B.A., M.A., Ph.D., University of Houston.

EMILY D. RICHARDSON, Assistant Research Professor. B.S., Northern Illinois University; M.A., Ph.D., University of Iowa.

VICTOR L. RYAN, Assistant Professor. B.A., Northwestern University; Ph.D., University of Michigan.

KURT SCHLESINGER, Professor Emeritus.

SETH K. SHARPLESS, Professor Emeritus.

LOUISE SILVERN, Associate Professor. B.A., University of California, Berkeley; M.A., Ph.D., University of California, Los Angeles.

TIMOTHY SMOCK, Associate Professor. B.A., Reed College; Ph.D., University of California, San Francisco.

PETER D. SPEAR, Dean of the College of Arts and Sciences; Professor. B.A., Rutgers University; Ph.D., Yale University.

ROBERT L. SPENCER, Associate Professor. B.A., Oral Roberts University; M.A., Ph.D., University of Arizona.

MICHAEL C. STALLINGS, Assistant Professor. B.A., California State University, Fullerton; Ph.D., University of Southern California, Los Angeles.

RONALD G. TAYLOR, Professor Emeritus.

DAVID R. THOMAS, Professor Emeritus.

THEO. VOLSKY, JR., Professor Emeritus.

LINDA R. WATKINS, Professor. B.S., Virginia Polytechnic Institute and State University; Ph.D., Medical College of Virginia.
JEANNE M. WEHNER, Professor. B.S., Madonna College; Ph.D., University of Minnesota.

MICHAEL WERTHEIMER, Professor Emeritus.

MARK A. WHISMAN, Associate Professor. B.S., Colorado State University; M.S., Ph.D., University of Washington.

JAMES R. WILSON, Professor Emeritus.

Religious Studies

FREDERICK M. DENNY, Department Chair; Professor. A.B., College of William and Mary; B.D., Andover Newton Theological School; M.A., Ph.D., University of Chicago.

LORILAI BIERNACKI, Assistant Professor. B.A., Princeton University; Ph.D., University of Pennsylvania.

IRA CHERNUS, Professor. B.A., Rutgers College; M.A., Ph.D., Temple University.

MARY CHURCHILL, Assistant Professor of Women Studies. B.A., University of California, Berkeley; M.A., Ph.D., University of California, Santa Barbara.

JUALYNNE E. DODSON, Associate Professor of Ethnic Studies. B.S., M.A., Ph.D., University of California, Berkeley.

SAM D. GILL, Professor. B.S., M.S., Wichita State University; M.A., Ph.D., University of Chicago.

DORIS WEBSTER HAVICE, Professor Emerita.

STEWART HOOVER, Professor of Journalism. A.B., McPherson College; M.A., Ph.D., Annenberg School of Communications, University of Pennsylvania.

SARAH HORTON, Instructor. B.A., Illinois College; M.A., Ph.D., Yale University.

TERRY KLEMAN, Associate Professor (joint with East Asian Languages and Civilizations). B.A., University of Miami; M.A., M.A., University of British Columbia; Ph.D., University of California, Berkeley.

ROBERT C. LESTER, Professor Emeritus.

MICHELENE PESANTUBBEE, Assistant Professor. B.S., M.S., University of Oklahoma; M.A., Ph.D., University of California, Santa Barbara.

REGINALD A. RAY, Senior Instructor. B.A., Williams College; Ph.D., University of Chicago.

LYNN ROSS-BRYANT, Associate Professor. B.A., Occidental College; M.A., Ph.D., University of Chicago.

RODNEY L. TAYLOR, Associate Dean, Graduate School; Professor. B.A., University of Southern California; M.A., University of Washington; Ph.D., Columbia University.

Sociology

DENNIS S. MILETI, Department Chair; Professor. B.A., University of California-Los Angeles; M.A., California State University; Ph.D., University of Colorado.

PATRICIA A. ADLER, Professor. A.B., Washington University; M.A., Ph.D., University of California, San Diego.

OTOMAR J. BARTOS, Professor Emeritus.

JOANNE BELKNAP, Associate Professor. B.A., University of Colorado; M.A., Ph.D., Michigan State University.

DANIEL M. CRESS, Associate Chair for Undergraduate Studies; Assistant Professor. B.A., Augsburg College; M.A., Ph.D., University of Arizona.

JAMES V. DOWNTON, Professor. B.A., M.A., Sacramento State College; Ph.D., University of California.

DELBERT S. ELLIOTT, Professor. B.A., Pomona College; M.A., Ph.D., University of Washington.

MARTHA E. GIMENEZ, Associate Professor. B.A., Montana State University; M.A., National University of Cordoba, Argentina; Ph.D., University of California, Los Angeles.

ROBERT C. HANSON, Professor Emeritus.

LORI M. HUNTER, Assistant Professor. B.A., University of Washington; M.A., Ph.D., Brown University.

ROBERT M. HUNTER, Associate Professor. B.A., Ph.D., University of Colorado.

LESLIE IRVINE, Assistant Professor. B.A., M.A., Florida Atlantic University; Ph.D., State University of New York, Stony Brook.

J. ROLF KJOLSETH, Associate Professor Emeritus.

THOMAS F. MAYER, Professor. B.A., Oberlin College; Ph.D., Stanford University.

JANE MENKEN, Associate Chair for Graduate Studies Professor. A.B., University of Pennsylvania; M.S., Harvard University; Ph.D., Princeton University.

JOYCE M. NIELSEN, Associate Dean for the Social Sciences, College of Arts and Sciences; Professor. B.A., University of Colorado; M.A., Ph.D., University of Washington.

FRED PAMPEL, Professor. B.A., M.A., Ph.D., University of Illinois.

DAVID N. PELLOW, Assistant Professor. B.A., University of Tennessee; M.A., Ph.D., Northwestern University.

LEONARD J. PINTO, Associate Professor. B.S., M.A., Fordham University; Ph.D., University of Chicago.

ROBERT M. REGOLI, Professor. B.S., M.A., Ph.D., Washington State University.

RICHARD G. ROGERS, Professor. B.A., University of New Mexico; M.A., Ph.D., University of Texas.

EDWARD ROSE, Professor Emeritus.

JULES J. WANDERER, Professor. B.A., Ph.D., University of Colorado.

PAUL E. WEHR, Associate Professor. B.A., University of Connecticut; M.A., University of North Carolina; Ph.D., University of Pennsylvania.

MARGARET M. ZAMUDIO, Assistant Professor. B.S., M.A., Ph.D., University of California, Los Angeles.

Spanish and Portuguese

LEOPOLDO BERNUCCI, Department Chair; Associate Professor. B.A., University of São Paulo; M.A., Ph.D., University of Michigan, Ann Arbor.

JULIO BAENA, Associate Professor. Licenciatura, Universidad Católica Andrés Bello; M.S., Ph.D., Georgetown University.

YVONNE GUILLON BARRETT, Associate Professor Emerita.

ANNE BECHER, Instructor. B.A., Carleton College; M.A., University of Colorado.

EMILIO BEJEL, Professor. B.A., University of Miami; M.A., Ph.D., Florida State University.

OLBULIA CASTRO, Assistant Professor. Licenciatura, Universidad Católica Andrés Bello; M.S., Ph.D., Georgetown University.

JANE CHAMBERLAIN, Instructor. A.B., Oberlin College; M.A., University of Colorado at Boulder.

JOSE MANUEL DEL PINO, Associate Professor. Licenciatura, Universidad de Málaga; M.A., Ph.D., Princeton University.

JOSE DE ONIS, Professor Emeritus.

PETER ELMORE, Associate Professor. Licenciatura, Pontificia Universidad Católica del Perú; Ph.D., University of Texas at Austin.

VIVIAN ELMORE, Instructor. B.A., Pontificia Universidad Católica del Perú.

JAVIER GARCES, Instructor. B.A., University of Nariño.

JOHN S. GEARY, Associate Professor. B.A., M.A., Ph.D., University of California, Berkeley.

LUIS T. Gonzalez-del-VALLE, Professor. B.A., University of North Carolina; M.A., University of Massachusetts at Amherst; Ph.D., Five College Cooperation Program: Amherst College, Hampshire College, Mount Holyoke College, Smith College, and University of Massachusetts at Amherst.
ANTONIA GREEN, Instructor. B.A., M.A., University of Missouri.

WILLIAM J. GRUPP, Professor Emeritus.

ELLEN S. HAYNES, Senior Instructor. B.A., University of Oregon; B.S., Regis College; M.A., Portland State University; Ph.D., University of Colorado at Boulder.

ASUNCION HORDO DELGADO, Associate Professor. Licenciatura, Universidad Complutense de Madrid; M.A., University of New Hampshire; Ph.D., University of Massachussetts at Amherst.

ISOLDE JORDAN, Senior Instructor. B.A., Friedrich-Willhelms Universitaet; Ph.D., Universite de Paris; Ph.D., University of Colorado.

CHARLES L. KING, Professor Emeritus.

RICARDO LANDERIA, Professor. B.A., M.A., Arizona State University; Ph.D., Indiana University.

ANTHONY GIRARD LOZANO, Professor. B.A., Ph.D., University of Texas at Austin.

KAREN MALCOLM, Instructor. B.A., University of Arkansas; M.A., University of Nebraska.

NINA L. MOLINARO, Associate Professor. B.A., Scripps College; M.A., University of Kansas.

ISIDORO MONTIEL, Professor Emeritus.

CRISTINA PIRAS, Instructor. B.A., Richard Palma University; M.A., University of Colorado at Boulder.

DIANE E. SIEBER, Associate Professor. B.A., University of Virginia; M.A., Ph.D., Princeton University.

ALICIA TABLER, Instructor. B.A., M.A., University of Wyoming.

BERNICE UDICK, Professor Emerita.

Speech, Language, and Hearing Sciences

LYNN SNYDER, Chair; Professor. B.A., College of New Rochelle; M.A., Seton Hall University; Ph.D., University of Colorado at Boulder.

KATHRYN H. AREHART, Associate Professor. B.S., Stanford University; M.S., Ph.D., University of Washington.

NED W. BOWLER, Professor Emeritus.

SHEILA GOETZ, Senior Instructor. B.A., University of Pittsburgh; M.A., University of Denver.

JOHN HANSEN, Associate Professor. B.S., Rutgers University; M.S., Ph.D., Georgia Institute of Technology.

NATALIE L. HEDBERG, Professor Emerita.

YOSHIYUKI HORII, Professor Emeritus.

ELIZABETH G. JANCESEK, Senior Instructor. B.A., Morris Harvey College; M.A., Ph.D., Ohio State University.

RICHARD F. KRUG, Professor Emeritus.

SUSAN M. MOORE, Director of Clinical Education and Services. B.A., College of New Rochelle; M.A., J.D., University of Denver.

LORRAINE OLSON RAMIG, Professor. B.S., University of Wisconsin-Oshkosh; M.S., University of Wisconsin, Madison; Ph.D., Purdue University.

PETER R. RAMIG, Professor. B.S., M.S., University of Wisconsin; Ph.D., Purdue University.

GAIL RAMSBERGER, Associate Professor. B.S., M.A., University of Colorado; Sc.D., Boston University.

BRENDA SCHICK, Associate Professor. B.S., Purdue University; M.S., Washington University; Ph.D., Purdue University.

ALLISON L. SEDEY, Assistant Professor. B.A., M.A., California State University, Northridge; Ph.D. University of Wisconsin-Madison.

RICHARD H. SWEETMAN, Professor Emeritus.

RITA S. WEISS, Professor Emerita.

CHRISTINE YOSHINAGA-ITANO, Professor. B.A., University of Southern California; MA., Ph.D., Northwestern University.

Theatre and Dance

OLIVER GERLAND, Department Chair; Associate Professor. B.A., Swarthmore College; Ph.D., Stanford University.

JANICE BENNING, Assistant Professor. B.A., Gettysburg College; M.F.A., University of California, San Diego.

BRUCE BERGNER, Assistant Professor. B.A., University of Minnesota; M.F.A., University of Illinois.

ROBERT J. BOYARD, Senior Instructor. B.S., Lehigh University; M.F.A., Dallas Theatre Center/Trinity University.

DAVID CAPP, Dance Program Director; Associate Chair; Associate Professor. B.A., Towson State College; M.F.A., New York University.

MARTIN T. COBIN, Professor Emeritus.

BUD COLEMAN, Associate Professor. B.F.A., Texas Christian University; M.F.A., University of Utah; Ph.D., University of Texas, Austin.

RICHARD DEVIN, Director, Colorado Shakespeare Festival; Professor. B.A., University of Northern Iowa; M.F.A., Yale University.

NADA DIACHENKO, Associate Professor. B.S., University of Maryland; M.A., New York University.

TOBY R. HANKIN, Associate Professor. B.A., Barnard College; M.A., Mills College.

CHARLOTTE YORK IREY, Professor Emerita.

SEAN R. KELLEY, Artistic Director of Theatre; Associate Chair; Associate Professor. B.S., University of Wisconsin; M.F.A., Purdue University.

MERRILL J. LESSLEY, Associate Dean for the Arts and Humanities, College of Arts and Sciences; Professor. B.F.A., University of Utah; M.A., University of Minnesota; Ph.D., University of Utah.

STEVE MCDONALD, Senior Instructor. B.A., University of Colorado at Boulder; M.F.A., University of California, Irvine.

LYNN NICHOLS, Instructor. B.A., University of the South; M.A., Emporia State College; Ph.D., University of Colorado at Boulder.

ONYE OZUZU, Assistant Professor. B.A., M.F.A., Florida State University.

MARGARET LEE POTTS, Associate Professor. B.A., Occidental College; M.A., Ph.D., University of Southern California.

ROBERT J. SHANNON, Senior Instructor.

NANCY L. SPANIER, Professor. B.A., Middlebury College; M.A., Mills College.

JAMES M. SYMONS, Professor. B.A., Illinois College; M.A., Southern Illinois University; Ph.D., Cornell University.

CANDACE TAYLOR, Assistant Professor. B.S., Northwestern University; M.F.A., University of Delaware.

HAIPING YAN, Assistant Professor. B.A., Fudan University; M.A., Ph.D., Cornell University.

University Writing Program

ELISSA S. GURALNICK, Program Co-Director; Professor. A.B., A.M., University of Pennsylvania; M. Phil., Ph.D., Yale University.

PAUL M. LEVITT, Program Co-Director; Professor. B.A., M.A., University of Colorado; M.A., Ph.D., University of California, Los Angeles.

ANNE BLISS, Senior Instructor. B.A., Seattle University; M.A., Ph.D., University of Colorado.

MATTHEW B. COOPERMAN, Instructor. B.A., Colgate University; M.A., University of Colorado; Ph.D., Ohio University.

REBECCA J. DICKSON, Instructor. B.A., Colorado State University; M.A., Ph.D., University of Colorado.

DON ERON, Instructor. B.A., University of Colorado; M.F.A., University of Iowa.

ANDREA FELDMAN, Instructor. B.A., Cornell University; M.A., Ph.D., University of Colorado.

HARDY FREDICKSMEYER, Instructor. B.A., University of Colorado; M.A., Columbia University; M.A., Ph.D., University of Texas at Austin.
KAREN GASSER, Instructor. B.A., Colorado Women’s College; M.A., University of Denver; M.A., St. John’s College; Ph.D., University of Denver.

JUDITH LAVINSKY, Instructor. B.A., M.A., University of Chicago.

ANDREA LEWIS, Instructor. B.A., University of Natal, Durban, South Africa; B.A., University of Cape Town, South Africa; M.A., Ph.D., Pennsylvania State University.

TIM LYONS, Instructor. B.A., Occidental College; M.A., Johns Hopkins University.

CHRISTINE MACDONALD, Instructor. B.A., Pomona College; M.A., Ph.D., University of Colorado.

NANCY D. MANN, Senior Instructor. B.A., Eckerd College; M.A., Ph.D., Stanford University.

KAREN MASON, Instructor. B.S., Michigan State University; M.A., Denver Seminary.

SUSAN McARTHUR, Instructor. B.A., San Jose State University; M.A., University of Colorado.

PAUL T. MURPHY, Senior Instructor. B.A., Boston College; M.A., McGill University; Ph.D., University of Colorado.

ROLF NORGAARD, Senior Instructor. B.A., Wesleyan University; M.A., Ph.D., Stanford University.

KATHRYN D. PALMER, Instructor. B.A., Kansas State University; M.A., University of Colorado.

JOHN PIIRTO, Instructor. B.S., M.S., University of Wisconsin; M.A., University of California.

ESTHER QUINLAN, Instructor. B.A., Simmons College; M.A., University of Colorado.

PETGER SCHABERG, Instructor. B.A., DePaul University; M.A., University of Colorado.

DEBORAH VILES, Instructor. B.A., University of Colorado at Denver; M.A., University of Colorado.

TOBIN VON DER NUELL, Instructor. B.A., San Diego State University; M.A., University of Colorado.

DONALD H. WILKERSON, Instructor. B.A., University of Colorado. Western American Studies

TOM PRECOURT, Executive Director, Center of the American West. B.A., University of Colorado at Boulder.

PATRICIA NELSON LIMERICK, Faculty Director, Center of the American West; Professor, Department of History. B.A., University of California, Santa Cruz; M.A., M. Phil., Ph.D., Yale University.

Women’s Studies

CHRISTINE YOSHINAGA-ITANO, Director; Professor of Speech, Language, and Hearing Sciences. B.A., University of Southern California; M.A., Ph.D., Northwestern University.

JOANNE BELKNAP, Associate Professor. B.A., University of Colorado; M.A., Ph.D., Michigan State University.

NAN ALAMILLA BOYD, Assistant Professor. B.A., University of California, Berkeley; M.A., Ph.D., Brown University.

MARY C. CHURCHILL, Assistant Professor. B.A., University of California, Berkeley; M.A., Ph.D., University of California, Santa Barbara.

MICHIKO HASE, Assistant Professor. B.A., University of Tokyo; Ph.D., University of Minnesota.

JANET L. JACOBS, Professor. B.S., M.A., Ph.D., University of Colorado.

ALISON M. JAGGAR, Professor of Women Studies and Philosophy. B.A., University of London; M.Litt., University of Edinburgh; Ph.D., State University of New York at Buffalo.

KAMALA KEMPADOO, Assistant Professor. B.A., M.A., University of Amsterdam; M.A., Ohio State University; Ph.D., University of Colorado.

LISA PARK, Assistant Professor. B.A., Trinity University; M.A., Ph.D., Northwestern University.

ANNE MARIE POIS, Senior Instructor. B.A., State University of New York, Stony Brook; M.A., Ph.D., University of Colorado.

MARCIA C. WESKOTT, Professor Emerita.
Two Courses of Study

In 1878, the second year of the university, two courses of study were offered: the classical course and the scientific course. These courses were four years each and modeled on rigid college course curricula of the time. The classical required two years of Greek, three years of Latin, and two years of mathematics. President Sewall taught botany and chemistry for the scientific course. Tuition was free to citizens of the state. By 1879, the university had 78 students.
THE COLLEGE OF BUSINESS AND ADMINISTRATION AND GRADUATE SCHOOL OF BUSINESS ADMINISTRATION

Steven Manaster, Dean

The College of Business and Administration and Graduate School of Business Administration (collectively referred to as "the college") educate and prepare students for management positions, continue the education of those already in such positions, and promote ongoing business research. The college was admitted to membership in the American Assembly of Collegiate Schools of Business in 1938.

Four degrees are awarded: the bachelor of science in business administration (B.S.), the master of science in business administration (M.S.), the master of business administration (M.B.A.), and the doctor of philosophy in business administration (Ph.D.).

The College of Business and Administration and Graduate School of Business Administration are committed to maintaining high standards of academic excellence. The programs and curricula of the college are reviewed, changed, and enhanced as dictated by a rapidly advancing business environment.

The college has historically maintained close ties with the business community. The Business Advisory Council (BAC) is an effective advocate for the college, both within the university and to the external community. As high-level executives, members of the BAC provide advice, counsel, and an outside perspective to the dean and his administration. Council members spearhead major parts of development programs, strengthen the college’s network nationwide in business and political arenas, and provide significant input in curriculum design.

Each year, high-level executives come to the college to share their working-world experiences, their expertise, and often their reflections on life outside of business. Students enjoy the informal, personalized classroom presentations and the casual discussion environment. Visiting executives speak at classroom lectures as well as informal luncheons and after-hours meetings. Each executive holds office hours while at the college. Classroom conversations cover a range of subjects including what kind of courses students are taking, career planning, domestic and international marketing, risk taking, and corporate hiring procedures.

The faculty of the college is made up of men and women with a diverse range of expertise and research activities. Many maintain strong ties with the business community and bring a current business perspective to the classroom. A number of professors are frequently published and are recognized internationally as top researchers.

Business faculty members strive to deliver the most effective teaching in both management theory and real-world business applications. Their experience and competence ensure a quality learning experience for business graduates.

Facilities and Research Activities

The College of Business and Administration is an educational environment that houses several resources for the specific needs of business students. The facilities include the William M. White Business Library, the Douglas H. Buck Electronic Media Center, computerized classrooms, technology team rooms equipped with multimedia Pentium computers and software, a large microcomputer lab equipped with Pentium Pro computers, the MBA Business Center, a student lounge, faculty and administrative offices, and the Business Research Division.

Students use the College of Business’s William M. White Business Library to access the wisdom of the business world. Electronic databases list not only the printed materials in all the Boulder campus libraries but those in libraries around the world. A variety of other databases, both CD- and web-based, search a myriad of full-text magazines and journals; business periodical indexes; corporate annual, 10-K, and proxy reports of all the public companies in the United States; short profiles of both American and international companies; demographic and business statistics; and investment reports written by Wall Street analysts. Twenty computer terminals provide access to the World Wide Web. Knowledgeable librarians are always available to help navigate the search for information.

The library also contains many printed business reference works, directories, looseleaf services, books, and subscriptions to more than 1,000 business journals both in printed and electronic form.

The White Business Library is part of the University of Colorado library system which includes more than two million volumes, more than five million microforms, and more than 24,000 periodicals and serials. The system is also a full depository for U.S. government, international, and state documents.

All classrooms in the College of Business and Administration are electronic. The computerized classrooms are equipped with Pentium Pro computers; Microsoft Office '97 applications including Excel, PowerPoint, Word, and Access; state-of-the-art projection systems; and multimedia capabilities including video, cable, and Internet connections. The college has Pentium Pro computers in both the large microcomputer lab for students and a teaching lab. All resources are connected to the campus Ethernet network and the Internet. Computing resources on the Boulder campus include many microcomputer labs and various UNIX-based computers used for large statistical jobs and programming languages. Technology is also incorporated in class assignments. Professors post course information, PowerPoint presentations, and Excel spreadsheets electronically. E-mail accounts are available to all students. View the College of Business home page at www-bus.colorado.edu.

The College of Business and Administration recently joined with leading international information technology firms to establish technology team rooms. The eight rooms are equipped with multimedia Pentium computers; full Internet and World Wide Web access; Microsoft Office '97 applications; and software for graphing, statistical analysis, and programming languages. Additional audio/visual equipment may be checked out by students as needed. In addition to the computing facilities, the rooms hold writing boards, tack boards, and conference tables.

Bureau of Business Research

Established in 1915, the Bureau of Business Research is one of the earliest organized state service-oriented bureaus in the country. The bureau houses the Business Research Division and three centers, which serve various outreach functions of the college.

The Business Research Division acts as a research arm of the college. Its primary functions are to provide business executives, city managers, planners, association executives, and others with information useful in the operation of their organizations; to compile, present, and interpret information on current business and economic developments in the state and nation; to conduct business and economic studies that contribute to the most efficient use of Colorado’s resources; to encourage and assist faculty and students in research that will contribute to general knowledge in the areas of business, economics, and the related social sci-
services available at no cost. Services include hands-on consulting, project management, seminars, industry roundtables, and equipment demonstrations. MAMTC professionals have expertise in business and engineering, and also provide access to a network of service providers.

The CU Business Advancement Center (CU-BAC) is an external outreach service to Colorado business and industry specializing in technology and new product commercialization. Services include database searches for technologies to provide licensure, technical reports, patents, and market information; market assessment for new technologies and products; and identification of expertise and research partnerships with CU and federal laboratories.

The Center for Tourism Research and Development is dedicated to research and program development in tourism throughout Colorado and the nation. Faculty and students from the university participate in funded research efforts that contribute to both technical and scholarly publications. The center continues its original efforts to assist rural communities in recreation and tourism development.

Ongoing research is being conducted on the social, environmental, and economic impacts of recreation and tourism development on community life.

The center supports and facilitates the dissemination of tourism information through journals, proceedings, and other vehicles in printed and electronic media that advance the fields of travel, tourism, hospitality, and recreation.

Academic Centers
In addition to the Bureau of Business Research, the college has two centers linking academic programs and the business community—the Center for Entrepreneurship and the Center for Real Estate.

The Center for Entrepreneurship is a joint program of the colleges of business and engineering. With CU-Boulder located in one of the leading entrepreneurial centers in the country, it is the program’s mission to ensure that undergraduate and graduate students receive a thorough grounding in entrepreneurial management skills via an integrated entrepreneurship course curriculum. These uniquely focused courses and programs enable students to expand both their academic and career horizons as they view business from an entrepreneur’s perspective. Students practice the creative thinking required to launch, develop, and effectively manage new and unstructured ventures.

To achieve the experiential aspects of the program, leading entrepreneurs are invited into the classroom as topical guest speakers throughout the year. Real-life encounters with professionals are supplemented by student field projects and internships with entrepreneurially-oriented companies.

The center, via its courses and programs, provides students the opportunity to not only prepare themselves, but to have an edge in gaining employment and contributing in a meaningful way with the exciting new enterprises and emerging growth companies that are driving our nation’s economy today.

The Real Estate Center, founded in 1995, is supported by an industry council with the goal of advancing academic excellence in real estate education and scholarship. The center oversees the college’s real estate teaching programs and advises the faculty in designing an integrated curriculum at both the graduate and undergraduate levels. Course work is drawn from the law school, the colleges of architecture and engineering, construction management, and others.

The center creates real-world experiences for students by providing project course work and being a resource for securing internships and mentors. It also provides support for faculty teaching and research activities in real estate and assists the university with its real estate portfolio.

Career Opportunities
College of Business and Administration graduates are prepared for positions in the following fields:

- Accounting—public, private, nonprofit, and governmental
- Banking and other financial institutions
- Corporate financial management
- Entrepreneurship and small business management
- Financial analysis
- Human resources management
- Information systems
- International business
- Investment management
- Management consulting and organization management
- Marketing and sales management
- Operations management
- Real estate
- Recreation and tourism management
- Retailing
- Taxation
- Technology management
- Transportation
- Venture capital

Other graduates hold positions in fields as diverse as business journalism, public relations, city planning, chamber of commerce and trade association management, college administration, and government.

Mid-America Manufacturing and Technology Center—Colorado (MAMTC—Colorado) is a not-for-profit organization designed to help manufacturers improve quality, productivity, and marketing while reducing costs. MAMTC’s mission is to provide business solutions that give manufacturers the competitive edge. Partial funding is provided by NIST Manufacturing Extension Program and state resources, making some
take positions in emerging growth companies and the venture capital industry.

Study Abroad

Study abroad programs are available for students interested in international business or in cultural experiences abroad. The college-sponsored London Seminar in International Finance and Business is a month-long program held each summer in the financial district of London and is open to juniors, seniors, and graduate students.

Student Organizations

Listed below are organizations that promote professional interests and provide recognition of scholastic attainment:

- AIESEC, international business association
- Beta Alpha Psi, national honorary and professional accounting society
- Beta Gamma Sigma, national honorary scholastic society in business
- BSC (Business Students of Color)
- CEO (Collegiate Entrepreneurs Organization)
- CUAMA, student chapter of the American Marketing Association
- CU Entrepreneurship Organization
- CUFMA (CU Financial Management Association)
- Delta Nu Alpha, honorary transportation society
- Delta Sigma Pi, professional business society
- Doctoral Business Student Association
- Graduate School of Business Administration
- ISO (Information Systems Organization)
- Leadership Council
- MBA Entrepreneurship Solutions LLC
- Phi Chi Theta, professional business and economics society
- Real Estate Club
- SAM (Student Association of Management)
- Sigma Iota Epsilon, professional and honorary management society
- Student Business Board
- UCSPA (University of Colorado Society for Personnel Administration), student chapter for those interested in personnel or industrial relations
- Women in Business

College of Business Student Government

As the student governing body of the College of Business and Administration, the Business Board functions as a liaison between the students and the administration. The board helps formulate policies and represents students’ interests in many different areas. Thirteen representatives are elected from the student body and serve for two semesters. Three board members, usually officers, are required to serve on the College of Business and Administration Academic Ethics Committee.

Graduation Recognition Ceremony

Every December and May the Office of the Dean and the Business Board sponsor a recognition ceremony honoring the graduating class, in addition to the university-wide commencement. Graduates and their families are invited to attend.

UNDERGRADUATE ACADEMIC EXCELLENCE

Honors

In recognition of high scholastic achievement, upon recommendation of the faculty, the designation “With High Distinction” or “With Distinction” will be awarded at graduation. To qualify for the “With High Distinction” designation, the student’s cumulative University of Colorado GPA must be at least 3.90. For the “With Distinction” designation, the student’s cumulative GPA must be at least 3.75 but less than 3.90. In addition, for these designations, at least 60 semester hours must have been earned at CU-Boulder.

In addition to the distinction of honors, College of Business and Administration students also may participate in the Latin honors granted by the College of Arts and Sciences. Qualified students are encouraged to participate in this program, which coordinates the offering of a variety of honors seminars as well as the granting of Latin honors (cum laude, magna cum laude, summa cum laude) at graduation. Granting of these honors is determined by the Honors Council based on several criteria, including the quality of original scholarly work (generally reported in the form of a thesis). Latin honors are not conferred on a graduate entering in the summer of 1995 and thereafter simply by virtue of high grades. Interested students should consult the Honors Program listing in the College of Arts and Sciences chapter of this catalog or contact the Honors Program in Norlin Library.

Dean’s List

Students in the College of Business and Administration who complete at least 12 semester hours of graded work in the fall or spring semester and earn a GPA of 3.50 or better on the Boulder campus (excluding Continuing Education) are included on the dean’s list, which is posted outside the Office of Undergraduate Studies.

Beta Gamma Sigma

Membership in Beta Gamma Sigma is an honor that must be earned through outstanding scholastic achievement. Such membership is the highest scholastic honor that a student in a school of business or management can attain.

To be eligible for Beta Gamma Sigma membership, students must rank in the top seven percent of their junior class, the top one percent of their senior class, or be among the top 20 percent of those students receiving master’s degrees. Also, students completing all requirements for the doctoral degree conferred by a business school are eligible for Beta Gamma Sigma. It should be noted that Beta Gamma Sigma chapters may be chartered only in those schools of business and management accredited by AACSB, the International Association for Management Education.

Scholarships

Each year the college awards a number of divisional and general scholarships. Business scholarships are generally for students who have completed business course work at the university. The amount and number of the awards vary each year. For additional information, students may contact the Office of Undergraduate Studies.

UNDERGRADUATE ACADEMIC STANDARDS

Academic Ethics

Students are expected to conduct themselves in accordance with the highest standards of honesty and integrity. Cheating, plagiarism, illegitimate possession and disposition of examinations, alteration, forgery or falsification of official records, and similar acts or the attempt to engage in such acts are grounds for suspension or expulsion from the university. Any reported act of academic dishonesty may be referred to the College of Business and Administration Academic Ethics and Appeals Committee at the discretion of the associate dean, a member of the instructional staff, or another appropriate university representative.

Students are advised that plagiarism consists of any act involving the offering of someone else’s work as the student’s own. It is recommended that students consult with instructors as to the proper preparation of reports, papers, etc., in order to avoid this and similar offenses. Official college procedures concerning academic ethics are maintained in the Office of Undergraduate Studies.

Standards of Performance

Students are held to basic standards of performance with respect to attendance, active participation in course work, promptness in completion of assignments, correct English usage both in writing and speech, accuracy in calculations, and general quality of scholastic workmanship.
In general, examinations are required in all courses and for all students. To be in good standing, students must have an overall grade point average of 2.00 or better for all course work taken, and a 2.00 or better for all business courses taken. Students must earn a passing grade for all required courses. These requirements apply to courses taken at all university campuses. Physical education activity courses, repeated courses, and remedial course work are not included in the overall grade point average.

Any student earning all failing grades or no academic credit for a semester is not permitted to register without the dean’s approval. Official double-degree students are required to maintain the same standards of performance as College of Business and Administration students in order to continue in their program.

When semester grades become available, students below the acceptable standard are placed on probation or suspension. Students are responsible for being aware of their academic status at all times. College rules governing probation and suspension are as follows:

Probation. Students whose cumulative grade point average or cumulative business GPA falls below 2.00 will be placed on probation immediately. Those students who enroll in any term in the calendar year, excluding summers, after being placed on probation are expected to raise their cumulative or business GPA to at least 2.00. CU-Boulder’s summer session or enrollment through Boulder evening courses does not count as a probationary semester.

Suspension. Suspending College of Business students who transfer into another school or college of the university will not be eligible to register for business courses or for re-admission to the College of Business.

Any student who is placed on suspension more than once will be permanently suspended from the College of Business and Administration and may not attend any campus of the University of Colorado as a business student.

UNDERGRADUATE ADMISSION AND ENROLLMENT POLICIES

The academic policies, rules, and regulations of the college stated below were in effect at the time the catalog was printed. All students are responsible for knowing and following the provisions set forth in this catalog. Any questions concerning these provisions should be directed to the college. The college cannot assume responsibility for problems resulting from a student’s failure to follow the policies stated in the catalog or from incorrect advice given by those outside the Office of Undergraduate Studies. Similarly, students are responsible for all deadlines, rules, and regulations stated in the Registration Handbook and Schedule of Courses. All rules and regulations are subject to change. Any questions should be directed to the College of Business Office of Undergraduate Studies, room 227, 303-492-6515.

Admission to the Business Program

Prospective freshman students are encouraged to complete strong academic programs in high school. A minimum of four academic units should be completed each year with special emphasis given to writing, mathematics, and science skills. For a detailed explanation of the high school preparation desired, see Undergraduate Admission in the General Information chapter of this catalog.

Transfer students are expected to demonstrate proficiency in writing and mathematics. Prospective transfer students should complete courses equivalent to those taken by University of Colorado business freshmen and sophomores.

Intrauniversity Transfer

An undergraduate student who is enrolled on the Boulder campus and wishes to transfer to the College of Business and Administration may submit a completed application for the fall or spring semester. For assured admission, students must have a 3.00 CU cumulative GPA; a 2.00 cumulative GPA in business courses; 24 completed semester hours, 12 of which must be graded work at CU-Boulder; 6 credit hours of math, including MATH 1050, 1060, 1070, or ECON 1078, and MATH 1080, 1090, and 1100 or ECON 1088 or a calculus course; and microeconomics and macroeconomics. Intrauniversity transfer students must take a minimum of 30 hours of business courses, including their area of emphasis, in residence after admission to the college. The deadline is October 1 for spring admission and March 1 for fall admission.

Diversity

In addition to grade point average requirements, hours taken, and nonbusiness course requirements completed, the college considers other factors that contribute to diversity in the student body. Factors contributing to a more diverse student body are race and ethnic background; economic or physical limitations; and unique situations.

Registration for Business Courses

Students may register only for those courses for which they have the stated prerequisites. Priority is given to students officially in the business program.

Administrative Drops

Instructors may recommend to the Office of Undergraduate Studies that students who fail to meet expected course attendance or prerequisites be dropped from their courses.

Attendance Regulations

Classroom attendance is left to the discretion of the instructor. Students are responsible for understanding each instructor’s policy on attendance.

Students enrolled in one section of a business course who attend a different section will receive a final grade of F for nonattendance. Students attending classes for which they are not enrolled will not be added after the final schedule adjustment period is over.

Concurrent Registration

Concurrent registration is for graduating seniors who must be enrolled on two campuses of the University of Colorado at the same time in order to fulfill graduation requirements. Students enrolled in the College of Business and Administration may only exercise
the concurrent registration option if they are in their graduating semester; students who are two semesters from graduating and cannot obtain a course necessary to complete a prerequisite sequence may also use this option. The course must be required for graduation and must not be offered on the Boulder campus, or the course must conflict with another required course in which the student is enrolled. Students from other colleges and schools who wish to take business courses must have the approval of their own college or school before submitting the concurrent registration form.

Scholastic Load
The normal scholastic load of an undergraduate student in the college is 15 semester hours, with a maximum of 18 hours during the fall and spring semesters. A maximum of 6 hours may be taken during a five-week summer term, with no more than 12 hours total during the 10-week summer session.

Credit Policies
To receive credit, all courses must be listed on the student’s official transcript by the Office of the Registrar. Credit is then evaluated by the College of Business and Administration to determine degree acceptability.

Cooperative Education Credit
No credit is given for work experience or cooperative education programs.

Correspondence Credit
No business courses can be taken by correspondence. All nonbusiness correspondence courses must have prior approval and be evaluated to determine their acceptability.

Credit by Examination
Advanced Placement (College Board). For students who earn scores of 3, 4, or 5 on Advanced Placement exams, college credit will be given where appropriate. See the General Information section for a comprehensive chart on AP credit.

College-Level Examination Program (CLEP). College credit for approved CLEP subject examinations may be considered, providing the scores are at the 67th percentile or above. Specific information is available in the Office of the Dean.

CLEP credit is only appropriate for prebusiness requirements and nonbusiness electives. A maximum of 6 hours of credit in any one course area is allowed. CLEP may not be used in course areas where credit has already been allowed. General examinations are not acceptable.

Before a CLEP examination can be taken, students must have prior approval in writing by the Office of Undergraduate Studies.

No Credit
Because of enrollment limitations, business classes may not be taken on a no-credit basis.

ROTC Credit
Students who are enrolled in and complete the ROTC program may apply a maximum of 12 semester hours of advanced ROTC credit toward nonbusiness elective requirements and toward the 120-semester-hour degree requirement for the B.S. degree in business administration. Students must be enrolled as official ROTC students in order to receive degree credit for ROTC courses. No credit toward degree requirements is granted for basic (freshman and sophomore) ROTC courses. The ROTC advisor can provide more detailed information.

Special Sources of Credit
The college reserves the right to accept or reject all special sources of credit that do not have prior approval of the dean.

Independent Study
A maximum of 6 hours of independent study will be accepted as degree credit. Prior approval is required if the work is to be applied as degree credit. A maximum of 3 hours may be taken in any one semester.

Study Abroad Credit
Transfer credit from study abroad programs is applied as business or nonbusiness elective credit. Students planning to attend study abroad programs must meet with an undergraduate advisor and have their course selections approved before leaving campus.

More specific information about these opportunities is available from the Office of International Education.

Transfer Credit
The college reserves the right to disallow any credit that it deems inappropriate degree credit.

Credits in business subjects transferred from other institutions will be limited to the number of credit hours given for equivalent work in the regular offerings of the university. Only work from regionally accredited institutions will transfer to the college. A maximum of 60 semester hours of credit may be accepted from a two-year school.

Actual equivalent courses may be substituted for required courses. Students must submit a carefully checked catalog description and course syllabus for course equivalency determination, since a course given at another institution may have the same name and same textbook as a required business course and still be taught with a nonbusiness emphasis or other variations that give it little value for business.

Business students desiring to apply course work from another institution or University of Colorado campus toward the B.S. degree in business administration must have prior approval of the College of Business and Administration. Only nonbusiness requirements or elective credit is acceptable in transfer from other institutions once the student has enrolled in the college.

All courses in the area of emphasis must be taken at the University of Colorado at Boulder unless written approval is given by the associate dean of undergraduate studies.

Transfer students must take a minimum of 30 hours of business courses, including the area of emphasis, in residence after admission to the college. For more information on transfer of credit policies, see Transfer of College-Level Credit in the Admission section.

Grading Policies
In addition to the campuswide grading system and pass/fail policy listed under Registration in the General Information chapter, the College of Business and Administration enforces the following policies.

Pass/Fail
Students in the College of Business and Administration may not use courses taken on a pass/fail basis to satisfy required business, required nonbusiness, or elective business courses. Only nonbusiness electives may be taken on a pass/fail basis. A maximum of 16 hours of pass/fail credit may be applied toward the B.S. degree in business administration; transfer students may take 1 hour of pass/fail for every 8 hours successfully completed at this institution. Pass/fail determination must be made within the first two weeks of the semester and is irreversible. A maximum of 6 hours designated pass/fail may be taken in any one semester.

Failed Courses. Failed courses may be repeated, but the F will be included in the grade point average.

Incomplete Grades
The only incomplete grade given in the college is IF. An IF grade is given only when documented circumstances clearly beyond the student’s control prevent the student from completing the course. Generally, students should make up the missing work and not retake the entire course. Students should not register for the class a second time, and the work should be made up with the instructor giving the IF. All IF grades must be made up within one year or the IF will be changed to a grade of F.

Grade Changes
Final grades as reported by instructors are considered permanent and final. Grade
changes will be considered only in cases of documented clerical errors, and must be approved by the associate dean.

Withdrawal
Students may withdraw any time before the beginning of the final examination period. Students who withdraw during the semester are not assured admission for the following semester but will be considered on an individual basis, if space is available.

UNDERGRADUATE DEGREE REQUIREMENTS

Knowledge and Abilities of Business Students
The following areas of knowledge are central to the undergraduate degree in business administration:

- knowledge of the business core that provides students with a comprehensive understanding of the basic functional areas of the discipline;
- knowledge in one or more of the five areas of emphasis, in which students are exposed to in-depth study that provides them with the tools necessary to solve complex business problems;
- awareness of the interrelations between academic theory and practice in order for students to be fully equipped to make effective decisions under conditions of uncertainty;
- knowledge of basic communication skills, computer use, and the international environment in which business currently operates;
- knowledge of mathematics sufficient to facilitate the application of quantitative principles; and
- awareness of the importance of academic fields in the area of arts and sciences, with special emphasis placed on the study of economics, political science, and other related fields.

In addition, students completing a degree in business administration are expected to acquire:

- the ability to solve problems involving the application of basic business principles to new and recurring situations;
- the ability to conceptualize and analyze decision-making situations to facilitate solutions in an effective and timely manner; and
- the ability to communicate the results of problem-solving situations, both verbally and in writing.

Having acquired these skills and knowledge, students are able to conceptualize and analyze the concept of business and problem solving as a system. They have the ability to present solutions to business problems in an understandable and useful form. Their education provides them with excellent working knowledge, not only in the field of business, but also in related academic disciplines.

Advising and Records
Business students receive academic counseling from a staff of advisors in the Office of Undergraduate Studies. During the semester, advisors are available Monday through Friday from 9:00 a.m. to 12 noon and 1:00 p.m. to 4:00 p.m. During registration periods, advisors are available to answer registration questions. Individual advising and scheduling are not possible during registration periods; rather, they should be obtained throughout the semester.

Students may look at their individual progress sheet any time during advising hours, and a copy will be provided upon request. Students are expected to assume responsibility for planning their program in accordance with college rules and policies. Students are encouraged to discuss the various emphases available as well as career opportunities with the faculty of the college.

Requirements for the B.S. (Business Administration) Degree
The bachelor of science degree requires:

Total Credits. A minimum of 120 acceptable semester hours of credit, as follows:

<table>
<thead>
<tr>
<th>Category</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Hours</td>
<td></td>
</tr>
<tr>
<td>Business core requirements</td>
<td>28</td>
</tr>
<tr>
<td>Business area of emphasis</td>
<td>15</td>
</tr>
<tr>
<td>Business electives</td>
<td>18</td>
</tr>
<tr>
<td>Nonbusiness course requirements</td>
<td>39</td>
</tr>
<tr>
<td>Nonbusiness electives</td>
<td>20</td>
</tr>
</tbody>
</table>

The college reserves the right to disallow any credit that it determines is not appropriate academic credit.

Residence. Students must complete 30 hours of business courses in residence on the Boulder campus after admission to the college, including the 15 hours in the area of emphasis and the 9 hours in the area of application (included in the business electives). Students must be in residence at CU-Boulder, and must be registered as business degree students during the term of graduation.

Grade Point Average. A minimum scholastic cumulative grade point average of 2.00 is required for all courses attempted at the university, including 2.00 cumulative for all business courses, 2.00 cumulative in the required areas of emphasis courses, and 2.00 cumulative in the area of application courses.

General Requirements
Business Core Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCOR 1000 Business Computing Skills</td>
<td>3</td>
</tr>
<tr>
<td>BCOR 1100 Profiles in American Enterprise</td>
<td>3</td>
</tr>
<tr>
<td>BCOR 2000 Accounting and Financial Analysis</td>
<td>4</td>
</tr>
<tr>
<td>BCOR 2010 Business Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

BCOR 2050 Fundamentals of Marketing I3
BCOR 2100 Introductory Finance...............3
BCOR 2150 Adding Value with Management and Marketing II3
BCOR 3000 Business Law, Ethics, and Public Policy3
BCOR 4000 Business Senior Seminar3

Business Area of Emphasis (15 semester hours)
Students must choose an area of emphasis in accounting, finance, information systems, management, or marketing. Areas of emphasis consist of 15 semester hours beyond any business core courses.

Business Electives (18 semester hours)
Business courses required for areas of application are included in business electives.

Nonbusiness Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical skills</td>
<td>6</td>
</tr>
<tr>
<td>Written communication (upper division)</td>
<td>3</td>
</tr>
<tr>
<td>Historical context</td>
<td>3</td>
</tr>
<tr>
<td>Cultural and gender diversity</td>
<td>3</td>
</tr>
<tr>
<td>United States context</td>
<td>3</td>
</tr>
<tr>
<td>Literature and the arts (3 semester hours)</td>
<td>6</td>
</tr>
<tr>
<td>Natural sciences</td>
<td>6</td>
</tr>
<tr>
<td>Contemporary societies</td>
<td>6</td>
</tr>
<tr>
<td>Ideals and values</td>
<td>3</td>
</tr>
</tbody>
</table>

A list of courses that fulfill specific requirements for each area can be found in the College of Business degree requirements brochure.

Curriculum Notes
1. Students may complete the math requirements by taking MATH 1050, 1060, 1070, 1080, 1090, and 1100. A college-level calculus course may be substituted for MATH 1080, 1090, and 1100. All math requirements must be completed for junior standing.
2. A minimum of 3 semester hours of both microeconomics and macroeconomics is required.

Nonbusiness Electives (18 semester hours)
Not all classes are accepted as elective credits. Generally, to be acceptable, electives must be taught by University of Colorado faculty, must have a form of assessment such as a term paper and/or examinations, and must be regular classroom-type courses. Course coverage must be college-level, must not be repetitious of other work applied toward the degree, must be academic as opposed to vocational or technical, and must be part of the regular university offerings.

Specifically, the college will accept:

- A maximum of 12 hours of nontraditional credit. However, only 6 hours maximum from each of the following categories will apply as a part of the 12 hours: 6 hours of independent study, 6 hours of performance classes (choir, band, guitar, etc.), 6 hours of fine arts (paint-
ing, drawing, etc.), 6 hours of teaching (BADM 3820 and 3830), and 6 hours of physical education and dance. The college will not accept workshops, orientations, practica, certain teacher education classes, or certain classes offered by the College of Arts and Sciences.

- The only approved exceptions to the 6-hour limit in each category are 12 hours of ROTC credit, providing the student is enrolled and completes the program, and 12 hours of PRLC credit.

The previous examples are not exclusive but are intended to be guidelines. The College of Business and Administration reserves the right to disallow any credit that it determines is not appropriate academic credit. For further information contact the Office of Undergraduate Studies.

Senior Audit

Prospective graduates must schedule an appointment with the Office of Undergraduate Studies and the Office of Career Development the semester before they plan to graduate to complete a senior audit. Students planning to graduate in May must complete a senior audit by the previous December 14; August graduates must complete a senior audit by the previous March 2; and December graduates must complete a senior audit by the previous March 16. Failure to do so will delay graduation.

Students desiring to change their area of emphasis after completing the senior audit must have the change approved by the graduation advisor no later than the first week of class of their final semester. Changes after that time will delay graduation.

Double-Degree Programs

Numerous career opportunities exist for graduates trained in both a specialized field and business. For this reason students may be interested in a double-degree program leading to completion of degree requirements concurrently in two fields. Such double-degree programs have been arranged for engineering, environmental design, journalism, and music, and may be arranged for other professional combinations as well.

A combined bachelor’s and master’s degree program in telecommunications is available. Students take information systems as their area of emphasis in business administration with advanced courses in telecommunications. See the program description under the information systems area of emphasis.

Two programs of study proceed concurrently, terminating together with the awarding of two degrees. Normally, at least five years will be needed to complete a double-degree program. No substitutions are allowed, and a minimum of 150 semester hours is required for all double-degree programs.

Students desiring to transfer from double-degree programs to the College of Business and Administration must submit an application to the Office of Undergraduate Studies.

For further information contact the Office of Undergraduate Studies.

Minor in Business for Nonbusiness Students

A minor in business consists of 22 semester hours in addition to any prerequisite courses.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCOR 1000 Business Computing Skills</td>
<td>3</td>
</tr>
<tr>
<td>BCOR 2010 Business Statistics</td>
<td>3</td>
</tr>
<tr>
<td>BCOR 2000 Accounting and Financial Analysis</td>
<td>4</td>
</tr>
<tr>
<td>BCOR 2050 Fundamentals of Marketing</td>
<td>3</td>
</tr>
<tr>
<td>BCOR 2100 Introductory Finance</td>
<td>3</td>
</tr>
<tr>
<td>BCOR 2150 Adding Value with Management and Marketing</td>
<td>3</td>
</tr>
<tr>
<td>BCOR 3000 Business Law, Ethics, and Public Policy</td>
<td>3</td>
</tr>
</tbody>
</table>

In addition to the required 22 semester hours of course work, the following requirements apply to the minor program in business:

- No pass/fail work may be applied toward the minor.
- The cumulative grade point average for all minor degree course work must equal 2.00 or higher.
- Students will be allowed to apply no more than 9 credit hours of transfer work.
- Students must complete prerequisite courses as stated in the course descriptions.

AREAS OF EMPHASIS

College of Business Programs

All business students pursuing a bachelor’s degree in business administration must complete the prescribed courses in at least one area of emphasis. The college offers programs in five areas of emphasis: accounting, finance, information systems, management, and marketing. An area of emphasis consists of a minimum of 15 semester hours taken at the University of Colorado at Boulder. A 2.00 cumulative grade point average is mandatory for the required area of emphasis courses.

In addition to the area of emphasis, students also may complete an area of application. The college offers the following areas of application: entrepreneurship and small business management, international business, tourism management, and real estate. An area of application consists of a minimum of 9 semester hours taken at the University of Colorado at Boulder. A 2.00 cumulative grade point average is required for the required area of application courses. Successful completion of additional requirements in some of these areas of application entitles students to a certificate issued by the dean of the college.

The college also offers a minor program in business for nonbusiness students.

Accounting

The areas of accounting study are financial accounting, managerial accounting, taxation, and auditing. The accounting area of emphasis is designed to prepare students for careers in accounting, business, not-for-profit, and government organizations.

Course work in accounting conveys a comprehensive understanding of the theory and concepts that underlie accounting practice. Emphasis is placed on logical reasoning and development and use of information, which enables students to solve problems in accounting and management of organizations and to make sound accounting policy decisions.

Accounting students have two broad career options to consider after graduation. Those who aspire to pursue careers in public accounting must become certified public accountants (CPAs). Those who seek other career paths may become CPAs as well, but the CPA designation is not as critical. Currently, an undergraduate degree, including 27 semester hours of accounting, is necessary for the CPA exam in the state of Colorado. Most states outside Colorado require 150 semester hours of education and additional credit hours of accounting for the CPA exam. Students who wish to become CPAs should learn the status of the educational requirements of the state in which they hope to work following graduation. Each state has a board of accountancy that can provide this information.

Students should consider the following two degree options:

1. The bachelor of science degree in accounting. Accounting students who are planning careers in business, government, or nonprofit enterprises and wish to earn their undergraduate degree in accounting are strongly encouraged to take substantial course work outside of the required accounting courses, such as finance, information systems, and international business.

2. The concurrent bachelor of science/master of science degree in business administration with a concentration in accounting or taxation. Accounting students who are planning to become CPAs (whether in public accounting or in other positions) are strongly advised to apply to the concurrent bachelor’s/master’s degree program early in their undergraduate career. This program is designed to prepare the student for a career in public accounting and to
meet the national educational standards for CPAs. Details on this program are provided under the Graduate Degree Programs section in this chapter.

An additional year of study leading to an M.S. is available to graduates of four-year programs in accounting or other business disciplines. For those students who do not have an undergraduate degree in accounting or business but wish to pursue a graduate degree in the field, the M.B.A. with a self-designed major in accounting is available. Consult the graduate section of this chapter for more information about advanced degree programs.

The undergraduate area of emphasis in accounting consists of at least 15 semester hours of course work beyond the undergraduate core requirements.

Required Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 3220</td>
<td>Intermediate Financial Accounting 1</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 3230</td>
<td>Intermediate Financial Accounting 2</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 3240</td>
<td>Cost Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Plus at least 6 credit hours from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 4240</td>
<td>Advanced Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 4250</td>
<td>Financial Statement Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 4330</td>
<td>Advanced Cost Management</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 4430</td>
<td>Personal Financial Planning</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 4540</td>
<td>Accounting Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 4620</td>
<td>Auditing</td>
<td>3</td>
</tr>
</tbody>
</table>

Finance

The finance area of emphasis is designed to provide students with in-depth exposure to the theoretical concepts and applied tools and techniques necessary for entry-level positions in various areas of financial management. The principal areas of study include financial management, money and capital markets, investments and derivative securities, and financial institutions.

Finance is an applied discipline with an analytical orientation. Effort is made to develop students' ability to think logically about financial problems and to formulate sound financial decisions and policies. Although the emphasis is on financial management of profit-oriented organizations, the principles and concepts developed are also applicable to not-for-profit and governmental organizations.

It is strongly recommended that finance students take additional accounting (such as ACCT 3220 and ACCT 3230) beyond the business core requirements.

Required Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNCE 3010</td>
<td>Corporate Finance</td>
<td>3</td>
</tr>
<tr>
<td>FNCE 3020</td>
<td>Financial Markets and Institutions</td>
<td>3</td>
</tr>
</tbody>
</table>

Plus any three of the following six courses:

- FNCE 4000 Financial Institutions Management
- FNCE 4020 Applied Business Finance
- FNCE 4030 Investment and Portfolio Management
- FNCE 4040 Derivative Securities
- FNCE 4050 Capital Investment Analysis
- FNCE 4060 Special Topics in Finance

Information Systems

The information systems area of emphasis prepares students for professional careers in information systems involving people, organizations, computers, and networks. Students develop the technical skills and organizational insights required to analyze, design, implement, and manage information systems in a networked world. The degree focuses on the analysis, design, and implementation of integrated, networked, and distributed information systems. The areas of study include systems development, database design, network design, and the integration of these skills for solving problems and creating opportunities.

Students completing this area of emphasis may take jobs as systems analysts, systems designers, software engineers, network administrators, and the like. When combined with a second area of emphasis in accounting, finance, management, or marketing, additional opportunities exist for technology analyst positions within these other business areas. For students interested in improving their information technology background for application to other fields but not wishing to take the entire area of emphasis, the 3000-level courses in information systems provide a strong foundation to support the effective application of information technology to other business areas.

Prerequisite Courses

Semester Hours

Students must complete at least 6 hours of programming courses. Examples that meet this requirement include but are not limited to:

- CSCI 1200 Introduction to Programming 1
- CSCI 1210 Introduction to Programming 2
- CSCI 1300 Introduction to Computing for Majors
- INF 2010 Visual-Language Programming
- INF 2030 Introduction to JAVA Programming

Required Courses

Semester Hours

- INF 3010 Systems Analysis and Conceptual Design
- INF 3020 Database Modeling and Inquiry
- INF 3510 Physical Systems Design and Implementation

Plus any two of the following three courses:

- INF 4020 Advanced Systems Development with Object-Oriented Methods
- INF 4030 Computer Network Design and Management

INFS 4510 Systems Integration in a Network Environment

Elective Course

INFS 3050 Competing with Information Technology

A concurrent B.S./M.S. program is available for students choosing the information systems area of emphasis. The concurrent program offers undergraduate students the opportunity to integrate information systems and business with telecommunications—an integration that is increasingly important in industry. Students who complete the dual program earn a B.S. with an emphasis in information systems from the College of Business and an M.S. in telecommunications from the College of Engineering. Contact an advisor in either area for details of program requirements.

Management

The management area of emphasis addresses the effective management of people, organizations, and technology to improve the performance of diverse public and private organizations. The area provides the managerial skills necessary for success in entry-level positions, and builds the foundations required for success in management positions of greater responsibility, authority, and leadership. Students completing the management area of emphasis are viewed by potential employers as having the broad-gauged education required in the team oriented, horizontally organized, and globally competitive environments of the twenty-first century. The management area of emphasis prepares students for careers in general management, or can serve as a strong secondary major to complement another functional area.

The management area of emphasis begins with two required courses covering modern theories of quality management and the development of critical managerial skills.

Required Courses

Semester Hours

- MGMT 3020 Total Quality Management
- MGMT 3030 Critical Leadership Skills

Students must choose one of two tracks, one emphasizing the management of human resources, and the other emphasizing the management of operations. Cross-over courses are also possible with students in one track taking elective courses in the other track.

Human Resource Management Track

The human resource management track provides students with the knowledge and skills necessary to earn certification in human resources from the Society of Human Resources, the principal professional society in the field. Graduates are
Students should choose from one of the following two plans for taking required marketing courses. Students with a marketing emphasis must take 15 hours of marketing courses beyond BCOR 2050. These students should select Plan A. Plan B is intended for those students wishing to take marketing courses as part of their business electives.

Students pursuing a marketing emphasis (Plan A) will need three semesters to complete the required course work (beyond BCOR 2050).

Plan A

(For students with marketing as their area of emphasis)

Required Courses Semester Hours
MKTG 3600 Marketing Analysis6
(Students planning on graduating in four years must take MKTG 3600 in their junior year)
One course from each of the following two groups (to be taken after MKTG 3600):

Group 1

MKTG 4150 Sales Management3
MKTG 4550 Advertising and Promotion Management ..3

Group 2

MKTG 4250 Product Strategy3
MKTG 4350 Services Marketing Strategy -------3
MKTG 4400 International Marketing3
MKTG 4650 Institutional Relationships and Strategy ..3
MKTG 4800 Marketing Strategy and Policy
(capstone course for marketing majors only, to be taken after completion of Group 1 and Group 2 courses. Offered in fall and spring semesters only.) ..3

Plan B

(For students taking marketing courses as business electives)

Required Courses Semester Hours
MKTG 3250 Buyer Behavior3
MKTG 3350 Marketing Research3
Other 4000-level marketing course3

AREAS OF APPLICATION

Entrepreneurship and Small Business Management

The entrepreneurship and small business management area of application reflects the fact that practically all new job creation in the United States is produced by new ventures and small- to medium-sized emerging growth businesses. In addition, Boulder and the College of Business and Administration are highly recognized for a unique entrepreneurship climate. Students enhance their functional area knowledge by applying such learning to entrepreneurship and small- to medium-sized environments. This application area provides the knowledge, understanding, and skills for creating, organizing, and managing new ventures or small- to medium-sized and emerging growth businesses as independent entities, or within corporate structures.

Students examine theory and research, but the fundamental thrust of this application area is to experience entrepreneurial cultures through professional experiences such as field projects, meeting entrepreneurs in the classroom, internships, writing feasibility and business plans, and developing other practical skills.

After completing the required lower-division core courses, students begin the study of entrepreneurial environments in their junior year. Entrepreneurial finance, business plan preparation, and an internship may be taken in the junior and/or senior year.

Students who complete the three required entrepreneurship courses with a 3.30 grade point average or better (credit is optional and not usually awarded), and who complete an internship, will qualify to sit for the entrepreneurship honors exam. Those who pass the exam will be awarded the Certificate of Excellence in Entrepreneurial Studies.

Required Courses Semester Hours
ESBM 3700 Entrepreneurial Environments3
ESBM 4570 Entrepreneurial Finance3
ESBM 4830 Business Plan Preparation3

Note: Students wishing to take an internship should have completed ESBM 3700 by the end of their junior year.

International Business

The globalization of the marketplace has created a need for managers who can function effectively in the international business environment. Despite this movement toward globalization, there remains significant environmental differences (cultural, economic, and political) between countries and/or regions. Managers in an international business must be sensitive to these differences and also must adopt the appropriate policies and strategies for dealing with them.

To address these issues, the College of Business and Administration offers an area of application in international business. In addition to this area of application, students can complete additional requirements that result in an international business certificate. The area of application and certificate program build on the student’s understanding of the functional areas of business and provide her or him with an appreciation of the international environment and a framework for developing policies and strategies appropriate for this environment.

Required Courses Semester Hours
INBU 4100 International Business and Marketing ..3
INBU 4200 International Financial Management ..3

Operations Management Track

The principal function of any organization is the efficient creation and delivery of products and services to its customers. The operations management track focuses on this creative process and identifies how organizations use productivity, quality, flexibility, timeliness, and technology to compete and prevail in their markets. Students graduating from the operations management track will have a broad understanding of the importance of operations in the success of any organization, and will be qualified to serve in entry-level management positions and as general managers later in their careers. Under the operations management track, students must select three of the following courses.

MGMT 4050 Competing with Operations3
MGMT 4060 Business Process Re-engineering ..3
MGMT 4070 International Operations Management ..3
MGMT 4080 Environmental Operations3

Marketing

The marketing area of emphasis hones skills in analysis and decision-making for a wide spectrum of marketing careers in fields such as advertising, market research, brand management, e-business, selling and sales management, distribution, industrial and business-to-business marketing, international marketing, the marketing of services, and marketing for not-for-profit organizations.

Marketing cuts across tangible products, services, and ideas, across consumer and business markets, across domestic and global boundaries, and across traditional and electronic business environments. Key concepts focus on identifying customer needs and wants, developing products and/or services to satisfy these needs and wants, establishing channels and communications to move products and services through intermediaries to end users, and monitoring transactions and customer responses to guide future activities.
In addition, the certificate program requires completion of the following:
1. Six hours of economics, geography, or political science beyond arts and sciences course requirements. Courses must be selected from an approved list (students should see the advising office for details).
2. Three hours of foreign language beyond MAPS requirements.
3. Six hours of an international experience. This requirement can be satisfied through either study abroad programs or academic internships of an international business nature.

Finally, it is recommended that students in the international business area of application or the certificate program consider additional electives from the following courses: MGMT 4070 International Operations Management, TRMC 4500 International Transportation and Logistics, and ACCT 4700 International Accounting.

Real Estate

The real estate area of application is designed to provide students with exposure to the concepts, tools, and techniques necessary for entry-level positions. A career in real estate provides an opportunity for individuals to operate as entrepreneurs and thus be their own boss whether they are brokers, appraisers, developers, property managers, consultants, or investors. An integrated process is followed in the three application area courses to prepare students for real estate careers.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAL 3000 Principles of Real Estate</td>
<td>3</td>
</tr>
<tr>
<td>REAL 4000 Real Estate Law and Financing Instruments</td>
<td>3</td>
</tr>
<tr>
<td>REAL 4100 Real Estate Finance and Investment Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

The real estate certificate program allows students to broaden their knowledge and understanding of real estate through multidisciplinary focus, whereby courses are taken outside of the College of Business and Administration. For this program, an academic internship is also required.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>College of Architecture and Planning courses</td>
<td>6</td>
</tr>
<tr>
<td>Construction management course in the Department of Civil, Environmental, and Architectural Engineering or another course from the College of Architecture and Planning</td>
<td></td>
</tr>
<tr>
<td>Academic internship in real estate practice or related area</td>
<td>3</td>
</tr>
</tbody>
</table>

Tourism Management

The tourism area of application is designed to prepare students to take advantage of the opportunities provided by this industry, including the management and operation of tourism attractions, the various businesses that serve travelers, and the private and government organizations devoted to tourism industry development.

When combined with the skills and knowledge attained in an area of emphasis and an internship, the tourism area of application enhances students’ opportunities to pursue their chosen area in the tourism industry. As the tourism management area of application combines academic and practical experience, students are encouraged to complete an academic internship with a tourism business, typically during the summer preceding their senior year.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOMG 3060 Resort Tourism</td>
<td>3</td>
</tr>
<tr>
<td>TOMG 3400 Tourism Management</td>
<td>3</td>
</tr>
<tr>
<td>TOMG 3500 Tourism Destination Development</td>
<td>3</td>
</tr>
</tbody>
</table>

GRADUATE DEGREE PROGRAMS

The Graduate School of Business Administration offers programs leading to the master of business administration (M.B.A.), master of science in business administration (M.S.), juris doctor/master of business administration (J.D./M.B.A.), master of business administration/master of science in telecommunications (M.B.A./M.S. TLEN), and doctor of philosophy in business administration (Ph.D.) degrees. These programs are open to qualified individuals who hold a bachelor’s degree from a regionally accredited college or university, or a recognized international university, without regard to their undergraduate major. The College of Business also offers a concurrent B.S./M.S. program in accounting that awards the bachelor’s and master’s degrees simultaneously.

Requirements for Admission

For all master’s programs, the admissions committee reviews the applicant’s complete application, with consideration given to the following:
1. An applicant’s academic record.
2. An applicant’s score on the Graduate Management Admission Test (GMAT). The GMAT must be retaken if the test date was more than five years ago.
3. International students must provide a TOEFL exam score.
4. An applicant’s work experience.

In addition, letters of recommendation and a nonrefundable application fee are required of all applicants. Please see the specific graduate application for more information.

The address for graduate applications is:

University of Colorado at Boulder
Graduate School of Business Administration
419 UCB
Boulder, CO 80309-0419
303-492-1831 (general information)
303-492-7662 (application request line)

Information is available on the Web at bus.colorado.edu/.

For the 150-hour bachelor of science/master of business program in accounting, application should be made during the first semester of junior standing, after the student has completed 12 semester hours in accounting.

Recommendation letters may be waived for continuing College of Business students.

Diversity

The Graduate School of Business Administration encourages qualified individuals to apply regardless of sex, race, religion, national origin, age, or physical limitations.

Master of Business Administration

The breadth of training that master of business administration graduates receive prepares them to become high-level managers or become involved in new business ventures in a challenging and evolving business environment.

The M.B.A. program is rigorous and comprehensive, and demands student commitment. The core curriculum provides a set of broad-based, integrative skills, rather than narrowly focused, highly specialized skills. Core courses provide a solid foundation in both business management and analytical disciplines, a foundation that fosters continued career growth. In addition to core courses stressing key functional areas of business, students can choose electives specific to their chosen major. Each major addresses different goals, and all provide in-depth management study.

The case study method and student field projects are used broadly throughout core courses, and common areas of study such as ethics, technology, communications, and international issues are integrated throughout much of the curriculum. Students learn about management theory and its practical applications in “real-world” situations. Lectures, seminars, team teaching, team study groups, guest lectures, and videotaped critique sessions are all approaches taken by the faculty to generate new ideas and allow student input.

M.B.A. Policies and Requirements

For current, detailed information regarding the M.B.A. program, contact the Graduate School of Business Administration.
Advising. All graduate students are required to check in with an advisor during the first semester of study to ascertain degree requirements.

Minimum Hours Required. Students entering the M.B.A. program take a prescribed sequence of classes before beginning elective courses. A minimum of 51 credit hours is needed to graduate. Students entering the M.B.A. program must complete their degree in two years. Transferred course work is not accepted into the M.B.A. program.

Core Course Waiver. Students are eligible to waive any core courses, except Business Policy, for which they meet the core course waiver eligibility requirements. There is no limit on the number of core courses a student may waive. However, the student must still complete 51 credit hours to satisfy graduation requirements.

Courses Taken Outside the Graduate School of Business Administration (limits). All students must take a minimum of four M.B.A. courses beyond the core in the M.B.A. program. Non-M.B.A. courses count as elective credit. Students may not take courses outside the University of Colorado at Boulder and count them toward the degree. Students should contact individual departments for course listings and registration requirements for nonbusiness courses. Course work does not transfer into the M.B.A. program.

Grades and Quality of Work. All courses applied toward the 51 credit hours must be taken for a grade. Courses in which a C- or below is received are not accepted for credit toward the 51 credit hours and may have to be retaken. In this case, both grades are factored into the GPA. To withdraw from an elective course and receive a grade of W, a student must be earning a passing grade in that course. Students normally are not permitted to withdraw from courses after the sixth week of the semester. Students in the M.B.A. program may not withdraw from specified, lock-step course work. An IF is an incomplete grade. Use of the IF is at the option of the course instructor and/or dean. Students must ask for an incomplete grade. An IF is given only when students, for reasons beyond their control, have been unable to complete course requirements. A substantial amount of work must have been satisfactorily completed before approval for such a grade is given.

Calculating GPAs. For the purpose of calculating GPAs for M.B.A. student rankings and probation, only course work of the business school is counted.

Withdrawal. Students who choose to leave the program must formally withdraw. Failure to do so will result in assessment of full tuition and fees. Students who withdraw must reapply to the program if they wish to continue their studies. Applicants who reapply are evaluated with current applicants to the program. Students who are granted admission must complete the requirements of the current program. Course work taken more than five years earlier must be validated by examination in order to count toward the degree and may be considered elective credit.

Probation. A student whose cumulative GPA falls between a 2.50 and 3.00 is put on academic probation. The student is allowed to remain on probation as long as reasonable progress is made to improve the GPA. The associate dean for academic programs determines whether reasonable progress is being made and whether the student can graduate with a 3.00 in the stated time limit.

Suspension. A student whose cumulative GPA falls below 2.50 is automatically suspended from the program. A suspended student is eligible to reapply after one year. Note that applicants who reapply are evaluated against other applicants applying for consideration that year.

Juris Doctor/Master of Business Administration Degree

The purpose of this double-degree program is to allow students admitted to both the School of Law and the Graduate School of Business Administration to obtain the juris doctor (J.D.) and the master of business administration (M.B.A.) degrees in four (or fewer) years of full-time study. The program is designed to train students for careers in which business administration and law overlap.

Admission

To be eligible for the J.D./M.B.A. double-degree program of the School of Law and the Graduate School of Business Administration, a student must apply separately to and be admitted by each of the two schools under their respective admission procedures and standards.

Students may elect the double-degree program at the time of initial application to both schools, or they may apply for the double-degree program during their first year of study in the degree program of either school.

Course of Study

A student enrolled in the J.D./M.B.A. program may commence studies under the program in either the School of Law or the Graduate School of Business Administration. Joint-degree students are strongly encouraged to begin their course of study at the School of Law. However, a student must take the first year of the J.D. curriculum as a unit exclusively in the School of Law. Likewise, a student must take the first semester of the M.B.A. curriculum as a unit exclusively in the Graduate School of Business Administration. Students can then take additional courses necessary to meet the requirements of the degree programs of the two schools.

No student in the double-degree program shall be allowed to take fewer than 9 semester hours or more than 16 semester hours during any term (excluding summer terms) without receiving the consent of the program advisor in each school in which courses are being taken.

Credit for Law Courses in the J.D./M.B.A. Program

The Graduate School of Business Administration grants credit toward the M.B.A. degree for up to 12 semester hours of acceptable performance in law courses taken by a J.D./M.B.A. student at the School of Law. Core courses required in the law school program cannot be counted toward the 12 hours. A student must earn at least a 72 grade in a law school course to be accepted for Graduate School of Business Administration credit. For credit to be granted, the law school courses must be approved before enrollment by an M.B.A. advisor. Only courses taken after admission into the M.B.A. program are credited toward the degree.

Grading in the Joint Degree Program

Graduate School of Business Administration credit for courses completed in the School of Law as part of the joint degree program is recorded on a pass/fail basis and is not included in the required M.B.A. 3.00 cumulative average.

Termination of Double-Degree Enrollment or of Good Standing

Students in the double-degree program who do not maintain the academic or ethical standards of either school may be terminated from the program. Students in good standing in one school, but not the other, may be allowed to continue in the school in which they are in good standing. However, students who do not complete the double-degree program will be required to meet the regular degree requirements (J.D./M.S. or M.B.A.) that were in effect when they entered the program for that degree.

Master of Business Administration/Master of Science—Telecommunications

The Graduate School of Business Administration, in conjunction with the College of Engineering and Applied Science, offers a double-degree program resulting in a master of business administration (M.B.A.) and master of science in telecommunications (M.S./TLEN).
The double-degree program combines broad-based business management study with an in-depth understanding of telecommunications technology. This program prepares students to be competent, effective managers in the telecommunications industry.

Admission
An individual must apply separately and be admitted to both programs under each college’s admission procedures and standards. Applicants are encouraged to apply to the programs concurrently.

Course of Study
Students considering the M.B.A./M.S. in telecommunications are strongly encouraged to begin their course of study in the M.B.A. program.

Credit for Telecommunications Courses in the M.B.A./M.S. Program
Eighteen credit hours can “double count” towards both degrees. The Graduate School of Business and Administration will accept 15 hours of telecommunications course work toward the MBA degree, and one MBA course will be counted by Telecommunications for the remaining 3 credit hours. Grades received for these courses will be included in the 3.00 cumulative average. Course work completed in the M.S./Telecommunications program prior to acceptance into the M.B.A. program will not be credited toward the degree.

For additional information concerning the double-degree program, see the program advisors in the College of Engineering and the Graduate School of Business Administration.

Master of Science in Business Administration
There are two paths to the master of science in business administration (M.S.) degree. The first is the concurrent bachelor’s and master’s degree program. In this program, both the bachelor’s and master’s degrees are awarded following the completion of 150 specified hours of course credit. An academic internship is an option within this requirement. The program is designed for students pursuing the 150-hour educational background requirement for CPAs (required by most states) and is a highly integrated and challenging program of study. Undergraduate students in the College of Business may apply to the program in their junior year and begin taking graduate courses and an internship during their senior year. This program provides an excellent foundation for careers in professional accounting.

The second path is an independent master’s degree program. This program is designed for students who have already obtained an under-graduate degree in accounting. Students with undergraduate degrees other than accounting may also be admitted to the program, but may have to fulfill deficiency requirements in addition to the regular program requirements. Students with business deficiencies may want to consider the MBA program instead.

All students in these programs choose an area of study that focuses on financial accounting or taxation.

Note that M.S. students are required to complete all degree requirements within four years. Graduate students are not given preferential enrollment in undergraduate courses needed for the deficiency requirements.

For detailed information concerning program requirements, course selection, and applications, contact the Graduate School of Business Administration at 303-492-1831.

Minimum Requirements
Accounting and taxation students must complete a minimum of 30 semester hours of graduate-level work. The newly accepted M.S. student should consult with the faculty advisor for the program to develop an individualized degree plan. No thesis is required, but all students must pass a written final comprehensive exam during their last enrolled semester.

Students in the Master of Science in Business Administration programs are governed by the rules of the Graduate School. See that section in this catalog.

Accounting
The expanding role and increased breadth of knowledge expected of accountants make graduate study in accounting highly desirable. Courses offered for the accounting area of emphasis prepare students for high-level, professional careers in the field. The graduate program in accounting is designed to provide a broad understanding of accounting issues as well as to enhance an undergraduate degree in accounting. It also provides the opportunity to develop knowledge in a related minor area, such as economics, finance, information systems, management, marketing, taxation, or telecommunications. Note that these supporting fields may require some undergraduate level course work beyond core requirements.

Taxation
The master of science in business administration with an emphasis in taxation integrates accounting and law school courses. Some of the tax and law courses are strictly tax-related while others include related legal aspects of a particular subject area. The combination of courses is designed to give exposure to taxation from the accounting and law faculty perspectives.

The purpose of this program is to prepare students for professional careers as Certified Public Accountants (CPAs) specialized in taxation. Therefore, the focus of the program is to train students to:

- develop a refined ability to recognize tax problems and understand the framework of our existing tax structure
- understand some of the legal ramifications surrounding a tax issue
- research and present well-developed strategies or solutions to tax problems and tax planning opportunities
- communicate those solutions verbally or in writing to a superior, a client, or the Internal Revenue Service.

Doctor of Philosophy in Business Administration
A Ph.D. degree recognizes scholarly achievement and is the highest academic honor that CU-Boulder bestows. The Ph.D. in business administration prepares scholars to be preeminent in their field of expertise. The program focuses on developing the necessary skills for the design and execution of original, innovative research and for the dissemination of knowledge through teaching and writing.

Requirements for Admission
To preserve the individualized character of the Ph.D. program and its quality, the number of students is limited and the application process is very competitive. Students are admitted for study in a specific area for doctoral work. The Graduate School of Business Administration currently offers the following areas of study: accounting, business strategy, entrepreneurship, finance, information systems, marketing, operations research and operations management, and organization management.

For more information on the application requirements and process, contact:

Graduate School of Business Administration
Graduate Student Services Office
419 UCB
Boulder, CO 80309-0419
303-492-1831 (general information)
303-492-7662 (applications—specify Ph.D. degree, area of study, and domestic or international status)

Web site: bus.colorado.edu/phd/program-overview.html

Background, Prerequisites, and Deficiencies
Each student must have a background in mathematics at or beyond calculus. Based on experience, background, and at the discretion of the academic advisor and/or division chair and/or the associate dean of academic programs, additional prerequisites may be required of the Ph.D. student.
Requirements for the Degree
Most curriculum and program requirements are decided by the division. Consult the Ph.D. program advisor or the appropriate division for information regarding course selection, graduate teaching program certification, research internships, and other division requirements. Students must complete all Graduate School, Graduate School of Business Administration, and division requirements to be conferred the Ph.D. in business administration.

The newly accepted Ph.D. student should consult with the division chair and/or academic advisor to develop an individualized degree plan. Students are required to become proficient in their primary area of study. In addition, all students are required to complete course work in a field outside their division. These “second fields” are governed by the departments offering the course work but typically require 6 to 12 credit hours. The second field may also require an additional comprehensive exam.

Course Work
All doctoral students are required to complete at least 30 hours of course work and 30 hours of dissertation credit at the CU-Boulder. Additional course work may be required as determined by the academic advisor. To comply with this 30-hour requirement, a course must have been taught by a member of the university’s graduate faculty, must be at the 5000 level or above, and the student must achieve a grade of B- or better.

Courses must be approved by the student’s academic advisor before registration. Most students are required to complete 7000- and 8000-level doctoral seminars.

For full-time status, the Graduate School of Business Administration requires successful completion of 9 credit hours of course work each semester. During and after comprehensive exams, full-time status requires completion of a minimum of 5 dissertation hours each semester.

Transfer of Credit
A maximum of 9 semester hours of courses taken at other schools (this includes other University of Colorado campuses) or taken as a special student at the university may be transferred into the doctoral program. Course work must be recent and of doctoral-level quality. A doctoral student must establish a satisfactory record of residence in the doctoral program before the course work is eligible for transfer. The transfer of credit must be approved by the division, the associate dean of academic programs, and the Graduate School. There is no guarantee any course work will be accepted for transfer.

Residency
The Graduate School of Business Administration adheres to the Graduate School rules regarding residency. All students in the doctoral program are expected to be full-time students on the Boulder campus (at least during residency and prior to completing the comprehensive examinations). Doctoral students are expected to be available to participate in colloquia and other informal academic discussions. Full-time employment outside the university is prohibited during the residency period. Any off-campus status must be approved by the division and the associate dean of academic programs.

Time Limit
Doctoral students have six years from the commencement of course work to complete all requirements of the degree, but students are encouraged to complete their program within four years. Students are not eligible for graduate appointments after their fourth year in the program.

Comprehensive Examination
Before admission to candidacy, a doctoral student must pass a comprehensive examination in the field of concentration. The examination may be oral, written, or both, and will test the student’s mastery of a broad field of knowledge, not merely the formal course work completed. Each division will determine the required content, length, and standards of evaluation for the exam. Check with the division as to the specific requirements for the comprehensive exam.

Admission to Candidacy
Students are admitted to candidacy according to Graduate School procedures and requirements. Students shall complete all course work and any other requirements listed on their degree plans, earn at least four semesters of residence, and successfully pass the comprehensive exams before admission to candidacy is approved by the Graduate School. In addition, requirements related to academic quality of work, graduate-level course work, the minimum number of course hours, and graduate faculty membership must be met before admission to candidacy is approved.

Dissertation
A dissertation based upon original investigation showing mature scholarship and critical judgment, as well as competence with research tools and methods, must be written on a subject approved by the candidate’s dissertation committee. To be acceptable, the dissertation must be a significant contribution to knowledge in the candidate’s primary field.

Final Examination (Defense)
Upon recommendation of the candidate’s doctoral dissertation committee, a final oral examination shall be given. This examination covers both the dissertation and the primary field of study. The oral examination is open to the public.

Filing the Dissertation
The dissertation must comply in mechanical features with the University of Colorado Graduate School Thesis and Dissertation Specifications. The dissertation must be filed with the Graduate School by the posted deadline for the semester in which the degree is to be conferred.

COURSE DESCRIPTIONS
The following courses are offered in the College of Business and Administration and the Graduate School of Business Administration on the Boulder campus. This listing does not constitute a guarantee or contract that any particular course will be offered during a given term.

For current information on times, days, and instructors of courses, students should consult the Registration Handbook and Schedule of Courses issued at the beginning of each term.

Courses specific to the M.B.A. program are listed at the end of these descriptions.

Courses numbered in the 1000s and 2000s are intended for lower-division students and those in the 3000s and 4000s for upper-division students. Courses numbered in the 5000s are primarily for graduate students, but in some cases may be open to qualified undergraduates. Courses at the 6000, 7000, and 8000 level are open only to graduate students.

Courses are organized by subject matter and are listed numerically by last digit (courses ending in the number “0” are listed before courses ending in “1,” and so on). The number after the course number indicates the semester hours of credit that can be earned in the course.

Abbreviations used in the course descriptions are as follows:
Prereq.—Prerequisite
Coreq.—Corequisite
Lab–Laboratory
Rec.—Recitation
Lect.—Lecture

Accounting
ACCT 3220-3. Intermediate Financial Accounting I. Intensively analyzes generally accepted accounting principles, accounting the-
ory, and preparation and analysis of annual financial statements for public corporations. Prereq., BCOR 2100 and junior standing.

ACCT 4540-3. Accounting Information Systems. Examines in depth the tools used by accountants and provides an understanding of accounting as an information system. Prereq., ACCT 3220. Same as ACCT 5440.

ACCT 6420-3. Research and Planning in Income Taxation. Studies and applies the methodology used in tax research and planning, with the goal of developing tax research, writing, and planning skills. Prereq., ACCT 5440 or equivalent, or instructor consent.

ACCT 6430-3. Taxation of Conduit Entities. Examines in depth the taxation of partnerships, S corporations, and the owners of these entities. Covers formation and operation, sale or exchange of ownership interests, and distribution of property. Prereq., ACCT 5440 or equivalent, or instructor consent. Coreqs., ACCT 6420 and 6700.

ACCT 6620-3. Business Risk and Decision Analysis in Auditing. Explores contemporary issues, historical developments, and selected topics pertinent to business assurance services by independent accountants. Emphasizes im-
proving both the decision behavior of decision makers and the quality of information, or its context, for decision makers. Prereq., ACCT 4620 or equivalent.

ACCT 6700-4. Income Taxation. See LAWS 6007. Prereq., ACCT 5440 or equivalent.

ACCT 6720-2. Estate Planning. See LAWS 7217.

ACCT 6730-3. Real Estate Planning. See LAWS 7024.

ACCT 6750-3. Taxation of Natural Resources. See LAWS 7307.

ACCT 6820-variable credit. Graduate Seminar. Experimental seminar offered irregularly to provide opportunity for investigation of new frontiers in accounting. Prereq., varies.

ACCT 6900-variable credit. Independent Study. Students must have consent of instructor under whose direction the study is taken. Refer, Departmental form required.

ACCT 6940-variable credit. Master's Candidate. Departmental form required.

ACCT 6950 (4-6). Master's Candidacy. Departmental form required.

ACCT 7320-3. Doctoral Seminar: Judgment and Decision Making. Introduces the major areas of inquiry in judgment and behavioral decision-making research in accounting. Focuses on major theoretical and methodological issues and assesses the practical implications of the research. Prereq., ACCT 7300.

ACCT 7330-3. Doctoral Seminar: Management Accounting Research. Presents theoretical foundations (including agency theory, strategic decision making, transaction cost theory, and contingency theory) and empirical tests (including experiments, survey and field studies, and statistical tests of archival data) of current management accounting issues. Prereq., ACCT 7300.

ACCT 7340-3. Doctoral Seminar: Accounting and Capital Markets. Examines contemporary research evaluating the role of accounting information in capital markets. Emphasizes development of skills for critically evaluating and conducting research aimed at better understanding the relation between accounting information and firm value. Prereq., ACCT 7300.

ACCT 7800-3. Doctoral Seminar: Proseminar in Accounting. Provides students with an orientation to the accounting academic profession. Introduces leading accounting research and researchers. Provides guidance for critically evaluating research, choosing a dissertation topic, and developing the skills to produce outstanding accounting research and education. Open only to doctoral students.

ACCT 8900-variable credit. Independent Study. Requires instructor’s consent and departmental form (taught as doctoral seminar).

ACCT 8990 (1-10). Doctoral Thesis.

Business Administration

BADM 3820-3. Analysis of Business Enterprise. Exposes students to theory, leadership, small group management, and oral and written communication. Stresses the analysis and synthesis of industry, company, and other business information. Prereq., BCOR 1100 and junior standing.

BADM 3830-3. Interpretation of American Enterprise. Exposes students to theory, leadership, small group management, and oral and written communication. Stresses the analysis and synthesis of industry, company, and other business information. Students act as peer teaching associates and assume primary responsibility for recitation/discussion sections of BCOR 1100. Prereq., BCOR 1100, BADM 3820, and junior standing.

Business Core

BCOR 1000-3. Business Computing Skills. Focuses on the development of business computing skills while introducing important concepts and principles related to working smart in a networked world. The skills component of the course focuses on use of productivity tools such as operating systems, word processing, spreadsheets, presentation packages, and databases. Teaches students how to explore and utilize the global Internet with a variety of tools. Covers applications in accounting, finance, marketing, management, and information systems. Lectures and labs.

BCOR 1100-3. Profiles in American Enterprise. Familiarizes students with the structure, operations, management, and socioeconomic aspects of business and nonbusiness entities. Course builds on the college themes of entrepreneurship, technology, team building, and international competitiveness to establish a foundation for integrating information encountered in more advanced business courses. Major presentations by business leaders augment faculty and student presentations with inside information and insights about companies, industries, and functional areas in business. Weekly recitation sessions include discussions of presented information and current business topics.

BCOR 2000-4. Accounting and Financial Analysis. Builds a basic understanding of how information regarding a firm’s resources and obligations is conveyed to decision makers both inside and within the firm. Focuses on the form and content of corporate financial statements. Students learn the principles of revenue and expense recognition as well as the basic accounting for assets, liabilities, and equities. In addition, introduces accounting and financial statement analysis for decision makers. Prereq., sophomore standing.

BCOR 2050-3. Fundamentals of Marketing 1. Examines how activities in organizations provide value to the purchasers of its products and services. Includes gathering information about consumers and competitors through research and information systems, applying knowledge and technology to the design of products and services, communicating information to consumers and organizational units, and pricing and distributing products and services. Also includes issues in global marketing, ethics and diversity, relationship marketing, and integrating marketing with financial analyses. Prereq., MATH 1050, 1060, 1070, or calculus and BCOR 1000.

BCOR 2150-3. Adding Value with Management and Marketing 2. Focuses on how modern business firms compete in the global marketplace by adding value. Examines the value-chain of a firm and how firms use people, organizations, operations, and information sys-
tems to compete and win in world markets. Also covers contemporary issues such as total quality management, process reengineering, teams and team building, employee empowerment, and horizontal organizations. Prereqs., BCOR 2000, 2010, and 2050.

BCOR 3000-3. Business Law, Ethics, and Public Policy. Surveys major topics and case studies in business law, business ethics, and government policy. Students spend approximately five weeks on each subject. Business law topics include the American legal system; constitutional law; and the fundamentals of contracts, criminal law, torts, and business entities. Ethics topics include the theory of ethics, laws versus moral issues, theories of justice, and practical issues including the rights and duties of the corporations and stakeholder theory. Public policy topics include the roles of business and government, types of government intervention, and the nature and theory of governmental policy formulation. Prereq., junior standing.

BCOR 4000-3. Business Senior Seminar. Surveys the sources of competitive advantage in a global economy. Discusses principles, frameworks, and techniques that help managers and students understand markets and competitive positioning. Focuses on specific company examples. Provides an interdisciplinary team exploration of the evolving strategies across different industries are formally presents to an executive panel. Prereq., senior standing and four upper-division business courses.

Business Economics

BECN 6110-3. Public Policies toward Business. Instructs students in the various roles of business and government in helping societies attain their goals. Examines various roles and functions of government, business, and the markets. Integrates case issues into substantive law areas involving ethical dilemmas that managers are likely to face.

Business Law

BSLW 5120-3. Advanced Business Law. Same as BSLW 4120.

Business Policy and Strategy Management

BPOL 7500-3. Doctoral Seminar: Strategic Management 1. Provides an overview of the literature, including classic articles and books, in business strategy and policy (strategic management). Brings the student up to date on schools of thought, research issues, and practical applications in strategic management.

BPOL 7560-3. Directed Study and Research in Strategic Management. Addresses special topical areas to fit the research interests of Ph.D. students and faculty in strategic management.

BPOL 8900-variable credit. Independent Study. Student must have consent of instructor under whose direction study is taken. Departmental form required.

BPOL 8990 (1-10). Doctoral Thesis.

Entrepreneurship and Small Business Management

ESBM 3700-3. Entrepreneurial Environments. Exposes students to the environment of entrepreneurship within firms varying in size, from start-ups through later stages of organization life cycles. Students develop greater self-awareness of their fit with entrepreneurial environments and learn the processes of venture idea screening (feasibility analyses and plans) and business planning. Case studies and guest visits by entrepreneurs highlight the course process. Prereqs., BCOR 2000, 2050, 2100, and 2150; and at least junior standing.

ESBM 4570-3. Entrepreneurial Finance. Focuses on the financial concepts, issues, methods, and industry practices relevant to entrepreneurial decision makers. Addresses a variety of topics including financial valuation, various sources of funds, structures and legal issues in arranging financing, the private and public venture capital markets, and preparation for, and execution of, an initial public securities offering. Provides an understanding of the segments of the capital markets specializing in start-ups and growth financing. Classroom activities include lectures, numerous case discussions, and guest speakers. Prereq., BCOR 2100.

ESBM 4900-3. Projects in Entrepreneurial Companies. Students complete projects in pre-selected entrepreneurial companies. Prereq., instructor consent.

Finance

FNCE 3020-3. Financial Markets and Institutions. Examines the economics of financial markets and the management of financial institutions, both domestic and international. Topics include an overview of U.S. and international financial markets, pricing and risk factors, interest rates, markets for securities and financial services, and markets for derivative financial instruments. Prereq., BCOR 2100.

FNCE 4000-3. Financial Institutions Management. Analyzes the structure, markets, and regulations of financial institutions. Studies problems and policies of internal management of funds, loan practices and procedures, investment behavior, deposit and capital adequacy, liquidity, and solvency. Prereqs., FNCE 3010 and 3020.

FNCE 4020-3. Applied Business Finance. Develops analytical and decision-making skills in the context of problems that confront financial management. Topics include planning, control, and financing of current operations and longer term needs, expansion, leasing, valuation, and capital structure policies. Uses a combination of lecture and cases. Prereqs., FNCE 3010 and 3020.

FNCE 4030-3. Investment and Portfolio Management. Develops modern portfolio theory and applies it to pricing both individual assets and portfolios of assets. Specific topics include the Markowitz portfolio-selection model, the Capital Asset Pricing Model, Arbitrage Pricing theory, options, futures, bonds, portfolio performance measurement, and issues of market efficiency. Prereqs., FNCE 3010 and 3020.

FNCE 4040-3. Derivative Securities. Develops the modern theory of contingent claims in a mathematical framework oriented toward applications. Examines how to use derivatives for risk management and to tailor portfolio payoffs. Provides an in-depth analysis of the properties of options, and a discussion of other derivative securities such as futures and forwards. Prereqs., FNCE 3010 and 3020.

FNCE 4050-3. Capital Investment Analysis. Focuses on capital budgeting and investment issues. Emphasizes issues relating to cash flows, capital rationing, the investment versus financing decision, leasing, fluctuating rates of output, in-
vestment timing, capital budgeting under uncer-
tainty, and investment decisions with additional
information. Prereqs., FNCE 3010 and 3020.

FNCE 4060-variable credit. Special Topics in
Finance. Presents new subject matter in
finance. The summer offering is the London
Seminar in International Finance and Busi-
ess. Prereqs. vary depending upon course
offering. See advising office.

FNCE 4820-variable credit. Experimental
Seminar. Offered irregularly to provide oppor-
tunity for investigation into new frontiers in
finance.

FNCE 4900-variable credit. Independent
Study. Intended only for exceptionally well-
qualified business seniors. Prereqs., prior con-
sent of dean and instructor under whose
direction study is taken, and departmental
form.

FNCE 6820-variable credit. Graduate Semi-
nar. Experimental seminar offered irregularly
to provide opportunity for investigation of
new frontiers in finance.

FNCE 6900-variable credit. Independent
Study. Student must have consent of instruc-
tor under whose direction study is taken.
Departmental form required.

FNCE 7100-3. Doctoral Seminar: Finance
Theory. Develops the foundations for the study
of modern financial economics by analyzing in-
dividuals' consumption and portfolio decisions
in the context of risk and then traces the impli-
cations to market valuation of traded securities.
Topics include the meaning and measurement
of risk, portfolio theory, the Capital Asset
Pricing Model, and arbitrage pricing arguments
like those employed in Modigliani and Miller's cap-
ital structure theory and the Black-Scholes op-
tion pricing model.

FNCE 7200-3. Doctoral Seminar: Empirical
Research Methods in Finance. Develops an
understanding of current empirical methods
used to examine research issues related to cor-
porate finance and the capital markets.

FNCE 7300-3. Doctoral Seminar: Corporate
Finance, Theoretical, and Empirical Issues.
Develops and examines theories and issues in
corporate finance. Topics may include corpo-
rate control, capital structure, financial signal-
ing, and payout policy.

FNCE 7550-3. Doctoral Seminar: Special
Topics in Finance. Closely examines areas of
specific interest to academic research in finance.
Subjects vary and may include game theory,
stochastic processes in finance, continuous-time
modeling, derivative security pricing, the mi-
crostructure of securities markets and financial
institutions, innovation, and engineering.

Provides finance doctoral students with an orien-
tation to the finance field; introduces contempo-
rary research perspectives and priorities. Students
discuss papers that illustrate academic researchers'
use of various disciplinary theoretical and empiri-
cal tools to address finance problems.

FNCE 7830-1. Doctoral Seminar: Dissertation
Research. Assists doctoral students in integrating
courses and fields of study in order to apply their
knowledge and skills to problems in finance.
Gives special attention to development of thesis
topics. Continuous enrollment required of all fi-
nance doctoral students while doing course work.

FNCE 8820-variable credit. Graduate Semi-
nar. Experimental seminar offered irregularly
to provide opportunity for investigation of
new frontiers in finance.

FNCE 8900-variable credit. Independent
Study. Instructor consent and departmental
form required.

FNCE 8990 (1-10) Doctoral Thesis.

Information Systems

INFS 2010-3. Visual-Language Program-
ing. Focuses on the programming task of the
systems development life cycle. Introduces
structured programming techniques in a
graphical user interface (GUI) environment.
Hands-on portion of the course focuses on use
of the Visual Basic development environment,
which is taught and practiced by writing pro-
gram modules to solve pre-specified business
problems.

INFS 2030-3. Introduction to JAVA Program-
mimg. Second-semester programming course
using JAVA. Features advanced topics such as
graphics, software design using UML, and the
object-oriented paradigm. Prereq., one course in
computer programming such as INFS 2010.

INFS 3010-3. Systems Analysis and Concep-
tual Design. Introduces systems planning, pro-
ject origination, and the roles of the systems
analyst and designer. Covers requirements analy-
sis in depth, including fact finding, process mod-
eling, network modeling, project repositories,
and business process redesign (data
modeling is covered in the database course).
Introduces conceptual design including feasibil-
ity analysis, architectural selection, and specifi-
cation of alternatives to traditional development
such as end-user computing, packaged software,
and outsourcing. Coreq., INFS 3020.

Emphasizes the fundamentals of modern
database design in the context of large-scale
applications. Covers analysis phase activities
such as data modeling for requirements analy-
sis. Covers the extended entity-relationship
model and the semantic data model in depth.
Covers design phase activities such as the nor-
malization criteria of the relational model and
transformation from conceptual to physical
design. Introduces object-oriented databases.
Coreq., INFS 3010.

INFS 3050-3. Competing with Information
Technology. Focuses on the role of informa-
tion systems in the global competitive land-
scape. Introduces the information technology
industry; the convergence of communications,
education, and entertainment media; the cur-
rent technology developments in multimedia,
wireless, and other advanced applications; and
their implications for electronic commerce and
gaining competitive advantage. Also covers en-
trepreneurial issues such as making money
with software applications and services, and
protecting intellectual property rights through
software licensing. Since many of these topics
involve reading recent cases and staying cur-
rent with breaking news stories, course cover-
age varies somewhat from one semester to the
next. Prereqs., BCOR 2100 and 2150.

INFS 3510-3. Systems Integration. Serves as
a technical capstone course for information
systems majors. Focuses on solving the com-
plex problems present in systems integration
projects that include a mix of legacy software
and new commercial software components.
Emphasizes developing systems using open In-
ternet standards for the Web. Introduces web
servers, Perl, JavaScript, JAVA, ActiveX, and
Internet security. Prereqs., INFS 3010 and
3020, and at least one computer programming
course.

INFS 4020-3. Object-Oriented Systems.
Focuses on the object paradigm, an approach
to software engineering that emphasizes in-
creased reliability and extensibility. Empha-
sizes the fundamentals of object-oriented
analysis, design, and implementation as prac-
ticed in leading edge organizations. Includes
hands-on experience with JAVA, an object-
oriented programming language. Prereqs.,
INFS 3020 and at least one computer pro-
gramming course (preferably an OO lan-
guage). Same as INFS 5020.

INFS 4030-3. Computer Network Design
and Management. Focuses on the network
backbone of an organization’s information in-
frastructure that ties various kinds of comput-
ers together into a coherent whole. Introduces
the component building blocks of network de-
sign such as servers, routers, bridges, gateways,
transmission media, communication proto-
cols, network operating systems, and middle-
ware. Covers local area networks in some
depth and introduces metropolitan and wide-
area networks. Also covers data compression,
encryption, network security, and perfor-
mance tuning. Prereqs., INFS 3010 and at
least one computer programming course.
Same as INFS 5030.

INFS 4510-3. Systems Design for Usefulness
and Usability. Serves as a critical thinking
capstone for the information systems major.
Focuses on not only the design and implementa-
tion of a system, but also its usefulness and
useability. Students examine physical, interface, data, and program designs; performance trade-offs; and security and control design aspects of systems. Encourages students to think creatively and critically about designing and building information systems. Prereq., INFS 3510. Same as INFS 5510.

INFS 4820-variable credit. Undergraduate Seminar. Experimental seminar offered irregularly to provide opportunity for investigation of new frontiers in information systems.

INFS 4900-variable credit. Independent Study. Student must have prior consent of the dean and instructor under whose direction study is taken. Intended only for exceptionally well-qualified business seniors who desire to study an advanced topic. Departmental form required.

INFS 5020-3. Object-Oriented Systems. Same as INFS 4020. Prereq., INFS 3020 or equivalent experience, and at least one computer programming course (preferably an OO language).

INFS 5030-3. Computer Network Design and Management. Same as INFS 4030. Prereq., INFS 3010 or equivalent experience, and at least one computer programming course.

INFS 6120-3. Systems Development. Covers basic concepts, techniques, and tools for effective systems analysis, design, and implementation. Includes basic building blocks of systems, problem-solving approaches and methods for systems development, requirements gathering techniques, system modeling techniques, and implementation issues. Also covers user interface design, data design, and program design. Includes hands-on design of an actual systems project.

INFS 6140-3. Database Design and Inquiry. Introduces database management systems and logical database design. Discusses hierarchical, network, and relational models, and emphasizes design. Approaches may include the ER model, the semantic data model, and the object model. Design guidelines include normalization criteria.

INFS 6150-3. Competing with Information Technology. Focuses on the role of the information system in the global competitive landscape. Introduces the information technology industry and its evolving distribution channels. Surveys recent technology developments and their implications for gaining competitive advantage. Also covers electronic commerce, world-ready applications, and entrepreneurial issues. Topics involve recent cases and breaking news stories.

INFS 6820-variable credit. Graduate Seminar. Experimental seminar offered irregularly to provide opportunity for investigating new frontiers in information systems.

INFS 6900-variable credit. Independent Study. Student must have consent of instructor under whose direction study is taken. Intended only for exceptionally well-qualified business graduate students who desire to study advanced topics. Departmental form required.

INFS 6940-variable credit. Master’s Candidate. Departmental form required.

INFS 6950 (4-6). Master’s Thesis.

INFS 7800-3. Doctoral Proseminar in Information Systems. Provides information systems doctoral students with an orientation to current research in information systems and the academic discipline of information systems. Familiarizes students with key schools of thought in the field, provides background on reference disciplines, examines significant research streams, and helps students begin developing their own area of interest.

INFS 7805-3. Foundations of Research in Information Systems. Examines foundations of information systems research, including classic readings in information systems and its reference disciplines, different research approaches, processes of research, and classic and contemporary readings in major topics in information systems.

INFS 7810-3. Technical Topics in Information Systems Research. Examines in depth a selection of topics in technical areas of information systems. Includes theoretical perspectives for technical topics, critical perspectives on past and current research, appropriate methods for examining technical topics, and development of students’ ability to identify and develop research topics in technical areas.

INFS 7815-3. Behavioral Topics in Information Systems Research. Covers both basic and advanced topics. Develops skill in designing, evaluating, and understanding both quantitative and qualitative research methods. Includes the development of research proposals, making and justifying methodological choices, writing research reports, and understanding how to publish in information systems.

INFS 8820-variable credit. Graduate Seminar. Provides opportunity for investigating new frontiers in information systems through an experimental seminar. Offered irregularly.

INFS 8990 (1-10). Doctoral Thesis.

International Business

INBU 4100-3. International Business. Introduces students to the global business environment. Examines international trade issues, direct foreign investment, barriers to trade and cross border investment, economic integration and trading blocs, doing business in major overseas markets, and ethics in international business. Explores the policies and practices of firms marketing products and services in foreign countries, and includes an analytical survey of the culture, institutions, functions, policies, and practices in international marketing. Prereq., BCOR 2050. Same as INBU 5100.

INBU 4200-3. International Financial Management. Examines the financial policies and problems associated with firms doing business internationally. Topics include the foreign exchange environment, country risk, managing foreign exchange exposure, international working capital management, international capital budgeting, and international financial markets. Prereq., BCOR 2100.

INBU 4300-3. International Business Management. Explores students to the concerns and management of international activities that fall largely within functional disciplines. Through the case method of instruction, topics might include overseas market assessment and analysis, marketing internationally, export-import procedures, financial issues, production systems, labor relations, strategic planning, organizational design, control and staffing, and transportation. Prereq., INBU 4100 and 4200. Same as INBU 5300.

INBU 5100-3. International Business and Marketing. Same as INBU 4100.

Management

MGMT 3020-3. Total Quality Management. Examines concepts, tools, and techniques used in the management and measurement of quality, productivity, and competitiveness in an international environment. Focuses on how firms add value and compete with quality. Topics include total quality control and management, employee involvement in quality, team building for quality, quality circles, relations
MGMT 3030-3. Critical Leadership Skills. Provides an opportunity to learn about and practice the skills required of all managers. These skills include leadership, negotiation, conducting performance appraisals, delegation, effective communication, interviewing and making hiring decisions, and managing employees with problem behaviors. Objectives include developing self-awareness of strengths and weaknesses as a manager, gaining familiarity with theory-based skills, and developing proficiency in the use of these skills. Emphasizes experiential learning through group work, role plays, and case analysis. Prereq., BCOR 2150.

MGMT 4010-3. Redefining the Employee-Employer Relationship. Explores developments in such areas as employee relations law and procedures, employee and employer rights worker involvement programs, environmental safety and health, and the effects of technology on emerging organization forms. Prereqs., MGMT 3020 and MGMT 3030.

MGMT 4020-3. Hiring and Retaining Critical Human Resources. Allows students the opportunity to practice conducting job analyses and then use this information to develop employee selection and performance appraisal systems. Provides thorough coverage of employees' equal employment opportunity and affirmative action obligations, as well as various approaches to gender, cultural, and ethnic diversity. Prereqs., MGMT 3020 and 3030.

MGMT 4030-3. Managing Employee Reward Systems. Examines theories of work motivation and relates them to the strategic use of compensation and other reward systems. Topics include procedures for managing base pay, linking pay incentives to productivity at the individual, group and organizational levels; developing cost-effective programs of employee benefits; and the use of nonfinancial reward systems. Prereqs., MGMT 3020 and 3030.

MGMT 4040-3. Individual, Team, and Organizational Development. Explores how to determine where an organization needs to focus its development efforts, how to develop and deliver an effective training program, and how to evaluate the impact of development programs on organizational effectiveness. Explores individual, team, and organization-wide development, including such topics as skills training, team-building, and managing change. Student teams work with local businesses to practice applying the course material to practical problems. Prereqs., MGMT 3020 and 3030.

MGMT 4050-3. Competing with Operations. Introduces the design and analysis of modern production systems in manufacturing, service, and public organizations. Themes include the relationship between productivity and competitiveness, the role of operations in winning competitive advantage, and adding value through improvements in productivity, quality, flexibility, and timeliness. Specific topics may include operations strategy, operations planning, service operations, inventory management, and just-in-time concepts. Prereq., BCOR 2150.

MGMT 4060-3. Business Process Design. Covers the methods and means by which firms add value and compete by re-engineering their key processes. Emphasizes operational planning as an important element of business process re-engineering. Topics include logistics and customer service re-engineering (focusing on cycle-time reduction), manufacturing re-engineering (emphasizing lead-time reduction and quality improvement), and the use of technology to support re-engineering activities. A graphical object-based computer simulation package is used to model and re-engineer business processes and predict the effect of changes. Prereq., BCOR 2150.

MGMT 4080-3. Environmental Operations. Addresses the increasingly important topic of "green" operations, and how firms are using environmental awareness to reduce costs, add value, and increase competitiveness. Various approaches to reducing waste-streams are considered, including reuse, recycling, and recovery. Other topics include the role of government regulation and public pressure, comparisons between different national approaches to green operations, individual company programs, and prospects for the future. Prereq., BCOR 2150.

MGMT 5050-3. Competing with Operations. Same as MGMT 4050.

MGMT 5080-3. Environmental Operations. Same as MGMT 4080.
issues in public policy and ethics. Methods of instruction include lectures, case discussions, student group papers and projects, and examinations. Prereq., MKTG 3600.

MKTG 4350-3. Services Marketing Strategy. Designed for those students interested in working in the service industries. Addresses the distinct needs and problems of service organizations in the area of marketing and service quality. Service organizations (i.e., banks, transportation companies, hotels, hospitals, educational institutions, professional services, etc.) require a distinctive approach to marketing strategy—both in its development and execution. Builds and expands on marketing ideas and how to make them work in service settings. Prereq., MKTG 3600.

MKTG 4400-3. International Marketing. Describes the economic, geographic, political, and social forces that have shaped and continue to define global markets. Examines topics critical to success in international markets, including assessment of a firm’s international capabilities, techniques for gauging the potential of international markets, international segmentation approaches, and alternative arrangements for entering foreign markets. Compares and contrasts product, price, distribution, logistics, promotion, and research decisions made in global versus domestic markets. Introduces students to financial arrangements characteristic of international marketing, including exchange rates and controls, balance-of-payment principles, import licensing agreements, and tariffs. Prereq., MKTG 3600.

MKTG 4550-3. Advertising and Promotion Management. Analyzes advertising and promotion principles and practices from the marketing manager’s point of view. Considers the decision to advertise, market analysis as a planning phase of the advertising program, media selection, public relations, sales promotion, promotion budgets, campaigns, evaluation of results, and agency relations. Prereq., MKTG 3600.

MKTG 4800-3. Marketing Strategy and Policy. Provides students with the insight and skills necessary to formulate and implement sound marketing strategies. Examines pricing strategies, product introduction and innovation strategies, product line management strategies, promotional and product/service communication strategies, and distribution strategies. Capstone marketing course integrates and further develops what students have learned in other courses. Utilizes cases and computer exercises. Prereq., MKTG 3600, two additional 4000-level marketing courses, and senior standing. For marketing majors only.

MKTG 6820-variable credit. Graduate Seminar. Experimental seminar offered irregularly to provide opportunity for investigation of current topics in marketing.

MKTG 6900-variable credit. Independent Study. Student must have consent of instructor under whose direction study is taken. Departmental form required.

MKTG 6940-variable credit. Master’s Candidate. Departmental form required.

MKTG 6950 (4-6). Master’s Thesis.

MKTG 7100-3. Qualitative and Survey Research Methods in Marketing. Covers philosophies and approaches to the design and conduct of nonexperimental research on marketing and consumer behavior issues. Emphasizes exploratory, in-depth, and qualitative data-gathering methods, subjective measurement and scaling, and survey research methods, including instrument design, sampling, field research, data analysis, reporting, and interpretation.

MKTG 7200-3. Experimental Research Methods in Marketing. Provides a detailed exposure to the design of laboratory/field experiments and quasi-experiments for marketing and consumer research. Emphasizes the choice of design options, data collection methods, statistical analysis, and substantive interpretation of experimental results.

MKTG 7300-3. Multivariable Methods in Marketing Research. Includes MANOVA designs, causal models, cluster analysis, discriminant function analysis, factor analysis, and latent structure analysis. Emphasizes computer applications. Prereq., graduate courses in regression and MANOVA.

MKTG 7800-3. Doctoral Proseminar in Marketing. Provides marketing doctoral students with an orientation to the marketing field and introduces contemporary research perspectives and priorities. Students discuss papers that illustrate academic researchers’ use of various disciplinary perspectives to address marketing problems and the range of theoretical and empirical methods used.

MKTG 7805-3. Doctoral Seminar: Economic and Administrative Science Approaches to Research in Marketing. Examines marketing management and consumer behavior issues from the vantage of economics and organizational theory. One segment of the course focuses on theoretical and empirical analysis of the means by which utility-maximizing consumers learn about consumption environment and respond to firms’ marketing decisions. Another segment examines research on firms’ competitive strategy and marketing mix decisions and explores how organizational sociological factors influence these decisions.

MKTG 7810-3. Doctoral Seminar: Psychological Approaches to Research in Marketing. Examines the basic psychological processes that underlie common marketing phenomena. Topics include memory and judgment, persuasion, attitude-behavior consistency, information processing, automatic and controlled processes, learning, motivation and cognition, social judgment, and the role of affect and mood on judgment. Discusses topics in consumer behavior and marketing management contexts, in conjunction with related methodological issues.

MKTG 7815-3. Doctoral Seminar: Consumer and Managerial Decision-Making in Marketing. Examines judgment and decision-making research pertinent to understanding how consumers and marketing managers make decisions. Uses economic models as a normative backdrop for examining research on decision heuristics, judgment and choice anomalies, and contingent decision behavior. Examines processes of causal judgment and inference and the influence of a variety of contextual factors (including time) on judgment and decision.

MKTG 7820-3. Doctoral Seminar: Sociological and Anthropological Approaches to Research in Marketing. Inquires into substantive and methodological issues concerning post-modern consumer research. Attains depth in a few areas while also providing a framework in which to situate other substreams of research. Uses ethnography, semiotics, literary analysis, and other interpretive methods to examine topics such as brand and store loyalty, atmospheric and shopping dynamics, creation of brand meanings, and other marketplace behaviors.

MKTG 7830-3. Doctoral Seminar: Dissertation Research. Assists doctoral students in integrating courses and fields of study in order to be able to apply knowledge and skills to problems in marketing. Gives special attention to development of thesis topics.

MKTG 8820-variable credit. Doctoral Seminar: Special Topics. Studies marketing literature on a topic or topics selected by instructor. Examples include marketing history, international marketing management, marketing environment, marketing of high technology products, and marketing models.

MKTG 8900-variable credit. Independent Study. Student must have consent of instructor under whose direction study is taken. Departmental form required.

MKTG 8990 (1-10). Doctoral Thesis.
Master of Business Administration Courses

M.B.A. core courses are open only to M.B.A. students. Non-M.B.A. students seeking to enroll in non-core courses must meet the prerequisite requirements and have the consent of the instructor as well as the director of the M.B.A. program.

Across all business areas, M.B.A. students have enrollment priority for courses with an M.B.A. prefix. Non-M.B.A. students seeking to enroll in the non-core courses must meet the prerequisite requirements. Other elective options for M.B.A. students may be found in the main business course descriptions.

M.B.A.—Core Courses

MBAC 6010-3. Managerial Economics. Studies the elements of the business firm’s fundamental problem—how to maximize profits. Develops for each element managerial theory based upon introductory and intermediate-level microeconomics. Analyzes various business applications and misapplications of the relevant concept, primarily through case studies. Uses differential calculus and statistics throughout the course.

MBAC 6020-3. Financial Accounting. Introduces the financial reporting system used by business organizations to convey information about their economic affairs. Develops an understanding of financial reports and what they tell about a business enterprise. Focuses on how alternative accounting measurement rules represent different economic events in financial reports.

MBAC 6030-3. Quantitative Methods. Covers foundations for statistical reasoning and statistical applications in business. Topics include graduate-level treatment of descriptive statistics, probability, probability distributions, sampling theory and sampling distributions, and statistical inference (estimation and hypothesis testing). Introduces regression analysis, analysis of variance, time series forecasting, decision analysis, index numbers, and nonparametric methods.

MBAC 6040-3. Management Behavior in Organizations. Develops an awareness of the impact of individual and group processes on effective organizational functioning. Also develops understanding of the impact of behavioral concepts and practices their application through discussion and experiential learning.

MBAC 6060-3. Corporate Finance. Analyzes the implications of modern finance theory for the major decisions faced by corporate financial managers. Develops the basic skills necessary to apply financial concepts to the various problems faced by a firm. Includes capital budgeting, capital structure, long-term financing, short-term financial management, and financial planning topics. Prereq., MBAC 6020.

MBAC 6080-3. Decision Modeling and Applications. Integrates topics from decision analysis and operations management as they relate to modeling management decisions. Focuses on field projects involving the university, local companies, and/or government agencies. Prereq., MBAC 6030.

MBAC 6090-3. Marketing Management. Provides a solid foundation of marketing knowledge by focusing on principles of marketing. Introduces the role that marketing cases play in advancing understanding and skill development in the field of marketing. Case discussions illustrate concepts discussed and are used to introduce the marketing decision-making process. Emphasizes the international nature of marketing, as well as the importance of analysis and understanding the economic, demographic, political-legal-regulatory, sociocultural, technological, and natural environments.

M.B.A.—Electives

MBAL 6060 (variable credit). London Seminar in International Finance and Business. Offers a summer study abroad program held in London. Focuses on the financial and business issues facing financial markets and institutions in London and Europe, and the impact of the political climate on these issues.

M.B.A.—Entrepreneurship

MBAE 6500-3. Entrepreneurial Finance. Addresses a variety of topics including financial valuation, various sources of funds, structures and legal issues in arranging financing, the private and public venture capital markets, and preparation for and execution of an initial public securities offering. Prereq., MBAC 6020.

MBAE 6700-3. Entrepreneurship and Small Business Management. Examines environments of entrepreneurial firms from start-up to development of ventures. Allows students to assess their “fit” with entrepreneurial firms. Learn process of determining difference between ideas and commercializable opportunities through feasibility analysis and plans. Prereq., MBAC 6020 or instructor consent.

MBAE 6800-3. Special Issues in Entrepreneurship: The Law for Entrepreneurs. Deals with good practice of common legal problems faced by entrepreneurs. Focuses on avoiding common mistakes, i.e., casual use of equity to pay operating expenses, casual use of promises of equity percentages to founders, etc.

MBAE 6800-3. Special Issues in Entrepreneurship: Entrepreneurial Marketing. Addresses marketing challenges facing entrepreneur or start-up firms with limited budget. From initially positioning company and its products, to marketing that position to key shareholders for a new venture, to establishing channels of distribution and reaching the consumer, a specialized look is taken at developing and implementing a marketing plan.

MBAE 6800-3. Special Issues in Entrepreneurship: Sustainable Business Ventures. Focuses on environmentally sustainable business ventures as well as issues associated with starting and operating a business that solves natural environmental challenges while achieving profitability. Includes a number of case studies, topical discussions, talks by environmental entrepreneurs, and an applied or library research project.

MBAE 6830-3. Business Plan Preparation 1. Students complete a sophisticated business plan within task groups from concept through all elements of a professionally written business plan. Students interact with businesses and entrepreneurs. Prereq., MBAC 6020 and MBAE 6700, or instructor consent.

MBAE 6860-3. Business Plan Preparation 2. Follow-up to MBAE 6830. Student teams further refine and improve their plans and/or prepare for national business plan competitions via independent study. Prereq., MBAE 6830.

MBAE 6900-Variable credit. Projects in Entrepreneurial Companies. Limited to 12 students per section. Students are matched with entrepreneurial companies to complete a project key to company strategy. They experience total company environment at top management level by attending management meetings and interacting with cross-functional managers and employees. Students discuss company opportunities and issues through e-mail and face-to-face communication.

M.B.A.—Finance

MBAF 6200-3. Advanced Corporate Finance. Covers theory of asset pricing, which is then applied to capital budgeting, capital structure choice, mergers and acquisitions, and risk management. Prereq., MBAC 6060.

MBAF 6330-3. Investment Management and Analysis. Covers managing investment portfolios by blending academic theories and evidence with practitioner experience. Topics
include risk and return relationships, securities, value theory (capital asset, arbitrage, and option pricing), portfolios, and performance evaluations. Prereq., MBAC 6060.

MBAF 6400-3. International Financial Management. Examines financial procedures, policies, and risks faced by firms conducting business internationally. Topics include examining international finance environment, managing foreign exchange risk exposure, managing international working capital, conducting analysis, and developing an understanding of international financial markets. Prereq., MBAC 6060.

MBAF 6600-3. Special Topics in Finance. Sample topic of derivative securities encompasses all aspects of finance, including options, futures, forwards, and swaps. Topics cover characteristics, valuation, and trading strategies associated with derivatives as well as their use in risk management. Prereq., MBAC 6060.

M.B.A.—Marketing

MBAM 6050-3. Marketing Research. Develops skills in designing, executing, and evaluating research on applied problems and opportunities in marketing. Topics include research problem formulation, selection of research designs, search for and analysis of secondary data, measurement theory, design of data collection forms, sampling procedures, management of data collection activities, data analysis, and reporting of research results. Prereq., MBAC 6060.

MBAM 6150-3. Marketing Field Project. Develops skills in marketing decision making. Teams design and complete a project located at a client business or other organization in the metropolitan area. Team members design and assign responsibilities, interact with middle- and top-level managers, apply quantitative and behavioral tools presented in marketing and other courses, meet deadlines, and present results of project activities. Prereq., MBAC 6090 and MBAM 6050.

MBAM 6200-3. International Marketing Management. Develops skills and analyzes frameworks for selecting competitive strategy and building implementable marketing programs in contemporary global markets. Team project provides students with experience in researching international markets to assemble a product-market entry plan. Prereq., MBAC 6090.

MBAM 6250-3. Marketing of Technology and Innovation. Explores unique needs of marketing a range of high technology products based on business-to-business marketing. Addresses issues such as market orientation, corporate culture and the management of innovation, competitive signaling, and technology/marketing partnerships. Prereq., MBAC 6090.

MBAM 6600-3. Special Topics in Marketing Management. Addresses any one of several topics, each covering an important domain of current marketing practice. Topics include marketing communications, strategic brand management, entrepreneurial marketing, marketing strategy, and marketing and e-commerce. Marketing communications is intended to increase students’ understanding of specific promotional strategies and tactics utilizing an integrated marketing communications framework. Subjects include target audience definition and analysis, promotional objectives, agency relations, budgeting methods, media selection, and advertising research. Strategic brand management focuses on the role of brand in achieving strategic competitive advantage. Examines specific topics related to brand image/equity development, extension, and measurement. Often uses a simulation game to model business practices and predict the effects of branding decisions. Entrepreneurial marketing examines differences between large and small business environments, and focuses on how marketing resources, tools, strategies, and tactics can be most effectively employed by small business managers. Marketing strategy has developed into an increasingly critical managerial activity as businesses recognize the importance of creating customer value and being customer oriented. Course discusses the key elements of successful marketing strategy including market/customer analysis and competitor analysis, and identifies strategic approaches managers may adopt to succeed in today’s highly competitive and rapidly changing business environment. Marketing and e-commerce introduces students to digital environments and their use in marketing, and focuses on the importance of mass customization and personalization, the Internet and new product development, brand building, online community, pricing on the Internet, and e-commerce. Requires students to develop an Internet marketing plan. Prereq., MBAC 6090.

M.B.A.—Organization Management

MBAO 6010-3. Management of Organizational Change. Explores ways to improve organizations to meet demands of changing environments. Emphasizes theoretical framework and models of organization change, barriers to implementing change and ways to overcome them, and the roles of the change agent and/or consultant. Prereq., MBAC 6040.

MBAO 6020-3. (Re)Designing Dynamic Organizations. Examines new forms of organizations with permeable boundaries and empowered individuals and teams. Explores alternative designs necessary for managing disparate cultural values, the globalization of markets, and rapid technological change. Prereq., MBAC 6040.

MBAO 6030-3. Human Resources Management. Addresses such human resource issues as hiring, appraising, compensating, developing,
and motivating employees from the perspective of an internal or external consultant. Prereq., MBAC 6040.

MBAO 6040-3. Negotiating and Conflict Management. Explores and builds skills for conflict management and negotiation problems faced by managers (e.g., dealing with subordinates, peers, superiors, or clients). Content is relevant to all M.B.A. students, especially those interested in management, accounting, entrepreneurship, finance, and marketing. Prereq., MBAC 6040.

MBAO 6050-3. Management Consultation. Provides an integrative, hands-on exercise in managing change. Develops skills in contracting, collecting, and analyzing data and writing reports. Teams practice these skills by conducting an organizational diagnosis, consulting project within an organization. Prereq., MBAC 6040.

M.B.A.—Real Estate

MBAR 6010-3. Real Estate Development. Studies methods of analyzing real estate opportunities. Includes urban economic, market, and location analyses. Studies local government controls. Features actual cases of local residential and commercial projects.

MBAR 6100-3. Real Estate Finance and Investment Analysis. Covers link between real estate and capital markets through examination of financial institutions and instruments used to finance real property. Examines methods used to analyze value in property investments. Classroom activities include industry guest speakers. Prereq., MBAC 6060 or equivalent, or instructor consent.

MBAR 6200-3. Real Estate Project Competition. Develops skills in real estate decision making. Teams design, complete, and present a real estate project in a competition forum. Team members organize and assign responsibilities, interact with real estate professionals, and apply appropriate quantitative and qualitative tools and procedures. Prereq., MBAR 6010 or equivalent, or instructor consent.

M.B.A.—Technology and Innovation Management

MBAT 6100-3. Management of Technology and Innovation. Examines a variety of issues common to management of technology, such as technology strategies, methods of technology transfer, selecting technology standards, managing the research and development process, and encouraging and rewarding innovation.

MBAT 6150-3. Competing with Information Technology and the Internet. Focuses on understanding skills, tools, business concepts, and strategic and entrepreneurial opportunities, as well as managerial and social issues that surround the global information infrastructure and the emergence of electronic commerce. Centers on management of information as a resource and on identification of opportunities to exploit its potential for competitive advantage, with particular emphasis on the role of the Internet. Topics vary from one semester to the next.

MBAT 6250-3. Marketing of Technology and Innovation. Examines the critical role of technological issues in high technology industries. Covers both high technology products sold to the consumer market and high technology products in the business-to-business arena. Prereq., MBAC 6090. Same as MBAM 6250.

MBAT 6350-3. Business Process Design. Covers methods and means by which firms add value and compete by designing key processes. Emphasizes operational planning as an important element of business process design. Uses a graphical object-based computer simulation package to model and design business processes and to predict the effect of changes. Same as MBAP 6350.

MBAT 6550-3. Project Management. Presents basic skills required to manage wide range of technical projects. Topics include selecting project alternatives, managing project teams, developing project plans, risk management, monitoring and controlling projects, and financial analysis of projects. Students apply skills learned to representative project. Same as MBAM 6530.

Organization Management

ORMG 7310-3. Seminar on Organizational Behavior. Doctoral-level seminar covering such issues as leadership, job attitudes, motivation, absenteeism, turnover, goal-setting, and group dynamics. Prereq., instructor consent.

ORMG 7320-3. Seminar in Organization Theory. Critically investigates major issues in organization theory and provides students with experience in comprehensively surveying literature in subject areas such as organization design, power, culture, innovation, technology, environment, size, and strategy. Prereq., instructor consent.

ORMG 7800-3. Doctoral Proseminar: Management. Provides an orientation to doctoral-level study for all students in management. Through critical analysis of articles and student and faculty presentations, students learn about reading and writing research articles and gain an overview of the management discipline.

ORMG 7830-3. Doctoral Seminar: Dissertation Research. Considers philosophical topics and concepts related to the social sciences and examines various methodologies relevant to business and dissertation research.

ORMG 8820-variable credit. Graduate Seminar. Provides opportunity for investigating new frontiers in organization management through an experimental seminar (offered irregularly).

ORMG 8900-variable credit. Independent Study. Student must have consent of instructor under whose direction study is taken. Departmental form required.

ORMG 8990 (1-10). Doctoral Thesis.

Personnel/Human Resource Management

PHRM 6820-variable credit. Graduate Seminar. Provides opportunity for investigating new frontiers in personnel/human resource management through an experimental seminar (offered irregularly).

PHRM 6900-variable credit. Independent Study. Students must have consent of instructor under whose direction study is taken. Departmental form required.

Real Estate

REAL 4100-3. Real Estate Finance and Investment Analysis. Covers the link between real estate and the capital markets through an examination of the financial institutions and instruments used to finance real property. Examines methods used to analyze value in real property investments. Prereq., REAL 3000.

REAL 4900-variable credit. Independent Study.

REAL 6900-variable credit. Independent Study. Students must have consent of instructor under whose direction study is taken. Departmental form required.

Tourism Management

TOMG 3060-3. Resort Tourism. Examines principles and procedures of resort management, applications of management theory to the resort industry, and environmental issues of resort development. Prereq., junior standing.

TOMG 3400-3. Tourism Management. Examines the basic concepts, tools, and techniques of tourism management. Examines the primary trends and issues of tourism management and the unique problems and applications of management practice in the tourism industry. Prereq., junior standing.

TOMG 3500-3. Tourism Destination Development. Examines the economic, social, and environmental impacts of tourism development and the planning and policy implications of those impacts. Emphasizes the tourism development process and concerns in rural communities and natural environments. Prereq., junior standing.

FACULTY

STEVEN MANASTER, Dean of the College of Business and Administration and Graduate School of Business Administration. B.A., Oberlin College; M.B.A., Ph.D., University of Chicago.

WILMAR F. BERNTHAL, Professor of Management and Organization Emeritus.

SANJAI BHAGAT, Professor of Finance. B.Tech., Indian Institute of Technology; M.B.A., University of Rochester; Ph.D., University of Washington.

R. WAYNE BOSS, Professor of Strategy and Organization Management. B.S., M.P.A., Brigham Young University; D.P.A., University of Georgia.

JOHN D. DEMAREE, Professor of Strategy and Organization Management Emeritus.

PHILIP CATEORA, Professor of Marketing Emeritus.

DIPANKAR CHAKRAVARTI, Orlolf Professor of Business; Professor of Marketing. B.S., University of Calcutta; M.S., Ph.D., Carnegie Mellon University.

MARK R. CORRELL, Senior Instructor of Business Economics. B.A., University of Colorado; M.S., Ph.D., University of Wisconsin.

LAWRENCE D. COOLIDGE, Professor of Business Administration Emeritus.

JEROME C. DARNELL, Professor of Finance Emeritus.

THOMAS J. DEAN, Associate Professor of Strategy and Organization Management. B.S., Pennsylvania State University; M.B.A., Oklahoma State University; Ph.D., University of Colorado.

JULIO DE CASTRO, Associate Professor of Strategy and Organization Management. B.S., Universidad Catolica Madre y Maestra; Ph.D., University of South Carolina.

FRANCISCO DELGADO, Assistant Professor of Finance. B.A., Catholic University, Lima, Peru; M.B.A., Northern Illinois University; M.A., Ph.D., University of Pennsylvania.

JOHN D. DEMAREE, Associate Professor of Management Science and Information Systems Emeritus.

CALVIN P. DUNCAN, Division Chair of Marketing; Associate Professor of Marketing. B.S., M.B.A., University of Colorado; Ph.D., Indiana University.

STEVEN ENGEL, Senior Instructor of Marketing. B.A., University of Colorado; M.B.A., University of Oregon.

FRED W. GLOVER, Media One Chair in System Science; Professor of Management Science and Information Systems. B.A., University of Missouri; Ph.D., Carnegie Institute of Technology.

JOHN B. KLINE, Professor of Finance Emeritus.

HOWARD G. JENSEN, Associate Professor of Accounting Emeritus.

JAMES P. KELLY, Assistant Professor of Operations Management. B.S., M.S., Bucknell University; Ph.D., University of Maryland.

HARRY S. HOFFMAN, Associate Professor of Accounting Emeritus.

CHRISTINE S. KOBERG, Associate Professor of Strategy and Organization Management. B.A., Western State College; M.B.A., Bowling Green State University; Ph.D., University of Oregon.
BURTON A. KOLB, Professor of Finance Emeritus.

KENNETH A. KOZAR, Professor of Information Systems. B.S., M.S., Ph.D., University of Minnesota.

AKHIL KUMAR, Associate Professor of Information Systems. B.S., M.B.A., Indian Institute of Technology; Ph.D., University of California at Berkeley.

MANUEL LAGUNA, Assistant Professor of Operations Management. B.S., Monterrey Technologic at Queretaro, Mexico; M.S., Ph.D., University of Texas at Austin.

KAI LARSEN, Assistant Professor of Information Systems. Ph.D., Nelson A. Rockefeller College, University of Albany, S.U.N.Y.

STEPHEN R. LAWRENCE, Deming Professor of Entrepreneurship; Associate Professor of Operations Management. B.S., M.S., Purdue University; M.S., Ph.D., Carnegie Mellon University.

JOSEPH LAZAR, Professor of Business Law Emeritus.

J. CHRIS LEACH, Division Chair of Finance; Associate Professor of Finance. B.S., Oral Roberts University; M.B.A. University of New Mexico; Ph.D., Cornell University.

JINTAE LEE, Assistant Professor of Information Systems. B.A., University of Chicago; M.A., Harvard University; M.Phil., University of Cambridge, England; Ph.D., Massachusetts Institute of Technology.

BARRY L. LEWIS, Professor of Accounting. B.S., Troy State University; M.S., Pennsylvania State University; CPA.

DONALD R. LICHTENSTEIN, Associate Dean of Faculty and Academic Programs; Professor of Marketing. B.S., University of Alabama; Ph.D., University of South Carolina.

PATRICK T. LONG, Professor of Tourism Management. B.A., College of St. Thomas; M.Ed., University of Minnesota; Ed.D., Western Michigan University.

JEFFREY T. LUFTIG, Senior Instructor of Operations Management. B.S., State University of New York–Buffalo; M.Ed., Bowling Green State University; Ph.D., University of Minnesota.

P. JOHN LYMBEROPOULOS, Professor of Finance. B.S.C., Ohio University; M.B.A., Ph.D., University of Texas.

RAYMOND D. MACFEE, JR., Senior Instructor in Accounting. B.S., Saint Francis College; M.B.A., Pennsylvania State University; CPA.

JAMES MARLATT, Senior Instructor of Information Systems. B.S., University of Tennessee; M.S., Georgia State University.

STANLEY MARTIN, Senior Instructor of Finance. B.S., University of Arkansas; M.B.A., Ph.D., University of Kansas.

CLAUDE McMillan, Professor of Management Science and Information Systems Emeritus.

RONALD W. MELICHER, Presidents Teaching Scholar; William H. Baughn Distinguished Scholar; Professor of Finance, B.S., M.B.A., D.B.A., Washington University, St. Louis.

G. DALE MEYER, President’s Teaching Scholar; Ted G. Anderson Professor of Entrepreneurial Development; Professor of Strategy and Organization Management. B.S., Northwestern University; M.S., Northern Illinois University; Ph.D., University of Iowa.

DAVID E. MONARCHI, Division Chair of Information Systems; Professor of Information Systems. B.S.E.P., Colorado School of Mines; Ph.D., University of Arizona.

RAMIRO MONTEALEGRE, Assistant Professor of Information Systems. B.S.I, Universidad Francisco Marroquin; M.S., Carleton University; D.B.A., Harvard University.

EDWARD J. MORRISON, Professor of Strategy and Organization Management Emeritus.

RAMYA NEELAMEGHAM, Assistant Professor of Marketing. B.A., St. Stephen’s College, Delhi University; Ph.D., Northwestern University.

JAMES E. NELSON, Associate Professor of Marketing Emeritus. B.S., M.S., Ph.D., University of Minnesota.

ROLF NORGARD, Senior Instructor of Business Communication. B.A., M.A., Wesleyan University; Ph.D., Stanford University.

MICHAEL PALMER, Professor of Finance. B.S., M.S., San Diego State University; Ph.D., University of Washington.

DON PARKIN, Professor of Marketing Emeritus.

LISA PEÑALOZA, Associate Professor of Marketing. B.A., M.B.A., Texas A & M; Ph.D., University of California at Irvine.

RICHARD R. PERDUE, Professor of Tourism Management. B.S., M.S., University of Wyoming; Ph.D., Texas A & M University.

SRINIVASAN P. RANGAN, Assistant Professor of Accounting. B.Com., University of Madras; Ph.D., Wharton School, University of Pennsylvania.

CLYDE W. RICHEY, Professor of Real Estate Emeritus.

NANCY RIDGWAY, Associate Professor of Marketing. B.S., M.B.A., Ph.D., University of Texas at Austin.

RALPH G. RINGGENBERG, Associate Professor of Finance Emeritus.

STEVEN K. ROCK, Assistant Professor of Accounting. B.S., M.B.A., Shippensburg University; Ph.D., Pennsylvania State University.

JOSEPH G. ROSSE, Professor of Strategy and Organization Management. B.S., Loyola University of Los Angeles; Ph.D., University of Illinois.

RUDOLPH SCHATTE, Professor of Accounting Emeritus.

FRANK SELTO, Professor of Accounting. B.S.M.E., Gonzaga University; M.S.M.E., University of Utah; M.B.A., Ph.D., University of Washington.

PHILIP SHANE, Associate Professor of Accounting. B.S., University of Illinois; Ph.D., University of Oregon.

DEAN A. SHEPHERD, Assistant Professor of Strategy and Organization Management. B.S., Royal Melbourne Institute of Technology; M.B.A., Ph.D., Bond University, Australia.

ATANU R. SINHA, Assistant Professor of Marketing. B.Stat., M.Stat., Indian Statistical Institute; Ph.D., New York University.

NAOMI SODERSTROM, Associate Professor of Accounting. B.A., Reed College; M.S., Ph.D., Northwestern University.

RALPH Z. SORENSON, Professor of Management Emeritus.

RICHARD D. SPINETTO, Associate Professor of Operations Management. B.S., Bowling Green State University; M.S., University of Michigan; Ph.D., Cornell University.

WILLIAM J. STANTON, Professor of Marketing Emeritus.

NANCY STEC-HELSTAD, Director of Concurrent Degree Accounting Program; Senior Instructor in Accounting. B.S., University of Wisconsin at Madison; M.S., University of Colorado at Boulder; CPA.

TOBY STOCK, Assistant Professor of Accounting. B.S., M.S., Miami University; Ph.D., Indiana University.

ROBERT H. TAYLOR, Professor of Marketing. B.S., Purdue University; M.B.A., D.B.A., Indiana University.

JOHN A. TRACY, Professor of Accounting Emeritus.

DARYL WINN, Associate Professor of Business Economics. B.S., Arizona State University; M.B.A., Ph.D., University of Michigan.

RICHARD WOBBEKIND, Associate Dean for External Relations; Director of the Business Research Division; Associate Professor of Business Economics. B.A., Bucknell University; M.A., Ph.D., University of Colorado.

ILZE ZIGURS, Associate Professor of Information Systems. B.A., University of Washington; M.B.A., University of Nebraska; Ph.D., University of Minnesota.
From the Mines and the Ranches

When President James Baker assumed the presidency in 1882, he set a lofty mission for the university to "take young men from the mines, the ranges, and the ranches, young men and women from the homes of honest toil, and offer them the greatest blessing the state can bestow upon its children." During his tenure of 22 years, the schools of law and applied science opened, clinical opportunities were offered at the Medical School in Denver, and graduate courses were offered. He developed a young faculty with the energy to fulfill the mission he dreamed of.
The School of Education provides study and research opportunities for persons involved in teaching and the study of education. Through its undergraduate licensure and graduate studies programs, it prepares researchers and teachers for all levels of education. Faculty and students participate in research that develops new knowledge and understanding of educational processes.

Accreditation

The licensure programs, both undergraduate and graduate, are fully accredited by the North Central Association of Colleges and Schools, by the National Council for Accreditation of Teacher Education, and by the Colorado Department of Education.

Student Organizations

The Student Advisory Board in Education represents undergraduate students seeking teacher licensure. Officers elected each fall serve as liaisons between the students in licensure programs and the University of Colorado Student Union. The organization also performs vital advising and student assistance functions.

The Student Association of Graduate Education (SAGE) is a similar organization for graduate students. Its officers are selected in the fall.

Honorary societies in education include Kappa Delta Pi and Phi Delta Kappa.

ACADEMIC EXCELLENCE

Scholarships and Awards

The School of Education administers a number of scholarships and awards for its students. Graduate students in education are eligible to compete for Graduate School fellowships, and both graduate and undergraduate students are eligible to apply for universitywide financial assistance. Students should contact the Office of Student Services (EDUC 151) to obtain scholarship and award information and applications. Application procedures and deadlines will be publicized, although we anticipate that university-funded awards will be made during the fall semester. A typical application deadline is March 1.

ACADEMIC STANDARDS

Any student registered in the Teacher Education Program who fails to maintain a 2.75 grade point average will be placed on probation or may be suspended. Readmission is then subject to program requirements in effect at the time of reapplication. The same conditions apply to students in other colleges and schools who have been admitted to the teacher education program.

TEACHER EDUCATION PROGRAM

The University of Colorado at Boulder, through the School of Education, offers course work leading to initial licensure (Colorado Provisional License) in:

- Elementary education
- K-12 music
- Secondary education fields:
 - English
 - Foreign language (French, German, Italian, Japanese, Latin, Russian, or Spanish)
 - Mathematics
 - Sciences
 - Social studies

The following assumptions guide the teacher education program. All teachers should:

1. Demonstrate knowledge of subject matter.
2. Have a strong background in liberal arts.
3. Demonstrate knowledge of pedagogy.
4. Be prepared to educate students in a diverse society.
5. Understand professional obligations and demonstrate professional dispositions of teachers in a democracy.

The objectives of the university relative to teacher education are the following:

1. To provide programs of undergraduate and graduate studies designed to develop outstanding teachers, supervisors, college teachers, administrators, and researchers.
2. To conduct and direct educational research and to engage in writing and related creative endeavors.
3. To identify and attract future outstanding teachers into the teacher education program.
4. To cooperate with other state, regional, and federal agencies to improve educational programs.

Teacher education at the University of Colorado, while administered by the School of Education, is a universitywide function. Many academic departments provide coursework that supports the teacher in training. The program involves a combination of courses at the university and off-campus educational experiences in cooperation with the public schools.

Students simultaneously completing teacher education and an undergraduate degree at CU-Boulder must complete 30 to 40 hours of education courses (including student teaching) in addition to their major course work. Generally, four and one-half years are typical for completion of both a B.A. degree and teacher education requirements. However, with careful planning, the program may be completed in four years.

No professional education course work taken more than 10 years ago may count for teacher education requirements.

The School of Education awards the diploma in education to students who simultaneously complete their bachelor’s degree and the teacher education program at the University of Colorado. The certificate in education is awarded to students who complete the program.

Each state, including Colorado, requires public school teachers to be licensed as qualified teachers by its state department of education. Licensure requirements vary from state to state and from teaching area to area. Students who are interested in teaching in other states should familiarize themselves with the requirements of those states so they may plan an appropriate degree program.

Admission

Admission to all School of Education programs is competitive. Satisfying minimal admission criteria does not guarantee admission. Please see Undergraduate Admission in the General Information chapter of this catalog for specific requirements.

Students Entering or Currently Enrolled at the University of Colorado

Undergraduate students seeking to complete the School of Education teacher education program must be enrolled in a degree program in one of the colleges or schools of the university. All undergraduates interested in teaching may seek teacher education advis-
ing at the time they enter the university. Freshman and sophomore students are encouraged to satisfy as many of the degree and major requirements as they can before applying for admission to the teacher education program during the second semester of their sophomore year. Students should pick up advising materials in Education 151.

Transfer Students
Undergraduate students who seek to transfer to the University of Colorado from another accredited institution must apply for admission through the Office of Admissions. They must enroll in a degree program in one of the undergraduate degree-granting colleges or schools of the university and also apply for admission to the teacher education program in the School of Education after completing one semester of course work at CU-Boulder. At least 30 hours of course work for licensure must be taken while the student is officially enrolled as a student in the university. Credit in student teaching will not transfer to the University of Colorado at Boulder. Please see Undergraduate Admission in the General Information chapter of this catalog for specific requirements.

Former Students
Former students who have not completed an undergraduate degree may reenter the university according to general university policies; however, subsequent to that readmission, they must apply separately for entry into the teacher education program. Undergraduate students who anticipate that they will graduate prior to completing the teacher education program must apply for readmission to the university through the School of Education by March 1 (for summer or fall readmission) or October 1 (for spring readmission). All admitted students who remain continuously enrolled will be expected to complete the program in effect at the time of their admission to the program unless state accrediting changes dictate otherwise.

Postbaccalaureate Students Seeking Teacher Training
Students who already hold a bachelor’s degree and wish to pursue licensure in elementary or secondary teaching must apply directly to the School of Education. Students desiring institutional recommendation for licensure must complete at least 30 semester hours of work at the University of Colorado and must also fulfill the same requirements as undergraduate students. The actual number of required hours will depend on the courses already completed.

Requirements for Application
Students may apply to one of the programs in Education 151 if the following requirements have been fulfilled:

1. **GPA.** Students must have and maintain a 2.75 (on a 4.00 scale) cumulative GPA overall, 2.75 at CU-Boulder, 2.75 in the subject area (secondary teaching fields and K-12 music only), and 2.75 in education.
2. **Junior Standing.** Students must complete (or will complete at the end of the current semester) at least 56 hours of course work.
3. **Youth Experience.** Students must provide written verification of 25 clock hours of satisfactory experiences with elementary, middle/junior high, or senior high school-aged youth (the actual level should “match” the level of the teacher education program desired) in the past five years.
4. **Liberal Arts.** Postbaccalaureate students and currently enrolled students in colleges or schools other than arts and sciences are required to have 40 combined semester hours in the humanities, the natural sciences, and the social sciences, with no less than 6 credit hours in each when they finish the program.
5. **Deadlines.** Students who hold degrees should apply to the teacher education program by March 1 for fall or summer admission and October 1 for spring admission.

Application for Admission
Individuals interested in completing the teacher education program at the University of Colorado at Boulder should request application materials from the Office of Student Services, Education 151. Students currently enrolled in a degree program at Boulder will need to complete an application and submit official transcripts from all previous colleges to the Office of Student Services.

Individuals who have completed a baccalaureate degree at an accredited institution and are not currently enrolled at the university must complete a program application, apply for admission to the university, and submit official transcripts from all previous colleges directly to the School of Education. Applications cannot be processed until all materials are received in the Office of Student Services.

Advising
Students are responsible for obtaining an advising manual in Education 151 and becoming familiar with its contents. The manual includes specific information for all teaching fields as well as a list of advisors.

Off-campus students may obtain a manual by writing to the University of Colorado at Boulder, Office of Teacher Education, 249 UCB, Boulder, CO 80309-0249. Appropriate information can be sent only when a specific teaching field is indicated.

At CU-Boulder, degree requirements vary among the schools and colleges. Students seeking a degree at the University of Colorado should consult, as soon as possible, with an advisor in the college or school from which they expect to graduate.

Students are encouraged to become familiar with the teacher education requirements by comparing their own transcripts to the published advising materials. Students can then talk with an advisor before applying to the program or they may wait until after their applications are processed. Students wishing to discuss their evaluations should meet with the student advisor to discuss discrepancies. Students seeking teacher training in French, German, Italian, Japanese, Latin, Russian, Spanish, or music should see the designated advisor for that teaching field.

Advising may also be obtained by e-mail through EdAdvise@Colorado.edu. When requesting e-mail advising, students should make questions as specific as possible.

Majors in Academic Areas
Undergraduate students enrolled at the University of Colorado at Boulder seeking both a bachelor’s degree and teacher education in elementary or secondary teaching must complete a major in an academic department in the primary school or college in which they are enrolled. For students in the College of Arts and Sciences, 90 of the 120 semester hours required for graduation must be liberal arts course work.

To meet both degree and teacher education requirements, students, especially those seeking elementary licensure, may be required to take more than 120 semester hours.

The major selected is determined by the student’s interest in teaching a certain subject or instructional level. Before selecting a particular major, students may see one of the School of Education advisors. Students interested in teaching at the secondary level need to be aware that in many subject areas the teaching program requires additional courses or more hours than the academic major. Course requirements for all programs are explained in the advising manual and check sheets available in Education 151.

Teacher education in some teaching fields is not offered at the University of Colorado. For example, there are no programs in art, early childhood education, theatre, business education, home economics, physical education, or industrial arts. Students interested in a particular major should consult an advisor in the School of Education.
GRADUATE STUDY

Graduate study in education at the University of Colorado is administered through the Office of Student Services, School of Education, and all inquiries regarding programs should be directed to the following address:

University of Colorado at Boulder
Office of Student Services/Grad Studies
School of Education
249 UCB
Boulder, CO 80309-0249

Detailed program materials and The Graduate Student Handbook are available from the School of Education, Office of Student Services, Education 151. The degrees available in the various areas of graduate study are listed below:

Instruction and Curriculum in the Content Areas
(education; English education; general curriculum in elementary and secondary education; mathematics; reading; science education; social studies education; and effective teaching)
Master of arts
Doctor of philosophy

Educational-Psychological Studies
(educational psychology)
Master of arts
Doctor of philosophy

Research and Evaluation Methodology
(methods of educational research and evaluation, including statistics, measurement, and qualitative methods)
Master of arts
Doctor of philosophy

Social, Multicultural, and Bilingual Foundations
(bilingual and multicultural education; bicultural/special education; education and cultural diversity; English as a second language; cultural, historical, social, and philosophical foundations; international/ comparative education; educational policy)
Master of arts
Doctor of philosophy

CU-Boulder does not offer programs in early childhood education, physical education, art education, counseling, school administration, higher education, school psychology, or educational technology.

Teaching Endorsements at the Graduate Level

Through the School of Education (and in conjunction with other departments), the University of Colorado at Boulder offers advanced course work leading to graduate level teaching and special services training in the following areas:

Linguistically different:
Bilingual (grades K-6)
Bilingual/English as a second language (K-6)
English as a second language (grades 7-12)

Reading teacher (grades K-12)
Special education (moderate needs)
Special services (offered through SLHS):
Audiology
Speech/language pathologist

All of the above programs have degree, licensure, or experience requirements that must be fulfilled before admission. Please check with the department before applying.

Special programs (called the "master's plus" programs) leading to provisional teacher licensure with endorsement in elementary education or secondary English, mathematics, science, or social studies are available through the master of arts programs in instruction and curriculum in the content areas.

These graduate teacher education programs are all approved by accrediting agencies.

Admission

Prospective students seeking admission to a graduate degree program should request application forms from the University of Colorado at Boulder, Office of Student Services, 249 UCB, Boulder, CO, 80309-0249. The completed forms should be returned to that office. Prospective graduate students should also read the Graduate School portion of this catalog for additional admission information. If test scores are required for admission to the desired program, applicants should request that the Educational Testing Service send their scores on the verbal, analytical, and quantitative sections of the GRE to the education graduate office. A doctoral applicant who has not taken the GRE should arrange to do so.

Admission to all programs and degrees in the School of Education is selective. Meeting minimal admission requirements does not guarantee admission.

Application papers and all supporting documents, including GRE or Miller’s Analogy Test (MAT) scores, if these scores are required for admission to the desired program, must be in the school’s Office of Graduate Studies by September 1 for spring semester and February 1 for summer session and fall semester. Note that some program areas (M.A. and Ph.D.) admit students for fall semester only.

Advising

Graduate students are assigned an individual faculty advisor after admission and are required to submit a formal plan of study, approved by their advisor, before the end of the first full term of study. Graduate students may obtain program information from the School of Education, Office of Student Services, Education 151, or from their advisor.

General Information

Maximum Load and Part-Time Study
A maximum of 15 semester hours in any one semester may be applied toward degree requirements. During the summer, 9 semester hours is the maximum that will be counted toward education graduate degrees. Within this limit, students may take up to 6 semester hours in a five-week summer term, and/or 3 semester hours in a three-week term. During the academic year, students will be regarded as having a full load if they are registered for 5 or more semester hours in courses numbered 5000 or above, or are registered in a minimum of 5 thesis hours.

Quality of Work

A grade average of B (3.00) or better is required for all work taken for any graduate degree. Transferred credits are not included when calculating grade averages.

A mark of C will not be credited toward the Ph.D. program. Any graduate course in which a mark of D or F is reported is failed and must be repeated and passed if it is required in a student’s degree program.

Students who do not maintain at least a B (3.00) average or better may be suspended by the dean of the Graduate School upon the recommendation of the director of graduate study in the School of Education. Students may also be suspended from the Graduate School for continued failure to maintain satisfactory progress toward the degree sought.

Master of Arts in Education

The master of arts degree is available, comprising one academic year or more of graduate work beyond the bachelor’s degree.

The master’s degree must be completed within four years of initial enrollment. The M.A. plan II (nonthesis) degree requires a minimum of 30 semester hours. See the Graduate School chapter of this catalog for discussion of plan I and plan II. Students may transfer no more than 9 semester hours of work taken at another institution or as a nondegree student at CU-Boulder.

All program areas have outlined a recommended or required program of study, and students pursuing a degree are expected to follow that program unless they have appropriate substitutions arranged in advance with their advisors. Pamphlets outlining the programs of study in education are available from faculty or the Office of Student Services.

At the beginning of the final term of study, each student must submit a form titled “application for admission to candidacy for an advanced degree.” These forms are available in the Office of Student Services. If a minor is included, the form must first be signed by a rep-
representative of the student’s minor department or program area. The form must be signed by the student and the student’s advisor, and then submitted to the school’s Office of Student Services for School of Education approval and then to the Graduate School for final approval. All students are required to write a four-hour comprehensive-final examination or its equivalent, as determined by the program’s faculty committee. (For time limits and other information, see the Graduate School chapter under Master’s Degree.)

Education as a Minor Field

In M.A. programs for majors outside the School of Education, students may include education as a minor if both their major department and the director of graduate studies in the School of Education approve. For master’s degrees, a minor in education consists of at least 9 hours of study in related courses. Not more than 2 semester hours may be transferred from another institution. Students who propose to minor in education must have had sufficient undergraduate work in education to prepare them for graduate study in the field. Appraisal of undergraduate preparation will be made by the director of graduate studies.

Doctoral Study in Education

In addition to the information included here, prospective Ph.D. students should see the Graduate School chapter of this catalog, and obtain a current copy of the *School of Education Graduate Handbook*.

The School of Education offers the doctor of philosophy (Ph.D.) in education. Most students take four to six years to complete the course work, examinations, and dissertation required for the doctoral degree.

The School requires at least two semesters of full-time study in residence (one semester must be during the first two years) of doctoral study. The School of Education expects that students will not hold a full-time job during their two semesters of residence. In addition to course work requirements, doctoral students should be immersed in ongoing research with the faculty as early in their program as possible. All doctoral students in the school will be required to complete, at a minimum, one publishable scholarly product prior to taking comprehensive examinations; other research endeavors prior to the dissertation are desirable. Each of the program committees has established a structure for implementing this requirement. For example, some programs expect students to work individually with their advisors; others make the research product an extra course requirement attached to a professional seminar.

Admission Requirements

Applicants for admission to doctoral study are expected to have a strong liberal arts background. A minimum undergraduate grade point average of 2.75 is required, but applicants are judged competitively so that most admitted applicants have GPAs of 3.00 or higher. A GPA of 3.00 or above is expected on all graduate work completed. Ph.D. applicants are not required in all cases to have a master’s degree, although it is generally deemed preferable. The decision rests with the program area faculty. At least two years of professional experience relevant to the applicant’s proposed area of study is required for most programs.

Graduate Record Examination scores of 1500 or above (total on verbal, quantitative, and analytical portions of the basic test) are required for admission. To adjust for the different cultural experiences of some applicants, this standard may in certain instances be reduced on the basis of faculty judgment. An interview with a faculty admissions committee may be required.

Degree Requirements

Doctoral students in some programs are expected to have completed a course in statistical methods, a basic course in educational research, a graduate course in psychological foundations of education, and a graduate course in social foundations of education. If doctoral students have not had such courses, advisors may require one or more of these courses in addition to the courses approved for the degree sought.

All doctoral programs must include an intermediate statistics course (EDUC 7316) and must also include at least one advanced course in research methods (EDUC 7326, 7336, 7346). EDUC 5716 may not be used in the doctoral degree plan, but is a prerequisite to EDUC 7316. Students who have completed course work equivalent to EDUC 5716 or 5726 as part of a prior degree may seek approval of the substitute courses from the research, evaluation, and methodology (REM) chair. Students may also satisfy the prerequisite by receiving a passing grade on competency tests administered by the REM chair.

With approval of a candidate’s committee and depending on the type of doctoral research planned for the dissertation, a two-course doctoral level research sequence in history, philosophy, or one of the social sciences may be substituted for the 7300 series above. Graduate courses in other departments may be included in any degree program if they are approved by the student’s advisor, committee, and the director of graduate studies.

All program areas have outlined a program appropriate for individuals pursuing study in their area, and students are expected to follow that program unless they have arranged appropriate substitutions in advance with their advisor. Pamphlets outlining the recommended programs of study in education are available from the faculty or the Office of Student Services.

Approximately 40 semester hours of course work beyond the master’s degree is the normal requirement for the Ph.D. All Ph.D students are also expected to meet both the conversational foreign language and multiculturalism requirements.

The **Conversational Foreign Language** component is focused on oral proficiency in another language. This requirement can be satisfied by completing a one-semester college-level conversational language course at an accredited institution within the past three years. Courses can be introductory college-level courses, such as SPAN 1010, FREN 1010, GRMN 1010, and ITAL 1010, because instruction is conducted in the language and substantial language labs are part of the course expectations. Courses taken at another institution must be equivalent to CU-Boulder courses to count toward this requirement. Students must earn a grade of C- or better.

The **Multiculturalism Course** (EDUC 8014) should be completed after or during the language component. A specially designed doctoral-level course provides for both the theoretical analysis of issues and a substantial field-based component. The course includes both theoretical and practical perspectives from sociology, anthropology, sociolinguistics, philosophy, and bilingual and multicultural education. The field experience, focused on linguistically or culturally different students or school communities, is a project of the student’s choosing (e.g., action research, quasi-experiment, participant-observation, ethnographic community study, or case study of an individual student), planned in conjunction with the course instructor.

Before taking the comprehensive examination, each student must submit an application for admission to candidacy for an advanced degree. Application forms are available in the school’s Office of Student Services.

Near the end of the term when students complete their course work and if their advisor approves, they take a 12-hour comprehensive examination. The examination is focused chiefly on the student’s area of program specialization. Students who fail the comprehensive examination may repeat it once, at a time to be determined by the examining committee.
In addition to the course work, a doctoral dissertation for 30 semester hours of credit is required of each student. A student registers for EDUC 8994 (Ph.D. Doctoral Dissertation) for three or more terms, but not more than 10 semester hours in any term. Not more than 20 semester hours may be taken prior to the successful completion of the comprehensive examination. After satisfactory completion of the comprehensive examination, the student must continuously register for 3 or 5-10 hours during fall and spring semesters until the final defense. The student must be registered for 5 hours during the semester the defense is completed.

During the research for and the writing of a dissertation (thesis), a grade of IP (in progress) is reported; if the dissertation is completed and accepted as satisfactory, a grade is reported for the student’s record. When the student and the chair of the dissertation committee agree on a subject for the dissertation, they work with the director of graduate studies to identify a five-person committee. Then the student prepares a detailed prospectus and arranges for a meeting with the committee. When the committee approves the prospectus, the student may proceed with the research. Research involving human subjects must also have the approval of the university committee on human research.

No continuing education work is permitted for the Ph.D.

Time Limits

Time limits for the Ph.D. in education are the same as time limits for all Ph.D. programs. Students in education should read the Graduate School chapter for Ph.D. time limits.

When students have passed the comprehensive examination, they are required to register each semester until the degree is attained, and pay the standard fee as announced by the Graduate School.

Progress Toward a Degree

Doctoral study entails a long period of scholarly endeavor, which requires a time schedule. Students are responsible for meeting the deadlines involved.

Opportunities for Assistantships

The School of Education has a limited number of assistantships administered by the dean of the School of Education on the recommendations of faculty and the director of teacher certification or director of graduate study. Some assistantships involve the supervision of student teachers; others involve helping professors in their teaching or research. Taxable stipends in amounts set by the university are paid for all assistantships. Appointments are usually made in terms of one-fourth time (10 hours a week) or one-half time (20 hours a week). Inquiries should be directed to the dean, School of Education.

COURSE DESCRIPTIONS

The following courses are offered in the School of Education on the Boulder campus. This listing does not constitute a guarantee or contract that any particular course will be offered during a given year.

For current information on times, days, and instructors of courses, students should consult the Registration Handbook and Schedule of Courses issued at the beginning of each semester.

Courses numbered in the 1000s and 2000s are intended for lower-division students and those in the 3000s and 4000s for upper-division students. Courses numbered in the 5000s are primarily for graduate students, but in some cases may be open to qualified undergraduates. Normally, courses at the 6000, 7000, and 8000 level are open to graduate students only.

Undergraduate courses are organized by subject matter and are listed numerically by last digit (courses ending in the number “0” are listed before courses ending in “1,” and so on). All graduate courses are organized in numerical order, at the end of the course descriptions. The number after the course number indicates the semester hours of credit that can be earned in the course.

Abbreviations used in the course descriptions are as follows:

- Prereq.—Prerequisite
- Coreq.—Corequisite
- Lab.—Laboratory
- Rec.—Recitation
- Lec.—Lecture

Teacher Education

The following general education courses do not apply to elementary or secondary certification.

EDUC 4410-3. Theory and Practice of Experiential Education. Introduces the theoretical underpinnings in philosophy, psychology, and the natural and social sciences of the experiential and alternative education movements. Observes and analyzes practical applications in schools and public and private agencies.

EDUC 4800 (1-9). Special Topics. Designed to meet needs of students with topics of pertinent interest.

EDUC 4810 (1-9). Workshop in Curricular and Instructional Development. Considers current trends in curriculum development and in organization for instruction. Studies in-depth one or more specific plans for classroom procedure.

EDUC 4830 (1-3). Instructional Workshop. Considers current instructional approaches. Focuses on classroom applications with in-depth study of selected topics. Advanced-level work, but credited toward graduate degrees only as a minor.

EDUC 4840 (1-4). Independent Study.

EDUC 4910-3. Peer Counseling Practicum (previously EDUC 4830, 4840). Controlled enrollment. Repeatable for degree credit. Credit given for peer counseling activities. Students are selected to participate in this class and act as peer counselors or TAs for the peer counseling training.

Elementary Education

EDUC 3621-1. Art for the Elementary Teacher. The content of the course is a required part of the Colorado Department of Education specification of background required for elementary teacher licensure.

EDUC 4311-5. Integrated Literacy/Social Studies for the Elementary School 1. Prepares preservice elementary teachers for teaching literacy and social studies in a social context through an integrated understanding of what constitutes literacy and civic participation in today’s society, literacy and social studies processes, and classroom instruction that fosters integrating such processes. Prereq. or coreq., EDUC 3621 and EDUC 3502. Prereq., admission to the elementary teacher education program.

PHED 4701 (4-8). Student Teaching—Elementary School 2. Kindergarten and grades one through six in music. Should be taken concurrently with student teaching in home department.

EDUC 4831-3. Advanced Peer Counseling Training (spring semesters only). The second semester of an academic year’s training for students interested in learning about the skills and knowledge associated with peer counseling. Continuation of ARSC 2274 (offered only during fall semesters).

PHED 4200-1. Physical Education and Health for the Elementary School. Studies activities, teaching methods, and program planning for grades one through six. Also involves discussions of middle/junior high school activities and programs. Provides opportunities to work with children. Open only to elementary education students. Prereq., junior standing.

Secondary Education

EDUC 4112-3. Educational Psychology and Adolescent Development. Analyzes fundamental psychological concepts underlying classroom instruction, as well as adolescent growth and development. Prereq., 56 hours completed or in progress, and admission to the secondary teacher education program.

EDUC 4122-3. Principles and Methods of Secondary Education. Emphasizes objectives, functions, modern philosophy, curriculum, discipline, planning, learning styles, and educational media. For middle/junior high through senior high school levels. Includes in-school experience. Prereq., admission to the secondary teacher education program.

EDUC 4232-3. Language and Literacy Across the Curriculum. Discusses methods and materials for content area reading, including vocabulary, comprehension, and study skills strategies. Prereq., admission to the secondary teacher education program.

EDUC 4312-3. The Nature of Science and Science Education. Explores contemporary ideas and issues in the history, philosophy, and social studies of science education and science, science as a social and cultural activity, and how contemporary issues in science relate to and impact educational practice. Same as EDUC 5315.

EDUC 4322-3. Literature for Adolescents. Allows for reading and evaluation of books for middle/junior high and senior high school pupils. Emphasizes modern literature. Prereq., 56 hours completed or in progress and admission to the secondary English teacher education program.

EDUC 4342-3. Composition for Teachers. Presents strategies for evaluating and teaching written composition in the secondary schools. Emphasizes structure of prose, invention, motivation, audience, and other rhetorical considerations, as well as teaching methodologies. Prereq., 56 hours completed or in progress and admission to the secondary English teacher education program.

EDUC 4712 (8-14). Student Teaching—Secondary School 1. Student teacher attends a middle/junior high or senior high school in the Boulder-Denver metropolitan area. Prereq., admission to the secondary teacher education program.

EDUC 4722 (4-8). Student Teaching—Secondary School 2. Student teacher attends a middle/junior high or senior high school class in kinesiology, foreign language, art, or music in the Boulder-Denver metropolitan area. Should be taken concurrently with student teaching in home department. Prereq., admission to the secondary teacher education program.

EDUC 4732 (4-12). Student Teaching—K-12. Required experience for music students seeking education at both elementary and secondary levels. Prereq., admission to the secondary or K-12 music teacher education program.

EDUC 4912-1. Practicum in Teacher Education. Provides in-school practicum experience.

Elementary and Secondary Education

EDUC 3013-3. School and Society. Introduces the real world of schools, teaching, and learning. Integrates linguistically different child, communication, and the history, philosophy, sociology, and anthropology foundations of education. Also integrates theory and practice by including hands-on experiences in community settings. Prereq., 56 credit hours completed or in progress.

EDUC 4513-2. Education and Practice. Meets during student teaching assignment. Includes topics of concern to teachers, such as classroom organization and management, lesson planning, assessment, journals, preparation of a professional teaching portfolio, etc. Coreq., student teaching.

Graduate Education

The following courses are not program-specific and may be taken by master’s and doctoral students as needed for their plans of study.

EDUC 5005-3. Social Foundations of Education. Evaluates social values and forces in American society that shape or influence aims, philosophies, methods, content, issues, and problems of the American educational enterprise.

EDUC 5015-3. International and Comparative Education. Comparatively studies education in other countries, emphasizing the role of education in developing nations. Analyzes political, social, and economic policies and ideologies for their relevance to the development process.

EDUC 5035-3. Proseminar: Parent and Community Involvement. Focuses on models and strategies for improving parent and community involvement in the schools. Discusses administrative concerns, such as parent advisory councils, and instructional concerns, such as helping children with school assignments.

EDUC 5055-3. Philosophy of Education. Traces the development of educational theory and practice from ancient times to present day, emphasizing contemporary philosophies and trends.

EDUC 5085-3. History of American Education. Highlights social and intellectual history perspectives of American education, major reform movements from the 18th century to the present, interpretation of American educational history, and assessment of how differences of race, class, ethnicity, religion, power, and gender have affected American education.
EDUC 5095-3. Teachers as Researchers. Examines questions central to K-12 curriculum and instruction. Focuses on developing research projects applicable to current classroom practice, writing proposals for curriculum investigations, conducting specific curriculum investigations, and writing research findings.

EDUC 5105-3. Effective Instruction. Investigates research on teaching and development of systems for analyzing the teaching-learning process.

EDUC 5125-3. Supervision of Student Teachers. Develops competency in the supervision of student teachers, including attention to various modern and new approaches. For cooperating teachers as well as supervisors.

EDUC 5195-4. Elementary Reading Theory and Methods. Provides an understanding and acquisition of basic methods in the teaching of reading at the elementary level. Includes basic approach, literature approach, and individualized instruction.

EDUC 5225-4. Elementary Language Arts Theory and Methods. Highlights current thought, as determined by research findings, in the various areas of the language arts: oral and written communication, spelling, handwriting, usage, grammar, foreign languages, and bilingual education.

EDUC 5235-3. Teaching Reading in Content Areas. Addresses format variations from content area to content area, materials, equipment, readability of content materials, vocabulary, variations in comprehension, and variations in study procedures.

EDUC 5245-3. Foundations of Reading Instruction K-12. Comparatively analyzes current and emerging philosophies and programs in K-12 with focus on teaching reading and thinking skills.

EDUC 5255-3. Processes Involved in Reading. Discusses concepts needed for understanding and critically evaluating the competencies involved in learning how to read. Also focuses on examining and dealing with child and adolescent development and linguistic orientation. Prereq., EDUC 5245.

EDUC 5265-3. Processes in Writing. Investigates processes writers use from early ages to maturity as they compose prose. Considers several process models, surveys current research, and proposes and evaluates research designs.

EDUC 5275-3. Diagnostic and Remedial Techniques of Reading. Considers causes of low reading ability and techniques employed in teaching the poor reader, including diagnosis, motivation, and skills. Prereq., EDUC 5255.

EDUC 5305 (3-4). Proseminar: Teaching and Learning. Presents and discusses issues in secondary school curriculum, instruction, and management. Examines, analyzes, and evaluates a variety of instructional delivery strategies, their effectiveness for students, and teacher dispositions to facilitate learning.

EDUC 5315-3. The Nature of Science and Science Education. Explores contemporary ideas and issues in the history, philosophy, and social studies of science education and science, science as a social and cultural activity, and how contemporary issues in science relate to and impact educational practice. Same as EDUC 4312.

EDUC 5345-3. Composition for Teachers. Offers strategies for evaluating and teaching written composition in the secondary schools. Emphasizes structure of prose, invention, motivation, audience, and other rhetorical considerations, as well as teaching methodologies.

EDUC 5355 (3-4). Advanced Methods in Secondary Social Studies Education. Designed to meet the needs of experienced teachers and those who will teach in public schools. Examines recent developments in theory and materials in the social studies and analyzes current practices for their contribution to general goals of social studies education. Appropriate for teachers in grades seven through 12, but also profitable for elementary teachers with a specialization in social studies.

EDUC 5365 (3-4). Advanced Methods in Secondary English Education. Provides experienced teachers an opportunity to investigate specific methods and strategies for teaching English from the middle/junior high through senior high school levels.

EDUC 5375 (3-4). Advanced Methods in Secondary Mathematics. Investigates specific methods and strategies suitable for teaching mathematics from the middle/junior high through senior high school levels. Allows for active involvement in the process of instruction by utilizing methods and strategies being considered.

EDUC 5415-3. Theory and Practice of Experiential Education. Introduces the theoretical underpinnings in philosophy, psychology, and the natural and social sciences of the experiential and alternative education movements. Observes and analyzes practical applications in schools and public and private agencies.

EDUC 5425-3. Introduction to Bilingual/Multicultural Education. Provides a comprehensive survey of bilingual-multicultural education programs for language minority students. Includes an overview of the history and legislation related to bilingual education. Presents various models, philosophies, and theoretical underpinnings of bilingual education. Discusses strategies and important considerations for teaching the LEP-handicapped.

EDUC 5435-3. Materials and Methods in Bilingual/Multicultural Education. Provides an in-depth study of curriculum options available for the bilingual classroom. Presents, reviews, and critiques specific methods and strategies for teaching language minority students. Emphasizes methods for implementing cooperative learning strategies. Gives students the opportunity to develop and present teaching units in Spanish or in ESL methodology, as appropriate. Prereq., EDUC 5425.
EDUC 5445-3. Curriculum and Methods for Exceptional Children and Special Education. Analyzes curriculum programs and applies principles and innovation for education of ethnic-racial students at all school levels.

EDUC 5455-3. Literacy for Linguistically Different Learners. Presents current and emerging philosophies and methods on teaching reading to culturally diverse second-language learners. Includes review of materials, strategies for teaching reading and writing skills, and important considerations for transfer from L1 to L2 reading. Prereq., EDUC 5425 or reading course at 5000 level.

EDUC 5465-3. Needs and Education of Exceptional Children. Discusses characteristics and needs of various types of handicapped and gifted students. Gives special attention to procedures used for diagnosis and the suggested educational adjustments and care required by these students. Discusses successful teaching techniques and instructional approaches including individualization, least restrictive environment transition, and career education. Meets Colorado exceptional child education requirements.

EDUC 5485-3. Teaching Exceptional Children in the Regular Classroom. Introduces students to the discipline of educational settings. Not designed as an advanced professional study group, and development of advanced topics in educational settings.

EDUC 5505-3. Education of Students with Exceptionalities. Introduces students to the discipline of educational settings. Not designed as an advanced professional study group, and development of advanced topics in educational settings.

EDUC 5545-3. Curriculum and Methods for the Moderately Handicapped. Reviews the various educational curricula currently in use with moderately handicapped students. Emphasizes different teaching methods, instructional materials, and learning strategies that have proven effective in working with students with cognitive learning needs.

EDUC 5555 (1-4). Elementary Moderate Needs Practicum. Offers supervised field experience in special education with moderate needs handicapped students. Each credit hour requires 50 contact hours. Prereqs., EDUC 5465, 5505, 5545, and 5515.

EDUC 5575 (1-4). Workshop in Instruction and Curriculum in Content Areas.

EDUC 5585 (1-4). Workshop in Social, Multicultural, and Bilingual Foundations.

EDUC 5605-3. Research Issues in Bilingual Education. Offers practical experience in the review, critique, conceptualization, and writing of the research studies in bilingual/ESL education. Provides experience in the design of classroom evaluation systems. Prereq., EDUC 5425.

EDUC 5615-3. Second Language Acquisition. Presents a broad survey of second-language acquisition research. Stresses theoretical concerns and research findings and practical applications to teaching second languages. Gives special emphasis to second-language acquisition.

EDUC 5635-3. Education and Sociolinguistics. Introduces students to the discipline of sociolinguistics, which is the study of language variation and use, and its application within education settings. Not designed as an advanced sociology or linguistics course. Areas of study include language variation, speech communities, the ethnography of communication, speech and social identities, and sociolinguistic research related to teaching and learning.

EDUC 5705-3. Theories of Learning and Development. Examines current theory and research on child development, learning, and motivation. Emphasizes the relationship between and among development, learning, motivation, and how theory and research can inform instructional decisions in the elementary classroom. Prereq., admission to the elementary MA+ program.

EDUC 5706-3. Development of Educational Measures. Covers the construction, interpretation, and evaluation of achievement tests, attitude measures, questionnaires, and sociometric measures. Looks at item analysis, validity, reliability, and norming considerations. Also includes interpretation and use of standardized intelligence and achievement tests.

EDUC 5715-4. Education, Society, and the Elementary Teacher. Introduces issues affecting teachers and the teaching profession. Examines these issues from a variety of theoretical viewpoints including conservative, radical, progressive, and socially efficient orientations. Also examines and analyzes the cultural, structural, and institutional features of schooling. Prereq., admission to the elementary MA+ program.

EDUC 5716-3. Basic Statistical Methods. Introduces descriptive statistics including graphic presentation of data, measures of central tendency and variability, correlation and prediction, and basic inferential statistics, including the t-test.

EDUC 5725-4. Issues in Elementary Education. Introduces the role of practical reasoning in curricular and pedagogical practice. Examines and analyzes current curriculum material, pedagogical practices, and institutional contexts. Prereqs., EDUC 5705 and 5715.

EDUC 5726-3. Introduction to Disciplined Inquiry. Considers various research approaches and methodologies including experimental and quasi-experimental methods; anthropological and case study methods; evaluative research and field studies; correlational and ex post facto research; and sociological, historical, and philosophical research. Topics include information retrieval and library research, research criticism, and proposal writing.

EDUC 5735-3. School-Based Professional Seminar. Required of both cooperating and student teachers in the student teaching semester of the elementary MA+ program. Includes observation and analysis of classroom interaction, models for school-based professional study groups, and development of action research projects. Prereqs., EDUC 5705, 5715, and 5725.

EDUC 5736 (1-4). Workshop in Research and Evaluation Methodology.

EDUC 6318-3. Psychological Foundations of Education. Surveys results of psychological inquiry, emphasizing applications to educational practices. Major topics include motivation, behavior, learning, development, and individual differences.
EDUC 6325-3. Anthropology and Education. Applies anthropological perspectives to research in educational settings. Focuses on theories of culture, cultural transmission and acquisition, and cultural reproduction and production for understanding schooling and its outcomes.

EDUC 6504-3. Issues and Methods in Cognitive Science. Introduces cognitive science, examining ideas from cognitive psychology, philosophy, education, and linguistics via computational modeling and psychological experimentation. Topics include philosophy of mind; categorization; vision and mental imagery; consciousness; problem solving, decision making, and game theory; language processing; and connectionism. Prereq., graduate standing or at least one upper-division course in computer science, linguistics, philosophy, or psychology.

EDUC 6528 (1-4). Workshop in Educational and Psychological Studies.

EDUC 6804 (1-4). Special Topics. Designed to meet needs of graduate students with topics of pertinent interest.

EDUC 6844 (1-4). Master’s Independent Study.

EDUC 6855 (1-4). Independent Study in Instruction and Curriculum in Content Areas—Master’s Level.

EDUC 6888 (1-4). Independent Study in Educational and Psychological Studies—Master’s Level.

EDUC 6899 (1-4). Independent Study in Social, Multicultural, and Bilingual Foundations—Master’s Level. Instructor consent required.

EDUC 6915 (1-4). Practicum in Instruction and Curriculum in Content Areas.

EDUC 6916 (1-4). Practicum in Research and Evaluation Methodology.

EDUC 6918 (1-4). Practicum in Educational and Psychological Studies.

EDUC 6919 (1-4). Practicum in Social, Multicultural, and Bilingual Foundations. Instructor consent required.

EDUC 6925 (1-4). Readings in Instruction and Curriculum in Content Areas.

EDUC 6926 (1-4). Readings in Research and Evaluation Methodology.

EDUC 6928 (1-4). Readings in Educational and Psychological Studies.

EDUC 6929 (1-4). Readings in Social, Multicultural, and Bilingual Foundations. Instructor consent required.

EDUC 6944-3. Master’s Degree Candidate.

EDUC 7015-3. Teaching Internship in Teacher Education. One-semester teaching internship in an undergraduate or graduate foundations course.

EDUC 7105-3. Issues and Consultation in Bilingual Special Education. Covers fundamental issues of bilingual special education and describes effective consultation practices between the special education teacher and other educational personnel. Utilizes cooperative learning teams to develop program and curriculum models for identifying and instructing minority handicapped students.

EDUC 7316-3. Intermediate Statistical Methods. Studies sampling theory and inferential statistics; advanced applications for testing of hypotheses regarding central tendency, variability, proportion, correlation, and normality; chi-square and the analysis of frequency data; multiple regression and prediction; introduction to the analysis of variance; and related computer programs for statistical analysis. Required of all doctoral candidates. Prereq., EDUC 5716.

EDUC 7326-3. Experimental Design and Analysis 1. Focuses on experimental and quasi-experimental designs in educational research; selecting an appropriate statistical test; power and statistical efficiency; randomization and control; multiple comparisons; factorial experiments and interaction with fixed-factor and mixed designs; analysis of variance; effects of assumption violations; and related computer programs for statistical analysis. Prereq., EDUC 5716 and 7316.

EDUC 7336-3. Methods of Survey Research and Assessments. Examines theory and techniques involved in each stage of survey research, including problem formulation, questionnaire development, interview surveys, assessing reliability and validity, sampling plans, data reduction (e.g., factor analysis), and analysis of continuous and categorical data. Prereq., EDUC 5726 and 7316.

EDUC 7396-3. Multivariate Analysis. Introduces the theory of advanced multivariate techniques and their application in educational research. Topics include analysis of time-series experiments, MANOVA, discriminant function analysis, and multiple regression.

EDUC 7416-3. Seminar: Research Methodology. Presents selected topics for advanced study in educational research, statistics, measurement, and evaluation.

EDUC 7436-3. Item Response Theory. Includes one-, two-, and three-parameter logistic models for dichotomously scored items and partial-credit models for polychotomously scored items. Applies the models to problems such as equating of test forms, test design, computerized adaptive testing, and the detection of item bias.

EDUC 7446-3. Seminar on Policy Issues in Education. Explores how policy studies are conducted and become influential. Focuses on the relationship between education and the economy; the relationship between education, poverty, and wealth; and on how policy studies affect contemporary education and social issues.

EDUC 7456-3. Seminar in Structural Equation Modeling. Covers the application of structural-equation modeling techniques and the use of measurement models and structural-equation models of the type that can be analyzed by current computer programs.

EDUC 8004-3. Doctoral Research Seminar. Gives beginning doctoral students an overview of the fields of educational research, with special attention to the research programs of education faculty. Programs include work based in
psychology, sociology, anthropology, sociolinguistics, philosophy, and political science.

EDUC 8014-3. Doctoral Seminar in Multiculturalism and Education. Addresses the sociopolitical context of multiculturalism and education, and the sociocultural context of learning. Examines critical issues involved in making schooling responsive to an increasingly multicultural and multilingual society.

EDUC 8035-3. Conceptual Change. Explores the nature of conceptual change and the conditions that facilitate or impede a learner’s process in knowledge construction and reorganization. Integrates central themes with case studies of particular projects and focus areas.

EDUC 8125-3. Seminar on Radical Education Theories. Radical (class, gender, and race based) analyses of United States public schooling maintain that dynamics of oppression and domination undermine schools’ democratic promise. Scrutinizes the explanatory adequacy and ethical justification of the radical claims.

EDUC 8135-3. Seminar on Research on Teaching. Looks at substantive and methodological issues that underlie contemporary research on teaching. Explores areas of research on teaching including effective teacher behavior, classroom management, student mediation of teaching, teacher cognition, and pedagogical expertise.

EDUC 8145-3. Seminar Research on Teacher Education and Learning to Teach. Reflects upon substantive and methodological issues that underlie current research, and analyzes in-depth exemplary research programs on teacher education and learning to teach. Explores theory, research, and policy related to the participants, curriculum, content, and contexts.

EDUC 8348-3. Seminar: Human Development. Intensively studies selected topics in growth and development, with applications to educational situations.

EDUC 8358-3. Seminar: Human Learning. Reviews in-depth a limited number of currently active topics in cognitive psychology to reveal unresolved research problems. Each participant is responsible for presenting a research proposal and for being an informed critic of the presentations of others.

EDUC 8368-3. Seminar: Instructional Psychology. Intensively studies small sample research designs and analyzes selected topics in instructional psychology.

EDUC 8378-3. Research Seminar: Educational Psychology. Intensively reviews special topics in the application of psychological science to educational practice.

EDUC 8388-3. Consultation in Schools. Covers consultation definitional issues. Defines participant roles, and explores process and outcome goals. The success of consultation depends on the use of Carkhuff interpersonal skills throughout the process.

EDUC 8804 (1-3). Special Topics. Designed to meet needs of graduate students with topics of pertinent interest.

EDUC 8844 (1-4). Doctoral Independent Study.

EDUC 8855 (1-4). Independent Study in Instruction and Curriculum in Content Areas—Doctoral Level.

EDUC 8866 (1-4). Independent Study in Research and Evaluation Methodology—Doctoral Level.

EDUC 8935 (1-6). Internship in Instruction and Curriculum in Content Areas.

EDUC 8936 (1-6). Internship in Research and Evaluation Methodology.

EDUC 8938 (1-6). Internship in Educational and Psychological Studies.

EDUC 8939 (1-6). Internship in Social, Multicultural, and Bilingual Foundations. Instructor consent required.

FACULTY

WILLIAM B. STANLEY, Dean; Professor. B.A., Kean College; M.A., Ph.D., Rutgers University.

HAROLD MILTON ANDERSON, Professor Emeritus.

RONALD DeLAINE ANDERSON, Professor. B.S., Ph.D., University of Wisconsin.

LEONARD M. BACA, Professor. S.T.B., Catholic University of America; M.A., University of New Mexico; Ed.D., University of Northern Colorado.

HILDA BORKO, Professor. B.A., M.A., Ph.D., University of California at Los Angeles.

RUTH K. CLINE, Professor Emerita.

JACK EUGENE COUSINS, Professor Emeritus.

PHILIP DiSTEFANO, Vice Chancellor for Academic Affairs; Professor. M.A., West Virginia University; B.S., Ph.D., Ohio State University.

RUBEN DONATO, Associate Professor. B.A., University of California, Santa Cruz; M.A., Ph.D., Stanford University.

MARGARET A. EISENHART, Professor. B.A., Emory University; M.A., Ph.D., University of North Carolina.

KATHY C. ESCAMILLA, Associate Professor. B.A., University of Colorado at Boulder; M.S., University of Kansas; Ph.D., University of California at Los Angeles.

ROBERTA FLEXER, Associate Professor. B.S., Tufts University; M.Ed., Harvard University; Ph.D., University of Colorado.

PAMELA FORD, Director of Field Experiences; Senior Instructor. B.S., University of Missouri; M.A., University of Northern Colorado; Ph.D., University of Colorado at Boulder.

MARIA E. FRANQUIZ, Assistant Professor. B.A., M.A., Ph.D., University of California, Santa Barbara.

JEFFREY A. FRYKHLOM, Assistant Professor. B.A., M.S., Whitworth College; Ph.D., University of Wisconsin-Madison.

STEVEN R. GUBERMAN, Director of Graduate Studies; Associate Professor. B.A., University of Chicago; M.A., Ph.D., University of California at Los Angeles.

JOHN HAAS, Professor Emeritus.

RICHARD HARPEL, Director of Federal Programs, President’s Office; Associate Professor. B.A., Wheaton College; M.P.S., Ph.D., University of Colorado.

MYRLE EMERY HEMENWAY, Associate Professor Emeritus.

STEPHEN E. HODGE, Associate Professor Emeritus.

KENNETH D. HOPKINS, Professor Emeritus.

ERNEST R. HOUSE, Professor. A.B., Washington University; M.S., Southern Illinois University; Ed.D., University of Illinois.

KENNETH R. HOWE, Professor. B.A., M.A., Ph.D., Michigan State University.

KENNETH LAWRENCE HUSBANDS, Professor Emeritus.

MARGARET D. LeCOMPTE, Professor Emeritus.

KATHY C. ESCAMILLA, Associate Professor. B.A., University of Colorado at Boulder; M.S., University of Kansas; Ph.D., University of California at Los Angeles.

ROBERTA FLEXER, Associate Professor. B.S., Tufts University; M.Ed., Harvard University; Ph.D., University of Colorado.

PAMELA FORD, Director of Field Experiences; Senior Instructor. B.S., University of Missouri; M.A., University of Northern Colorado; Ph.D., University of Colorado at Boulder.

MARIA E. FRANQUIZ, Assistant Professor. B.A., M.A., Ph.D., University of California, Santa Barbara.

JEFFREY A. FRYKHLOM, Assistant Professor. B.A., M.S., Whitworth College; Ph.D., University of Wisconsin-Madison.

STEVEN R. GUBERMAN, Director of Graduate Studies; Associate Professor. B.A., University of Chicago; M.A., Ph.D., University of California at Los Angeles.

JOHN HAAS, Professor Emeritus.

RICHARD HARPEL, Director of Federal Programs, President’s Office; Associate Professor. B.A., Wheaton College; M.P.S., Ph.D., University of Colorado.

MYRLE EMERY HEMENWAY, Associate Professor Emeritus.

STEPHEN E. HODGE, Associate Professor Emeritus.

KENNETH D. HOPKINS, Professor Emeritus.

ERNEST R. HOUSE, Professor. A.B., Washington University; M.S., Southern Illinois University; Ed.D., University of Illinois.

KENNETH R. HOWE, Professor. B.A., M.A., Ph.D., Michigan State University.

KENNETH LAWRENCE HUSBANDS, Professor Emeritus.

MARGARET D. LeCOMPTE, Professor. B.A., NorthWestern University; M.A., Ph.D., University of Chicago.
ROBERT L. LINN, Professor. A.B., University of California, Los Angeles; M.A., Ph.D., University of Illinois.

 DANIEL P. LISTON, Professor. B.A., Earlham College; Ph.D., University of Wisconsin.

 ROY P. LUDTKE, Professor Emeritus.

 WILLIAM McGINLEY, Associate Professor. A.B., Western Kentucky University; M.Ed., Idaho State University; Ph.D, University of Illinois.

 ROBERT C. McKEAN, Professor Emeritus.

 PATRICK McQUILLAN, Associate Professor. B.S., M.A. Wesleyan University; Ph.D., Brown University.

 MICHAEL S. MELOTH, Associate Professor. B.S., Boise State University; M.A., San Francisco State University; Ph.D., Michigan State University.

 HUBERT H. MILLS, Professor Emeritus.

 OFELIA MIRAMONTES, Associate Professor. M.A., United States International University; B.A., Ph.D., San Diego State University.

 LINDA A. MOLNER, Director of Teacher Education and Partnerships; Senior Instructor. M.Ed., Colorado State University; B.A., Ph.D., University of Colorado at Boulder.

 MITCHELL J. NATHAN, Assistant Professor. B.S., Carnegie Mellon University; M.A., Ph.D., University of Colorado at Boulder.

 MILES C. OLSON, Professor Emeritus.

 KARL OPENSHAW, Professor Emeritus.

 DOMINIC PERESSINI, Assistant Professor. B.S., Montana State University; M.S., Ph.D., University of Wisconsin, Madison.

 ROBERT D. PRICE, Professor Emeritus.

 MARIA de la LUZ REYES, Associate Professor Emeritus.

 ALBERT EDWARD ROARK, Professor Emeritus.

 STEPHEN ROMINE, Professor Emeritus.

 JAMES S. ROSE, Professor Emeritus.

 CINTHIA SALINAS, Assistant Professor. B.A., University of Texas, Austin; M.S., Texas A&I University at Kingsville; Ph.D., University of Texas, Austin.

 DARYL L. SANDER, Professor Emeritus.

 LORETTA A. SHEPARD, Professor. B.A., Pomona College; M.A., Ph.D., University of Colorado.

 MARC SWADENER, Associate Dean and Associate Professor. B.S., M.S., M.A.T., Ed.D., Indiana University.

 JAMES R. WAILES, Professor Emeritus.

 KEVIN G. WELNER, Assistant Professor. B.A., University of California, Santa Barbara; J.D., Ph.D., University of California, Los Angeles.

 SHELBY ANNE WOLF, Associate Professor. B.A., University of Richmond; B.A., M.S., University of Utah; Ph.D., Stanford University.
Seal of Honor

CU’s official seal was adopted in 1908 and depicts a male classical Greek figure sitting in front of a pillar and holding a scroll. Next to the figure, laurel branches frame a burning torch. The inscription in Greek reads, “Let Your Light Shine.” The seal’s designer, Henry Read, chose the classical motif because Greek civilization “stands as the criterion of culture.” The laurel symbolizes honor or success, and the youth is the “morning of life.” The scroll represents written language. The seal today is considered the symbol of CU’s academic excellence.
The College of Engineering and Applied Science offers eleven undergraduate degrees: aerospace engineering sciences, architectural engineering, chemical engineering, civil engineering, electrical engineering, environmental engineering, mechanical engineering, computer science, applied mathematics, and engineering physics. Seven of the first eight degree programs are accredited by the Accreditation Board for Engineering and Technology; accreditation in environmental engineering will be sought after that now program graduates its first majors. The remaining degree programs are applied sciences; accreditation by ABET is not usually sought in these areas. All degree programs are accredited under the North Central Association of Colleges and Schools. Degrees in applied mathematics and engineering physics are offered in cooperation with the Departments of Applied Mathematics and Physics in the College of Arts and Sciences.

Additional information about the academic programs, services, and faculty of the College of Engineering and Applied Science is found at www.colorado.edu/engineering.

The goals of this college are to:
• attract and graduate excellent students of diverse demographics, providing them with an education that prepares them for success and future leadership in the engineering profession;
• be one of the foremost institutions of research, advancing the frontiers of knowledge for the benefit of society;
• be a nationally recognized leader in the evolving paradigm of engineering education, integrating teaching, learning, and discovery learning at the undergraduate and graduate levels;
• provide academic support to all engineering students;
• achieve a recognized level of excellence in all degree programs; and
• conduct outreach activities to support enrollment goals, demands for continuing education and lifelong learning, and support the educational needs of the citizens of the state of Colorado.

This college strives to graduate technically proficient men and women who have a diverse global outlook on life, realize that learning is a lifelong endeavor, and appreciate their potential to benefit humanity and to protect our environment.

Equal Opportunity
The College of Engineering and Applied Science is dedicated to an open, inclusive, and supportive human climate for all of its students, staff, and faculty. It is guided by the principles of empowerment and respect for all individuals.

The college does not discriminate on the basis of race, color, sex, age, religion, sexual orientation, national or ethnic origin, disability, or veteran status in any of its programs or activities, including admission, employment, and the administration of its education and research policies.

Facilities
Students have an opportunity to study engineering with over 160 faculty members of national and international reputation. They have access to the superb facilities of the College of Engineering and Applied Science. Each engineering department has laboratories suitable for undergraduate and graduate instruction and experimental research through the doctoral or postdoctoral level. Specific information on these facilities may be obtained from the departments concerned.

Computing
Classes in all departments of the college place strong emphasis on the use of computers. All entering freshmen receive instruction and undertake academic projects involving computers. While most students choose to obtain personal computers, several hundred computers are available in open laboratories in the college, and over one thousand are located throughout the campus for student use. Many computer laboratories are located in the Engineering Center.

Further information on computing can be found under Campus Facilities in the General Information chapter of this catalog, in engineering department summaries, and under Laboratories and Special Equipment in the Graduate School chapter.

Degree Programs
In most departments of this college, several options are offered within each degree program. Many departments offer options of bioengineering and/or premedicine and environmental engineering. Some programs of study are oriented toward graduate work, and others toward engineering practice.

Engineers work in a wide variety of disciplines, with the college’s eleven undergraduate and eight graduate degree programs reflecting this diversity. The following descriptions summarize these areas.

Aerospace engineering sciences prepares engineers for an industry that encompasses the design and construction of commercial and military aircraft and space vehicles. The systems education of aerospace engineers also prepares them for careers in other fields requiring highly technical systems. Because of their extensive background in mathematics and physics, they are often at the forefront of emerging technologies.

Applied mathematicians have the expertise and mathematical sophistication necessary to make contributions in a wide variety of fields, including scientific computation, actuarial science, financial modeling, and most areas of science and engineering that have a mathematical basis.

A professional applied mathematician may work with engineers, scientists, programmers, and other specialists. The curriculum at CU-Boulder is designed to have the breadth for such an interdisciplinary career.

Course offerings at the undergraduate level focus on providing students with mathematical tools, problem-solving strategies, and expertise useful in science and engineering. To fulfill requirements, a concentrated area of engineering courses (or approved natural science courses) must be completed. The college has formulated several recommended options within the discipline.

Architectural engineering prepares students for leadership careers in the building design, management, and construction industry and for research at the graduate level on building-related topics. This course of study fulfills the academic requirements for registration as a professional engineer.

The architectural engineering curriculum is recommended for those wishing to specialize within the building industry in engineering design (heating, cooling, illumination, electrical, solar, acoustics, and structures) or construction and contracting (facilities management). The architectural engineering student may select any one of several areas of specialization offered: HVAC (heating, ventilating, and air conditioning), illumination, electrical, acoustics, building energy, structures, or construction.
Chemical engineers convert natural resources into industrial and consumer products using a wide variety of processing technologies. Among their products are many that are often not identified with chemical engineering—oils, metals, glass, plastics, rubber, paints, soaps and detergents, foods, beverages, electronics, synthetic and natural fibers, nuclear and exotic fuels, and medicines.

This department has a strong general undergraduate program with curricular options in environmental, materials, microelectronics, computing, and bioengineering. There is also a premedicine curriculum track. There are active research and educational programs in the exciting field of biotechnology, which involves the use of individual cells and their components for producing pharmaceuticals and other important products, and biomedical engineering, which involves medical devices, tissues, and biomaterials. The department also is involved in pollution control, novel membrane separations, and advanced polymeric and ceramic materials.

Civil engineering offers a wide range of challenging careers for students interested in the planning, design, and supervision of the construction of facilities essential to modern life in both the public and private sectors. Varying widely in nature, size, and scope, such facilities include space satellites and launching facilities, offshore structures, bridges, buildings, tunnels, highways, transit systems, dams, airports, irrigation projects, treatment and distribution facilities for water, and collection and treatment facilities for wastewater.

In the next two decades, almost two billion more people will populate the Earth. This growth will create demands for producing energy, supplying food, stabilizing land, processing water, providing transportation, handling materials, disposing waste, moving earth, providing health care, cleansing the environment, creating structural facilities, living and working on an unprecedented scale. Civil engineers will play a critical role in fulfilling those demands and in preserving the quality of life.

Computer science offers study in the fields of programming languages, artificial intelligence, human-computer interaction, software engineering, operating systems, parallel processing, numerical analysis, database systems, and the theory of computation. Graduates typically take positions as systems programmers for computer manufacturers or software firms, advanced applications programmers in scientific research firms, or technically oriented systems designers in a commercial or government setting.

Electrical engineering offers study of the basic science and technology of information and energy. Its areas of knowledge include information theory and communications systems, computers and digital systems, signal processing and instrumentation, feedback systems and automatic control, electrical and electronic devices and systems, energy conversion and power systems, and electromagnetics and microwave devices. Students learn how this basic knowledge is applied to such modern technologies as computers, telecommunications, biomedical systems, and remote sensing. The curriculum accommodates a variety of student interests including design, production, testing, consulting services, research, teaching, and management. Graduates pursue careers in a large variety of fields in the computer industry, telecommunications, instruments, the biomedical industry, aerospace, and academia. Some go on to careers in other professions such as law or medicine.

Electrical and computer engineering offers the same curriculum as electrical engineering except that required courses in computer hardware and software replace some upper-division electives. Like electrical engineering, it accommodates broad student interests from design to service and from research to management. Its graduates take positions in fields as diverse as those listed above for electrical engineering.

Engineering physics provides students with a broad exposure to the basic physical theories and mathematical techniques underlying engineering. The program uses an elective structure that allows degree specialization. Extensive opportunities exist to experience laboratory research firsthand. Graduates of the program are highly competitive in the electronics, optics, and computer science job markets. The program also provides excellent preparation for graduate study in physics, applied physics, and other areas of the natural sciences and engineering.

Environmental engineering plays a vital role in maintaining the quality of both human environmental systems and the natural environment. Environmental engineering encompasses the scientific assessment and development of engineering solutions to environmental problems impacting the biosphere and land, water, and air quality. Environmental issues affect almost all commercial and industrial sectors, and are a central concern for the public, for all levels of government, and in international relations.

The degree in environmental engineering includes course work in advanced mathematics, biology, chemistry, and physics. In common with other engineering fields, courses in solid mechanics, fluid dynamics, and thermal sciences are central to the environmental engineering degree. Course work specific to environmental engineering includes water and wastewater treatment, hazardous waste storage and treatment, and air pollution control.

Mechanical engineering prepares students for careers in a variety of industrial sectors including transportation, energy, electronics manufacturing, medical, and environmental. Basing their education on the fundamentals of mathematics, physics, and chemistry, mechanical engineers deal with diverse components and systems such as internal combustion engines, automobiles, computers, power plants, aircraft, medical instruments, space platforms, and pollution control devices. Career opportunities include work in basic and applied research and development, design, manufacturing, project management, consulting, and teaching. They are employed by a wide variety of industrial, governmental, and educational organizations. A mechanical engineering background also provides a firm foundation for other professional careers such as engineering management, law, and medicine.

Open Option Program. The College of Engineering and Applied Science provides the opportunity for new freshmen to delay their selection of an engineering major by enrolling in the open option (OPEN) program. This program is available only to new freshmen; students in the program are required to select a specific engineering degree program no later than the end of the spring semester, regardless of when they entered the OPEN program. This program provides students with one or two semesters to explore the variety of engineering degree programs before selecting a major.

The dean’s office provides general advising for all open option students through staff advisors. This advising is supplemented with freshmen faculty advisors in each engineering degree program. Students selecting the open option program are subject to all College of Engineering and Applied Science academic rules and policies. They are also required to satisfy any remaining minimum academic preparation standards (MAPS) required for graduation. For information, see www.colorado.edu/engineering/ar_ugradadvising.html (OPEN option).

Professional Registration

The need for professional registration depends on the field of engineering and the nature of practice in that field. Engineers in private professional practice generally need to be registered. Currently, registration is required in all states for the legal right to practice professional engineering. Although there are variations in state laws, graduation from an accredited curriculum in engineering, subscription to a code of ethics, and four years of qualifying experience are minimum requirements for registration. Two days of examinations covering the engineering sciences and the applicant’s practical experience are also required in most states and territories.
Study Abroad

In today’s international environment, engineers frequently work and travel in foreign nations or with foreign engineers. Therefore, it is desirable that engineering students familiarize themselves with foreign cultures by selecting appropriate courses or by studying abroad. The University of Colorado has several programs that enable students to undertake course work in engineering. These include programs at the Universities of New South Wales, Wollongong, and Murdoch in Australia; the Universidad de Costa Rica in the Americas; the Universities of East Anglia, Lancaster, and Sussex in England; Denmark’s International Study Program; Uppsala University in Sweden; the University of Edinburgh in Scotland; the American University of Cairo in Egypt; the University of Ghana; and the Instituto Tecnológico y de Estudios Superiores de Monterrey in Mexico. All participants in the university study abroad programs remain enrolled at the university, and the pass/fail grade option is used for all course work taken during study abroad. Financial aid from the university can be applied to the program costs in most cases, and special study abroad scholarships may be available for program participants. More information about studying abroad is available at the University of Colorado at Boulder, Office of International Education, Campus Box 123, Boulder, CO 80309-0123, 303-492-7741.

Engineering departments may also assist students wishing to study engineering at the Ecole National des Ponts et Chausées in Paris, the Ecole Polytechnique Feminine in Paris, and the University of Oviedo in Spain. With the proper preparation, students may complete one or two semesters of engineering education during study abroad. All students preparing for study abroad must petition their major department about specific courses planned away from CU, and to ensure that the college residency requirement is satisfied.

Student Organizations

The following honorary engineering societies have active student chapters in the College of Engineering and Applied Science:

- Chi Epsilon, civil and architectural society
- Eta Kappa Nu, electrical engineering society
- Omega Chi Epsilon, chemical engineering society
- Pi Tau Sigma, mechanical engineering society
- Sigma Gamma Tau, aerospace society
- Tau Beta Pi, engineering society

Student chapters of the following professional or social societies meet frequently to present papers, speakers, films, and other programs of technical interest:

- American Indian Science and Engineering Society
- American Institute of Aeronautics and Astronautics
- American Institute of Chemical Engineers
- American Society of Civil Engineers
- American Society of Heating, Refrigerating, and Air Conditioning Engineers
- American Society of Mechanical Engineers
- American Solar Energy Society
- Associated Energy Engineers
- Associated General Contractors
- Association for Computing Machinery
- Biomedical Engineering Society
- Illuminating Engineering Society
- Institute of Electrical and Electronics Engineers
- National Society of Architectural Engineers
- National Society for Black Engineers
- Sigma Tau, engineering social fraternity
- Sigma Xi, scientific research society
- Society of Automotive Engineers
- Society of Hispanic Professional Engineers and Scientists
- Society of Manufacturing Engineers
- Society of Mexican-American Engineers and Scientists
- Society of Physics Students
- Society of Women Engineers
- Structural Engineers Council

A student organization, the University of Colorado Engineering Council (UCEC), represents students in the College of Engineering and Applied Science. UCEC supervises matters of interest to all undergraduate students through the control board, its legislative body.

The college also supports the CU Flying Club.

Multicultural Engineering Program

The Multicultural Engineering Program (MEP) is an academic excellence community committed to helping students who are historically underrepresented in engineering. The mission of MEP is to recruit, retain, and graduate underrepresented and disadvantaged students with the personal and professional skills needed to excel in professional engineering careers and/or graduate studies.

In addition to program participation grants, MEP conducts a five-week summer bridge program, a new student leadership course, academic excellence workshops, advising, tutoring, and internship and career placement assistance. The MEP Resource Center serves as a central meeting place for forming study groups and networking, while providing access to MEP staff, computer stations, study tables, a resource library, a photocopy machine, and a kitchenette.

MEP is supported by the college and the university, as well as by federal grants and donations from industry and private individuals.

Women in Engineering Program

The Women in Engineering Program (WIEP) provides services to current and prospective women students to maximize the recruitment and retention of women in engineering. Precollege and undergraduate programs and activities include outreach to elementary, middle, and high school students, scholarships, job placement assistance, assistance for transfer students, counseling, supplemental academic advising, peer and professional mentoring, job shadowing, brown bag lunches, and an electronic mail network to keep women informed on important issues and events.

The WIEP is committed to maintaining an encouraging academic and social environment for all students. The StorageTek Women in Engineering Resource Center provides a comfortable setting where students can work and study together. The WIEP is funded by donations from alumni, industry, friends, and the college.

Herbst Program of Humanities

The Herbst Program of Humanities supports multiple courses, including a two-semester, 6-credit-hour seminar for engineering students of at least junior status. This junior seminar has small classes that are almost entirely devoted to roundtable discussion of original texts, primarily in literature and philosophy. The syllabus varies from year to year, but regularly includes drama, short stories, and novels, as well as philosophical treatises on ethics, epistemology, and political science. Classwork stresses responsible reading and cooperative learning. By taking the two consecutive semesters of the Herbst seminar, students fulfill the college’s writing requirements. Another Herbst course is the History of Science and Technology, a 3-credit lecture class offered to first-year students. Courses offered by the Herbst Program of Humanities have a prefix of HUEN.

Residence Hall Program

In cooperation with the Department of Housing, the College of Engineering and Applied Science offers a residential academic program for students majoring in engineering or the sciences. This program features a variety of student support services, an extensive tutoring program in courses related to the first-year engineering curriculum, a computer laboratory, and increased opportunity for faculty and student interaction. If requested by housing, the college also may be involved in student behavioral or disciplinary actions. There is a minimal fee for this program to cover program costs and computer purchases. Students interested in this residential academic program should contact the Department of Housing for application information.
ACADEMIC EXCELLENCE

Dean’s List
A student in the College of Engineering and Applied Science who completes at least 12 credit hours of course work for a letter grade during the fall or spring semester on the Boulder campus (excluding continuing education), and who earns a semester grade point average (GPA) of at least 3.50, will be included on the college dean’s list for that semester. Notation of “Dean’s List” is also placed on the student’s internal transcript by the Office of the Registrar.

Honors at Graduation
In recognition of high scholastic achievement, the designation “With High Distinction” or “With Distinction” is awarded at graduation and is recorded on the diploma and official transcript of the graduate and indicated in the commencement program.

To qualify for the “With High Distinction” designation, the student’s cumulative University of Colorado GPA must be at least a 3.90. For the “With Distinction” designation, the student’s cumulative GPA must be at least a 3.75 but less than a 3.90. In addition, for these designations, at least 50 semester hours must have been earned at the Boulder campus. Grades earned during the semester immediately prior to graduation are not considered.

Interested students also are encouraged to participate in honors programs offered through the College of Arts and Sciences. Honors awards within this program are cum laude, magna cum laude, and summa cum laude and are recorded on the student’s diploma and in the commencement program. Criteria for these designations are determined by the Honors Council. Interested students should consult with the director of the Honors Program at 303-492-3851 for detailed information.

Scholarships
Undergraduate scholarships are provided by public funds and private donations by alumni, corporations, and friends of the college through gifts to the University of Colorado Foundation, Inc. In some cases, endowments have been established; other scholarships are based on annual gifts. Many companies provide matching funds for gifts from their employees who are alumni. More than 650 scholarships have been made available to qualified students.

Awards are based on demonstrated academic ability and performance. Financial need is considered if designated by the donor (see the Financial Aid section of this catalog).

For additional information about college-based scholarships, contact the dean’s office at 303-492-5071 or view www.colorado.edu/engineering/ar_ugradadvising.html (Undergraduate Scholarships). Students may also contact the Office of Financial Aid at 303-492-5091.

Anyone interested in providing an undergraduate scholarship or contributing to the scholarship fund may contact the Engineering Development Office, University of Colorado at Boulder, UCB 422, Boulder, CO 80309-0422, 303-492-7335.

ACADEMIC STANDARDS

Ethics
As members of the academic community, students have a responsibility to conduct themselves with the highest standards of honesty and integrity. These qualities are also vital to the profession of engineering. Academic penalties, including suspension or expulsion, are imposed for the following acts, or intent to engage in such acts: plagiarism; illegal possession and distribution of examinations or answers to specific questions; the presentation of another student’s work as one’s own; performing work or taking an examination for another student; or the alteration, forging, or falsification of official records. This listing is not complete and includes only some types of academic dishonesty brought before the Undergraduate Academic Affairs Committee.

For additional information, view www.colorado.edu/engineering/ar_ugradadvising.html (Student Academic Honesty). See also Academic Integrity and Student Conduct under Campus Policies in the General Information chapter of this catalog.

Policy on Academic Progress
To remain in good standing in the College of Engineering and Applied Science, a student must maintain satisfactory academic performance, as measured by grades reported to and calculated by the Office of the Registrar, and satisfactory academic progress toward completion of a bachelor of science degree in the college. Failure to meet these requirements results in the student being placed on academic probation and, if not corrected, on academic suspension. Under exceptional circumstances, a student may be directly placed on academic suspension if retroactive grade changes lower the cumulative or prior semester GPA.

For additional information, view www.colorado.edu/engineering/ar_ugradadvising.html (Academic Probation and Suspension).

Academic Probation
Academic probation is normally the first step taken by the college to express concern that a student is not maintaining satisfactory academic performance. It represents an official warning that the student’s academic performance must improve or the student will be subject to suspension from the college. Once placed on academic probation, a student remains in that status the following two semesters of enrollment as an undergraduate student in the College of Engineering and Applied Science.

If a student’s cumulative University of Colorado GPA drops below 2.00, or the student’s semester GPA is less than 2.00 for two consecutive semesters at the University of Colorado, the student is placed on academic probation. Once placed on academic probation, the student must meet the academic requirements imposed by the probation sanction or will be academically suspended from the College of Engineering and Applied Science.

Students placed on academic probation by cumulative grade point average must raise their cumulative University of Colorado GPA to at least 2.00 during the next semester of enrollment and keep it above a 2.00 the following semesters. Students are also subject to probation by the consecutive semester GPA rule; this rule prescribes that a student placed on academic probation by the consecutive University of Colorado semester grade point average rule must maintain a semester GPA of at least 2.00 the following semesters.

If probation is due to both cumulative and semester GPAs, students are required to maintain both cumulative and semester GPAs above 2.00 for the two following semesters.

While on academic probation, a student must enroll for and complete at least 12 credit hours per semester of courses that meet engineering degree requirements. Course work taken above minimum degree requirements in humanities, social science, and ROTC subjects does not count toward this minimum course load requirement, and students may not elect to take any courses with the pass/fail grade option.

Academic Suspension
Academic suspension is the involuntary withdrawal of a student from the college. It reflects the college’s position that the student is unable to meet minimum academic requirements for a bachelor of science degree.

If a student does not maintain satisfactory academic performance, that student is placed on academic suspension from the College of Engineering and Applied Science. A student is placed directly on academic suspension if retroactive grade changes lower the cumulative or prior semester grade point averages, or if the cumulative University of Colorado grade point average is below a 1.00 (without a period of academic probation).
The conditions of academic suspension are as follows:
1. The period of the suspension is indefinite, but must be for at least one academic year.
2. This academic suspension applies to the College of Engineering and Applied Science on all campuses of the University of Colorado.
3. Suspended students may not enroll in courses, except those offered during summer session and those offered by correspondence through the Division of Continuing Education, University of Colorado at Boulder. Under no circumstances are suspended students to enroll for courses through the Division of Extended Studies, University of Colorado at Denver, or Maymester courses offered by the Division of Continuing Education, University of Colorado at Boulder.
4. If a student, while on academic probation or suspension, transfers to another college or school of the University of Colorado, the College of Engineering and Applied Science considers that student to have permanently changed their choice of academic major to one offered by that college or school. Therefore, the suspended student is not permitted to enroll in any courses taught by the college of engineering that may apply toward engineering degree requirements. If the suspended student attempts to transfer back into the college through intrauniversity transfer (IUT), the college policy governing IUT admissions applies, and the student must petition the Undergraduate Academic Affairs Committee for removal of the dean’s scholastic stop.
5. The suspended student may elect to attend another accredited institution. However, a student seeking readmission to the college must have raised his or her cumulative CU grade point average to at least 2.00; grades earned at other institutions do not transfer to the University of Colorado.

Under select circumstances, the dean reserves the option of extending the period of academic probation for one semester, rather than placing the student directly on academic suspension. This option is exercised only in cases involving the student’s cumulative grade point average (GPA) and the following conditions:
• The student must have a CU cumulative GPA of at least 1.95.
• The current pattern of academic performance must demonstrate a highly significant improvement over prior semesters.
• The student must have been enrolled in a curriculum of study related to one of the degree programs offered by this college and demonstrate an intent to complete that degree program.

Petition Policy
A student desiring a waiver of college or departmental policies must request and secure approval for this waiver through a petition procedure. Petition forms and information on the petition procedure are available in the dean’s office or in the academic department office.

ADMISSION AND ENROLLMENT POLICIES

Freshman Applicants
Prospective engineering students must have mathematical aptitude and keen interest in science and its methods. Curiosity about the natural principles governing the behavior of forces and materials and the ability to visualize structures and concepts are prerequisites. Strong skills are also essential in written and oral communications.

The college seeks applicants who demonstrate a high probability of completing their designated engineering degree program. Admission is based on the evaluation of many criteria; among the most important are the general level of academic performance prior to admission, performance on standardized tests, and other evidence of motivation, potential, academic ability, and accomplishment. These factors are indicated by academic records, test scores, letters of recommendation, and personal accomplishments.

Engineering students are expected to begin their study of mathematics with calculus. The college also requires that students have prior credit in chemistry and physics.

Specific admission requirements are detailed in Undergraduate Admission in the General Information chapter of this catalog. All new freshmen are expected to be enrolled as full-time students and must petition to be enrolled part time.

Transfer Students
Students desiring to transfer from other accredited collegiate institutions are considered for admission on an individual basis if they meet the transfer student admissions requirements outlined in Undergraduate Admission in the General Information chapter of this catalog. All transfer students are expected to be enrolled as full-time students and must be admitted to the college prior to the last 45 hours of their degree program.

Intercampus Transfer Students
The acceptance of a student transferring from one campus to another within the University of Colorado system is determined by the Office of Admissions on the basis of guidelines established by the respective College of Engineering and Applied Science.

Intercampus transfer applications are considered on the basis of the student’s University of Colorado system grade point average, grades earned in engineering-related courses, grades earned at other institutions, satisfactory academic progress toward degree requirements, course load completed, and the residency requirement of the gaining engineering college.

The student is advised that the engineering degree requirements differ from one campus to another in the number of credit hours required for the degree, specific course content and titles, and residency required in the college. Where there is a difference in credit hours between courses listed as equivalent, the College of Engineering and Applied Science at CU-Boulder applies the smaller number of credit hours. To ensure the maximum acceptance of credit toward degree requirements and minimize the length of time required to complete the degree, the student planning an intercampus transfer must contact the gaining major department as soon as possible once deciding to complete an engineering degree on another University of Colorado campus.

Generally, an intercampus transfer should be accomplished at the end of the first year, with some course selection coordination required between the student and the degree-granting major department during that year. With increased course selection coordination, some students may be able to delay their
<table>
<thead>
<tr>
<th>CU-Boulder Course</th>
<th>Equivalent Colorado Springs Course</th>
<th>Equivalent Denver Campus Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>College of Arts and Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPM 1350-4 Calculus 1 for Engineers</td>
<td>MATH 135</td>
<td>MATH 1401</td>
</tr>
<tr>
<td>APPM 1360-4 Calculus 2 for Engineers</td>
<td>MATH 136</td>
<td>MATH 2411</td>
</tr>
<tr>
<td>APPM 2350-4 Calculus 3 for Engineers</td>
<td>MATH 235</td>
<td>MATH 2422/2423</td>
</tr>
<tr>
<td>APPM 2360-4 Linear Algebra/Differential Equations</td>
<td>MATH 313/340</td>
<td>MATH 3191/3200</td>
</tr>
<tr>
<td>CHEM 1211-3 Engineering General Chemistry</td>
<td>CHEM 103</td>
<td>CHEM 1130/2038</td>
</tr>
<tr>
<td>CHEM 1211-2 General Chemistry Lab</td>
<td>CHEM 103</td>
<td>CHEM 2031</td>
</tr>
<tr>
<td>CHEM 3311-3 Organic Chemistry 1</td>
<td>CHEM 331</td>
<td>CHEM 3411</td>
</tr>
<tr>
<td>CHEM 3321-1 Organic Chemistry 1 Laboratory</td>
<td>CHEM 333</td>
<td>CHEM 3418</td>
</tr>
<tr>
<td>CHEM 3331-3 Organic Chemistry 2</td>
<td>CHEM 332</td>
<td>CHEM 3421</td>
</tr>
<tr>
<td>CHEM 3341-1 Organic Chemistry 2 Laboratory</td>
<td>CHEM 334</td>
<td>CHEM 3428</td>
</tr>
<tr>
<td>PHYS 1110-4 General Physics 1</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>PHYS 1120-4 General Physics 2</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>PHYS 1140-1 Experimental Physics 1</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>PHYS 2130-4 General Physics 3</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>PHYS 2150-1 Experimental Physics</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>College of Engineering and Applied Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architectural Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AREN 1316-1 Introduction to Architectural Engineering</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>AREN 1017-2 Engineering Drawing</td>
<td>ENGR 125</td>
<td>ENGR 1025</td>
</tr>
<tr>
<td>AREN 1027-2 Descriptive Geometry</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>AREN 2010-3 Introduction to Solar Utilization</td>
<td>CHE 405</td>
<td>None</td>
</tr>
<tr>
<td>AREN 2020-3 Energy Fundamentals</td>
<td>ENGR 211</td>
<td>ENGR 3012</td>
</tr>
<tr>
<td>Aerospace Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASEN 2010-3 Mechanics 1</td>
<td>ENGR 201</td>
<td>ME 2023</td>
</tr>
<tr>
<td>ASEN 2020-3 Mechanics 2</td>
<td>ENGR 202</td>
<td>ME 2033</td>
</tr>
<tr>
<td>ASEN 2022-3 Material Science/Engineering</td>
<td>ASE 202</td>
<td>None</td>
</tr>
<tr>
<td>ASEN 2023-3 Thermodynamics</td>
<td>ENGR 211</td>
<td>ENGR 3012</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEN 1300-1 Introduction to Chemical Engineering</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CHEN 2120-3 Chemical Material/Energy Balance</td>
<td>CHE 212</td>
<td>None</td>
</tr>
<tr>
<td>Civil and Environmental Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 1317-1 Introduction to Civil/Environmental Engineering</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CVEN 2012-3 Plane Surveying</td>
<td>None</td>
<td>CE 2212</td>
</tr>
<tr>
<td>CVEN 2121-3 Analytical Mechanics 1</td>
<td>CE 212</td>
<td>CE 2121</td>
</tr>
<tr>
<td>CVEN 3101-3 Mechanics of Materials 1</td>
<td>CE 312</td>
<td>CE 3121</td>
</tr>
<tr>
<td>CVEN 3313-3 Theory of Fluid Mechanics</td>
<td>None</td>
<td>CE 3313</td>
</tr>
<tr>
<td>Computer Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSCI 1200-3 Introduction to Programming 1</td>
<td>CS 112</td>
<td>CSC 1410</td>
</tr>
<tr>
<td>CSCI 1210-3 Introduction to Programming 2</td>
<td>CS 113</td>
<td>CSC 1410/2320</td>
</tr>
<tr>
<td>CSCI 1300-4 Introduction to Computing for Majors</td>
<td>CS 115/206</td>
<td>CSC 1410/2320</td>
</tr>
<tr>
<td>CSCI 2224-3 Discrete Structures</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CSCI 2270-4 Data Structures</td>
<td>CS 145/206</td>
<td>CSC 2421/2320</td>
</tr>
<tr>
<td>CSCI 3104-3 Algorithms</td>
<td>CS 472</td>
<td>CSC 3401</td>
</tr>
<tr>
<td>CSCI 3155-4 Principles of Programming Languages</td>
<td>None</td>
<td>CSC 3415</td>
</tr>
<tr>
<td>General Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEEN 1500-3 Introduction to Engineering Computing</td>
<td>CS 105</td>
<td>CSC 1100</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECEN 1400-3 Methods and Problems ECE</td>
<td>ECE 101</td>
<td>None</td>
</tr>
<tr>
<td>ECEN 2250-5 Circuits/Electronics 1</td>
<td>ECE 221/223</td>
<td>EE 2132/2532</td>
</tr>
<tr>
<td>ECEN 2260-5 Circuits/ Electronics 2</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>ECEN 3000-3 Electricity and Electrical Circuits for Non-Majors</td>
<td>ECE 325</td>
<td>EE 3030</td>
</tr>
<tr>
<td>ECEN 3003-3 Digital Logic</td>
<td>ECE 241/242</td>
<td>None</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCEN 1020-3 Analytical and Computational Tools</td>
<td>CS 105</td>
<td>CSC 1100</td>
</tr>
<tr>
<td>MCEN 1025-3 Computer Aided Drawing/Fabrication</td>
<td>ENGR 125</td>
<td>ENGR 1025</td>
</tr>
<tr>
<td>MCEN 2022-3 Engineering Thermodynamics</td>
<td>ENGR 211</td>
<td>ENGR 3012</td>
</tr>
<tr>
<td>MCEN 2023-3 Mechanics of Particles</td>
<td>ENGR 201</td>
<td>ME 2023</td>
</tr>
<tr>
<td>MCEN 2043-3 Mechanics of Rigid Bodies</td>
<td>ENGR 202</td>
<td>ME 2033</td>
</tr>
</tbody>
</table>

The following course by course equivalency table can assist a student anticipating an intercampus transfer between the individual colleges of engineering and applied science within the University of Colorado system. Course equivalencies do not always accurately indicate the number of credit hours applicable toward degree requirements.
transfers until the middle or end of the sophomore year. Beyond that point, the student is most likely to lose extensive course credit and time in completing degree requirements.

All intercampus transfer students are expected to be enrolled as full-time students and must petition to be enrolled part time.

Any academic preparation standards (MAPS) deficiencies are to be completed prior to the intercampus transfer. A sample freshman year for the intercampus transfer student includes the following courses:

First Semester
- Calculus 1 4 hrs.
- Chemistry 1 5 hrs.
- Computer Science* 3-4 hrs.
- Humanities/Social Science 3 hrs.

Second Semester
- Calculus 2 4 hrs.
- Physics 1 4 hrs.
- Engineering Draw/Graphics* 2-3 hrs.
- Humanities/Social Science 3 hrs.
- Humanities/Social Science* 3 hrs.

*Coordination is required on these course selections to ensure the application of this credit toward degree requirements. If transferring to CU-Boulder, the student should not enroll in any English composition or speech courses on the first campus. Engineering drawing and/or graphics courses are applicable only in select majors. The student is expected to use this opportunity to complete any MAPS deficiencies.

For additional information, view www.colorado.edu/engineering/ar_ugradadvising.html (Intercampus Transfer).

To assist the prospective intercampus transfer student in contacting a faculty or staff advisor in the gaining major department, the following list is provided.

University of Colorado at Boulder Campus

Dean’s Office, Engineering Administration Wing (ECAD) 100, 303-492-5071
Aerospace Engineering Sciences, Engineering Office Tower (ECOT) 632 303-492-6417
Applied Mathematics, Engineering Office Tower (ECOT) 225, 303-492-4668
Chemical Engineering, Engineering Chemical Wing (ECCH) 111 303-492-7471
Civil, Environmental, and Architectural Engineering, Engineering Office Tower (ECOT) 441, 303-492-4193
Computer Science, Engineering Office Tower (ECOT) 717, 303-492-7514
Electrical Engineering and Electrical and Computer Engineering, Engineering Electrical Wing (ECEE) 1B55 303-492-7327

University of Colorado at Colorado Springs Campus

Dean’s Office, Engineering 201 719-593-3246
Applied Mathematics, Engineering 274 719-593-3311
Computer Science, Engineering 199 719-593-3325
Electrical Engineering, Engineering 299 719-593-3351

University of Colorado at Denver Campus

Dean’s Office, North Classroom 3024 303-556-2870
Civil Engineering, North Classroom 3027 303-556-2871
Computer Science, North Classroom 2605 303-556-4314
Elec. Engineering, North Classroom 2615 303-556-2872
Mech. Engineering, North Classroom 3502 303-556-8516

Intrauniversity Transfer Students

Undergraduate intrauniversity transfers (IUTs) on the Boulder campus of the University of Colorado to the College of Engineering and Applied Science are considered on an individual basis. The applicant is expected to apply during the second semester of calculus and the appropriate laboratory science course. The applicant’s academic record must fulfill the IUT admissions requirements of the College of Engineering and Applied Science. The applicant must apply prior to the college IUT deadline of April 1 for fall, November 1 for spring, or July 1 for summer. Specific admission criteria and application details are available in the Office of the Dean (AD 100).

All intrauniversity transfer students are expected to be enrolled as full-time students and must petition to be enrolled part time. For additional information, view www.colorado.edu/engineering/ar_ugradadvising.html (Intra-University Transfer).

Former Students

A former student must meet the requirements outlined in Undergraduate Admissions in the General Information chapter of this catalog and must reapply to the university. Courses taken at other collegiate institutions are not necessarily a determining factor in the student’s readmission to the University of Colorado, but transcripts on all such work must be submitted.

Interruption of studies may require completion of current degree work in addition to repetition of course work for new degree requirements.

Attendance

Successful work in the College of Engineering and Applied Science is dependent upon uninterrupted attendance in all classes. Students who are unavoidably absent should make arrangements with instructors to make up the work missed. If students stop attending a course in which they are enrolled, they receive a failing grade (F). If a student has received a final grade of F for nonattendance due to failure to properly drop a course, the student can request the college to insert a letter of explanation in her or his college file for future reference.

If a student misses a final examination because of illness or other valid personal emergency, the student must notify the instructor and the Office of the Dean no later than the end of the day on which the final examination is given. Failure to properly notify these officials may result in an F in the course.

Changing Majors

The form necessary for transferring from one undergraduate engineering major to another and to apply for double-degree programs is available in the dean’s office (Engineering Admin. Wing [ECAD] 100).

Class Standing

To be classified as a sophomore in the college, a student must have completed 30 semester credit hours; to be classified as a junior, 60 hours; and to be classified as a senior, 90 hours. A student with more than 120 hours is classified as a fifth-year senior. All transfer students are considered on an individual basis. The applicant’s academic record must fulfill the IUT admissions requirements of the College of Engineering and Applied Science. The applicant must apply prior to the college IUT deadline of April 1 for fall, November 1 for spring, or July 1 for summer. Specific admission criteria and application details are available in the Office of the Dean (AD 100).

All intrauniversity transfer students are expected to be enrolled as full-time students and must petition to be enrolled part time. For additional information, view www.colorado.edu/engineering/ar_ugradadvising.html (Intra-University Transfer).

Credit Policies

Advanced Placement

Advanced placement (AP) and college credit may be granted on the basis of the College Entrance Examination Board’s (CEEB) Advanced Placement tests. For students who...
have taken an advanced placement course in high school and who make the required score in the CEEB’s Advanced Placement examination, advanced placement and college credit are granted. All advanced placement credit must be validated by satisfactory achievement in subsequent courses, in accordance with the transfer credit policies of the college.

For additional information, view www.colorado.edu/engineering/ar_ugradadvising.html (Advanced Placement, IB, and MAPS).

College-Level Examination Program Credit

Prospective students may earn college credit through the College-Level Examination Program (CLEP) examinations, provided that they score at the 67th percentile or above. A list of subjects in which CLEP examinations are accepted may be obtained in the Office of the Dean of the College of Engineering and Applied Science. All CLEP credit must be validated by satisfactory achievement in subsequent courses, in accordance with the transfer credit policies of the college.

Credit for Reserve Officers Training Corps

Any student may, with departmental approval, receive up to 6 semester hours of credit toward an engineering degree from among Reserve Officers Training Corps (ROTC) courses appearing on an approved list available in the Office of the Dean (AD1-1). Humanities and social science courses that are cross-listed with ROTC courses may be used to fulfill the college humanities and social science requirements, subject to departmental approval.

Incomplete

By university policy, use of the IF grade is at the option of the academic dean’s office. The grade of IF (incomplete, failing) may be given by an engineering faculty member when prescribed and documented circumstances exist beyond a student’s control. This grade may be given only when students, for documented reasons beyond their control, are unable to complete course requirements. If an incomplete grade is given, the instructor is required to document clearly both the conditions precedent to the removal of the incomplete and the time limit for the fulfillment of these conditions. The specified time shall not exceed a one-year period. A copy of this documentation is filed with the Office of the Dean, the instructor’s department office, and the student involved.

Course work to complete a grade of IF must be taken on the same campus on which the grade of IF was awarded. Credit for a course similar to the course in which the grade of IF was awarded may not be used to substitute for the incomplete course or be used to remove the grade of IF.

The grade of IW (incomplete, withdrawn) may not be awarded to undergraduate students in courses taught in this college.

No Credit Restrictions

In the College of Engineering and Applied Science, courses required for fulfillment of graduation requirements cannot be taken for no credit (NC). Once a course has been taken for no credit, the course cannot be repeated for credit. Engineering students must petition for approval before enrolling for any course NC.

Pass/Fail Option

The primary purpose for offering courses on a pass/fail grading option is to encourage students to broaden their educational experience by electing challenging courses without serious risk to their academic record. Individual departments may have rules that should be checked before registering for the pass/fail option. The college pass/fail policy is:

1. The maximum number of credit hours a student may elect with the pass/fail option shall be designated by the student’s major department. No more than 16 semester hours of pass/fail credit can be applied toward degree requirements.
2. It is recommended that a student obtain advance approval from the major department prior to selecting the pass/fail option. Course work taken pass/fail without appropriate approval may be reverted to the letter grade earned.
3. All students who wish to register for the pass/fail option must do so during the university registration or schedule adjustment period.
4. A transfer student may count toward graduation 1 hour of pass/fail credit for each 9 credit hours completed in this college.
5. Students on academic probation may not elect the pass/fail grade option.

Transfer Credit

After a prospective transfer student has applied and submitted transcripts to the University of Colorado, the Office of Admissions issues a transfer credit evaluation form listing those courses acceptable for transfer by University of Colorado at Boulder standards. A copy of this evaluation is made a part of the student’s college record. The appropriate faculty transfer credit evaluator uses this form to indicate which of those courses are acceptable in meeting engineering degree requirements. It is the responsibility of the transfer student to request final validation of the transfer credit hours by the major department and confirm that this validation is noted in the student’s college file.

If at any time a student wishes to have a course not previously accepted reconsidered for transfer, the student should consult with the departmental faculty transfer credit evaluator and petition the dean through the department for approval of the course.

Nontransferable Credit Hours. Students desiring to transfer credit hours from engineering technology programs should note that such credit hours are accepted only upon submission of evidence that the work involved was fully equivalent to that offered in this college.

Some technology courses are taught with titles and textbooks identical to those in similar engineering courses. These courses may still not be equivalent to engineering courses because the areas of academic emphasis are divergent.

In order to assist engineering technology students with transfer problems, the following guidelines have been established:

1. Courses on basic subjects such as mathematics, physics, foreign languages, literature, or history may be acceptable for transfer credit if they were taught as part of an accredited program for all students and were not specifically designated for technology students.
2. Students who have taken courses with technology designations that may be valid equivalents for engineering courses have these options:
 a. They may petition for permission to waive the course requirement. The course requirement can be waived if students demonstrate that, by previous course work, individual study, or work experience, they have acquired the background and training normally provided by the course. No credit is given for a waived course, but students may benefit from the waiver by being able to include more advanced work in their curriculum. Other students may profit by repeating the course at this college and thus establishing a fully sound basis for what follows.
 b. The appropriate University of Colorado academic department may recommend to the dean’s office that credit be transferred to count toward the requirements for a related course in its curriculum. Credit cannot be given for vocational/technical or remedial courses under rules of the university.
 c. The student may seek credit for the course by examination.

For more information on transfer of credit policies, see ‘Transfer of College-Level Credit in the Undergraduate Admission section of this catalog.

Work Experience

It is the academic policy of the College of Engineering and Applied Science that credits
accrued in the official records of a student that were awarded for work or co-op experience do not apply toward degree requirements.

Other University Campuses
A student who needs to work at a part-time or full-time job while obtaining a college education, or who lives in the metropolitan areas of Denver or Colorado Springs, is likely to find it necessary to attend the University of Colorado at Colorado Springs or the University of Colorado at Denver.

A listing of undergraduate lower-division course equivalencies between the colleges of engineering and applied science at CU-Boulder, CU-Colorado Springs, and CU-Denver is included in this catalog.

University of Colorado at Colorado Springs
Bachelor’s degree programs are offered in electrical engineering, computer science, and applied mathematics. The master of science degree is awarded in computer science, applied mathematics, electrical engineering, and engineering with space operations. Students may also complete work for master of engineering and Ph.D. degrees through the systemwide Graduate School.

University of Colorado at Denver
The College of Engineering and Applied Science at the Denver campus of the University of Colorado offers bachelor’s, master’s, and doctoral degree programs. The bachelor of science degree is offered in civil engineering, computer science and engineering, electrical engineering, and mechanical engineering. Master of science degrees are offered in civil engineering, computer science, electrical engineering, and mechanical engineering. The master of engineering degree is also available. At the Denver campus, the Ph.D. degree is offered in civil engineering, and the Ph.D. degrees in electrical engineering and mechanical engineering are available through the systemwide Graduate School.

Registration
To ensure the prompt completion of degree requirements and satisfaction of the four-year guarantee, the undergraduate student must register for, and complete each semester, a full-time course load as outlined in this catalog or the approved departmental curriculum guide.

If a student elects to register for fewer than 12 credit hours in any semester, the student must declare in writing that he or she is a part-time student and secure approval of that semester’s course schedule by a designated faculty advisor in the major department and by the college dean’s office. This also makes the student ineligible for the four-year guarantee.

Sequence of Courses
Students are expected to follow the curriculum recommended by their major department.

A student who receives a grade of D+ or lower in a course that is a prerequisite to another may not enroll in the succeeding course without an approved petition from student’s major academic department, the instructor of the succeeding course, and the dean’s office.

All courses are not necessarily offered each semester. According to college policy, undergraduate courses having an enrollment of fewer than 20 students may be cancelled. Students can minimize scheduling problems by closely following the curricular sequence recommended by their major department. If a course is unavailable, a student may petition to enroll for equivalent study.

Grading System, Pass/Fail, and Drop/Add Procedures
See Registration in the General Information chapter of this catalog for the University of Colorado uniform grading system and for additional pass/fail option information and drop/add procedures. Also see the current Registration Handbook and Schedule of Courses and current Student Guide to Success.

Only under circumstances beyond the student’s control are petitions for dropping courses approved after the drop deadline.

Repetition of Courses
Students are not to register for credit in courses in which they already have received a grade of C or better. When students take a course for credit more than once, all grades are used in determining their University of Colorado grade point average. A final grade of F in a required course necessitates that the course be repeated and a satisfactory final grade attained. Students may not register for credit in any course that they have previously completed for no credit (NC).

Summer Courses
A limited selection of summer session courses is offered for new and continuing students and for those who must remove academic deficiencies. For information about courses, students should contact the Office of the Registrar or the academic department that teaches the course.

Withdrawal
Students may withdraw only during the first six weeks of the semester. After this time, withdrawals are permitted by this college only upon presentation of evidence to verify that the withdrawal is necessary because of documented conditions clearly beyond the student’s control (medical, psychiatric, or extended family emergency).

If a student withdraws, permission from the college may be required for re-enrollment. Students who interrupt their course of study may be required to complete all current degree requirements and to repeat courses previously completed. A student wishing to return after a withdrawal must reapply for admission and is therefore subject to enrollment limits and academic performance evaluation.

UNDERGRADUATE DEGREE REQUIREMENTS
Fundamentals taught in the freshman year are of prime importance in the more advanced classes, and every effort is made to place all freshman students in appropriate courses.

It is strongly recommended that students avoid the likelihood of later scheduling problems by carefully following the curriculum in their major or in the recommended open option program.

Each freshman is exposed to a broad university background, completing course work outside the College of Engineering and Applied Science in science, mathematics, social science, and the humanities.

Advising
All students are advised by faculty and staff from their respective major academic department or program. The college also provides a professional advising staff.

Advising information is available at the administrative offices of the College of Engineering, ECAD 100, telephone 303-492-5071, or directly through the major departments.

Aerospace Engineering Sciences, ECOT 632, 303-492-6417
Applied Mathematics Program, ECOT 225, 303-492-4668
Chemical Engineering, ECCH 111, 303-492-7471
Civil, Environmental, and Architectural Engineering, ECOT 441, 303-492-4193 (for civil and architectural engineering students)
Computer Science, ECOT 717, 303-492-7514
Electrical and Computer Engineering, ECCE 1B55, 303-492-7327
Engineering Physics, Duane Physics Bldg., E-1B32, 303-492-6952
Environmental Engineering, ECME 251, 303-735-0253
Mechanical Engineering, ECME 132, 303-492-8483
Open Option, ECAD 100, 303-492-5071

These sources of help are readily available to assist students with academic, vocational, or personal concerns. Students are assigned departmental advisors for academic planning and should consult with the departmental chair or designated representative for
assignment. Additional advising information is contained in a series of advising guides available within the College of Engineering and Applied Science. Contact the appropriate academic department or the dean’s office, ECAD 100, 303-492-5071, about these advising guides.

Four-Year Graduation Guarantee

The College of Engineering and Applied Science at the University of Colorado at Boulder is committed to providing an undergraduate educational experience among the best offered by any comprehensive research university in the country.

The College of Engineering and Applied Science offers 11 bachelor of science degree programs, each of which may be completed within eight full-time semesters. Many students elect to extend their studies at the University of Colorado beyond eight semesters to take advantage of research and employment opportunities, add minor programs, complete double-degree programs, and/or to pursue specialized plans of study.

For new freshmen who do not wish to extend their studies beyond eight semesters, the University of Colorado extends a guarantee that required or essential courses, or acceptable alternative courses, will be available so each student can complete all course work required for a bachelor of science degree from the College of Engineering and Applied Science no later than the end of the eighth consecutive semester of enrollment, when the student follows the degree plan recommended by the major department. In the event the University of Colorado is not successful in meeting the terms of this guarantee, the university will reimburse the student all tuition and course fees for those courses remaining to successfully complete the previously designated bachelor of science degree. This guarantee is subject to the conditions noted later in this document.

This guarantee is offered to all new freshmen who matriculate in fall 1996 or thereafter directly into the College of Engineering and Applied Science at the University of Colorado at Boulder.

To qualify for the guarantee, students must satisfy the following requirements:

Enroll in CU-Boulder course work for eight consecutive fall and spring semesters. Due to the sequential nature of some courses, this enrollment must begin with the fall semester. Satisfactorily complete all prescribed course work directly applicable toward major degree requirements in accordance with the following schedule: at least 30 credit hours by the end of the first year (12 months), at least 62 credit hours by the end of the second year (24 months), at least 94 credit hours by the end of the third year (36 months), and at least 128 credit hours by the end of the fourth year (48 months).

Follow the prescribed curriculum guide approved by the major department. Any deviations from this guide must be approved, in advance and in writing, by a faculty or staff advisor from the major department.

Complete all minimum academic preparation standards (MAPS) deficiencies in mathematics, physics, chemistry, and foreign language no later than the beginning of the second semester of enrollment.

Earn a grade point average of at least 2.00 each semester and 2.00 in all required and elective courses taken from the major department. The student must maintain a cumulative CU grade point average of at least 2.00. Also, each prerequisite course must be completed with a final grade of at least C-.

Begin a recommended plan of study, toward the major in which the student will be graduating, no later than the beginning of the sophomore year or at the time when 30 semester hours have been earned.

The student must schedule and meet with a departmental staff and/or faculty advisor at periods recommended by the major department. There must be at least one documented conference between the student and approved departmental advisor each academic year, during which specific degree requirements are discussed. The student must also meet with a faculty or staff advisor whenever required to resolve academic problems, and to answer questions relating to course work and/or satisfactory academic progress.

Register each semester within one week of the day and time assigned by the Office of the Registrar.

Enroll only in courses approved by the designated major department faculty and/or staff advisor. Strictly adhere to the Admission and Enrollment Policies and the Undergraduate Degree Requirements sections of this chapter.

Not enroll in any courses or participate in any activities or employment having a time conflict with major degree course requirements. Notify the College of Engineering and Applied Science of the intent to graduate no later than the beginning of the seventh semester of enrollment.

Also see www.colorado.edu/engineering/ar_ugradadvising.html (Four Year Guarantee).

Students are urged to maintain a personal academic file, documenting meetings with faculty and staff advisors, copies of change of record forms, change of major forms, and any other documents that relate to the requirements of this guarantee.

Degree Requirements

1. The B.S. degree requires that not less than 128 semester hours in an acceptable curriculum be completed to the satisfaction of the major department.

The last 45 hours must be earned after admission and matriculation as an undergraduate engineering degree student at the University of Colorado at Boulder campus. Some students will need to present more than the minimum number of credit hours because they may have enrolled in courses that do not apply toward degree requirements.

A student is awarded a degree by a vote of the faculty of the College of Engineering and Applied Science after the student’s major academic department determines that all degree requirements have been successfully completed.

The diploma indicates the University of Colorado campus from which the department recommending the student for the degree is located. Consideration will generally be given to designating the campus where the majority of the course work was completed. However, the final decision on the campus designation is made by the designated faculty representative from the student’s major academic department.

2. The cumulative grade point average of an engineering student includes all academic courses attempted at the University of Colorado. A cumulative GPA of 2.00 is required in courses used to fulfill degree requirements. In addition, a separately computed GPA of 2.00 must be attained in those courses taken from the student’s major department. For students in the engineering physics program, the major department is the physics department.

3. Each degree program requires a minimum of 18 credit hours of approved course work in the humanities and social sciences. Humanities and social science electives must be limited to a selection of unrelated introductory courses. At least 6 credit hours must be at an advanced level (3000 or above) and must include UWRP 3030 or HUEN 3100 and HUEN 3200. All electives should be selected with the approval of a faculty advisor.

Qualified students may take appropriate honors courses for humanities and social sciences credit.

The dean’s office has a list of acceptable humanities or social science courses for student reference. The list is available in the dean’s office (Engineering Administration Wing [ECAD] 100), departmental offices, with faculty and staff advisors, and on the College of Engineering and Applied Science home page at ecad100.colorado.edu/hss_advising. 4. Students who graduated from high school in the spring of 1988 and thereafter must complete any minimum academic preparation standards (MAPS) deficiencies prior to graduation. Students should consult with a faculty advisor or the dean’s office (ECAD 100) to determine any MAPS deficiencies and how to satisfy these deficiencies.

5. Some majors require successful completion of an educational outcome measurement prior to graduation. Students should contact their major department to determine whether an outcome measurement is required and when it must be taken.
Graduation
It is the student’s responsibility to be certain that all degree requirements are fulfilled, to notify the major department upon completion of 100 semester hours applicable to B.S. degree requirements, to fill out the Application for Diploma form at the beginning of the next-to-last semester before graduation, and to keep the departmental advisor and the dean’s office informed of any change in graduation plans.

All incompletes must be completed and all correspondence course grades must be officially received no later than three weeks prior to the graduation ceremony. It is the student’s responsibility to contact the appropriate instructor concerning the removal of incomplete grades.

Commencement exercises are held in December, May, and August.

Double Degrees
A student in the College of Engineering and Applied Science may be able to obtain bachelor’s degrees in two engineering disciplines or one degree in engineering and one in another field, such as business, music, or one of the arts and sciences disciplines. Interested students should come to the dean’s office (AD 100) for additional information and application materials for these double-degree programs.

Double Degrees from Engineering and Another College
Arrangements to obtain bachelor’s degrees in engineering and in the academic program of another college may be made through consultation with and written approval of the appropriate deans and completion of a minimum of 30 additional semester hours beyond the largest minimum required by either college or school.

Double Degrees within the College of Engineering and Applied Science
Two bachelor of science degrees in engineering may be earned by obtaining the written approval of both departments concerned and completing a minimum of 30 additional semester hours beyond the largest minimum required by either department. Transfer students desiring two bachelor’s degrees must present a minimum of 75 semester credit hours taken as a student in this college, and must satisfy all other stipulations regarding total hours required and approval of all course work by both departments concerned. Of the 30 additional hours for the second degree, a minimum of 24 shall be in courses offered by the secondary academic department or in courses approved in advance by the department as substitutes.

Students desiring to pursue a double-degree program must formally designate themselves double-degree candidates by filing a petition signed by the chairs of both departments concerned and the dean before enrolling for the last 30 hours of work to be completed for the double degree.

The decision to earn a double degree should be carefully weighed, since qualified students may be able to obtain a master’s degree for a similar number of credit hours (see Graduate Study in Engineering).

Minors
The college offers minors in applied mathematics, computer science, and mechanical engineering. A student interested in these minor programs should contact the Applied Mathematics Program, ECOT 226, 303-492-4668, the Computer Science Department, ECOT 725, 303-492-7514, or the Department of Mechanical Engineering, ECME 134, 303-492-7151.

Information is also available at www.colorado.edu/engineering/ar_ugradadvising.html (Minor Programs).

Premedical Option
Several engineering departments have an option by which a student may meet all requirements for entry into medical school while earning a degree in engineering. Engineering departments with this option will approve inclusion of appropriate biological and bioengineering courses in the student’s program of technical electives. The courses listed below are usually prescribed by medical schools and must be completed with superior grades.

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expository or creative writing</td>
<td>3</td>
</tr>
<tr>
<td>General chemistry</td>
<td>8-10</td>
</tr>
<tr>
<td>Organic chemistry</td>
<td>8-10</td>
</tr>
<tr>
<td>General biology or zoology</td>
<td>8</td>
</tr>
<tr>
<td>Literature</td>
<td>6</td>
</tr>
<tr>
<td>English composition</td>
<td>3</td>
</tr>
<tr>
<td>Physics</td>
<td>9</td>
</tr>
<tr>
<td>Calculus (recommended)</td>
<td>4</td>
</tr>
</tbody>
</table>

Students can meet these requirements by carefully substituting electives in their engineering curriculum. In some cases where additional credit hours may be required, interested students should consult with the department chair and the preprofessional advisor on the Boulder campus.

The admissions committee of the School of Medicine at the University of Colorado Health Sciences Center welcomes inquiries and visits from prospective students, particularly at the time of their first interest in medicine as their chosen profession.

Graduate Work in Business
Undergraduates in engineering who intend to pursue graduate study in business may be able to complete some of the business background requirements as electives in their undergraduate programs. Seniors in engineering who have such intentions and appear likely to qualify for admission to graduate study in business may be permitted to register for graduate fundamentals courses designed to provide qualified students with needed background preparation in business. (See Graduate School information in the College of Business and Administration section of this catalog for additional details.)

In order to take advantage of CU-Boulder’s location in one of the country’s leading entrepreneurial areas, the College of Engineering and Applied Science and the College of Business and Administration jointly administer the Center for Entrepreneurship. Both undergraduate and graduate courses are offered, along with an internship program. For additional information on this joint program, call 303-492-5576.

Concurrent B.S. and M.S. Degree Program in Engineering
Students with strong academic records who plan to continue in the Graduate School usually find it advantageous to apply for admission to the concurrent B.S./M.S. degree program. Excellent students plan a graduate program beginning in their junior year. The plan provides a small tuition discount for the M.S. degree and, in many departments, may allow up to 6 credit hours of graduate course work to be applied to the B.S. degree. This program also provides opportunities to work with faculty on independent study or research projects.

Application is made to the Graduate School through the appropriate academic department. Application and admission may occur during the junior year; consult individual departments for their exact timing. The college requires a minimum GPA of 3.25 for admission to this program; some departments may have higher requirements. Requirements for the two degrees are the same as those for two degrees taken separately: 128 credit hours for the B.S. degree and 24-30 hours including thesis (Plan I) or 30 credit hours (Plan II) for the M.S. degree.

All students choose or are assigned a faculty advisor to help them develop a program of study best suited to their interests. Students in each program are encouraged to pursue independent study on research programs or in areas of specialization beyond those offered in formal courses. Students are allowed to structure their senior and graduate years in an order that is optimal for their program, as long as all requirements for both the B.S. and M.S. degrees are completed by the end of the concurrent B.S./M.S. program. The B.S. and M.S. degrees must be awarded concurrently at the completion of both degree programs.
A minimum GPA of 3.00 must be maintained for continuation in the program; if the GPA falls below 3.00, all hours completed with a passing grade while in the program count only towards fulfillment of the B.S. degree.

Tuition rates for resident students in this program are usually at the undergraduate rate until requirements for the B.S. and M.S. degrees are completed. For additional details on this program, contact the appropriate engineering academic department or the Graduate School.

GRADUATE STUDY IN ENGINEERING

The College of Engineering and Applied Science offers degree programs for the master of engineering (M.E.), master of science (M.S.), and doctor of philosophy (Ph.D.) degrees. There are degree programs in each of the following departments or fields:

- aerospace engineering sciences
- chemical engineering
- civil engineering
- computer science
- electrical engineering
- engineering management
- mechanical engineering
- telecommunications

The master of science in applied mathematics is offered through the Department of Applied Mathematics in the College of Arts and Sciences.

The master of science in telecommunications is offered cooperatively by various departments. A description of the telecommunications program is found later in this chapter, as well as in the Graduate School chapter of this catalog.

Graduate programs within each engineering department offer a variety of options, providing a number of alternative careers.

The aerospace program has a strong emphasis on astrodynamics, orbit determination, remote sensing, control systems, structures, aerodynamics, and gasdynamics, as well as spacecraft, aircraft, space experiment design, and biological systems in space.

Key activities in chemical engineering include membrane and thin-film science, biomedical engineering and biotechnology, surface science, process control, polymeric and ceramic materials engineering, and environmental engineering.

Fields emphasized in civil engineering include geotechnical engineering, structural mechanics and engineering, building systems engineering, construction management and engineering, and environmental and water-resource engineering.

Strengths in computer science include algorithm design, artificial intelligence, database design, numerical optimization, operating systems, parallel processing, programming languages, software engineering, systems, and theoretical computer science.

Areas of focus in electrical engineering include atmospheric remote sensing; biomedical engineering; devices, materials, and quantum electronics; digital signal processing and communications; information systems; energy conversion and power systems; systems, robotics, and control theory; circuits and electronics; fields and radio propagation; computer languages and logic circuits; optics and optoelectronics; microwave optics; and computer-aided design and VLSI.

Engineering management combines technical courses with unique, integrated management courses, including strategy and quality, process management, and leadership. These courses are designed for the professional engineer preparing for early management assignments.

Mechanical engineering areas of concentration include combustion science, air pollution, heat transfer, energy conversion, materials science/engineering, design and manufacturing, electronic packaging, micro-electro-mechanical systems (MEMS), pollution prevention, nondestructive structural evaluation, wave propagation and scattering, and fluid mechanics.

Telecommunications is an interdisciplinary graduate program that integrates courses in electrical engineering, computer science, political science, information systems, management, and economics. Through such an approach, and a world-class telecommunications laboratory, students are equipped to design, plan, analyze, and manage telecommunications systems, networks, and the many advanced and innovative uses of interactive communications today. Students enter the program with a wide variety of technical or liberal arts undergraduate degrees and expand their knowledge through individually tailored combinations of courses from the various disciplines. This ensures balanced, specialized capabilities necessary for a comprehensive understanding of the technological and sociocultural aspects of telecommunications. For detailed information, see the Interdisciplinary Programs listing in the Graduate School chapter of this catalog. Students enrolled in the Interdisciplinary Telecommunications Program pay the tuition rate of the College of Engineering and Applied Science.

Graduate Study for Practicing Engineers

The Center for Advanced Training in Engineering and Computer Science (CATECS) provides graduate education and professional development at a distance for practicing engineers, computer scientists, and managers of technology. CATECS courses are delivered from the Boulder campus via live instructional television with two-way audio and via videotape to business, government, and industry along the Front Range, across the country, and overseas.

Course sequences can lead to a master's degree in computer science, engineering management, telecommunications, and other engineering disciplines. Professional certification is also available in some fields. Students receiving the televised courses live may participate in the classroom discussion and question the instructor over open phone lines connected into the classroom. Classroom sessions are also recorded on videocassettes, which are mailed to all CATECS students.

There is no limit on the number of CATECS courses applicable to the M.S. or M.S. degree, as long as the courses fulfill departmental degree requirements. However, CATECS courses taught outside the Boulder campus may not fulfill residency requirements. Courses taught on other campuses may be treated as transfer courses.

Students may enroll in CATECS courses before being accepted to the Graduate School, but they must apply for the degree before finishing the third CATECS course. All applicable courses taken after admission count toward the degree.

CATECS also provides ongoing access to over 100 courses taught in previous semesters through the Tape Library. Tape Library courses are primarily available for noncredit review of the material. For those who want to take a Tape Library course for credit, special permission must be obtained from the instructor.

For more information, prospective students should contact the office responsible for professional development at their work place or the University of Colorado at Boulder, CATECS, 435 UCB, Boulder, CO, 80309-0435, call 303-492-6331, or visit the home page at www.colorado.edu/CATECS.

Graduate Degree for Science Majors

Science graduates who have good academic records and strong backgrounds in mathematics and science may be eligible for admission as graduate students in engineering or may be able to qualify with some extra course work. Information may be obtained from the appropriate academic department office.

Master of Engineering, Master of Science, and Doctor of Philosophy

Students wishing to pursue graduate work in engineering leading to candidacy for advanced
degrees should read carefully the requirements for advanced degrees in the Graduate School chapter of this catalog. Some departments also have available explanatory material on their advanced degree programs.

Prerequisites. To enroll for an advanced degree in any department of the College of Engineering and Applied Science and the interdisciplinary telecommunications program, candidates either must have previously earned a bachelor’s degree in a curriculum that includes the necessary prerequisites for that branch of engineering or must qualify for the concurrent B.S. and M.S. program. If the candidate’s preliminary education was taken at some other institution, the degree of qualification for advanced work is determined by the department concerned and by the dean of the Graduate School.

Graduates of engineering technology programs should note that the equivalent of a B.S. degree in an appropriate engineering field is required for entry into the Graduate School. Because the goals and orientation of engineering programs differ from those of technology programs, technology graduates should expect to make up deficiencies before being admitted to graduate study in engineering. Students may not be admitted to the Graduate School while making up deficiencies, but can enroll as non-degree students.

For admission as a regular degree student, an undergraduate grade point average of at least 3.00 is normally required.

Language Requirement. Ph.D. candidates should note that some engineering departments have foreign language requirements.

Course Work. Graduate work in each department of the College of Engineering and Applied Science falls into two classes:

1. Courses that are offered for candidates who have chosen to major in the particular department or as a base for the M.E. combined degree
2. Courses that are offered as minors for candidates who have chosen their major in some other department

Graduate students majoring in any department receive no credit in the Graduate School for courses listed as required undergraduate work in the same department. They may, however, receive graduate credit for advanced undergraduate courses in an engineering department other than that in which they received their bachelor’s degree, with the approval of the department granting the degree and the dean of the Graduate School.

Availability of Courses. All courses are not necessarily offered every year. They are available only if there is sufficient demand.

Qualifying Examinations. Graduate students who plan to become candidates for the M.S. or Ph.D. degree may be required to take a qualifying examination in the appropriate field of specialization during the first semester in which they are registered as candidates for a graduate degree. Individual departments should be consulted concerning the timing or requirement of this examination. The purpose of this examination is to enable the advisor and student to plan a suitable program of study.

AEROSPACE ENGINEERING SCIENCES

The aerospace curriculum 2000—developed by students, faculty, staff, alumni, and employers—outlines the desired attributes of an engineer, the program’s educational objectives, and the assessment process.

Desired Attributes of an Engineer

Well-educated graduates of the aerospace curriculum 2000 should have:

- a good understanding of engineering science fundamentals: mathematics, statistics, physical and life sciences, and information technology;
- a good understanding of design and manufacturing;
- a multi-disciplinary, systems perspective;
- a basic understanding of the context in which engineering is practiced: economics, history, the environment, and customer and societal needs;
- communication skills: written, oral, graphic, and listening skills;
- high ethical standards;
- an ability to think both critically and creatively—individually and cooperatively;
- flexibility—an ability and the self-confidence to adapt to rapid or major change;
- curiosity and a desire to learn for life; and
- a profound understanding of and commitment to teamwork.

Educational Objectives

The program in aerospace engineering sciences aims to provide:

- a high-quality undergraduate education that imparts to students the technical proficiency to have distinguished professional careers in the aerospace field, including a balanced exposure to theory, experiment, design, and sufficient exposure to the arts and humanities for the enjoyment of life;
- sufficient exposure to engineering practice in the form of design, building, and testing to initiate productive careers in the aerospace industry; and
- a strong base in science, mathematics, and aerospace disciplines, enabling students to continue on successfully in graduate studies.

Desired Outcomes

The undergraduate degree in aerospace engineering sciences emphasizes knowledge and awareness of:

- the basic subfields of aerospace engineering (fluid mechanics; astrodynamics; dynamics and control; guidance and navigation; aerospace structures; materials; and systems engineering);
- mathematics sufficient to facilitate the understanding and application of physical principles to the solution of aerospace engineering problems; and
- the major principles and theories of the natural sciences.

In addition, students completing the degree in aerospace engineering acquire the ability and skills to:

- apply the knowledge and design skills of aerospace engineering to solve the problems of society and help attain society’s goals;
- address socially related technical problems that confront the engineering profession;
- attain design standards of reliability, environmental quality, and protection of both occupational and public health and safety in the execution of projects;
- maintain professional competency through lifelong learning in aerospace engineering, humanities, and social science fields;
- design aerospace vehicles to meet technical and societal goals; experiments to meet scientific and societal goals; and air and space transportation systems to serve society’s needs;
- manage aerospace projects;
- conduct laboratory experimental investigations necessary to validate aerospace system analysis and designs; and
- communicate effectively, both orally and in writing, including presenting and writing technical aerospace project proposals and results.

Bachelor’s Degree Requirements

The major part of the first two years is devoted to the study of mathematics, physics, mechanics, chemistry, computer science, and the humanities and social sciences. The last two years are devoted to engineering courses in fluid dynamics, flight dynamics, systems and control, materials and structures, energy conversion and propulsion, space science, and aircraft and spacecraft design. Advanced professional area elective courses are available for further specialization in those subfields. Students are also encouraged to pursue special research topics for credit during their junior and senior years under the direction of a faculty member of their choice.

For students having sufficient ability and interest, planning for graduate study should
begin by the start of the junior year. Such a plan should consider the foreign language requirements of appropriate graduate schools and an advanced mathematics program. Students who wish to combine the business and aerospace engineering sciences curricula are advised to obtain the B.S. degree in aerospace and a master's degree in business rather than a combined B.S. degree.

Bioengineering/Premedical Option

The Department of Aerospace Engineering Sciences offers a bioengineering/premedical option that has been specifically designed for students who wish either to attend medical school or to enter graduate work in bioengineering after receiving the B.S. degree. Students electing this option should consult their advisor regularly to assure the adequacy of their curricula.

Curriculum for B.S., Aerospace Engineering Sciences

The B.S. curriculum in aerospace engineering sciences is revised annually to keep up with new advances in technology, to make use of new educational methodologies, and to satisfy updated program accreditation criteria. The following curriculum requirements are those in effect at the time this catalog was printed.

Semester Hours

Freshman Year

Fall Semester
APPM 1350 Calculus 1 for Engineers4
ASEN 1000 Introduction to Aerospace Engineering Sciences1
CHEM 1211 Engineering General Chemistry ..1
CHEN 1221 General Chemistry Lab for Engineers ...3
GEEN 1400 Engineering Projects2
Humanities or social science elective3

Spring Semester
APPM 1360 Calculus 2 for Engineers4
CSCI 1300 Computer Science 1: Programming ..4
PHYS 1110 General Physics 14
Humanities or social science elective3

Sophomore Year

Fall Semester
APPM 2350 Calculus 3 for Engineers4
ASEN 2001 Aerospace 15
ASEN 2002 Aerospace 25
Humanities or social science elective3

Spring Semester
APPM 2380 Aerospace Math Methods4
ASEN 2003 Aerospace 35
ASEN 2004 Aerospace 45
Humanities or social science elective3

Junior Year

Fall Semester
ASEN 3111 Aerodynamics4
ASEN 3112 Structures4
ASEN 3113 Thermodynamics and Heat Transfer ..3
PHYS 1120 General Physics 24
UWRP 3030 Writing on Science and Society ..3

Spring Semester
ASEN 3128 Aircraft Dynamics4
ASEN 3200 Orbital Mechanics/Attitude Dynamics and Control4
ASEN 3300 Electronics and Communications ...3
Humanities or social science elective3
Professional area elective3

Senior Year

Fall Semester
ASEN 4013 Foundations of Propulsion3
ASEN 4016 Senior Projects 15
Free elective ...3
Professional area electives6

Spring Semester
ASEN 4012 Aerospace Materials2
ASEN 4028 Senior Projects 25
Free elective ...3
Professional area elective3

Humanities and Social Science Electives

1. A minimum of 18 semester credit hours in the humanities and social sciences is required.
2. The 18 hours of humanities and social science elective credit should not be composed of a selection of unrelated introductory courses. At least 6 semester credit hours must be successfully completed at an advanced level, which is the upper division (3000-4000) or graduate (5000 and above) level.
3. ROTC course sequences (AIRR 4010-4020 and MILR 4072-4082) are acceptable for 3 semester credit hours of humanities and social science elective credit. They are considered equivalent to PSCI 4191 and COMM 4240, respectively. NAVR 2020 is acceptable for 3 semester hours of humanities and social science elective credit.
4. Students are permitted to take appropriate Honors courses for humanities and social science credit.
5. Most courses in business are not acceptable as humanities and social science electives.
6. Most foreign language courses (including first-year courses) are acceptable for meeting humanities and social science requirements.
7. Participation in the Presidents Leadership Class is accepted for up to 12 credit hours.
8. The Herbst Program in Humanities for engineering students, a two-year program, is available to juniors. It provides up to 12 hours of honors humanities credit (3 hours per semester) and includes a waiver of the junior writing program requirement. See the dean's office for application deadlines and materials.

Professional Area Electives

1. Any ASEN course at the 3000 level or above that is not a required course can be used as a professional area elective.
2. A professional area elective is generally a course in engineering or science (such as mathematics, applied mathematics, physics, chemistry, biology, ASTR, ATOC, or computer science) at the 3000 level or higher. Elective ASEN courses most likely to help an aerospace engineer's career development are ASEN, math, CSCI, and physics courses. It is suggested that students secure advance approval for professional area elective courses from their advisor.
3. Independent study or undergraduate research is acceptable for up to 6 credit hours of professional area elective credit. Upper-division ROTC course work is acceptable for 3 semester hours of professional area elective credit. Any ROTC course numbered 3000 and above may be used for this credit. This does not affect the use of ROTC hours as humanities and social science elective credit discussed earlier.

Graduate Degree Programs

The Department of Aerospace Engineering Sciences offers graduate programs in the following areas: fluid dynamics (theoretical fluid dynamics, computational fluid dynamics, aerodynamics and design, atmospheric dynamics and modeling, low-gravity fluid mechanics and heat transfer, experimental fluid dynamics and flow visualization, and transonic flow); astrodynamics and remote sensing (orbit determination, space debris, space mission analysis, satellite geodesy, satellite oceanography, ocean modeling, and application of the global positioning system); control, systems engineering, structures, and aerospace design (classical control theory and optimization, software engineering and control of large space structures, attitude control and fine-pointing, design and control of space vehicles and experiments); and life support/neurobioengineering (life support systems, neuromodelling, and biomaterials in space).

Aerospace-related research centers in the college include the Colorado Center for Astrodynamics Research, the Center for Aerospace Structures, and Bioserve Space Technologies (a NASA Center for the Commercial Development of Space). Other research centers within the university that are involved in space-related research activities are the Center for the Study of Earth from Space, the Center for Astrophysics and Space Astronomy, the Laboratory for Atmospheric and Space Physics, JILA, and the Cooperative Institute for Research in Environmental Sciences.

Requirements for Advanced Degrees

Graduate students applying for admission to aerospace engineering sciences are required to submit the results of the analytical, quantitative, and verbal sections of the Graduate Record Examination (GRE) and are encouraged to present the results of one specialized section in any area of engineering, mathematics, physics, chemistry, or biology.

The department offers graduate programs leading to the master of engineering and the M.S. and Ph.D. degrees in aerospace engineering sciences. Degree plans often are formulated on the basis of the student's interest
and needs. Portions of the program are designed to promote the student’s engineering and professional development.

Advanced degrees are available with specialization in the four broad areas of astrodynamics and remote sensing; fluid dynamics; space structures, systems, and controls; and bioengineering. Courses below the 5000 level in aerospace engineering cannot count toward graduate degree requirements; relevant courses below the 5000 level outside the department may be accepted for master’s degree credit if they fit with the student’s degree plan. Such courses must have academic content consistent with graduate study in aerospace engineering sciences.

Advising. Once students have selected a research area for the thesis, academic advising is done by their thesis advisor.

Master of Science Degree

Plan I (Thesis Option)
1. A total of 30 semester hours, at least 21 semester hours of which must be completed at the 5000 level or above, and 18 credits from ASEN. Note: The ASEN requirement exceeds the university requirement for total semester hours for the thesis option.
2. A minimum of 4 and a maximum of 6 thesis hours.
3. Completion of a M.S. thesis and oral examination based upon this thesis.
4. Completion of all degree requirements within four years of the date of commencing course work, normally completed in one to two years.
5. Master’s degree residence requirements can be met only by residence on the CU-Boulder campus for two semesters or three summer sessions, or a combination of at least one semester and two summer sessions.

Plan II (Nonthesis Option)
1. A total of 30 semester hours, at least 24 semester hours of which must be completed at the 5000 level or above, and 18 credits from ASEN.
2. A final exam of either the Ph.D. preliminary examination or a graded master’s paper.
3. Completion of all degree requirements within four years of the date of commencing course work, normally completed in one to two years.
4. Master’s degree residence requirements can be met only by residence on the CU-Boulder campus for two semesters or three summer sessions, or a combination of at least one semester and two summer sessions.

Ph.D. Degree

Course Requirements. A minimum of 36 semester credit hours of courses numbered 5000 or above (at least 18 of these must be in ASEN) and 30 credit hours of thesis credit are required for the degree. A maximum of 21 credit hours may be transferred from another accredited institution and applied toward a Ph.D. degree if approved by the graduate committee of the department and the Graduate School. All courses taken for the master’s degree at the 5000 level or above at the University of Colorado may be applied toward the doctoral degree at the university. The formal course work must include a minimum of 18 hours of courses or their equivalent in aerospace engineering sciences.

Preliminary Examination. Students must pass a preliminary examination, administered by the graduate committee, which consists of a written, open book examination in aerospace engineering disciplinary core fields.

Comprehensive Examination. The degree program culminates in an oral examination before the student’s committee of five or more graduate faculty members chosen by the student and approved by the department and the Graduate School. This should be preceded by individual examinations or interviews, either written or oral or both, by every committee member. The oral examination before the committee is based primarily on a detailed, written proposal for the thesis research provided by the student to committee members in advance.

Ph.D. Thesis. Students must write a thesis based on original research conducted under the supervision of a graduate faculty member. The thesis must fulfill all Graduate School requirements. After the thesis is completed, an oral final examination on the thesis and related topics is conducted by a committee of at least five graduate faculty members. Further details are available from the department graduate coordinator.

APPLIED MATHEMATICS

The Department of Applied Mathematics in the College of Arts and Sciences offers a B.S. degree in applied mathematics through the College of Engineering and Applied Science. The B.S. degree is designed to prepare graduates for exciting and diverse professional careers, and for graduate study in a wide variety of disciplines. The department also offers an M.S. degree jointly with the mathematics department and a Ph.D. degree through the Graduate School.

The objectives of the Department of Applied Mathematics at CU-Boulder are summarized below:

• provide undergraduate and graduate students with high-quality education and training in applied mathematics, and prepare them for careers in industry, laboratories, and the academic professions;
• offer and monitor degree programs leading to B.S., M.S., and Ph.D. degrees in applied mathematics;
• nourish and maintain a professional environment in which excellence in teaching, learning, scholarship, and creativity are of central importance;
• assure teaching and research expertise in a number of key areas of applied mathematics including the methodology of applied mathematics, computational mathematics and algorithms, industrial applications, applied probability, and statistics.

Courses at the undergraduate level provide training in a broad range of mathematical techniques and problem-solving strategies. These courses teach the concepts and methods central to applications of linear algebra, ordinary and partial differential equations, numerical analysis, probability and statistics, complex variables, and nonlinear dynamics. Since applied mathematicians are often involved in interdisciplinary work, the B.S. degree requires an in-depth knowledge of some area of science or engineering where mathematics is used. This knowledge prepares graduates to successfully communicate and cooperate with engineers and scientists. The B.S. degree also requires knowledge of a programming language and skill in using the computer.

Desired Outcomes

The undergraduate degree in applied mathematics emphasizes knowledge and awareness of:

• differential and integral calculus in one and several variables;
• vector spaces and matrix algebra;
• ordinary and partial differential equations;
• at least one programming language;
• at least one application software package in either mathematics or statistics;
• methods of complex variables as used in applications; and
• numerical solutions of linear and nonlinear problems.

In addition, students completing a degree in applied mathematics acquire:

• an in-depth knowledge of an area of application (an engineering discipline or a natural science field or one of the quantitative areas of business and economics);
• knowledge of problem formulation, problem-solving, and modeling techniques and strategies central to applications; and
• the ability to clearly and concisely, and in oral and written forms, communicate analytic arguments.

Minor Program

The department also offers a minor in applied mathematics that is available to engineering as well as to arts and sciences students. A minor in applied mathematics indicates that a student has received in-depth training in mathematical techniques and computational methods well beyond the training usually received by science and engineering majors.
Concurrent B.S./M.S. Degree Program

The concurrent B.S./M.S. program in applied mathematics enables well-qualified and motivated students to experience graduate-level course work earlier in their education and to obtain an M.S. degree in a reduced time period. Applied math majors may apply for this program during their junior year. Minimum requirements for admission include completion of at least two APPM courses numbered 3000 or higher, an overall GPA of 3.40 or higher, and two letters of recommendation from APPM faculty. Students interested in this program are encouraged to consult with an applied mathematics faculty advisor early in their undergraduate career.

Bachelor's Degree Requirements

The B.S. degree in applied mathematics requires the completion of a minimum of 128 credit hours of acceptable course work with cumulative and major grade point averages of C or better. Students must complete the following requirements:

1. Three semesters of calculus (APPM 1350, 1360, and 2350) with a minimum grade of C- in each course.
2. Computing experience (CSCI 1300 or GEEN 1300 or APPM 2775).
3. Completion of at least 5 additional credits of chemistry or biology (including 2 credits of laboratory science), chosen from one of the following: CHEM 1211 and CHEN 1221; CHEM 1151; EPOB 1210, 1220, 1230, and 1240; or MCDI 1150, 1151, 2150, and 2151.
4. Completion of the following required applied mathematics courses: APPM 2530, Linear Algebra and Differential Equations; APPM 3310 or MATH 3130 Linear Algebra; APPM 4350 and 4360 Methods in Applied Mathematics 1 and 2; APPM 4650 Intermediate Numerical Analysis 1; and MATH 3000 Introduction to Abstract Mathematics or MATH 4310 Introduction to Analysis.
5. A two-semester course sequence of applied mathematics or mathematics courses numbered 4000 or above in addition to APPM 4350-4360 (for example, APPM 4570 and 4580, APPM 4560 and 4520, APPM 4650 and 4660, or MATH 4310 and 4320).
6. A minimum of 24 credit hours in applied mathematics or mathematics courses numbered 3000 or above (including the required courses).
7. A minimum of 24 credit hours in engineering courses (or approved science courses in the College of Arts and Sciences) with at least 15 credit hours in courses numbered 2000 or above and at least 6 credit hours in courses numbered 3000 or above. These 24 credit hours are in addition to those required credit hours listed in numbers 2 and 3 (mentioned above). HUEN 3100, 3200, 4100, and 4200 may not be used to fulfill this requirement, although they may be used as social and humanistic electives. Several possible options are listed separately.
8. The general bachelor’s degree requirements of the College of Engineering and Applied Science (18 credit hours of social and humanistic electives that include UWRP 3030, a writing course offered through the University Writing Program). Students may take HUEN 3100 and 3200 in place of UWRP 3030. Humanities and social science electives must not be limited to a selection of unrelated introductory courses. At least 6 credit hours must be at an advanced level (3000 or above). The UWRP 3 credits or the HUEN 6 credits can be used to meet the requirement of at least 6 credits at the 3000 level.

Some Recommended Options for Applied Math Majors

Aerospace Engineering Sciences Option

Interested students should see an applied mathematics advisor for information on the aerospace program.

Chemical Engineering Option

CHEM 1211 and CHEN 1221..............5
Recommended courses (total of 23 credit hours):
CHEM 2120 Material and Energy Balance3
CHEM 3200 Fluids3
CHEM 3210 Heat Transfer4
CHEM 3220 Mass Transfer4
CHEM 3320 Thermodynamics3
CHEM 4511 Physical Chemistry3
CHEM 4330 Reaction Kinetics3
Also recommended:
APPM 4570 Statistical Methods3

Computer Science Option

Recommended courses (total of 18 credit hours):
CSCI 2270 Data Structures4
CSCI 3155 Programming Languages4
ECEN 2120 Computers as Components5
ECEN 3100 Digital Logic5
Note: Two additional courses, at least one of which must be at the 3000 level, are required.

Electrical and Computer Engineering Option

Recommended courses (total of 25 credit hours):
ECEN 2120 Computers as Components5
ECEN 3100 Digital Logic5
ECEN 2250 Circuits/Electronics 15
ECEN 2260 Circuits/Electronics 25
ECEN 3250 Circuits/Electronics 35

Engineering Physics Option

Recommended courses after first-year physics (18 or 19 credit hours):
PHYS 2140 Methods of Theoretical Physics3
PHYS 2150 Experimental Modern Physics1
PHYS 2170 Foundations of Modern Physics .3
PHYS 3210 Analytical Mechanics3
PHYS 3220 Quantum Mechanics3
PHYS 3310 Principles of Electricity and
Magnetism 1 ...3
PHYS 3320 Principles of Electricity and
Magnetism 2 ...3

Plus either of the following:
PHYS 3330 Junior Laboratory2
PHYS 4230 Thermodynamics and Statistical Mechanics3

Note: Additional courses are required to bring the total number of physics credits to 24.

Also recommended:
APPM 3570 Applied Probability3
MATH 3140 Introduction to Modern Algebra3

Mechanical Engineering Option

Recommended courses (total of 25 credit hours):
MCEN 2023 Statics and Structures3
MCEN 2063 Mechanics of Solid Bodies3
MCEN 3021 Fluids3
MCEN 3022 Heat Transfer3
MCEN 3025 Component Design3
MCEN 3043 Dynamics3
MCEN 4043 System Dynamics3

Note: Additional MCEN courses are required to bring the total number of credits of 24.

Also recommended:
APPM 4570 Statistical Methods3

Civil, Environmental, and Architectural Engineering Option

Recommended basic courses (total of 15 credit hours):
AREN 2010 Introduction to Solar Utilization3
AREN 3010 Building Energy Analysis and Design3
AREN 3540 Illumination 13

b) CVEN 3414 Introduction to Environmental Engineering3
CVEN 4333 Applied Hydraulics3

Students also take two courses from any one of the following groups:
a) AREN 2010 Introduction to Solar Utilization3
AREN 3010 Building Energy Analysis and Design3
AREN 3540 Illumination 13

b) CVEN 3414 Introduction to Environmental Engineering3
CVEN 4333 Applied Hydraulics3

c) CVEN 3525 Structural Engineering 13

Architectural Engineering Option

Recommended basic courses (19 credit hours):
BCOR 1000 Business Computing Skills3
BCOR 2000 Accounting and Financial Analysis 14

BCOR 2010 Business Statistics3
BCOR 2100 Accounting and Financial Analysis 23
FNCE 3010 Corporate Finance3
ECON 4818 Introduction to Econometrics3

Some of the following courses should also be taken:
ACCT 3220 Intermediate Financial Accounting 13
BCOR 3000 Business Law, Ethics, and Public Policy3
The undergraduate degree in architectural engineering emphasizes knowledge and awareness of:
- basic principles of mathematics, physics, and chemistry;
- computer-aided engineering and design;
- manual and computer-aided drawing;
- surveying;
- building construction practices and materials;
- engineering mechanics;
- structural analysis and design;
- HVAC analysis and design;
- solar energy utilization;
- illumination and electrical;
- architectural appreciation, design, and history;
- architectural engineering systems integrated design; and
- professional practice and ethics.

Bachelor's Degree Requirements

There is a broad core of requirements for all students. Students are also expected to choose, in consultation with faculty advisors, elective courses to add depth in one or more specialty areas. Such specialty areas include structural analysis and design, construction engineering, building energy analysis, mechanical systems, and illumination. A list of recommended electives is available to help students select a coherent academic program that enhances one of these areas.

Curriculum for B.S. (Arch. E.)

Freshman Year

<table>
<thead>
<tr>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
</tr>
<tr>
<td>AREN 1017 Engineering Drawing</td>
</tr>
<tr>
<td>AREN 1316 Introduction to Architectural Engineering ...</td>
</tr>
<tr>
<td>APPM 1350 Calculus 1 for Engineers</td>
</tr>
<tr>
<td>CHEM 1211 General Chemistry for Engineers ..</td>
</tr>
<tr>
<td>CHEN 1221 Engineering Chemistry Lab</td>
</tr>
<tr>
<td>Humanities or social science elective</td>
</tr>
<tr>
<td>Spring Semester</td>
</tr>
<tr>
<td>APPM 1360 Calculus 2 for Engineers</td>
</tr>
<tr>
<td>AREN 1027 Descriptive Geometry</td>
</tr>
<tr>
<td>CVEN 2012 Plane Surveying</td>
</tr>
<tr>
<td>PHYS 1110 General Physics 1</td>
</tr>
<tr>
<td>Humanities or social science elective</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
</tr>
<tr>
<td>AREN 2110 Thermodynamics</td>
</tr>
<tr>
<td>AREN 3050 Environmental Systems for Buildings 1 ..</td>
</tr>
<tr>
<td>APPM 2350 Calculus 3 for Engineers</td>
</tr>
<tr>
<td>CVEN 2121 Analytical Mechanics 1</td>
</tr>
<tr>
<td>PHYS 1120 General Physics 2</td>
</tr>
</tbody>
</table>

Desired Outcomes

Students select a coherent academic program that enhances one of these areas.
Spring Semester
AREN 2120 Fluid Mechanics and Heat Transfer ... 3
APPM 2360 Introduction to Linear Algebra and Differential Equations 4
AREN 3060 Environmental Systems for Buildings 3
AREN 3406 Introduction to Building Construction 3
CVEN 3161 Mechanics of Materials 1 .. 3

Junior Year
Fall Semester
AREN 3010 Mechanical Systems for Buildings .. 3
AREN 3540 Illumination 1 ... 3
AREN 3570 Electric Circuits .. 3
CVEN 3246 Introduction to Construction .. 3
CVEN 3525 Structural Engineering 1 ... 3

Spring Semester
AREN 4020 Noise Control in Buildings ... 3
AREN 4570 Electrical Systems ... 3
AREN 4020 Noise Control in Buildings ... 3
AREN 4570 Electrical Systems ... 3
AREN 4550 Steel Design ... 3
AREN 4555 Reinforced Concrete Design .. 3
CVEN 4650 Timber Design .. 3
CVEN 4087 Engineering Contracts .. 3
CVEN 4161 Mechanics of Materials 2 .. 3
CVEN 5010 HVAC System Controls 1 .. 3
CVEN 5020 Building Energy Measurements ... 3
CVEN 5030 Architectural Lighting Equipment Design.............................. 3
CVEN 5040 Lighting Systems Engineering ... 3
CVEN 5050 Advanced Solar Design ... 3
CVEN 5060 Advanced Passive Solar Design... 3
CVEN 5070 Thermal Analysis of Buildings ... 3
CVEN 5090 Building Systems Seminar .. 3
CVEN 5110 HVAC Design 1 .. 3
CVEN 5111 Introduction to Structural Dynamics* 3
CVEN 5161 Advanced Mechanics of Materials* 3
CVEN 4511 or 5511 Introduction to Finite Element Analysis* 3
ACCT 2000 Introduction to Financial Accounting 6
ACCT 2310 Managerial Cost Accounting 1 ... 6
ECEN 5767 Power Distribution Systems .. 3
MCEN 3022 Heat Transfer .. 3
* For well-qualified undergraduates.

Double Degree with Business
Students interested in pursuing a B.S. degree in business in addition to the B.S. degree in architectural engineering should be prepared to spend at least three additional semesters in school. A faculty advisor should be consulted in the student’s freshman year so that professional growth.
Academically qualified students may want to consider working toward the master of business administration degree upon completion of the baccalaureate in engineering as an alternative to a B.S. in business.

Graduate Study
Graduate credit is offered in the following courses:
CVEN 5010 Energy Controls Systems .. 3
CVEN 5020 Building Energy Measurements and Audits 3
CVEN 5030 Architectural Lighting Equipment Design 3
CVEN 5040 Lighting Systems Engineering ... 3
CVEN 5050 Advanced Solar Design ... 3
CVEN 5060 Advanced Passive Solar Design ... 3
CVEN 5070 Thermal Analysis of Buildings ... 3
CVEN 5080 Computer Simulation of Building Energy Systems 3
CVEN 5090 Building Systems Seminar .. 3
CVEN 5110 HVAC System Controls 1 .. 3
CVEN 5111 Introduction to Structural Dynamics* 3
CVEN 5161 Advanced Mechanics of Materials* 3

Courses Available for Specialization
Upon consultation with their advisors, students are expected to select technical elective courses applicable to their areas of interest and specialization. The areas of specialization are construction engineering and management, building systems engineering, illumination, and structural engineering.

In addition to the courses listed below, other courses not listed may be proposed by a student and approved by the advisor if they are found to be applicable.
AREN 3130 Building Energy Laboratory ... 3
AREN 3140 Illumination Laboratory ... 3
AREN 4010 Solar Design ... 3
AREN 4315 Design of Masonry Structures .. 3
AREN 4317 Architectural Engineering Design .. 3
AREN 4466 Construction Planning and Scheduling 3
AREN 4550 Illumination 2 ... 3
AREN 4560 Luminous Radiative Transfer ... 3
AREN 4570 Electrical Systems ... 3

Minimum hours for degree ... 128

CHEMICAL ENGINEERING
The Department of Chemical Engineering offers degrees at the bachelor’s, master’s, and doctoral levels.
The department seeks to instill in its students an education in the principles and practices of chemical engineering that will serve a broad and dynamic range of career paths and provide a foundation for lifelong professional growth.

Educational Objectives
The educational objectives in the undergraduate program in the Department of Chemical Engineering are to:
• educate students in chemical engineering fundamentals and practice;
• train students in chemical process design and integration;
• train students in critical thinking and in the identification, formulation, and solution of open-ended engineering problems;
• help students be aware of their responsibility to conduct ethical, safe, and environmentally conscious engineering;
• train students to be good communicators and function effectively as individuals and in teams;
• provide students with knowledge of contemporary issues and understanding of the impact of engineering practices in global and societal contexts; and
• teach students the necessity and tools for continued, life-long learning.

In addition, students completing the undergraduate program in chemical engineering acquire the ability and skills to:
• apply knowledge of mathematics, science, and engineering;
• design and conduct experiments and analyze and interpret data;
• use modern engineering tools, skills, and methods for engineering practice;
• design processes and systems to meet desired performance specifications;
• identify, formulate, and solve engineering problems;
• understand professional and ethical responsibilities;
• communicate effectively in oral and written forms;
• function effectively on multidisciplinary teams;
• understand the impact of engineering solutions in global and societal contexts;
• know contemporary issues; and
• recognize the need for and have an ability to engage in life-long learning.

Bachelor's Degree Requirements

Chemical engineers are responsible for producing products based on chemical and biochemical processing. They carry out basic research; they design, build, operate, and manage chemical processes and plants; and they supply petroleum products, plastics, detergents, agricultural chemicals, pharmaceuticals, biological compounds, photographic materials, microelectronic devices, and various food and other products. Today’s processes must be energy efficient, nonpolluting, and profitable. Thus, students must master inorganic, organic, and physical chemistry, mathematics, statistics, computers, physics, and often biology and biochemistry. Students must learn to apply these fundamentals in the process industries. Paralleling the technical courses are studies in the humanities and the social sciences.

There is a natural affinity between chemical engineering, biotechnology, and medicine, and the department offers a bioengineering option and a premedicine curriculum track. Chemical engineering also offers environmental, computer, microelectronics, and materials options.

At the B.S., M.S., and Ph.D. levels, there are opportunities to specialize via electives, independent study, and research. If a student has an interest that is not included in the following information, special arrangements can usually be made.

Students may carry out part of their studies in another country (see the Office of International Education section in this catalog), and are encouraged to consider this opportunity, given the international nature of most large chemical and engineering corporations and international cooperation in scientific and engineering research. Many faculty members have significant international experience.

Options in the Chemical Engineering Curriculum

Curricular options have been established in fields of major importance and particular interest. To follow one of these options requires careful planning and course selection by student and advisor.

Bioengineering Option. Since all biological and medical systems involve complex chemical and physical processes, chemical engineering is a natural professional basis for biotechnology research. The department has a strong undergraduate program tailored to meeting the needs of students who are preparing for careers in biomedical engineering, biochemical engineering, or biotechnology. Modern biotechnology has been defined as “applied genetic engineering” and is of considerable importance due to recent advances in molecular biology and genetic engineering. The successful industrial application of these advances will, in large part, depend on new chemical engineering initiatives in the development of high-rate bioreactors, efficient separation and purification techniques for bioproducts, and computer-interfaced instrumentation for optimal bioprocess control.

The courses available for this option are:
CHEN 3700 Bioenergetics: Structure and Function, CHEN 4800 Bioprocess Engineering, and CHEN 4820 Biochemical Separations. In addition, biotechnology students are required to complete two semesters of general biology and one semester of biochemistry.

The department also offers graduate bioengineering technology research programs at both the M.S. and Ph.D. levels. These programs are oriented toward specialization in various aspects of biochemical engineering, biomedical engineering, biotechnology, and sensory physiology.

Environmental Option. Chemical engineers can make major contributions in the fields of pollution prevention and control, resource utilization, and environmental improvement. The environmental engineering option is designed to emphasize biological and environmental sciences, the effects of chemicals on the environment, and chemical engineering applications in environmental problems.

The courses taken by students following this option include electives in environmental science and engineering. A capstone course in environmental engineering processes or environmental separations is taken in the senior year.

Computer Option. Applications of computers in chemical engineering are widespread, and the chemical engineer who has solid preparation in computer science and engineering is in demand. Areas include computer architecture and interfacing; machine, assembly, and high-level language programming; and on-line real-time computing. Students in this option complete the core of the computer engineering degree program in the Department of Electrical and Computer Engineering.

Materials Option. The need to develop new materials for a rapidly broadening spectrum of applications is one of the major technological challenges confronting applied science. Chemical engineers have the required background in chemistry and transport theory to contribute significantly in this area. This option focuses on polymeric and ceramic materials by complementing the chemical engineering curriculum with elective courses stressing the interrelationship between materials fabrication, structure, properties, and performance.

Microelectronics Option. The manufacture of semiconductor microelectronic circuits or “chips” involves many chemical steps. In recent years, more and more chemical engineers are finding employment in the expanding microelectronics industry. Completion of this option, which includes courses in solid state and semiconductor physics and microstructure fabrication, provides specialization to help launch a successful career in microelectronics.

Premedicine Curriculum Track. This track is offered for students preparing for medical school. Since chemical engineering already requires most of the premed courses, it is a logical choice for students who desire an engineering degree and the opportunity to pursue a medical profession.

Senior Thesis. The department offers this program for undergraduates with a strong interest in research. The student carries out a year-long project under the direction of a faculty member in lieu of taking CHEN 4130 Chemical Engineering Laboratory 2. Students must apply at the end of their junior year.

Curriculum for B.S. (Ch.E.)

Freshman Year

Semester Hours
Fall Semester
APPM 1350 Calculus 1 for Engineers4
CHEM 1211 General Chemistry for Engineers ..3

Spring Semester
CHEM 1212 General Chemistry for Engineers ..3
CHEM 1213 General Chemistry for Engineers ..3
APPM 1351 Calculus 2 for Engineers4
Curriculum Notes
1. Course offered only in semester indicated.
2. Courses selected must meet humanities and social science requirements. Students should consult with their advisor and the current ChE Help Guide.
3. Students should consult the current ChE Help Guide about chemistry electives.
4. Electives must meet specific requirements. At least one 3-credit-hour elective must be in engineering, outside of chemical engineering. See the current ChE Help Guide.

Graduate Degree Programs
Major areas of current research interest in the chemical engineering department are applied mathematics and computers, biomedical engineering, biotechnology, ceramics processing, colloidal science, environmental engineering, heterogeneous catalysis and kinetics, fluid dynamics, low gravity science, mass transfer, materials engineering, membrane and polymer science, particle technology, process control and optimization, separations, supercritical fluids, surface science and interfacial phenomena, transport in porous media, and thermodynamics.

Master of Science Degree Requirements
Admission. General criteria for regular admission to the master’s program include a bachelor’s degree with a 3.00 or better overall grade point average from a college or university of recognized standing, equivalent to the degree given at this university (or college work equivalent to that required for such a degree, at least 96 semester hours of which must be acceptable toward a degree at this university); promise of ability to pursue advanced study and research, as judged by previous scholastic record or otherwise; and adequate preparation to begin graduate study in the chosen field.

A candidate for the master of science degree in chemical engineering must fulfill the following departmental requirements:
1. Thirty semester hours of graduate work, including a satisfactory thesis. Maximum credit of 6 semester hours is allowed for the completion of the master’s thesis. Fifteen of the remaining semester hours must be chemical engineering courses at the 5000 level or above. A nonthesis master’s degree is available and requires completion of 30 semester hours of course work.
2. A final examination as required by the Graduate School on the thesis and/or course work.

It is expected that a qualified student can complete the master’s degree in less than two calendar years. A graduate student with a bachelor’s degree in a field related to chemical engineering may obtain the master’s degree in chemical engineering but may be required to make up deficiencies in background. Programs are arranged on an individual basis.

Four of the following core courses must be taken for the M.S. degree:
CHEN 5210 Transport Phenomena
CHEN 5220 Mass Transport
CHEN 5370 Intermediate Chemical Engineering Thermodynamics
CHEN 5390 Chemical Reactor Engineering
CHEN 5740 Analytical Methods in Chemical Engineering

A degree plan must be prepared at the beginning of the academic program in consultation with an advisory committee. The student is urged to maintain close contact with this advisory committee during the entire course of study.

The M.S. thesis committee must consist of three members, including at least two graduate faculty members from the Department of Chemical Engineering.

Master of Engineering Degree Requirements
Admission. (The standards of admission to the M.S. program also apply to M.E. degree applicants.) A 3.00 overall undergraduate GPA is required for regular admission.

M.E. Degree Advisor. All M.E. candidates should see the chemical engineering master of science degree advisor for counseling.

Requirements for Graduation. Nine hours of chemical engineering at the 5000 level or above are required for those M.E. degree students enrolled in the Department of Chemical Engineering. Students orally defend their written reports as specified in the M.E. degree description, and a comprehensive examination is administered by the student’s advisory committee on the report and course work.

Doctor of Philosophy
Admission Requirements
1. The applicant must have achieved academic competence equivalent to a master of science degree from an accredited college or university, with a GPA substantially above the minimum normally required for the degree.
2. The applicant must show the ability to perform independent research.
3. The applicant must indicate a field of specialization and obtain an advisor in the chemical engineering graduate faculty.

4. The applicant must pass the Ph.D. preliminary examination administered by the Department of Chemical Engineering. A candidate for the doctor of philosophy degree must meet the requirements as described under requirements for advanced degrees in the Graduate School chapter. A minimum of 33 semester hours of courses numbered 5000 or above is required for the degree, including those applied toward an M.S. degree. These must include at least 24 semester hours of chemical engineering courses, including all five core courses listed previously.

All Ph.D. students in chemical engineering must satisfy a communication skills requirement. This includes performing an advanced teaching assistantship and demonstrating satisfactory communication skills on the Ph.D. comprehensive examination. Students whose primary language is English may choose to demonstrate foreign language proficiency instead of being judged on their communications skills on the comprehensive exam.

The Ph.D. dissertation committee must consist of five members, including at least three from the Department of Chemical Engineering and at least one from within CU-Boulder, but outside the department. A graduate faculty member of the department must serve as chair of the committee.

Research Facilities
Chemical engineering research facilities are extensive and modern. Nearly all research equipment is interfaced to microcomputer systems for automated data collection, monitoring, and control. A full description of chemical engineering research facilities can be found in the Graduate School chapter of this catalog.

CIVIL AND ENVIRONMENTAL ENGINEERING

The curricula within the Department of Civil, Environmental, and Architectural Engineering have been designed to qualify students for entry-level positions in professional practice in the areas of civil and environmental engineering. These broad area designsations may be separated into the subdisciplines of building systems and energy management; construction engineering and management; environmental engineering; geotechnical engineering; mechanical systems; structural engineering and structural mechanics; and water resource engineering and management. Alternatively, undergraduates are prepared to begin graduate study in any of the subdisciplines listed above, improving their qualifications and permitting them to enter professional practice at a higher level or to progress to higher levels more rapidly after entry at the beginning level.

The overall objectives of the bachelor of science program are to:

• enable students to apply basic knowledge in mathematics, basic science, and engineering fundamentals to solving problems and making effective designs in areas encompassing a breadth of civil engineering professional practice in contemporary society;

• allow students sufficient specialization to prepare them for professional careers and/or graduate study in subdisciplines of civil engineering: construction, environmental, geotechnical, structural, and water resources engineering;

• enable students to enhance technical contributions to the public infrastructure with understanding of nontechnical concepts, especially those that bear on civil engineering projects such as cost, public safety, and health;

• expose students to the unique responsibilities of civil engineers to uphold ethical relationships with both their clients and with the public at large;

• teach students how to extend their knowledge and skills in order to meet new technical challenges and continuously innovate in their chosen professional careers; and

• give students a broad education in humanities and social sciences and encourage them to participate fully in a democratic society.

Students in civil and environmental engineering gain experience with or exposure to a capstone experience in environmental engineering, structural or foundation design; civil engineering systems; construction; engineering geology; engineering materials, geotechnical, or water quality laboratory; environmental engineering; fluid mechanics; geotechnical engineering; manual and computer-aided engineering drawing; mechanics; personal computers and engineering workstation usage; a seminar in professional practice and ethics; structural analysis and design; surveying; transportation systems; and technical electives in the area of emphasis.

Bachelor's Degree Requirements
This curriculum requires students to obtain a background in the humanities, a broad knowledge of the basic engineering sciences of chemistry, mathematics (including differential equations), physics, mechanics (including fluid mechanics and soil mechanics), electrical engineering, and thermodynamics. Social-humanistic hours may be devoted to the social sciences, the humanities, or to approved communication courses, with not more than 12 hours from any one of the three areas.

Advanced technical courses are selected in the senior year. Random selection is not allowed, the objective being to permit a graduate to enter the engineering profession with a firm groundwork in fundamental engineering science and adequate knowledge in specialized fields. Students should consult with their advisor.

Curriculum for B.S. (C.E.)

The civil engineering program has been separated into two tracks, general civil engineering and environmental/water resources. The first four semesters are common to both tracks.

Semester Hours

Freshman Year
Fall Semester
APPM 1350 Calculus 1 for Engineers4
CHEM 1211 General Chemistry for Engineers ..3
CHEN 1221 General Chemistry Laboratory for Engineers ..2
CVEN 1317 Introduction to Civil and Environmental Engineering1
GEEN 1300 Introduction to Engineering Computing ..3
Humanities or social science elective3

Spring Semester
APPM 1360 Calculus 2 for Engineers4
CVEN 2012 Plane Surveying4
CVEN 3698 Engineering Geology3
PHYS 1140 Experimental Physics1

Sophomore Year
Fall Semester
APPM 2350 Calculus 3 for Engineers4
AREN 1017 Engineering Drawing2
CVEN 2121 Analytical Mechanics 13
PHYS 1120 General Physics 24
PHYS 1140 Experimental Physics1
Humanities or social science elective3

Spring Semester
APPM 2360 Introduction to Linear Algebra and Differential Equations4
AREN 2012 Energy Fundamentals3
CVEN 3161 Mechanics of Materials 13
CVEN 3313 Theoretical Fluid Mechanics3
Humanities or social science elective3

Curriculum for B.S. (C.E.)

General Civil Engineering

Semester Hours

Junior Year
Fall Semester
CVEN 3256 Construction Equipment and Methods ..3
CVEN 3323 Hydraulic Engineering3
CVEN 3414 Introduction to Environmental Engineering ..3
CVEN 3525 Structural Engineering 13
CVEN 3708 Geotechnical Engineering 13

Spring Semester
CVEN 3227 Probability, Statistics, and Decision for Engineers3
CVEN 4161 Mechanics of Materials 23
Environmental Option
Curriculum for B.S. (C.E.)

Minimum hours for degree 128

Humanities or social science elective
Technical electives (Note 1) 9

Spring Semester
CVEN 4039 Senior Seminar 1
Capstone course (Note 2) or technical elective 3
Technical electives (Note 1) 9
Humanities or social science elective (3000- level or above) 3
Minimum hours for degree 128

Curriculum Notes
1. Not more than 6 hours of technical electives may be taken outside the department, and then only for defensible reasons.
2. The capstone course requirement may be satisfied by CVEN 4423, 4434, 4545, 4555, or 4728 and may be taken in fall or spring, since each of these courses is normally offered only once per academic year.

Double Degree with Business
Students interested in pursuing a B.S. degree in business in addition to the B.S. degree in civil engineering should be prepared to spend at least three additional semesters in school.

Academically qualified students may want to consider working toward the master of business administration degree upon completion of the baccalaureate in engineering as an alternative to a B.S. in business.

Graduate Degree Programs
A pamphlet on the requirements for graduate study in civil engineering is available from the department office. The Graduate Record Examination, consisting of the aptitude tests and advanced test in engineering, is used in the evaluation of candidates and competition for university and other fellowships. Therefore, students who wish to be considered for fellowships are advised to take this examination prior to their arrival on campus. There is no other qualifying examination required by the department for the master of science degree.

The department offers the master of science, master of engineering, and doctor of philosophy degrees with study emphasis in seven major areas: building energy systems, construction engineering and management, environmental engineering, geotechnical engineering, structural engineering and structural mechanics, and water resources engineering. A major in the following: transportation and planning is available from the Department of Civil and Environmental Engineering. A master of engineering, and doctor of philosophy degrees in civil engineering are well supported by the Department of Civil and Environmental Engineering. The Center for Advanced Decision Support for Water and Environmental Systems (CADSWES) is an interdisciplinary center of excellence, housed within the Department of Civil, Environmental, and Architectural Engineering. CADSWES focuses on applying advanced computing techniques to provide decision makers with decision support systems (DSSs) to help them make better decisions. The CADSWES offers courses in water and wastewater treatment, surface and subsurface contaminant transport, decision support systems, hydraulic research, land treatment, rapid infiltration, and activated sludge processes. Cost prediction in construction, construction management, energy conservation in buildings, solar applications, and lighting systems are included. Also, offshore structures, centrifugal modeling, excavations, and rock and soil mechanics are being studied. In structures, research focuses include stability and fracture, finite element techniques, reinforced concrete, earthquake behavior, reinforced masonry structures, and prestressed concrete.
COMPUTER SCIENCE

The Department of Computer Science, in cooperation with other departments in the university, offers a wide range of opportunities for students interested in computing. The department offers a B.S. degree in computer science. This program is designed to prepare students for careers as computer scientists and for graduate study in computer science. A minor in computer science is available as well. Computer options are also offered by several departments, including electrical and computer engineering, business, and mathematics; students interested in these programs should contact the appropriate department.

Additional information about the department's programs is available on the World Wide Web at www.cs.colorado.edu or by contacting the department at 303-492-7514.

The Department of Computer Science also offers M.S. and Ph.D. degrees.

The undergraduate degree in computer science emphasizes knowledge and awareness of:

- computing at all levels of abstraction ranging from circuits and computer architecture, operating systems, programming languages, algorithms, and large application systems;
- the interdependence of hardware and software;
- the challenge of large-scale software production and of engineering principles used to meet that challenge;
- the technology-independent aspects of computation; and
- the major advances in the history of computer science and technology and of current areas of research.

In addition, students completing the degree in computer science acquire the ability and skills to:

- communicate effectively and competently with users as well as fellow computer professionals about computing issues;
- adapt algorithms and data structures drawn from a large standard repertoire to new problems;
- be fluent in several programming languages and acquaintance with several more;
- experience being a sophisticated user of one programming environment or operating system, and become acquainted with several more; and
- assess new developments in computer science and add to the skills and knowledge described here.

Minor Program

The department offers a minor in computer science that is available to undergraduates on the Boulder campus. The minor offers a basic introduction to the field of software engineering. Admission to the minor is determined by the department undergraduate committee and subject to the availability of space. Please see the department for details.

Bachelor's Degree Requirements

A two-semester sequence in the senior year involves students in all aspects of a major software development project, from requirements analysis to finished product. Students can round out their computer science background by selecting from a wide variety of electives in such areas as artificial intelligence, graphics, database systems, parallel processing, and computer networks.

It is also vital for the socially responsible computer professional to have a broad background in the liberal arts. Consequently, students are encouraged to pursue interests in non-technical, as well as technical, areas outside of computer science. Twenty-four hours of courses in the humanities and social sciences are required. The program also includes a broad sampling of mathematics and basic science courses.

A minimum of 128 hours is required for graduation. The requirements of the College of Engineering and Applied Science must be satisfied for graduation.

The following curriculum is only a sample. It can be adjusted to the needs and interests of individual students (e.g., transfer students, open option students, and students interested in the junior year abroad). The curriculum can also be augmented by two semesters of co-op work in industry. Contact the Department of Computer Science for more detailed and up-to-date information on the degree program.

Curriculum for B.S. (C.S.)

Freshman Year

<table>
<thead>
<tr>
<th>Semester Hours</th>
<th>Fall Semester</th>
<th>Spring Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CSCI 1300 Computer Science 1: Programming</td>
<td>CSCI 2270 Computer Science 2: Data Structures</td>
</tr>
<tr>
<td></td>
<td>CSCI XXXX Freshman Seminar for Computer Science</td>
<td>APPM 1360 Calculus 2 for Engineers</td>
</tr>
<tr>
<td></td>
<td>APPM 1350 Calculus 1 for Engineers</td>
<td>Science elective</td>
</tr>
<tr>
<td></td>
<td>Science elective</td>
<td>Humanities or social science elective</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Semester Hours</th>
<th>Fall Semester</th>
<th>Spring Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CSCI 3308 Software Engineering Methods</td>
<td>CSCI 3104 Algorithms</td>
</tr>
<tr>
<td></td>
<td>APPM 2350 Calculus 3 for Engineers</td>
<td>ECEN 1120 Computers as Components</td>
</tr>
<tr>
<td></td>
<td>Science elective</td>
<td>Free elective</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Semester Hours</th>
<th>Fall Semester</th>
<th>Spring Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CSCI 3155 Principles of Programming</td>
<td>CSCI 3434 Computer Science Theory</td>
</tr>
<tr>
<td></td>
<td>CSCI 2XXX Linear Algebra with Computer Science Applications</td>
<td>APPM 2350 Calculus 1 for Engineers</td>
</tr>
<tr>
<td></td>
<td>CSCI 4593 Computer Organization</td>
<td>Statistics elective</td>
</tr>
<tr>
<td></td>
<td>Humanities or social science elective</td>
<td>Computer science elective</td>
</tr>
<tr>
<td></td>
<td>Free elective</td>
<td>Humanities or social science elective</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Semester Hours</th>
<th>Fall Semester</th>
<th>Spring Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CSCI 4308 Software Engineering Project 1</td>
<td>CSCI 3753 Systems</td>
</tr>
<tr>
<td></td>
<td>Computer science elective</td>
<td>CSCI 3656 Numerical Computation</td>
</tr>
<tr>
<td></td>
<td>Statistics elective</td>
<td>Free elective</td>
</tr>
<tr>
<td></td>
<td>Humanities or social science elective</td>
<td>Humanities or social science elective</td>
</tr>
<tr>
<td></td>
<td>Free elective</td>
<td>Total credit hours</td>
</tr>
</tbody>
</table>

Graduate Degree Programs

General Admission Requirements

Graduate students should consider a major in computer science if they are primarily interested in the general aspects of computational processes, both theoretical and practical, e.g., methods by which algorithms are implemented on a computer, techniques for using computers accurately and efficiently, design of computer systems, and languages and interfaces. A student who is primarily interested in the results of a computer process and its relation to a particular area of application should major in another field and consider a minor in computer science.

Applicants are considered for graduate study in computer science if they hold at least a bachelor's degree or its equivalent from an institution comparable to the University of Colorado. They should have considerable programming experience, sufficient mathematical maturity to understand pure mathematics courses at the upper-division level, and a number of academic computer science courses.

Applicants should satisfy the following requirements for mathematics courses: at least three semesters of mathematics at the level of
sophistication of calculus or above, courses such as: differential equations, linear algebra, probability, statistics, and abstract algebra. These courses need not be in a mathematics department; however, they should require mathematical maturity expected of a junior or senior mathematics undergraduate.

In computer science, applicants should have the equivalent of the following University of Colorado courses: CSCI 1200 and 1210 Introduction to Programming; ECEN 2120 Computers as Components; one course out of CSCI 3155 Programming Languages or CSCI 3753 Operating Systems; CSCI 2270 Data Structures; and either CSCI 3104 Algorithms or CSCI 3434 Theory of Computation; and one other upper-division computer science course. Upper-division courses in areas such as artificial intelligence, databases, numerical computation, operating systems, parallel processing, software engineering, and others can be substituted for courses on the above list. However, courses on the list are prerequisites to many of the graduate-level offerings and admitted students lacking their equivalent are usually required to make them up, without graduate credit (or alternatively take their graduate level equivalents). Students who lack this computer science background but who have exceptionally strong credentials in another field should contact the department for individual consideration.

Applicants should have a grade point average of at least 3.00 (on a scale of 4.00). Applicants having the listed qualifications are, if accepted, classified as regular degree students. Applicants with an average below 3.00 and above 2.75 and/or lacking certain of the prerequisites listed above are sometimes considered for admission as provisional students. These requirements apply to both the M.S. and Ph.D. programs. Applicants should be aware that admission to both programs is very competitive, and meeting the requirements does not ensure admission. Admission to the Ph.D. program is especially competitive, and successful applicants, in general, have records considerably stronger in breadth and quality than these minimum standards suggest.

Ph.D. applicants are encouraged to submit scores from the aptitude portion of the Graduate Record Examination (GRE). These scores are required if the applicant wishes to be considered for financial support, has a marginal grade point average, or has previous work at an institution lacking a strong national reputation. GRE scores are optional for M.S. applicants but are required if the undergraduate GPA is less than 3.00 (but above a 2.75). These scores are encouraged if previous study was at an institution lacking a strong national reputation.

Financial aid is available to Ph.D. students in the form of teaching and research assistantships and fellowships. Aid is sometimes available for M.S. students as teaching assistants or graders, but positions are assigned only at the beginning of a semester.

Applications for the M.S. program should be received by February 28 for fall admission and by October 15 for spring admission. Ph.D. applications should be received by January 2 for fall admission. Admission to the Ph.D. program is for fall semester entry only.

Applications for international students should be received by the Office of Admissions by December 1 for fall admission and by September 15 for spring admission.

Master's Degree

Admission requirements for this program are given above under General Admission Requirements. Plan I (thesis) or plan II (no thesis) may be followed. In either plan, students must complete 30 credit hours of course or thesis work. The requirements for plan I are as stated under the general requirements of the Graduate School section in this catalog. Students in plan I receive 6 credit hours for thesis work and are examined orally on their thesis. Students in plan II must pass the master's comprehensive exam. Under either plan a student may take 6 hours in a minor field. Students are expected to work out an acceptable program of course work with their advisor. Specific courses depend on the student's background and field of specialization, but four of the courses must satisfy a distribution requirement.

Doctor of Philosophy Degree

Admission requirements for this program are listed under General Admission Requirements in this chapter. Students in this program must pass preliminary examinations in three subareas of computer science to be eligible for admission to Ph.D. candidacy. The foreign language requirement is the equivalent of four college semesters; a detailed statement is available from the computer science department. A minimum of 30 semester hours in courses numbered 5000 or above is required for the degree, but the number of hours in formal courses are ordinarily greater than that total. Specific courses depend on the student's background and field of specialization.

Following the formal course work, a student must pass a comprehensive examination aimed primarily at determining whether the student is adequately prepared to begin doctoral thesis work.

Finally, students who have completed a minimum of 30 semester hours are expected to prepare a doctoral thesis based on original research in the field of computer science. After the thesis has been completed, an oral final examination on the thesis and related topics is conducted by a committee of at least five graduate faculty members.

Further details on either the M.S. or Ph.D. degree programs are available in the departmental office.

Department Computing Facility

The Department of Computer Science supports its own domain, cs.colorado.edu, which is a 1/100 mb network connected to the campus and the rest of the world by ATM, FDDI, and fast ethernet. Research and academic computing needs are handled in the department by its own staff. Most architectures and operating systems are supported, giving students the opportunity to learn about and use state-of-the-art equipment and software.

The current hardware inventory includes Sun Microsystems workstations and servers, Digital Compaq workstations, an Alpha parallel processing cluster, Macintoshes and NT desktop workstations, HP workstations, NCD workstations, and various other systems. All are networked with 10 or 100 mb networks connected with switches and hubs to our firewall gateway. Of particular interest is our Sun workstation teaching lab, which features 20 Ultra10s and an Enterprise3500 server donated by Sun Microsystems to the department in 1998.

Computer Science Faculty and Student Computing Resources

<table>
<thead>
<tr>
<th>SUN Workstations</th>
<th>Alpha AXPs, Alpha Servers Workstations</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEC Workstations</td>
<td>Hewlett Packard Workstations</td>
</tr>
<tr>
<td>9000/700s</td>
<td>Indigos, Extremes, Indys</td>
</tr>
<tr>
<td>SGI Workstations</td>
<td>S4000, 4000DX</td>
</tr>
<tr>
<td>NCD Xterminals</td>
<td>UNIX, NT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPU, File, and Network Servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun 4 Servers</td>
</tr>
<tr>
<td>4/2x0s, 4/3x0s, 4/670MP</td>
</tr>
<tr>
<td>Network Appliances</td>
</tr>
<tr>
<td>12GB 4 ethernet File server</td>
</tr>
<tr>
<td>Solbourne Workstations</td>
</tr>
<tr>
<td>Series 5 and 6s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Artificial Intelligence</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP workstations</td>
</tr>
<tr>
<td>AI instruction and research</td>
</tr>
<tr>
<td>Macintosh workstations</td>
</tr>
<tr>
<td>AI research</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parallel Computation Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solbourne 5/603</td>
</tr>
<tr>
<td>DEC Alpha Cluster</td>
</tr>
<tr>
<td>IBM SP2</td>
</tr>
<tr>
<td>CM5 Connection Machine</td>
</tr>
<tr>
<td>(32K processors in cooperation with the National Center for Atmospheric Research (NCAR))</td>
</tr>
</tbody>
</table>

IBM SP2 (12 processors)
Central Services (Computing Center)
DECstation 5000/250 (rintintin)
Alpha AXP (ucesu) General CU
student system
PC, Macintosh, and terminal labs
access

Computer Science Educational Labs
Computer science majors and students taking upper-division computer science classes have access to UNIX workstations in the department’s computing lab. The lab contains a total of about 100 workstations of various kinds, including 24 Hewlett Packard PCs running NT and Linux. All support the X-windows system and the Internet.

ELECTRICAL AND COMPUTER ENGINEERING

Electrical and computer engineering is about the science and technology of information and energy. Two undergraduate curricula lead to bachelor’s degrees: one in electrical engineering, and another in electrical and computer engineering. These curricula are revised frequently to keep pace with changes in this dynamic field.

Up-to-date curricula and policies are contained in the department’s HELP! Guide, available through the department and on the web at ece-www.colorado.edu.

The department program objective is to help students lay a strong foundation in electrical engineering or in electrical and computer engineering that allows them to pursue diverse careers over a long professional life in a fast-changing world. This is achieved through a curriculum that emphasizes:

- scientific and engineering concepts, facts, procedures, techniques, and skills;
- the ability to solve problems;
- effective writing, reading, speaking, and listening;
- ethics; and
- professionalism.

Students following these curricula acquire a large body of knowledge in mathematics, science, and engineering in the areas of:

- calculus, differential equations, probability, physics, and chemistry (biology is elective);
- fundamentals of microcomputers and digital systems, computer programming, electrical and magnetic phenomena, electronics, and linear systems;
- intermediate and advanced electromagnetics, communications, computer systems, integrated circuits, optics, power and energy conversion, control systems, bioengineering, and remote sensing systems.

Students also acquire a wide variety of basic skills, such as:

- techniques for conducting experiments and using laboratory tools;
- computer skills, including the use of several high-level languages; and
- ways to acquire information by using such resources as libraries and the Internet.

While acquiring basic knowledge and skills, students learn to apply them to solving well-defined problems. As their knowledge and skills expand, students learn to tackle larger problems that are less well-defined and more realistic.

A great deal of reading and writing experience is required as an integral part of the program. Students write lab reports, homework, and large project reports. Students frequently present the results of their work in front of the class.

Humanities and social science courses play an important role in developing students’ judgment and decision-making ability. A minimum of 21 credit hours of these courses is required.

Students have numerous opportunities to learn about various aspects of engineering professions through curricular and extracurricular activities.

Bachelor’s Degree Requirements

A minimum of 128 semester hours must be completed for either the B.S. in electrical engineering (EE) or the B.S. in electrical and computer engineering (ECE).

Students in both undergraduate degree programs take the same courses in their freshman and sophomore years. They also begin the sequence of core courses that cover the sophomore and junior years. With this background, students are then able to specialize—or diversify—beginning in the second semester of the junior year or in the senior year. EE majors take two junior-level elective courses that prepare them for three senior theory and two senior lab elective courses in addition to the electrical engineering capstone design lab or the electrical and computer engineering design lab. These senior courses may be chosen from the following areas: biomedical engineering; communication and digital signal processing; computer engineering and VLSI; electromagnetic fields; electronics; optics; power and power electronics; solid-state materials and devices; and systems and controls.

For ECEN majors, the senior elective courses are: two computer science courses; computer organization; switching and finite automata; and the appropriate capstone design lab course.

Practical experience in well-equipped laboratories augments the theoretical approach throughout the program. Students are encouraged to develop interests outside their electrical engineering specialties by enrolling in nontechnical courses in other colleges of the university. They are encouraged to participate in college and university activities, as well as in meetings of the two very active electrical engineering technical societies (IEEE and HKN).

In just four years it is impossible to study all areas in detail. Qualified students may specialize further by pursuing a graduate program or by taking continuing education courses after completing the B.S. degree requirements. A graduating senior with high scholarship can finish a master’s degree in electrical engineering with about one additional full year of work at any of the nation’s major universities. Another option for especially well-qualified students is the department’s B.S./M.S. program, which allows early admission to the M.S.E.E. program during the junior year. This option is described below.

Standard Curriculum for B.S. in Electrical Engineering (EE)

The regular EE curriculum provides a broad background enhanced by a wide range of elective subjects in the senior year. Part of the requirement may be fulfilled through courses in other branches of engineering approved by the student’s advisor. Although many students avail themselves of this broadly based program, those who have specific interests in computer technology or a career in medicine may wish to elect one of the programs listed below.

Standard Curriculum for B.S. in Electrical and Computer Engineering (ECE)

This program covers both hardware and software aspects of computer system design. It is directed toward students whose major interests are in the computer itself and in a broad range of applications.

This curriculum is considerably more specific than the general EE program and includes courses in scientific application of computers, logic structure of computers, and assembly language programming. Operating systems experience on departmental computers is an important adjunct to this program.

For other computer-related programs, see the computer science listings.

Biomedical Engineering Option and Premedical Studies in ECE

The biomedical engineering option, available to both EEEN and ECEN majors, focuses on the application of engineering concepts to the improvement and protection of health. Successful completion of this option is noted on a student’s transcript, and may meet medical school requirements. Course work in the ECEN/EEEN curriculum is coupled with specialized courses linking electrical engineer-
ing to such biomedical applications as neural signals and systems, bioeffects of electromagnetic fields, and therapeutic and diagnostic uses of bioelectric phenomena. Undergraduates may also undertake independent study in these areas.

Students interested in biomedical engineering may receive elective credit for two semesters of biology if they also complete two bioengineering courses from the ECEN/EEEN offerings. One of these ECEN/EEEN courses can also be used to satisfy course distribution requirements. The basic biomedical engineering option is thus composed of two semesters of biology and two ECEN/EEEN bioengineering courses taken in lieu of electives.

Students who wish to complete course requirements for medical (or dental, veterinary, etc.) school should add two semesters of organic chemistry to the ECEN/EEEN biomedical engineering option. Premedical ECEN/EEEN students may petition to have these courses substituted for other electives.

Interested students are urged to contact the departmental biomedical engineering advisor for additional information.

B.S./M.S. Program in Electrical and Computer Engineering

The concurrent B.S./M.S. program in electrical and computer engineering enables especially well qualified EEEN and ECEN majors to be admitted to the M.S. program during the junior year of their B.S. program, and to work simultaneously towards B.S. and M.S. degrees in electrical engineering. This program allows for early planning of the M.S. portion of the student's education, taking graduate courses as part of the B.S. degree, more flexibility in the order in which courses are taken, and more efficient use of what would otherwise be a final semester with a light credit-hour load.

Curriculum for B.S. (EE)

The following information may be changed by the time this catalog is printed and distributed. Up-to-date policies are contained in the department's HELP! Guide, which is given to students who enter the program.

Semester Hours

Freshman Year

Fall Semester

APPM 1350 Calculus 1 for Engineers4
CSCI 1300 Introduction to Computing4
ECEN 1000 Freshman Seminar1
PHYS 1110 General Physics4
Humanities or social science elective (Note 1) 3

Spring Semester

APPM 1360 Calculus 2 for Engineers4
CHEM 1211 General Chemistry for Engineers3
CHEN 1221 General Chemistry Lab for Engineers2
Freshman elective (Note 2)3-4
Humanities or social science elective3

Sophomore Year

Fall Semester

APPM 2360 Introduction to Linear Algebra and Differential Equations4
ECEN 2120 Computers as Components5
ECEN 2250 Circuits/Electronics 15
Humanities or social science elective3

Spring Semester

APPM 2350 Calculus 3 for Engineers4
ECEN 2260 Circuits/Electronics 25
ECEN 3100 Digital Logic5
Humanities or social science elective3

Junior Year

Fall Semester

ECEN 3300 Linear Systems5
ECEN 3400 Electromagnetic Fields and Waves5
ECEN 3810 Introduction to Probability Theory3
Free elective ..2

Spring Semester

ECEN 3250 Circuits 35
ECEN elective (Note 3)3
PHYS 2130 Modern Physics3
UWRP 3030 Writing on Science and Society3
Free elective ..3

Senior Year

Fall Semester

ECEN elective3
Humanities or social science elective3
Two senior-level ECEN theory courses, one of which may be the ECE elective6
Senior-level ECEN laboratory course2
Technical elective (Note 4)3

Spring Semester

ECEN 4610 or ECEN 4573 Capstone Design Lab (Note 5)3
Senior-level ECEN theory course3
Senior-level ECEN lab course2
Humanities or social science elective3
Technical electives (Note 4)3
Minimum total hours for degree128

Curriculum for B.S. (ECE)

Freshman and sophomore years are the same as for B.S. (EE).

Junior Year

Fall Semester

CSCI 2270 Data Structures4
ECEN 3300 Linear Systems5
ECEN 3400 Electromagnetic Fields and Waves5
ECEN 3810 Introduction to Probability Theory3

Spring Semester

CSCI 3155 Programming Languages4
ECEN 3250 Circuits/Electronics 35
ECEN 4593 Computer Organization3
UWRP 3030 Writing on Science and Society3

Senior Year

Fall Semester

ECEN 4573 Electrical and Computer Engineering Capstone Design Lab (Note 5)3
ECEN 4703 Switching and Finite Automata3
One senior-level ECEN theory course or one of the ECE electives3
PHYS 2130 Modern Physics3
Humanities or social science elective3
Free elective ..2

Spring Semester

Technical elective (Note 4)3
Senior-level ECEN laboratory2-3
Humanities or social science elective3
Free elective ..2
Technical elective3
Minimum total hours for degree128

Curriculum Notes

1. Humanities or social science elective courses must be selected from a list of approved courses available from the engineering dean's office. Of the 21 hours of required humanities or social science courses, at least 6 credit hours must be at the upper-division level (3000 or 4000 level).

2. The freshman elective is chosen from ECEN 1400 Methods and Problems in ECE, EPOB 1210 and 1230 General Biology with Laboratory 1; GEEN 1400 Freshman Projects; CHEM 1131 General Chemistry 2; or the introductory course from any other engineering department.

3. ECEN electives for the EE degree include a minimum of two of the following three courses: ECEN 3170 Energy Conversion 1, ECEN 3320 Semiconductor Devices, and ECEN 3410 Electromagnetic Waves and Transmission. The unused ECEN elective can be used as one of the three senior-level theory courses.

4. The senior year technical electives provide breadth in the program and usually include courses in electrical engineering at the 3000, 4000, or 5000 levels. Courses in mathematics, physics, and other engineering areas at the same levels may be included with the permission of the student's advisor. A minimum grade point average of 2.85 is required for enrollment in any 5000-level course, and courses above this level are open to qualified graduate students only. The approval of the student's undergraduate advisor is required for all technical electives.

5. No EEEN or ECEN major is allowed to register for a capstone course (ECEN 4573 or 4610) until they have successfully completed all eight core courses (ECEN 2120, 2250, 2260, 3100, 3250, 3300, 3400, and 3810) with a grade of C- or better. Rosters for both capstone courses are checked at the beginning of each semester, and students who have not met the prerequisite requirement will be administratively dropped from the course for that semester.

Career Opportunities

A degree in electrical engineering or electrical and computer engineering provides graduates the opportunity to enter the profession of
engineering and to engage in work as a design, production, testing, consulting, research, teaching, or management professional in a wide variety of careers in the computer industry, telecommunications, instruments, the biomedical industry, aerospace, and academia. Some graduates also go on to develop careers in other professions like law and medicine.

Examples of career opportunities include development of new electrical or electronic devices, instruments, or products; design of equipment or systems; production and quality control of electrical products for private industry or government; sales or management for a private firm or government; and teaching and research in a university.

Graduate Degree Programs

Electrical engineering graduate programs leading to M.E., M.S., and Ph.D. degrees include the areas of communications and signal processing; system architecture of computers and other digital systems; control systems and robotics; electromechanical energy conversion and power electronics; electromagnetic fields and propagation; optics and microwave systems; optoelectronics; signal processing and biomedical applications; and integrated circuit design automation.

Close cooperation with the National Institute of Standards and Technology (NIST), the National Oceanographic and Atmospheric Administration (NOAA), and Colorado Front Range industrial organizations in communications, computers, and instrumentation enhances the graduate program, and both teaching and research capabilities are strengthened by the addition of adjunct faculty members from these institutions.

Requirements for Advanced Degrees

A minimum undergraduate grade point average of 3.00 is required for application to the master’s program. Minimum requirements for admission to the Ph.D. program include a 3.35 undergraduate GPA, good GRE scores, and demonstration of research ability. Exceptional students with a B.S. degree can be directly admitted into the Ph.D. program. Information and application forms may be obtained by writing to the University of Colorado at Boulder, Director of Graduate Admissions, Department of Electrical and Computer Engineering, 425 UCB, Boulder, CO 80309-0425. Qualified students in their senior year at the University of Colorado and within 18 hours of graduation may be admitted into the graduate program and apply graduate-level credit hours above the 128-semester-hour B.S. requirement toward an advanced degree. Students formally accepted into the graduate program are assigned to program advisors.

Master’s students may choose either an M.S. thesis option under plan I or a nonthesis option of 30 hours under plan II. The M.E. program is discussed in the College of Engineering and Applied Science general section on graduate study.

All students accepted into the Ph.D. program must take the Ph.D. preliminary examination the first time it is offered (usually in January). The exam covers undergraduate electrical and computer engineering, computer science, math and physics, and a student’s designated area of specialization. Further information is available in the ECE graduate office.

Research and Instructional Equipment

The department’s special equipment and facilities include a class 1000 clean room facility for epitaxial growth and fabrication of microwave and optical devices; high-vacuum and vacuum deposition equipment for thin-films research; an integrated circuits laboratory; ion implantation equipment; crystal growing facilities; a modern systems laboratory; a laboratory for data storage research; a digital system design laboratory; a power electronics design laboratory; undergraduate laboratories in circuits, electronics, and energy conversion; a h holography and optics laboratory; an advanced optical metrology lab; numerous special purpose computers; mini- and microprocessors and a computer laboratory; a roof-mounted antenna range; a special microscope for laser manipulation of microorganisms in vivo; and a bio-microwave laboratory.

The Department of Electrical and Computer Engineering has a large variety of computing equipment to support its research and instructional activities. In addition to specialized computing equipment, this includes several hundred PC, Macintosh, and SUN computers. These machines are connected to the campuswide ethernet network.

ENGINEERING PHYSICS

Bachelor’s Degree Requirements

The engineering physics program focuses on the foundations of modern technology. The program prepares students for research, development, and entrepreneurial careers in many frontier areas of engineering, including quantum devices, ultra fast lasers, adaptive optics, cryogenic electronics, computer simulation of physical systems, solar cells, magnetic storage technology, micro-mechanical systems, and molecular electronics. All students study the core theoretical subjects of mechanics, electricity and magnetism, thermal physics, and quantum mechanics, supplemented by courses in mathematics, computation, and laboratory technique. The program can be tailored to a student’s interests through electives in engineering, physics, or other sciences.

During the freshman and sophomore years, students receive a broad introduction to physics and chemistry as well as five semesters of applied mathematics and mathematical methods in physics. Starting in the junior year, students take a full year of electrodynamics, a year of quantum mechanics, a semester of classical mechanics, a semester of thermodynamics and statistical mechanics, a year of physical chemistry, and an additional semester of advanced mathematics. Significant laboratory experience is available through the required Electronics for Physical Sciences (PHYS 3330) and through elective laboratories in physical optics and modern physics.

The Advanced Laboratory (PHYS 4340) provides students with hands-on experience with optical spectroscopy, nuclear magnetic resonance, scanning tunneling microscopy, and laser cooling and trapping of atoms, among many other experiments. Laboratory courses emphasize student-developed and -designed independent projects where students use the knowledge acquired to build apparatus of their own choosing. The program encourages the formation of student research collaborations with faculty in the pursuit of senior thesis projects. Recent projects include research in pulsed laser deposition of high-temperature superconductors, electron diffraction studies of protein structure, and lattice distortion theory of colossal magnetoresistance materials.

The College of Engineering and Applied Science, in cooperation with the College of Business, offers two different engineering physics degree plans. The first leads to a bachelor of science (B.S.) degree in four years; the purpose of this plan is to give the engineering student thorough and fundamental training in physics and its applications. The second program leads to a dual B.S. degree in engineering physics and business in five years. Dual advising is provided for the five-year program.

Additional information about the bachelor’s degree in engineering physics may be obtained from the Physics Department, Duane Physics E-1B32, by phone at 303-492-6952, or via the World Wide Web at physics.colorado.edu.

For purposes of federal civil service requirements, this is an engineering degree from an accredited college of engineering. Students who plan to become registered professional engineers should check the requirements for registration in their state before choosing their engineering electives.

In order to earn a bachelor’s degree in engineering physics, students must complete the curriculum below (some variations may be possible; see an engineering physics advisor). In addition, students must meet the general undergraduate degree requirements of the
College of Engineering and Applied Science. Specifically included in the general requirements is the achievement of a GPA of at least 2.00 in the student’s physics courses.

The Department of Physics offers a minor in physics. A detailed plan can be obtained in the physics office, Duane Physics, E-1B32.

Curriculum for B.S. (E. Phys.)

For a complete description of the engineering physics course requirements, see the booklet “Undergraduate Major Programs” available from the Department of Physics.

This curriculum is the recommended sequence of courses. Students should secure faculty advisor approval for changes to this curriculum.

Freshman Year

<table>
<thead>
<tr>
<th>Semester Hours</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>APPM 1350 Calculus 1 for Engineers</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSI 1200 Introduction to Programming</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 1110 General Physics</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Humanities or social science electives (Note 1)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring Semester</td>
<td>APPM 1360 Calculus 2 for Engineers</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AREN 1017 Engineering Drawing or MCEN 1025 Computer-Aided Drawing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 1120 General Physics</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 1400 Experimental Physics</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Humanities or social science elective (Note 1)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Semester Hours</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>APPM 2350 Calculus 3 for Engineers</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 1211 General Chemistry</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEN 1221 General Chemistry Lab</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 2140 Methods of Theoretical Physics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective (Note 2)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Spring Semester</td>
<td>APPM 2360 Linear Algebra and Differential Equations</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 2150 Experimental Physics</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 2170 Modern Physics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective (Note 2)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Humanities or social science elective (Note 1)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Semester Hours</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>CHEM 4511 Physical Chemistry</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 3210 Analytical Mechanics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 3310 Principles of Electricity and Magnetism 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 3330 Junior Laboratory</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper-division mathematics elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective (Note 2)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Spring Semester</td>
<td>CHEM 4541 Physical Chemistry Lab</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 3220 Quantum Mechanics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 3320 Principles of Electricity and Magnetism 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 4230 Thermodynamics and Statistical Mechanics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective (Note 3)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Semester Hours</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>PHYS 4410 Atomic and Nuclear Physics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective (Note 3)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective (Note 2)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UWRP 3030 Writing on Science and Society</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 4410 Atomic and Nuclear Physics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective (Note 3)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective (Note 2)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>UWRP 3030 Writing on Science and Society</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Curriculum Notes

1. A total of 18 credit hours of humanities or social science courses is required. At least 6 of these semester hours must be at the upper-di
vision (3000 or 4000) level and must include any 3000-level UWRP writing course or HUEN 3100 and HUEN 3200. The remaining courses are to be selected from the College of Engineering’s list of approved humanities and social science courses.

2. Engineering electives, including at least one upper-division laboratory, but excluding math, physics, computer science, and drafting, must total 19 hours. This total assumes that 6 hours are taken to fulfill the computer science/drafting requirement.

3. Physics electives (9 hours minimum, of which 3 hours must be lab or experiment) must be chosen from the following list: PHYS 3340 (lab), 4430 (lab), 4150, 4340, 4420, 4450, 4510, 4610-4630, 4810-4830, 4840-4860, 4970, 5010, 5130, 5770.

ENVIRONMENTAL ENGINEERING

The bachelor of science degree program in environmental engineering includes coursework in advanced mathematics, biology, chemistry, and physics. In common with other engineering fields, courses in solid mechanics, fluid dynamics, and thermal sciences are central to the environmental engineering degree. Course work specific to environmental engineering includes water and wastewater treatment, hazardous waste storage and treatment, and air pollution control.

To cover the broad base of knowledge required of environmental engineers, the degree program at CU-Boulder draws on the expertise of more than 20 faculty from four departments: aerospace engineering; civil, environmental, and architectural engineering; chemical engineering; and mechanical engineering. The required engineering courses in the program are offered in these four departments.

Technical elective courses include three selected from a broad range of science and engineering courses, and four that are organized according to tracks in water and wastewater engineering, air quality engineering, chemical processing, applied ecology, and general environmental engineering.

Students in the program are also encouraged to participate in summer internships and in research at CU-Boulder through independent study projects, the Undergraduate Research Opportunities Program (UROP), or as research assistants in sponsored programs.

Curriculum for B.S. (Environmental Engineering)

Freshman Year

<table>
<thead>
<tr>
<th>Semester Hours</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>APPM 1350 Calculus 1 for Engineers</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 1211 Engineering General Chemistry</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEN 1221 Engineering General Chemistry Lab</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEEN 1300 Introduction to Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EVEN 1000 First-Year Seminar in Environmental Engineering</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Humanities or social science elective (Note 1)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Semester Hours</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>APPM 1360 Calculus 2 for Engineers</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEEN 1400 First-Year Engineering Projects</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 1110 General Physics</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Humanities or social science elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Semester Hours</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>CHEM 3311 Organic Chemistry</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 3320 Thermodynamics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 3321 Organic Lab</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CVEN 3414 Introduction to Environmental Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluid Mechanics 1 (Note 4)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Humanities or social science elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Semester Hours</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>CVEN 4434 Environmental Engineering Design</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CVEN 4484 Environmental Microbiology</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Technical elective or Numerical Methods (Note 10)..........................3
Humanities or social science elective.................3
Option course (Note 9)..............................3
Spring Semester
CVEN 4333 Hydrology.............................3
MCEN 4121 Air Pollution Control................3
Option course (Note 5)..............................3
Technical elective or Numerical Methods (Note 10)..........................3
Humanities or social science elective.................3
Minimum total hours for chemical processing and general tracks........128
Minimum total hours for air quality track...128
Minimum total hours for water and wastewater track........................128
Minimum total hours for applied ecology track..........................128
Curriculum Notes
1. A total of 18 credit hours of humanities and social sciences electives is required. At least 6 hours must be at the upper-division (3000 or 4000 level). UWRP 3030 or GEEN 3000 may be counted toward 3 hours of upper-division humanities and social science elective credit.
2. The first technical elective course may be a lower-division environmental science elective in atmospheric science, biology, ecology, or geology. The remaining technical elective courses should be 3000/4000 level courses in engineering, mathematics, or the sciences, and have substantially different content than required courses.
5. A list of option courses for the water and wastewater, air quality, and chemical processing tracks is available in the program office.
6. Heat Transfer: MCEN 3022 (3 credits) or CHEN 3210 (4 credits).
8. GEEN 3000 may be substituted for UWRP 3030.
9. Chemical processing track students must take CHEN 4330 Reaction Kinetics in the spring of their junior year. Students in other tracks may take Reaction Kinetics in the spring of either their junior or senior year.

MECHANICAL ENGINEERING

Bachelor's Degree Requirements
Mechanical engineering is a broad engineering discipline that incorporates skills and expertise in the areas of design, manufacturing, mechanics, and thermal sciences that are essential to most sectors of industry and society. The overall objective of the undergraduate program in mechanical engineering is to prepare graduates to practice effectively in the field or to further their careers through advanced study.

Each graduate of the mechanical engineering program is expected to possess the abilities and knowledge to:
- apply knowledge of mathematics, science, and engineering;
- identify, formulate, and solve engineering problems;
- use computers to solve engineering problems;
- use modern instrumentation;
- design and conduct experiments;
- analyze and interpret data;
- design thermal systems, components, or processes to meet desired needs;
- design mechanical systems, components, or processes to meet desired needs;
- understand the processes used to manufacture products;
- understand contemporary issues in mechanical engineering;
- make effective oral presentations;
- write effectively;
- function effectively on multi-disciplinary teams;
- understand professional and ethical responsibility;
- understand the impact of engineering in a global and societal context; and
- engage in lifelong learning.

The undergraduate curriculum in mechanical engineering incorporates engineering science, physical science, mathematics, and the humanities and social sciences. The engineering science component provides basic theoretical and practical concepts in solid mechanics, materials, thermodynamics, fluid mechanics, design, and manufacturing. Required courses in engineering science, physical science, and mathematics are interwoven throughout the curriculum to provide a balanced education in the fundamentals of the profession and comprise three-fourths of the minimum curriculum requirement of 128 semester hours; they are complemented by four technical electives, six electives in the humanities and social sciences, and a free elective.

Options in environmental and biomedical engineering are available for students interested in these interdisciplinary areas.

Minor in Mechanical Engineering
A minor in mechanical engineering can be earned in conjunction with any major in the College of Engineering and Applied Science and with some majors in other colleges. Eighteen credits are required in mechanical engineering, including 9 credits in three required courses. The other 9 hours may be satisfied by mechanical engineering prerequisites, or by other mechanical engineering courses of the student's choosing, if prerequisite requirements are met by the equivalent courses.

Required courses:
MCEN 2063 Mechanics of Solids3
MCEN 3022 Heat Transfer3
MCEN 3025 Component Design3

At least four mechanical engineering courses must be taken at CU-Boulder. A cumulative grade point average (GPA) of 2.00 or better is required in the courses that are used to satisfy this requirement. Each individual course that is counted toward these degree requirements must be passed with a D- or better. Note, however, that a C- or better is required in all prerequisite courses to go on to a subsequent course.

To sign up for this program, obtain a form from the mechanical engineering undergraduate advising coordinator in ECME 132, 303-492-8483.

Curriculum for B.S. (M.E.)

The following constitutes a representative course schedule for freshmen entering the program in fall 2001 or later.

Semester Hours

Freshman Year

Fall Semester
APPM 1350 Calculus 1 for Engineers4
CHEM 1211 General Chemistry for Engineers3
CHEN 1221 General Chemistry Laboratory for Engineers2
GEEN 1300 Introduction to Engineering Computing3
MCEN 1000 Introduction to Mechanical Engineering1
Humanities or social science elective3

Spring Semester
APPM 1360 Calculus 2 for Engineers4
GEEN 1400 First-year Engineering Projects ..3
MCEN 1025 Computer-Aided Drawing and Fabrication3
PHYS 1110 General Physics 14
Humanities or social science elective3

Sophomore Year

Fall Semester
APPM 2350 Calculus 3 for Engineers4
MCEN 2023 Statics and Structures3
PHYS 1120 General Physics 24
PHYS 1140 Experimental Physics1
Humanities or social science elective3

Spring Semester
APPM 2360 Introduction to Linear Algebra and Differential Equations4
MCEN 2024 Materials Science3
MCEN 2063 Mechanics of Solids3
PHYS 2130 General Physics 3 or general science elective3
Humanities or social science elective3

Junior Year

Fall Semester
MCEN 3012 Thermodynamics3
MCEN 3017 Circuits and Electronics3
MCEN 3021 Fluid Mechanics3
MCEN 3043 Dynamics3
UWRP 3030 Writing on Science and Society3
Free elective ...3

Spring Semester
MCEN 3022 Heat Transfer3
MCEN 3025 Component Design3
MCEN 3027 Measurements Laboratory3
MCEN 3042 Thermal Systems Design3
Humanities or social science elective3

Senior Year
Fall Semester
MCEN 4026 Manufacturing Processes and Systems3
MCEN 4043 System Dynamics3
MCEN 4045 Mechanical Engineering Design Project 13
Technical electives6

Spring Semester
MCEN 4027 Mechanical Engineering Laboratory ..3
MCEN 4050 Computational Methods3
MCEN 4085 Mechanical Engineering Design Project 24
Technical electives6
Minimum total hours for degree128

Graduate Degree Programs
The department offers master of science (M.S.) and doctor of philosophy (Ph.D.) degree programs to students whose career plans include advanced practice, research and development, and/or teaching at the college or university level.

The combined B.S./M.S. program allows qualified students to simplify obtaining the M.S. degree. Up to 6 hours of appropriate courses may be used to satisfy both degrees. Students may apply for this program in their junior year.

Students pursuing the degree of master of science in mechanical engineering may follow either plan I, which requires the writing of a thesis, or plan II, which involves only course work. A student following plan I must complete a minimum of 21 semester hours of course work and 6 semester hours of thesis work; at least 15 semester hours of the course work must be in the mechanical engineering department. A student following plan II must complete a minimum of 30 semester hours of course work, of which at least 18 semester hours must be in the mechanical engineering department. Up to 9 semester hours of graduate course work may be transferred from another accredited institution; there is no credit limit for appropriate courses taken at the University of Colorado, such as those taken for the master of science degree.

Every student desiring to pursue the Ph.D. degree must first pass a preliminary examination. As a part of this evaluation, students must do well in a number of required courses and pass an oral examination designed to test research and fundamental mechanical engineering competency. The examination will be given by committees of at least three faculty members. Overall performance in the required course work and oral examination will determine pass/fail status. The oral examination may be taken in lieu of the comprehensive examination required for the master of science degree.

After passing the preliminary examination, students continue their course work and prepare a written thesis prospectus. When ready, they take an oral comprehensive examination covering the graduate course work and the thesis prospectus. After passing the comprehensive examination, students are admitted into the Ph.D. program and conduct original research required to satisfy the thesis requirement. This research culminates in the writing of the thesis, which students defend in a final examination.

Ph.D. students are assigned an academic advisor to review their progress toward the degree. Students are expected to meet with the advisor at least once each semester prior to registration. Once students have selected a research topic for the thesis, academic advising is done by their thesis advisor. Additional information on graduate study may be found in the Graduate School chapter of this catalog.

Graduate Research
Research activities focus on the three major disciplinary areas of the department: fluid mechanics/thermal sciences, solid mechanics/material sciences, and design and manufacturing. There are three interdisciplinary research centers hosted by the department involving faculty from mechanical engineering and other departments, postdoctoral researchers, and graduate students.

The Center for Advanced Manufacturing and Packaging for Microwave, Optical, and Digital Electronics is an NSF Industry-University Cooperative research center funded by NSF and a consortium of contributing companies to support path-finding research and educational programs on the manufacturing and packaging of integrated microwave, optical, and digital electronic systems. The focus of effort is in electrical and mechanical modeling, thermal management, fabrication and assembly, functional design and analysis, run-to-run and real-time process control, test and measurement, and reliability and cost prediction. In addition, the center has established a leading research program in micro-electromechanical systems (MEMS).

The Interdisciplinary Research Center for MicroElectronic Devices in Cardiovascular Applications (MEDICA) fosters excellence and scientific advancement in the study and use of microdevices in cardiovascular applications. In fulfillment of the center’s mission, the faculty from CU-Health Sciences Center are combining their clinical experience with the engineering expertise of the faculty in the college at CU-Boulder to develop enabling tools for early diagnosis and improvement in cardiovascular treatment. State-of-the-art MEMS (micro-electro-mechanical systems) will be deployed as sensors and actuators.

The Joint Center for Combustion and Environmental Research advances combustion and environmental science and technology through research and educational activities. Current research includes projects in the areas of wildfire modeling, flame treatment of materials, large-scale numerical modeling of flames, urban air pollution modeling, indoor air pollution, biomass fuels, microgravity combustion, micro-mechanical power generation systems, and disease transmission.

TELECOMMUNICATIONS
This interdisciplinary graduate program offers a master of engineering or master of science degree to students from a broad variety of undergraduate backgrounds. Both degree programs ensure that students obtain an understanding of the latest aspects of technology as well as social, political, and business applications in the expanding field of telecommunication. This understanding is gained through course work, research, and laboratory studies.

For information about this program and its offerings, please see the Interdisciplinary Programs listing under the Graduate School chapter of this catalog.

COURSE DESCRIPTIONS
The following courses are offered in the College of Engineering and Applied Science on the Boulder campus. This listing does not constitute a guarantee or contract that any particular course will be offered during a given year.

For current information on times, days, and instructors of courses, students should
consult the Registration Handbook and Schedule of Courses issued for registration each semester.

Courses numbered in the 1000s and 2000s are intended for lower-division students and those in the 3000s and 4000s for upper-division students. Courses numbered in the 5000s are primarily for graduate students, but in some cases may be open to qualified undergraduates. Normally, courses at the 6000, 7000, and 8000 level are open to graduate students only.

Courses are organized by subject matter within each department, and are listed numerically by last digit (courses ending in the number “0” are listed before courses ending in “1,” and so on). The number after the course number indicates the semester hours of credit that can be earned in the course. Abbreviations used in the course descriptions are as follows:

Prereq.—Prerequisite
Coreq.—Corequisite
Lab.—Laboratory
Rec.—Recitation
Lect.—Lecture

Aerospace Engineering Sciences

ASEN 1000-1. Introduction to Aerospace Engineering Sciences. Introduces aerospace history, curriculum, and the many areas of emphasis within aerospace engineering. Field trips are arranged to industries. Students must give an oral presentation and/or paper on various aerospace topics.

ASEN 3060-3. Introduction to Space Experimentation. Provides a systems perspective of space exploration for students in all disciplines. Surveys scientific and technical research that can be accomplished from space and the engineering principles and tools needed to make that research possible. Prereqs., one semester of calculus (MATH 1080, 1090, and 1100; MATH 1300; or APPM 1350) and one year of physics (PHYS 2010-2020 or PHYS 1110-1120). Same as APAS 3060.

ASEN 3300-3. Aerospace Electronics and Communications. Lab course that provides the fundamentals of electronics and communications widely used in aerospace engineering. Includes instrumentation electronics, satellite communication principles, and key electrical and computer subsystems in spacecraft and aircraft. Students gain considerable experience with both analog and computer instrumentation. Prereqs., ASEN 2003, APPM 2380, and PHYS 1120.

ASEN 4010-3. Introduction to Space Dynamics. Topics include central force fields and satellite orbits, orbital transfer problems, and rigid body dynamics of space vehicles. Prereq., ASEN 3200.

ASEN 5010-3. Spacecraft Attitude Dynamics and Control. Studies the rotational motion of spacecrafts, including attitude parameters and spacecraft torques. Applies Euler equations to the attitude motions of simple spacecrafts and their stability. Prereq., ASEN 3200 or equivalent.

ASEN 5050-3. Space Flight Dynamics. Includes celestial mechanics, space navigation, and orbit determination; trajectory design and mission analysis trajectory requirements; and orbital transfer and rendezvous. Prereq., ASEN 3200 or instructor consent.

ASEN 5060-3. Satellite Geodesy. Provides a unique and valuable approach to the study of the Earth’s gravitational field and rotational characteristics, emphasizing Earth-based and space-based tracking of artificial satellites. Develops and applies the basic techniques for studying the physical Earth in this evolving field. Prereq., ASEN 3010.

ASEN 5070-3. Introduction to Statistical Orbit Determination 1. Develops the theory of batch and sequential (Kalman) filtering, including a review of necessary concepts of probability and statistics. Course work includes a term project that allows students to apply classroom theory to an actual satellite orbit determination problem.

ASEN 5080-3. Introduction to Statistical Orbit Determination 2. Continuation of ASEN 5070. Emphasizes orthogonal transformation techniques such as Givens and Householder, square root filtering and smoothing, and considers covariance analysis. Also includes coordinate systems, force models, and time and polar motion. Requires term project that involves the application of many of the techniques required for precise orbit determination.

ASEN 5090-3. Introduction to the Global Positioning System. Describes Global Positioning System (GPS) as an important tool for navigation, science, and engineering; its significant error sources; and state-of-the-art modeling techniques. Programming experience required. Prereq., graduate standing or instructor consent.

ASEN 5100-3. Global Positioning System Technology. Provides a laboratory introduction to the technology used in Global Positioning System. Lab exercises include using GPS receivers, designing simple circuits to generate GPS-like signals, analyzing spread spectrum signals, constructing GPS antennas, and evaluating errors in basic GPS measurements.

ASEN 6060-3. Advanced Space Flight Dynamics. Topics include perturbations of orbital motion; classical orbit determination from angles-only observation; modern orbit determination using range and range-rate data; orbit transfer using impulses or continuous thrust; and others. Prereq., ASEN 5050 or instructor consent.

ASEN 6210-1. Remote Sensing Seminar. Covers subjects pertinent to remote sensing of the Earth, including oceanography, meteorology, vegetation monitoring, and geology. Emphasizes techniques for extracting geophysical information from satellite data. Prereq., graduate standing.

ASEN 6220-3. Topics in Remote Sensing. Covers infrared and microwave techniques for remote sensing, emphasizing oceanographic applications, fundamentals of electromagnetic radiation, remote sensing instrumentation (radars and radiometers), and conversion of sensory data to geophysical parameters, including sea surface topography, temperature, and atmospheric moisture. Prereq., graduate standing and instructor consent.

ASEN 6950 (variable credit). Master’s Thesis.

Fluid Mechanics

ASEN 2001-5. Aerospace 1: Introduction to Statics, Structures, and Materials. Introduces the fundamental analytical tools for statics and structures in the context of aerospace materials. Integrates science of materials, mechanical properties, and manufacturing of aerospace structures. Includes hands-on laboratory experiments and team design exercises. Prereqs., APPM 1360, GEEN 1300, CHEM 1211 and CHEN 1221, and PHYS 1110, or equivalent; coreq., APPM 2350 and ASEN 2002, or equivalent.

ASEN 3111-4. Aerodynamics. Teaches the fundamental concepts of aerodynamics and provides a working knowledge for their application to the design of aircraft and launch vehicles operating at various speeds and altitudes, as well as the atmospheric forces on satellites. Prereq., ASEN 2002.

ASEN 5021-3. Viscous Flow. Studies Low Reynolds number flows, including incompressible and compressible laminar boundary layer theory; similarity theory; and separation, transition, and turbulent boundary layers. Prereq., ASEN 5051 or equivalent, or instructor consent.

ASEN 5051-3. Fluid Mechanics. Highlights physical properties of gases and liquids; kinematics of flow fields; and equations describing viscous, heat-conducting Newtonian fluids. Emphasizes exact solutions and rational approximations for low and high speed dissipative flows, surface and internal waves, acoustics, stability, and potential flows. Prereq., instructor consent.

ASEN 5061-3. Real Gas Dynamics. Explores physics of particles, physics of uniform fluids, kinetic description of fluids, transport phe-
nomens, and radiation transport. Prereq., ASEN 4013 or instructor consent.

ASEN 5151-3. High Speed Aerodynamics. Provides aerodynamic theory applicable to the high speed flight of subsonic, transonic, and supersonic aircraft and hypersonic vehicles. Topics include linear theory of subsonic and supersonic speeds, the nonlinear theories of transonic and hypersonic speeds, and compressible boundary layers. Prereq., graduate standing or instructor consent.

Materials and Structures

ASEN 2002-5. Aerospace 2: Introduction to Thermodynamics and Aerodynamics. Introduces the fundamental principals and concepts of thermodynamics and fluid dynamic systems. Emphasizes the synthesis of basic science (physics), mathematics, and experimental methods that form the basis for quantitative and qualitative analyses of general aerospace technology systems. Prereqs., APPM 1360, GEEN 1300, CHEM 1211 and CHEN 1221, and PHYS 1110, or equivalent; coreqs., APPM 2350 and ASEN 2001, or equivalent.

ASEN 4012-2. Aerospace Materials. Reviews major lightweight aluminum alloys, ceramic, composite materials, and the impact that the environmental atmospheres and radiation of space will have on advanced alloys. Titanium, nickel, and superalloys are reviewed in terms of their current and future applications as turbine blade, disk, and structural materials. Prereqs., ASEN 3112, 3113, and APPM 2380.

ASEN 5022-3. Introduction to Dynamics of Aerospace Structures. Applies concepts covered in undergraduate dynamics, structures, and mathematics to the dynamics of aerospace structural components, including methods of dynamic analysis, vibrational characteristics, vibration measurements, and dynamic stability. Prereqs., ASEN 5012 and 5227, or equivalent.

ASEN 5122-3. Control of Aerospace Structures. Introduces the basic problems in dynamic modeling and active control of large spacecraft and satellites. Includes system descriptions, mode reduction, controller design, and closed-loop stability analysis. Prereq., ASEN 3200, graduate standing, or instructor consent.

ASEN 5212-3. Composite Structures and Materials. Develops the macromechanical and micromechanical theory of the elastic behavior and failure of composite laminates. Applies basic theory to a broad range of practical problems including the buckling and vibration of composite plates, columns, and shells. Prereq., senior standing in aerospace or mechanical engineering, or instructor consent.

Thermodynamics and Propulsion

ASEN 2003-5. Aerospace 3: Introduction to Dynamics and Systems. Introduces the principles of particle and rigid body dynamics, vibrations, systems, and controls. Topics include kinematics, kinetics, energy methods, orbits, system modeling, and simple feedback control. Class includes experimental and design laboratory exercises for aerospace applications of dynamic principles. Prereqs., APPM 2350 and ASEN 2001; coreqs., APPM 2380 and ASEN 2004.

ASEN 3113-3. Thermodynamics and Heat Transfer. Focuses on the applications of the first and second laws of thermodynamics to control volumes, and teaches the fundamental concepts of different modes of energy and heat transfer. Also imparts the knowledge to use these concepts in gas dynamics, high-speed vehicle design, environmental systems, and energy analysis. Prereqs., APPM 2350 and ASEN 2002.

ASEN 4013-3. Foundations of Propulsion. Describes aerothermodynamics and design of air-breathing engines, including ram jets, turbo jets, turbo fans, and turbo prop engines. Prereq., ASEN 3113.

Systems and Control

ASEN 4114-3. Automatic Control Systems. Discusses methods of analysis and design of feedback control for dynamic systems. Covers Nyquist, Bode, and linear quadratic methods based on frequency domain and state space models. Lab experiments provide exposure to computation for simulation and real-time control, as well as typical control system sensors and actuators. Prereqs., ASEN 3128 and 3200. Same as ASEN 5114.

ASEN 5014-3. Linear Control Systems. Highlights design of linear systems, using frequency methods, other methods of design, and introduction to sampled data systems. Prereq., ASEN 3200; coreq., ASEN 4114.

Geophysical and Environmental

ASEN 5215-3. Oceanography. Introduces descriptive and dynamical physical oceanography, primarily focusing on the nature and dynamics of ocean currents and their role in the distribution of heat and other aspects of ocean physics related to the Earth’s climate. Dynamical material is limited to a mathematical description of oceanic physical systems. Prereq., senior standing.

ASEN 5225-3. Thermodynamics of Atmospheres and Oceans. Examines the thermodynamics of water in the Earth’s atmosphere, including the formation of clouds and cloud physics. Studies atmospheres of Venus and Mars and examines thermodynamics of oceans and sea ice. Prereq., ASEN 3113, or instructor consent.

ASEN 5235-3. Remote Sensing of the Atmosphere and Oceans. Applies principles of radiative transfer to the remote sensing of the Earth’s atmosphere and oceans. Topics include extinction and scattering-based remote sensing, emission-based passive remote sensing, and active remote sensing. Prereq., ASEN 5225 or instructor consent.

ASEN 5255-3. Environmental Aerodynamics. Reviews the properties and causes of hazards posed by the environment, ranging from atmospheric wind shear to tornadic flows. Involves a multidisciplinary approach, combining analytical, numerical, and scale modeling studies with extensive field measurements, wind energy, and

ASEN 5237-3. Mathematics for Aerospace Engineering Sciences 2. Covers the most important topics in applied mathematics needed for the various subfields of aerospace engineering sciences. Focuses on ordinary differential equations with variable coefficients, the higher functions of analysis, partial differential equations, and an introduction to probability and statistics. Prereq., APPM 2360.

ASEN 5307-3. Engineering Data Analysis Methods. Gives students broad exposure to a variety of traditional and modern statistical methods for filtering and analyzing data. Introduces these methods and provides practical experience with their use. Students carry out problem assignments. Prereq., APPM 2360.

ASEN 5317-3. Computational Fluid Dynamics. Similar to ASEN 4317 but involves a term project. Studies numerical solution of fluid mechanics problems involving ordinary and partial differential equations of various types. Prereqs., ASEN 3021 and GEEN 1300, or instructor consent.

ASEN 5327-3. Advanced Computational Fluid Dynamics. Continuation of ASEN 4317 and 5317. Introduces advanced computational methods for solving fluid mechanics problems on the computer, emphasizing nonlinear flow phenomena. Prereqs., ASEN 4317 or ASEN 5317 or instructor consent.

ASEN 5337-3. Advanced Computational Fluid Dynamics. Continuation of ASEN 5317. Introduces advanced computational fluid dynamics. Provides computational skills for advanced courses in scientific computation. Includes an introduction to UNIX and shell programming, interpolation, spectral methods, least squares, linear systems, and ordinary and partial differential equations. Prereqs., ASEN 5007 or equivalent, GEEN 1300, or instructor consent.

ASEN 5357-3. Numerical Computation. Provides computational skills for advanced courses in scientific computation. Includes an introduction to UNIX and shell programming, interpolation, spectral methods, least squares, linear systems, and ordinary and partial differential equations. Prereqs., ASEN 5007 or equivalent, GEEN 1300, or instructor consent.

ASEN 5367-3. Advanced Finite Element Methods. Continuation of ASEN 5307. Covers more advanced applications to linear static problems in structural mechanics, including three-dimensional finite elements, advanced variational principles, beams, plates, and shells. Prereqs., ASEN 5007 or equivalent, MCEN 5120 and 5130, or equivalent.

ASEN 5427-3. Computational Gasdynamics. Addresses the numerical issues pertinent to gasdynamics, stressing the relationships with and differences between general numerical analysis, general computational fluid

ASEN 5306-3. Bioengineering Seminar. Focuses on active research areas in medical and space endeavors. Topics range from systematic to molecular concerns. Analyzes ongoing research in-depth. Emphasizes biophysical mechanisms, comprehensive empirical models, and unresolved research problems. Prereqs., ASEN 3116, and ASEN 4426 or 5426 or ECEN 4831 or 5831.

ASEN 5315-3. Ocean Modeling. Examines the various components of the solar-terrestrial system (sun, solar wind, magnetosphere, thermosphere, ionosphere, middle atmosphere) and their interactions to provide a solid understanding of the reentry and orbital environments within which aerospace vehicles operate. Prereq., senior or graduate standing in engineering or related physical sciences.

ASEN 5507-3. Advanced Biomedical Engineering. Analyzes human response to environmental and physical stimuli. Uses engineering and physical principles in the study of human dynamics. Prereq., ASEN 3116 or instructor consent.

ASEN 5517-3. Advanced Computational Fluid Dynamics. Same as ASEN 4317 and 5317. Introduces advanced computational methods for solving fluid mechanics problems on the computer, emphasizing nonlinear flow phenomena. Prereqs., ASEN 4317 or ASEN 5317 or instructor consent.

ASEN 5537-3. Advanced Computational Fluid Dynamics. Continuation of ASEN 4317 and 5317. Introduces advanced computational methods for solving fluid mechanics problems on the computer, emphasizing nonlinear flow phenomena. Prereqs., ASEN 4317 or ASEN 5317 or instructor consent.

ASEN 5557-3. Advanced Finite Element Methods. Continuation of ASEN 5307. Covers more advanced applications to linear static problems in structural mechanics, including three-dimensional finite elements, advanced variational principles, beams, plates, and shells. Prereqs., ASEN 5007 or equivalent, MCEN 5120 and 5130, or equivalent.

ASEN 5567-3. Advanced Finite Element Methods. Continuation of ASEN 5007. Covers more advanced applications to linear static problems in structural mechanics, including three-dimensional finite elements, advanced variational principles, beams, plates, and shells. Prereqs., ASEN 5007 or equivalent, MCEN 5120 and 5130, or equivalent.

ASEN 5577-3. Advanced Computational Fluid Dynamics. Continuation of ASEN 5317. Introduces advanced computational methods for solving fluid mechanics problems on the computer, emphasizing nonlinear flow phenomena. Prereqs., ASEN 4317 or ASEN 5317 or instructor consent.

ASEN 5587-3. Advanced Computational Fluid Dynamics. Continuation of ASEN 5317. Introduces advanced computational methods for solving fluid mechanics problems on the computer, emphasizing nonlinear flow phenomena. Prereqs., ASEN 4317 or ASEN 5317 or instructor consent.

ASEN 5597-3. Advanced Computational Fluid Dynamics. Continuation of ASEN 5317. Introduces advanced computational methods for solving fluid mechanics problems on the computer, emphasizing nonlinear flow phenomena. Prereqs., ASEN 4317 or ASEN 5317 or instructor consent.
dynamics, and classical gas dynamics. Prereq., senior or graduate standing in engineering, math, or physics, or instructor consent.

Design

ASEN 4018-5. Senior Design Projects 1. One lab and one recitation per week. Covers fundamental measurements in experimental study of aeronautics and astronautics. Prereq., senior standing.

ASEN 4028-5. Senior Design Projects 2. One lab and one recitation per week. Covers fundamental measurements in experimental study of aeronautics and astronautics, including technical report writing. Prereq., ASEN 4018.

ASEN 4138-3. Aircraft Design. One recitation and two labs per week. Examines principles of aircraft layout to meet a given specification, taking account of both aerodynamic and structural considerations. Also includes design of major elements of an aircraft. Prereq., ASEN 3128.

ASEN 4148-3. Spacecraft Design. Provides a systems approach to the design of an unmanned spacecraft, including guest lectures from specialists in each of the disciplines that make up a spacecraft design team. Topics include mission design, payload, launch systems, tracking and data systems, communications, structures, guidance, and control. Prereq., senior standing.

ASEN 5158 (3-6). Space Habitation. Provides an advanced design course conducted by the department in conjunction with the NASA-University Advanced Space Mission Design program. Centered on design of a geosynchronous space station. The NASA-Ames Research Center sponsors the University of Colorado. Prereq., instructor consent. Same as ASEN 5158.

ASEN 4218-3. Large Space Structures Design. Develops the necessary structural analysis skills for conducting conceptual and preliminary designs of large space structures with a practical emphasis on structures considered by NASA over the past 20 years. Applies analysis skills to a broad range of space missions requiring large space structures, emphasizing low cost and practical design. Prereq., senior standing in ASEN or MCEN, or instructor consent. Same as ASEN 5218.

ASEN 4418-3. Design of Aerospace Structural Components. Covers the basic fundamentals for designing built-up aerospace structural components such as wing boxes and cylinders. Presents analytical tools and assumptions as well as the methodology for conducting trade studies to arrive at an acceptable design. Prereq., senior standing.

ASEN 5158 (3-6). Space Habitation. Same as ASEN 4158.

ASEN 5168-3. Experimental Space Science. Studies design of instruments for remote sensing in a space environment, including optical and mechanical design, modern detector technology, and test and calibration. Examines past and future NASA missions—spacecraft, subsystems, and experiment payloads.

ASEN 5218-3. Design of Large Space Structures. Same as ASEN 4218.

Specialized Topics
ASEN 2519 (1-3). Special Topics. Studies specialized aspects of the aerospace engineering sciences or innovative treatment of required subject matter at the lower-division level. Course content is indicated in the Registration Handbook and Schedule of Courses. Prereq. varies.

ASEN 3519 (1-3). Special Topics. Studies specialized aspects of the aerospace engineering sciences or innovative treatment of required subject matter at the upper-division level. Course content is indicated in the Registration Handbook and Schedule of Courses. Prereq. varies.

ASEN 4519 (1-3). Special Topics. Studies specialized aspects of the aerospace engineering sciences or innovative treatment of required subject matter at the upper-division level. Course content is indicated in the Registration Handbook and Schedule of Courses. Prereq. varies.

ASEN 4849 (1-6). Independent Study.

ASEN 4859 (1-6). Undergraduate Research. Assigns a research problem on an individual basis.

ASEN 5519 (1-3). Selected Topics. Reflects upon specialized aspects of aerospace engineering sciences. Course content indicated in the Registration Handbook and Schedule of Courses. Prereq. varies.

ASEN 5849 (1-6). Independent Study. Study of special projects.

ASEN 6519 (1-3). Special Topics. Reflects upon specialized aspects of aerospace engineering sciences. Course content indicated in the Registration Handbook and Schedule of Courses. Prereq. varies.

ASEN 6849 (1-6). Independent Study. Studies special projects agreed upon by student and instructor.

Applied Mathematics
APPM 1350-4. Calculus 1 for Engineers. Examines selected topics in analytical geometry and calculus, including rates of change of functions, limits, derivatives of algebraic and transcendental functions, applications of derivatives, and integration. Prereq., two years of high school algebra, one year of geometry, one-half year of trigonometry or approval by faculty advisor. Note: GEEN 1351, a 1-credit lab, is available for students who would like more practice working calculus problems in a group learning environment. No credit is given to students already having credit in MATH 1081, 1300, or 1310.

APPM 1360-4. Calculus 2 for Engineers. Continuation of APPM 1350. Examines applications of the definite integral, methods of integration, improper integrals, Taylor’s theorem, and infinite series. No credit is given to students already having credit in MATH 1320, 2300, or 2310. Prereq., APPM 1350 or MATH 1300 with a minimum grade of C-.

APPM 2350-4. Calculus 3 for Engineers. Covers multivariable calculus, vector analysis, and theorems of Gauss, Green, and Stokes. No credit is given to students already having credit in MATH 2400 or 2420. Prereq., APPM 1360 or MATH 2300 with a minimum grade of C-.

APPM 2360-4. Introduction to Linear Algebra and Differential Equations. Introduces ordinary differential equations, systems of linear equations, matrices, determinants, vector spaces, linear transformations, and systems of linear differential equations. No credit is awarded to students already having credit in both MATH 3130 and 4430 or in APPM 2380. Prereq., APPM 1360 or MATH 2300.

APPM 2380-4. Introduction to Ordinary Differential Equations. Explores basic concepts of ordinary differential equations, in-
including solutions of first order, linear, and systems of differential equations. Advanced topics include series solutions and boundary value problems. Studies numerical techniques with some laboratory experience. Prereq., APPM 2350 or MATH 2400 with a minimum grade of C-. No credit for students having credit for APPM 2360.

APPM 2450-1. Calculus 3 for Engineers: Computer Lab. Studies selected topics in analytic geometry and calculus, focusing on symbolic computation using Mathematica, Maple, or Matlab. Controlled enrollment through applied mathematics faculty. Recommended prereq., APPM 1360 or MATH 2300; coreq., APPM 2350.

APPM 2460-1. Differential Equations for Engineers: Computer Lab. Studies selected topics in differential equations and linear algebra, focusing on symbolic computation using Mathematica, Maple, or Matlab. Controlled enrollment through applied mathematics faculty. Recommended prereq., APPM 1360 or MATH 2300; coreq., APPM 2350.

APPM 3010-3. An Introduction to Nonlinear Systems: Chaos. Aims at both majors and minors in the physical sciences. Provides students with an introduction to classes of tools useful in the analysis of nonlinear systems. Prereqs., APPM 1360 and 2360.

APPM 3050-3. An Introduction to Mathematica or Maple and Numerical Computation. Introduces symbolic and numerical computing at an elementary level. Teaches some principles of computational and applied mathematics using computational tools such as Mathematica, Maple, Reduce, or Derive. Prereqs., APPM 1350, 1360, and 2360.

APPM 3170-3. Discrete Applied Mathematics. Introduces discrete structures, their representations, and applications. Emphasizes applications of graph theory to applications in computer science, engineering, operations research, social sciences, and biology, depending on student interests. Topics include the basic properties of graphs and digraphs and their matrix representations. Relates graph properties to their applications—for example, graph coloring problems are related to scheduling problems; n-cubes to logic circuits and the architecture of parallel processors; Hamilton circuits to gray codes and the traveling salesman problem; covering problems to assignment problems; etc. Prereq. or coreq., APPM 3310.

APPM 3310-3. Matrix Methods and Applications. Introduces linear algebra and matrices, emphasizing applications and including methods to solve systems of linear algebraic and linear ordinary differential equations. Discusses computational algorithms that implement these methods. Includes applications in operations research as time permits. Prereq., APPM 2350. Comparable to MATH 3130, but with more emphasis on applications. Credit for both courses is not given.

APPM 3570-3. Applied Probability. Focuses on axioms, counting formulas, conditional probability, independence, random variables, continuous and discrete distribution, expectation, moment generating functions, law of large numbers, central limit theorem, poisson process, and multivariate Gaussian distribution. Students may not receive credit for both APPM 3570 and ECEN 3810 or for both APPM 3570 and MATH 4510. Prereq., APPM 2350 or MATH 2400.

APPM 4120-3. Introduction to Operations Research. Studies linear and nonlinear programming, the simplex method, duality sensitivity, transportation- and network-flow problems, some constrained and unconstrained optimization theory, and the Kuhn-Tucker conditions, as time permits. Prereq., APPM 3310 or MATH 3130. Same as MATH 4120.

APPM 4350-3. Methods in Applied Mathematics: Fourier Series and Boundary Value Problems. Reviews ordinary differential equations, including solutions by Fourier series. Covers physical derivation of the classical linear partial differential equations (heat, wave, and Laplace equations) and solution of these equations via separation of variables, with Fourier series, Fourier integrals, and more general eigenfunction expansions. Prereqs., APPM 2350 and 2360 or 2380 with a minimum grade of C-.

APPM 4360-3. Methods in Applied Mathematics: Complex Variable and Applications. Introduces methods of complex variables. Includes contour integration and theory of residues with application to solving partial differential equations by transform methods, Fourier and Laplace transforms, and Reimann-Hilbert boundary-value problems. Also includes conformal mapping with application to ideal fluid flow and/or electrostatics. Prereq., APPM 2350 and 2360 or 3310 with a minimum grade of C- or instructor consent.

APPM 4380-3. Modeling in Applied Mathematics. Offers an exposition of a variety of mathematical models arising in the physical and biological sciences. Takes models from applications in classical and celestial mechanics, fluid dynamics, traffic flow, population dynamics, economics, and elsewhere. Prereqs., APPM 2360 and 3310 with minimum grades of C-.

APPM 4500-3. Introduction to Time Series. Covers single and multivariable regression, forecasting using regression models, time series models, and modeling with MA, AR, ARMA, and ARIMA models, forecasting with time series models, and spectral analysis. Prereqs., APPM 3570 or MATH 4510, and APPM 4520 or MATH 4520.

APPM 4560-3. Markov Processes, Queues, and Monte Carlo Simulations. Brieﬂy reviews conditional probability and expectation followed by a study of Markov chains, both discrete and continuous time studies. Covers queueing theory, terminology, and single queue systems with some introduction to networks of queues. Uses Monte Carlo simulation of random variables throughout the semester to gain insight into the processes under study. Prereq., APPM 3570. Same as APPM 5560.

APPM 4570-3. Statistical Methods. Covers discrete and continuous probability laws, random variables; expectation; laws of large numbers and central limit theorem; estimation; testing hypotheses, analysis of variance, regression analysis, and nonparametric methods. Emphasizes applications with an introduction to packaged computer programs. Prereq., APPM 1360 with a minimum grade of C-.

APPM 4580-3. Statistical Methods for Data Analysis. Continuation of APPM 4570. Combines statistical methods with practical applications and computer software. Develops commonly used statistical models such as analysis of variance as well as linear and logistic regression. Implements and interprets the statistical models in the context of actual data sets using available statistical software. Prereq., any previous course in statistics.

APPM 4650-3. Intermediate Numerical Analysis 1. Teaches numerical solution of linear algebraic, nonlinear algebraic, and transcendental equations. Includes interpolation, linear systems, and matrix eigenvalue problems. Emphasizes significant computer applications and use of existing software. Prereqs., APPM 2350 or MATH 2400, APPM 2360 and 3310 or MATH 3130, and knowledge of a programming language. Same as MATH 4650.

APPM 4660-3. Intermediate Numerical Analysis 2. Continuation of APPM 4650. Studies methods of numerical integration, including numerical solution of initial-value problems, of two-point boundary-value problems, and of partial differential equations. Emphasizes significant computer applications and use of existing software. Prereqs., APPM 4650 and knowledge of a programming language. Same as MATH 4660.

APPM 4720-3. Open Topics in Applied Mathematics. Provides a vehicle for the development and presentation of new topics that may be incorporated into the core courses in applied math-
ematics. Prereqs., APPM 4350, 4360, 4650, and 4660 or equivalent, or instructor consent.

APPM 4840 (1-3). Reading and Research in Applied Mathematics. Offers an independent study course designed to introduce undergraduate students to research foci of the program in applied mathematics. Prereq., APPM 3310 or MATH 3130. Recommended: a course in ordinary or partial differential equations.

APPM 4955-3. Seminar in Applied Mathematics. Introduces undergraduate students to the research foci of the program in applied mathematics. Also designed to be a capstone experience for the program’s majors. Prereq., APPM 3310 or MATH 3130. Recommended: a course in ordinary or partial differential equations.

Architectural Engineering

Building Systems Engineering

AREN 3050-3. Environmental Systems for Buildings 1. Introduces the operation and design of building systems for climate control, water and drainage, life safety, electrical supply, illumination, transportation (elevators and escalators), and noise control.

AREN 3060-3. Environmental Systems for Buildings 2. Continues the operation and design of building systems for climate control, water and drainage, life safety, electrical supply, illumination, transportation (elevators and escalators), and noise control.

AREN 3130-3. Building Energy Laboratory. Two lectures, one three-hour lab per week.

offers a laboratory course on mechanical systems in buildings, focusing on building applications of thermodynamics, fluid dynamics, and heat transfer. Applications include solar collectors, pumps, fans, heat exchangers, and air conditioning and refrigeration systems. Prereq., AREN 3010.

AREN 3140-3. Illumination Laboratory. Introduces the measurement of photometric and psychophysical quantities used in lighting. Experience is acquired in using light measurement instruments to evaluate lighting equipment and luminous environments.

AREN 3540-3. Illumination 1. Studies the fundamentals of architectural illumination. Introduces and applies basic principles and vocabulary to elementary problems in the lighting of environments for the performance of visual work and the proper interaction with architecture.

AREN 3750-3. Electric Circuits. Fundamentals of electric and electronic circuits, including passive and active circuits used in buildings and in control applications. Begins with Kirchhoff’s current and voltage law; then circuit analyses, transformations, and evaluations are performed. Thévenin’s and Norton’s equivalent circuits are used as an analysis tool. Application topics include elementary linear DC and AC circuits, three-phase AC power circuits, operational amplifiers, electric motors, and transformers.

AREN 4020-3. Noise Control in Buildings. Covers the noise transmission properties of standard building constructions, the design and layout of quiet buildings, and methods of modifying existing designs and structures to reduce noise problems. Prereqs., PHYS 1120, APPM 2360, and ECEN 3030 or equivalent.

AREN 4110-3. HVAC Design 1. Highlights the design of heating, ventilating, and air conditioning (HVAC) systems for buildings. Covers HVAC systems description, load estimating, code compliance, duct design, fan systems, applied psychrometrics, cooling and heating coils, filters, hydronic systems, piping, and pumps. One of several capstone courses available to architectural engineering students. Prereq., AREN 3010. Same as CVEN 5110.

AREN 4550-3. Illumination 2. Applies the principles studied in Illumination 1. Provides further study in architectural lighting design methods. Uses lighting studio work to develop a broad knowledge of lighting equipment, design methods, and their application in a series of practical design problems in modern buildings. One of several capstone courses available to architectural engineering students. Prereq., AREN 3540.

AREN 4560-3. Luminous Radiative Transfer. Teaches fundamentals of radiative exchange as applied to illumination engineering. Describes and uses principal numerical techniques for radiative transfer analysis. Applies techniques to lighting design and analysis.

AREN 4570-3. Building Electrical Systems Design 1. Introduces the generation and distribution of electrical power. Focuses on understanding the loads, control, and protection of secondary electrical distribution systems in building. Applies the national electric code to residential and commercial buildings.

Structures

AREN 4035-3. Architectural Structures 1. Analyzes basic structural systems. Covers principles of mechanics and mechanical properties of materials and analysis and design of trusses, arches, and cable structures. For nonengineering students; does not apply toward an engineering degree. Prereqs., PHYS 1110, and APPM 1350 or MATH 1300.

AREN 4045-3. Architectural Structures 2. Analyzes basic structural systems. Covers principles of mechanics as applied to the design of flexural members, columns, continuous beams, and rigid frames. For nonengineering students; does not apply toward an engineering degree. Prereq., AREN 4035.

AREN 4315-2. Design of Masonry Structures. Covers modern masonry construction; properties and behavior of the reinforced masonry component materials, clay and concrete masonry units, mortar, grout, and steel reinforcement; vertical and lateral load types and intensities; and design of reinforced masonry walls, beams, and columns by working stress and strength design methods.

AREN 4317-3. Integrated Architectural Engineering Design. Semester-long building design project covers design of the structural and environmental systems in medium-sized office buildings. Includes overview of the design process,
application of building codes and standards, production of drawings and specifications, and presentation of designs in written, graphic, and oral forms. All work is performed in teams. Systems designed include structural, electrical, plumbing, heating, ventilation, and air conditioning. Prereqs., AREN 3010, 3540, and 4570; CVEN 3525 and 3535; AREN 3406; and ARCH 4010.

Construction
AREN 1316-1. Introduction to Architectural Engineering. Surveys the broad subject of architectural engineering and professional practices. Includes professional design services, design documents, methods of construction delivery, materials for construction, codes and standards, life safety, professional ethics, structural systems, mechanical systems, electrical systems, and building systems integration.

AREN 4306-3. Building Reuse and Retrofit. Explores the issue that the building industry in the 21st century will be dominated by reuse and retrofit of existing structures. Analyzes the financial, marketing, design, and construction aspects of retrofitting U.S. building stocks such as the Empire State Building and the Seattle Kingdome. Develops and evaluates appropriate reuse and retrofit schemes through student teamwork. Prereqs., AREN 3406 and CVEN 3246. Same as CVEN 5217.

AREN 4316-3. Construction Accounting and Financial Management. Examines the issues that in the 21st century construction companies will be asked to become involved in design/build contracts as well as privatization of what normally would be government-owned projects. Also looks at the issue of the financial liability for these projects becoming the responsibility of architects, engineers, and builders. Studies accounting, financial management, tax consequences, and development. Prereqs., AREN 3406 and CVEN 3246. Same as CVEN 5218.
AREN 4416-3. Construction Costs and Estimating. Introduces building construction costs accounting and controls, analysis of direct and indirect cost fundamentals and collecting systems, methods engineering and value engineering. Includes a study of types of estimates, quantity take-off techniques and pricing applications, and preparation of a detailed estimate for a building project including all cost analyses, a complete quantity survey, development of unit prices, and final assembly of the bid proposal. Prereq., senior standing or instructor consent.
AREN 4466-3. Construction Planning and Scheduling. Comprehensively studies construction management, including the contractor’s role in preconstruction and construction activities; the construction contract; bonds and insurance; and the particular application of CPM/PERT techniques to the planning, scheduling, and control of a construction project. Prereq., senior standing or instructor consent.

Miscellaneous
AREN 1027-2. Descriptive Geometry. Studies orthographic projection, including point, line, and plane problems; angle problems and intersections; and computer graphics using Autocad on PCs. Prereq., GEEN 1017 or equivalent.
AREN 4317-3. Integrated Architectural Engineering Design. Semester-long building design project. Covers design of the structural and environmental systems in medium-sized office buildings. Includes overview of the design process, application of building codes and standards, production of drawings and specifications, and presentation of designs in written, graphic, and oral forms. All work is performed in teams. Systems designed include structural, electrical, plumbing, heating, ventilating, and air conditioning. Prereqs., AREN 3010, 3540, and 4570; CVEN 3525 and 3535; AREN 3406; and ARCH 4010.

Special Topics
AREN 4830–4839 (1-3). Special Topics in Architectural Engineering. Offers special courses in selected topics in building energy, design, construction, acoustics, or illumination, including topics on integrated design of buildings.
AREN 4840–4849 (1-3). Independent Study. Offers an independent, in-depth study, research, or design in a selected area of architectural engineering. Offerings are coordinated with individual faculty. Students should consult the Department of Civil, Environmental, and Architectural Engineering.

Chemical Engineering
CHEN 1000-3. Creative Technology. Lect. Introduces undergraduate arts and sciences students to the most recent concepts in technology and how these concepts impact all aspects of life, such as health, the health of the planet, and social structures. Approved for arts and sciences core curriculum: natural science. Engineering students should consult an advisor before registering for this course.
CHEN 1300-1. Introduction to Chemical Engineering. Meets for one lecture per week. Introduces chemical engineering emphasizing history of the profession, curriculum, chemical industry, and industrial chemistry. Includes industry visits, oral presentations, faculty and professional meetings, and development of a goals statement.
CHEN 2120-3. Chemical Engineering Materials and Energy Balances. Provides a basic understanding of chemical engineering calculations involving material and energy balances around simple chemical processes. Prereq., CHEM 1211; coreq., GEEN 1300 (or CSCI 1300).

CHEN 3800-3. Biophysics of High-Altitude Physiology. Examines the many physiological problems encountered by humans living or traveling in high altitudes, such as problems caused by the body’s inability to cope with low oxygen concentration, including respiration, blood circulation, oxygen uptake, and other physiological effects.

CHEN 3840 (1-3). Independent Study. Available to juniors with approval of the Department of Chemical Engineering. Subject arranged to fit needs of the student.

CHEN 4010-2. Chemical Engineering Senior Thesis 1. Provides an opportunity for advanced students to conduct exploratory research in chemical engineering.

CHEN 4020-2. Chemical Engineering Senior Thesis 2. Continuation of CHEN 4010. CHEN 4010 and 4020 can substitute for CHEN 4130.

CHEN 4090-1. Undergraduate Seminar. Provides chemical engineering career and professional information, facilitates contact with faculty and industry representatives, and improves communication and leadership skills. Consists of a series of seminars and field trips and requires a research project involving a written and oral report.

CHEN 4130-2. Chemical Engineering Laboratory 2. Involves planning and execution of chemical engineering experiments on mass transfer operations, separations, and chemical reactors. Interprets experimental data with theoretical principles and statistical analysis. Emphasizes communication with written memos, full reports, and oral presentations. Prereq., CHEN 3130 and 3220; coreq., CHEN 4330.

CHEN 4330-3. Chemical Engineering Reaction Kinetics. Introduces chemical kinetics and chemical reactor design. Involves mass and energy balances for steady-state and transient reactor systems. Also covers residence time distribution, mass transfer, catalytic reactions, and multiple steady states in reactors. Prereq., CHEN 2120 and 3320; coreq., CHEN 4310.

CHEN 4390-3. Chemical Reactor Engineering. Same as CHEN 5390. Prereq., CHEN 4330 and instructor consent.

CHEN 4440-3. Chemical Engineering Materials. Introduces materials engineering, including properties of polymers, metals, ceramics, and semiconductors, especially as related to chemical engineering processes. Prereq., CHEN 3311; coreq., CHEN 4511.

CHEN 4450-3 Polymer Chemistry. Lect. Introduces polymer science with a focus on polymer chemistry and polymerization reactions. Focuses on polymerization reaction engineering and how polymer properties depend on structure. Same as CHEN 5450.

CHEN 4570-4. Instrumentation and Process Control. Examines principles of control theory and their application to chemical processes. Focuses on single-loop feedback and feedforward control. Laboratory sessions cover measurement fundamentals, signal transmission, dynamic testing, control system synthesis, and implementation and adjustment. Prereq., APPM 2360.

CHEN 4670-3. Environmental Separations. Lect. Covers traditional, as well as new, chemical separations processes that have environmental applications. Includes chemically benign processing (pollution prevention) as well as approaches to address existing pollution problems. Prereq., senior or graduate student standing and CHEN 2120. Same as CHEN 5670.

CHEN 4680-3. Environmental Process Engineering. Lect. Surveys the field of environmental process engineering and covers the topics of waste minimization and pollution, air pollution control, water pollution control, hazardous waste control, risk assessment and management, and ecological systems. Prereq., senior or graduate standing in engineering. Same as CHEN 5680.

CHEN 4710-3. Molecular Basis of Biological Behavior. Lect. Offers a problems approach to neurobiology. Covers molecular biology, genetics, biochemistry, and physiology of model behavioral systems from chemotaxis in bacteria to vision in vertebrates to the brain. Prereq., CHEN 3700 and CHEN 4800 or 5800, or instructor consent. Same as CHEN 5710.

CHEN 4800-3. Bioprocess Engineering. Lect. and lab. Reviews the recent developments in the fields of microbiology, molecular genetics, and genetic engineering that are of commercial value and benefit to mankind. Covers engineering implementation of such biological processes. Prereq., senior or graduate standing in engineering or science, or instructor consent. Same as CHEN 5800.

CHEN 4820-3. Biochemical Separations. Lect. and lab. Presents purification methods, mass transfer coefficients, problems specific to biologicals, and scale-up of processes. Also covers chromatography, phase extraction, supercritical fluids, sedimentation, precipitation, electrophoresis, dialysis, affinity techniques, cell separation, application of separations to bioreactors, and comparison of batch and continuous processes. Prereq., senior standing or above in engineering or science. Same as CHEN 5820.

CHEN 4840 (1-3). Independent Study. Available to seniors with approval of chemical engineering department. Subject arranged to fit needs of student.

CHEN 5090-1. Seminar in Chemical Engineering. Required of all chemical engineering graduate students. Includes reports on research activities and on special current topics.

CHEN 5210-3. Transport Phenomena. Considers continuum mechanics, emphasizing fundamental relationships for fluid mechanics and heat transfer and their applications to engineering problems. Prereq., senior or graduate standing and undergraduate courses in fluid mechanics, heat transfer, and differential equations.

CHEN 5220-3. Mass Transport. Examines fundamentals of mass transport with particular attention to microscopic balances in complex systems, such as those involving multiple components, chemical reaction, simultaneous heat and mass transport, and/or high mass flux. Prereq., CHEN 5210, undergraduate mass transfer, and familiarity with vector and tensor calculus.

CHEN 5360-3. Catalysis and Kinetics. Studies principles of chemical kinetics and catalytic reactions, emphasizing heterogeneous catalysis. Coreq., CHEN 4330, or prereq., CHEN 451 and instructor consent, or graduate standing in CHEM or CHEN.

CHEN 5370-3. Intermediate Chemical Engineering Thermodynamics. Reviews fundamentals of thermodynamics, application to pure fluids and mixtures, and physical equilibrium and changes of state. Examines the equation of state and computation of fluid properties for pure fluids, mixtures, and solutions. Also looks at relations between thermodynamics and statistical mechanics. Prereq., undergraduate thermodynamics (CHEN 3320 or equivalent).

CHEN 5390-3. Chemical Reactor Engineering. Studies ideal and nonideal chemical reactors, including unsteady state behavior, mixing effects, reactor stability, residence time distribution, and diffusion effects. Prereq., undergraduate course in chemical reactor design/kinetics.
CHEN 5420-3. Physical Chemistry and Fluid Mechanics of Interfaces. Covers thermodynamics of interfaces and surface tension measurement; adsorption at liquid-gas, liquid-liquid, and solid-gas interfaces; monolayers; conservation equations for a fluid interface; rheology of interfaces; surface tension driven flows; contact angle and wettability; and double layer phenomena. Prereq., CHEN 3200 or equivalent.

CHEN 5450-3. Polymer Chemistry. Same as CHEN 4450.

CHEN 5580-3. Optimal Control and Identification for Industrial Processes. Develops optimal control and identification theory using the calculus of variations and Pontryagin’s minimum principle. Stresses applications in process situations including chemical, biochemical energy, and micro-electronic industries. Prereq., senior or graduate standing.

CHEN 5670-3. Environmental Separations. Same as CHEN 4670.

CHEN 5680-3. Environmental Process Engineering. Same as CHEN 4680.

CHEN 5710-3. Molecular Basis of Biological Behavior. Same as CHEN 4710, except that students are expected to participate in an independent research project.

CHEN 5740-3. Analytical Methods in Chemical Engineering. Presents analytical and numerical mathematical methods in the context of chemical engineering problems. Topics include modeling techniques, algebraic equations, and ordinary and partial differential equations. Prereq., senior or graduate standing; working knowledge of computing, calculus, differential equations, linear algebra, and vector operations; and undergraduate courses in physics, fluid mechanics, heat transfer, and reaction engineering.

CHEN 5750-3. Numerical Methods in Chemical Engineering. Covers numerical methods for solving ordinary differential, partial differential, and integral equations. These principles are employed to develop, test, and assess computer programs for solving problems of interest to chemical engineers. Prereq., graduate standing or instructor consent.

CHEN 5800-3. Bioprocess Engineering. Same as CHEN 4800, except that a major term report is required.

CHEN 5820-3. Biochemical Separations. Same as CHEN 4820, except that reports and extra reading are required.

CHEN 5830-1. Introduction to Modern Biotechnology. Introduces students to the biotechnology enterprise. Topics include the biotechnology industry and profession, the various academic disciplines of biotechnology, intellectual property, financing, and ethics.

CHEN 5831-2. Biotechnology Case Studies. This capstone course is required of all graduate students in the interdisciplinary graduate biotechnology certificate program. Reviews molecular genetics, product synthesis and purification, economics, intellectual property, and business planning. Working in teams, students present a biotechnology product plan.

CHEN 6230-3. Chemically Specific Separations. Covers the various methods for improving the productivity and selectivity of various separations processes. Discusses fundamental approaches, applications in various processing schemes, and new research thrusts.

CHEN 6820-3. Biochemical Engineering Fundamentals. Covers design and operation of fermentation processes, microbial and enzyme kinetics, multiple substrate and multiple species of fermentation, regulation of enzyme activity, energetics of cellular growth, immobilized enzyme and cell reactors, and transport phenomena in microbial systems and downstream processing. Prereq., graduate standing in CHEM, CHEN, or MCDB, or instructor consent.

CHEN 6940. Master’s Candidate.

CHEN 6950 (variable credit). Master’s Thesis.

CHEN 8990 (1-10). Doctoral Thesis.

Special Topics

CHEN 4838 (1-4). Special Topics in Chemical Engineering. Senior topics courses offered upon demand. Prereq., senior standing or instructor consent.

CHEN 5838 (1-4). Special Topics in Chemical Engineering. Graduate-selected topics courses offered upon demand. Prereq., graduate standing or instructor consent.

Civil and Environmental Engineering

Building Systems

CVEN 5010-3. HVAC System Controls. Treats the theoretical and practical design of control systems for heating, ventilating, and air conditioning of both residential and commercial buildings. Discusses computer energy management system design. Prereq., AREN 3010 or equivalent.

CVEN 5030-3. Architectural Lighting Equipment Design. Covers the specification and design of nonimaging optical systems for architectural lighting equipment reflector design. Develops and uses computer software to design optics that are prototyped and tested in the laboratory. Prereq., AREN 3540 or CVEN 5830.

CVEN 5040-3. Lighting Systems Engineering. Introduces architectural lighting, including vision and perception, lighting equipment and its characteristics, calculations and analysis, and the process of lighting design.

CVEN 5070-3. Thermal Analysis of Buildings. Examines response factors, conduction transfer functions, and weighting factors for dynamic analysis of building envelopes. Also studies radiative and convective exchange in buildings, internal gains, and infiltration analysis as modeled in hourly simulations. Prereq., AREN 3010 or equivalent.
A minimum of 30 credit hours is required.

CVEN 5080-3. Computer Simulation of Building Energy Systems. Introduces major simulation programs for analysis of building energy loads and system performance. Focuses on one hourly simulation program to develop capability for analysis of multizone structure. Prereq., AREN 4110 or CVEN 5110.

CVEN 5090-1. Building Systems Seminar.

CVEN 5110-3. HVAC Design 1. Explores design of heating, ventilating, and air conditioning (HVAC) systems for buildings. Covers HVAC systems description, load estimating, code compliance, duct design, fan systems, applied psychrometrics, cooling and heating coils, filters, hydronic systems, piping, and pumps. Prereq., AREN 3010 or equivalent. Same as AREN 4110.

CVEN 5830–5839 (0-3). Special Topics. Credit and subject matter to be arranged. Same as AREN 4110.

CVEN 5920-0. Independent Study. Credit and subject matter to be arranged. Prereqs., CVEN 2012, and APPM 2360. Same as CVEN 5920.

CVEN 5921-0. Independent Study. Credit and subject matter to be arranged. Prereqs., CVEN 2012, and APPM 2360. Same as CVEN 5921.

CVEN 5990-5999 (variable credit). Master’s Degree Candidacy. Same as AREN 5990.

CVEN 6950–6959 (variable credit). Master’s Thesis. Same as AREN 6950.

CVEN 8990–8999 (1-10). Doctoral Thesis. A minimum of 30 credit hours is required.

Mechanics

CVEN 2121-3. Analytical Mechanics 1. Examines vector treatment of force systems and their resultants; equilibrium of frames and machines, including internal forces and three-dimensional configurations; static friction; properties of surfaces, including first and second moments; hydrostatics; and minimum potential energy and stability. Prereq., PHYS 1110; prereq. or coreq., APPM 2350.

CVEN 3111-3. Analytical Mechanics 2. Examines vector treatment of dynamics of particles and rigid bodies including rectilinear translation, central-force, free and forced vibration, and general motion of particles; kinematics of rigid bodies; the inertia tensor; Euler’s equations of motion; and energy and momentum methods for particles, systems of particles, and rigid bodies. Prereqs., CVEN 2121 and APPM 2360.

CVEN 3161-3. Mechanics of Materials 1. Addresses concepts of stress and strain; material properties, axial loading, torsion, simple bending, and transverse shear; analysis of stress and strain; and deflections of beams. Includes selected experimental and computational laboratories. Prereq., CVEN 2121; coreq., APPM 2360.

CVEN 4161-3. Mechanics of Materials 2. Focuses on concepts of triaxial stress and strain, equilibrium, kinematic relations, basic constitutive relations of engineering materials, strain energy, failure theories, thin and thick-walled cylinders, symmetric/non-symmetric bending, torsion of thin-walled members, combined loading, buckling of columns, and elastic stability. Includes selected experimental and computational laboratories. Prereq., CVEN 3161.

CVEN 5111-3. Introduction to Structural Dynamics. Introduces dynamic response of linear elastic single and multiple degree of freedom systems. Includes time and frequency domain analysis. Also analyzes building structures. Prereq., instructor consent.

CVEN 5131-3. Continuum Mechanics and Elasticity. Provides foundation for advanced study of structural and material behavior and continuum theories in mechanics. Topics include Cartesian tensors, elements of continuum mechanics, constitutive laws for elastic solids, energy principles, methods of potentials, formulations of 2D and 3D elastostatic problems, and general analytical and numerical solutions.

CVEN 5161-3. Advanced Mechanics of Materials. Focuses on energy methods, inelastic behavior, torsion of open and non-circular sections, curved beams, thick-wall pressure vessels, failure theories, and creep and stability.

CVEN 5511-3. Introduction to Finite Element Analysis. Prereq., graduate standing. Same as CVEN 4511.

CVEN 7111-3. Dynamics of Structures. Includes general vibrations of civil engineering structures and their response to various types of time-dependent loads. Prereq., CVEN 5111.

CVEN 7141-3. Plates and Shells. Teaches mathematical theories of plate and shell structures and their applications. Involves numerical finite element solutions of plates and shells of various shapes under static and dynamic loadings. Prereq., CVEN 5121 or 7131.

CVEN 7161-3. Buckling of Structures. Focuses on buckling of columns, beams, frames, plates, and shells in the elastic and plastic range. Other topics include postbuckling strength of plates, beam-columns, and analysis by exact and approximate methods with special emphasis on practical implications and applications of solutions. Prereq., CVEN 4161.

CVEN 7511-3. Computational Mechanics of Solids and Structures. Looks at finite element methodology for geometric and material non-linearities. Involves incremental formulations and iterative solution strategies for truly finite increments and quasistatic and dynamic applications to large deformation and inelastic problems. Prereq., CVEN 5511 or 6525.

Surveying and Transportation

CVEN 2012-3. Plane Surveying. Observes, analyzes, and presents basic linear, angular, area, and volume field measurements common to civil engineering endeavors. Prereq., APPM 1350 or equivalent.

CVEN 3032-3. Photogrammetry. Familiarizes students with characteristics of aerial photographs. Measures and interprets aerial photos for planimetric, topographic, hydrological, soil, and land use surveys. Analyzes and presents field measurements over extensive reaches. Prereq., instructor consent.

CVEN 3602-3. Transportation Systems. Introduces technology, operating characteristics, and relative merits of highway, airway, waterway, railroad, pipeline, and conveyance transportation systems. Focuses on evaluation of urban transportation systems and recent transportation innovations. Prereq., instructor consent.

Fluid Mechanics and Water Resources

CVEN 3323-3. Hydraulic Engineering. Reviews basic fluid mechanics, incompressible flow in conduits, pipe system analysis and design, and dimensional analysis and similarity including design aspects, open channel flow, flow measurement, analysis and design of hydraulic machinery, and water resource engineering. Prereq., CVEN 3313.
CVEN 4333-3. Engineering Hydrology. Studies engineering applications of principles of hydrology, including hydrologic cycle, rainfall and runoff, groundwater, storm frequency and duration studies, stream hydrometry, flood frequency, and flood routing. Prereqs., CVEN 3227 and 3323.

CVEN 4343-3. Open Channel Hydraulics. Studies flow in open channels, natural and constructed. Topics include application of energy equation and momentum relationships, entractive force on erodible boundaries, water surface profiles theory and calculations, and design of transitions. Prereq., CVEN 3313. Same as CVEN 5343.

CVEN 4353-3. Groundwater Engineering. Studies the occurrence, movement, extraction for use, and quantity and quality aspects of groundwater. Introduces and uses basic concepts to solve engineering and geohydrologic problems.

CVEN 5323-3. Applied Stream Ecology. Emphasizes the integration of hydrologic, chemical, and biological processes in controlling stream ecosystems at several spatial scales. Students apply ecosystem concepts to current environmental and water quality problems. Includes field trips and a team project. Prereqs., CHEM 1211, CHEN 1221, PHYS 1110, 1120, and 1140. Recommended prereq., CVEN 3434 and/or 4333.

CVEN 5343-3. Open Channel Hydraulics. Graduate standing required.

CVEN 5353-3. Groundwater Hydrology. Studies the occurrence, movement, extraction for use, and quantity and quality aspects of groundwater. Introduces and uses basic concepts to solve engineering and geohydrologic problems.

CVEN 5363-3. Modeling of Hydrologic Systems. Introduces students to the techniques used in modeling various processes in the hydrologic cycle. Helps students develop numeric models and computer programs for use in conjunction with existing simulation models such as HEC1 and HEC2 in a design project. Prereq., instructor consent.

CVEN 5373-3. Water Law, Policy, and Institutions. Discusses contemporary issues in water management based on legal doctrine. Identifies legal issues in water resources problems and discusses in close relationship with technical, economic, and political considerations. Prereq., senior or graduate standing.

CVEN 5383-3. Applied Groundwater Modeling. Studies mathematical and numerical techniques needed to develop models to solve problems in water flow and chemical transport in the saturated and unsaturated zones of aquifers. Not only emphasizes the learning of modeling techniques from fundamentals, but also the application of models and modeling methods to solve problems in groundwater engineering, geo-environmental engineering, hazardous waste management, aquifer remediation design, and aquifer clean-up. Prereqs., CVEN 5353 and 5454, and APPM 2360 or equivalent.

CVEN 5393-3. Water Resources Development and Management. Explores the principles governing water resources planning and development. Emphasizes the sciences of water—physical, engineering, chemical, biological, and social—and their interrelationships. Prereq., senior or graduate standing. Same as ECON 6555.

CVEN 6383-3. Flow and Transport through Porous Media. Studies basic physics of flow and transport of water, air, and other fluid mixtures through a porous medium. Course topics are relevant to applications in contaminated hydrology, contaminant transport in aquifers, hazardous waste management, geo-hydrology, soil physics, and geo-environmental engineering. Prereqs., APPM 2360, and CVEN 3313 and 5353.

Environmental

CVEN 3414-3. Introduction to Environmental Engineering. Introduces environmental protection legislation and various water, air, and hazardous waste problems. Stresses basic geochemical, ecological, mass conservation, and environmental chemistry concepts in relation to solving environmental engineering problems. Prereqs., CHEM 1211, CHEN 1221, and APPM 2350.

CVEN 3424-3. Water and Wastewater Treatment. Introduces design and operation of facilities for treatment of municipal water supplies and wastewater. Provides an engineering application of physical, chemical, and biological unit processes and operations for removal of impurities and pollutants. Includes field trips and a group project. Prereqs., CHEM 1111 or CHEN 1211 and 1221, PHYS 1110 and 1140.

CVEN 3454-4. Water Quality. Introduces fundamentals of aquatic chemistry of inorganic and organic compounds. Topics include thermodynamics and kinetics of acids and bases, carbonate chemistry, air-water exchange, precipitation and dissolution, complexation, oxidation-reduction, and sorption. Laboratories illustrate concepts through examination of water quality of Boulder Creek and other local waters. Prereq., or coreq., CVEN 3414, or instructor consent.

CVEN 4423-3. Water Resource Engineering Design. Covers applications to the design of water supply and distribution systems; waste and storm water collection systems; flood protection structures and plans; reservoirs; and irrigation and drainage canal networks. One of two required capstone courses for environmental/water resources track students. Prereqs., CVEN 3227 and 4333.

CVEN 4443-3. Environmental Engineering Design. Examines design of facilities for the treatment of municipal water supplies and wastewater, hazardous industrial waste, and contaminated environmental sites. One of two required capstone courses for the environmental/water resources track. Prereqs., CVEN 3424 and 3454.

CVEN 4484-3. Introduction to Environmental Microbiology. Surveys microbiology topics germane to modern civil and environmental engineering. Provides fundamentals needed to understand microbial processes and ecology in engineered and natural systems and reviews applications emphasizing the interface between molecular biology and classical civil engineering. Prereqs., CHEM 1211, CHEN 1221, APPM 1350, 1560, and 2350.

CVEN 5403-3. Environmental Engineering Chemistry. Comprehensively analyzes the chemistry of natural and polluted waters and the application to environmental engineering problems. Topics include energetic principles, chemical equilibrium, coordination chemistry, adsorption phenomena, solid phase interactions, redox phe-
nomena, natural water models, metal pollution, dynamics in aquatic ecosystems, and biogeochemical and nutrient cycling. Uses computer simulations to illustrate more complex chemical systems. Prereqs., CVEN 3414 and 3424, or instructor consent. Same as CVEN 5444.

CVEN 5414-3. Water Chemistry Laboratory. Examines the relationships among air, water, and land pollution, water quality, and beneficial uses. Using models, develops the ability to quantify and predict the impacts of pollutants in the aquatic environment, and to develop approaches to minimize unfavorable water quality conditions. Prereq., instructor consent.

CVEN 5404-3. Advanced Aquatic Chemistry. Examines the role of surfaces and particles in the fate and transport of contaminants in the aquatic environment. Emphasizes modeling of adsorption, dissolution, precipitation, surface-catalyzed reactions, and coagulation and filtration kinetics. Prereq., CVEN 5404 or GEOL 5280. Offered in the spring every other year.

CVEN 6414-3. Aquatic Surfaces and Particles. Examines the use of digital simulation in the analysis of wastewater compounds, including nitrogen and phosphorus. Prereq., CVEN 5402. Offered in the spring every other year.

CVEN 5444-3. Aquatic Organic Contaminants. Examines the use of digital simulation in the analysis of wastewater compounds, including nitrogen and phosphorus. Prereq., CVEN 5402. Offered in the spring every other year.

CVEN 4484-3. Timber Design. Focuses on applications to the design of reinforced concrete structures. Includes review of the current ACI design code, slabs, prestressed concrete, seismic design, folded plates and shells, finite element analysis, and other methods determined by class interest. Prereq., CVEN 4545 or equivalent.

CVEN 6595-3. Earthquake Engineering. Examines fundamental propositions for the design of skeletal structures, automatic design of optimal structures, life-cycle cost design of deteriorating structures, problem-oriented computer languages, and linear and nonlinear programming methods for structural design. Prereq., CVEN 4525 or equivalent.

Investigates design, including concrete formwork, falsework, methods selection, and construction engineering equipment costs, equipment productivity, equipment. Topics include the time value of money, economics, construction equipment, and methods.

CVEN 3256-3. Construction Equipment and Methods. An integrated study of engineering economics, construction equipment, and methods. Topics include the time value of money, equipment costs, equipment productivity, equipment selection, and construction engineering design, including concrete formwork, falsework, and temporary construction. Recommended prereq., CVEN 3246.

CVEN 5206-3. Design/Build. Investigates the interrelationship between design decisions and building costs, and the impact of each major building system and building trade on project budgets and schedules. Gives students the opportunity to prepare technical, marketing, and financial packages for investors as well as regulatory and financial institutions. Culminates with detailed presentations of student-developed project prospectuses. Prereq., AREN 3406, 4416, and CVEN 3246 and 5236, as well as instructor consent.

CVEN 5226-3. Quality and Safety. Comprehensive studies quality and safety for construction projects. Extensively reviews OSHA regulations and industry safety programs and the legal and economic ramifications of a safe construction site. Thoroughly reviews quality control and quality assurance topics, including organizations, measurement, and procedures. Briefly reviews ISO 9000 impact on construction projects.

CVEN 5236-3. Construction Planning and Scheduling. Comprehensive studies construction management including the contractor's role in preconstruction and construction activities; and the particular application of CPM techniques to the planning, scheduling, and control of a construction project. Applies the techniques of the course to a term project. Same as AREN 4416.

CVEN 5246-3. Engineering Contracts. Applies law in engineering practice: contracts, construction contract documents, construction specification writing, agency, partnership, and property; types of construction contracts; and legal responsibilities and ethical responsibilities of the professional engineer. Prereq., graduate standing or instructor consent. Same as CVEN 4087.

CVEN 5256-3. Construction Management. Studies and analyzes construction top- and upper-middle management responsibilities, particularly relating to union craft labor, on- and off-site production and workmanship, construction financing, total quality management, value engineering, disputes and claims, and engineering technology. Stresses investigations to improve construction management efficiency. Prereq., graduate standing or instructor consent.

CVEN 5276-3. Engineering Risk and Decision Analysis. Acquaints students with the fundamental principles and techniques of risk and decision analysis. Oriented toward project-level decisions in which risk or uncertainty plays a central role. Introduces students to Monte Carlo analyses, influence diagrams, and various types of multi-criteria decision analyses. Culminates in a larger term project. Recommended prereq., CVEN 3227.

CVEN 5286-3. Construction Engineering I. Considers topics associated with the effective and efficient design of construction operations. Topics include construction productivity measurement systems, methods improvement and short interval scheduling. Introduces and applies several computer-based simulation techniques to real-world problems. Concludes with a discussion of quality control and quality assurance emphasizing statistical QC procedures. Prereq., graduate standing or instructor consent.

CVEN 5296-3. Construction Project Controls. Provides an advanced study of the application and analysis of construction equipment and methods. Topics include drilling, blasting, tunneling, dewatering foundations, earthmoving, and safety. Applicable to both building and public works construction. Prereq., graduate standing or instructor consent.

CVEN 5306-3. Building Reuse and Retrofit. Explores the issue that the building industry in the 21st century will be dominated by reuse and retrofit of existing structures. Analyzes the financial, marketing, design, and construction aspects of retrofittting U.S. building stocks such as the Empire State Building and the Seattle Kingdome. Develops and evaluates appropriate retrofit and retrofit schemes through student teamwork. Prereq., AREN 3406 and CVEN 3246. Same as AREN 4417.

CVEN 5316-3. Construction Accounting and Financial Management. Examines the issues that in the 21st century construction companies will be asked to become involved in design/build contracts as well as privatization of what normally would be government-owned projects. Also looks at the issue of the financial liability for these projects becoming the responsibility of architects, engineers, and builders. Studies accounting, financial management, tax consequences, and development. Prereq., AREN 3406 and CVEN 3246. Same as AREN 4418.

CVEN 5326-3. Construction Project Controls. Examines tools and techniques employed to control design processes and construction operations. Students apply advanced scheduling and estimating techniques, culminating in the concept of earned value project management. Introduces high project control tools. Recommended prereq., AREN 4416 and 4466.

Miscellaneous

CVEN 1317-1. Introduction to Civil and Environmental Engineering. Surveys the broad subject of civil and environmental engineering and professional practice, emphasizing study of construction methods including foundations, structural systems, building materials, and systems applications in building construction. Same as AREN 1316.

CVEN 3207-2. City Planning. Explores essential principles of city planning, emphasizing the contribution that can be made by civil engineers. Includes detailed discussion of land use, land use boundaries, transportation, street systems, public buildings, parks and recreation, utility design, and zoning. Also involves two or more problems in individual design. Prereq., junior standing.

CVEN 3227-3. Probability, Statistics, and Decision for Civil Engineers. Introduces uncertainty-based analysis, concepts and applications in planning and design of civil engineering systems emphasizing probabilistic, statistics, and decision concepts and methods. Prereq., APPM 2360 and junior standing.

CVEN 4087-3. Engineering Contracts. Applies law in engineering practice: contracts, construction contract documents, construction specification writing, agency, partnership, and property; types of construction contract; and legal responsibilities and ethical requirements of the professional engineer. Prereq., senior standing in civil or architectural engineering or instructor consent. Same as CVEN 5246.

CVEN 4147-3. Engineering Economy and System Design. Includes application of economic and financial principles to engineering alternatives; calculation of annual costs, present worth, and prospective rates of return on investment; depreciation and replacement studies; economic aspects of public works; and preparation of engineering reports on economy studies. Prereq., senior standing. Same as MCEN 4147.

CVEN 4537-3. Numerical Methods in Civil Engineering. Introduces the use of numerical methods in the solution of civil engineering....
problems, emphasizing obtaining solutions with high-speed electronic computers. Applies methods to all types of civil engineering problems. Prereq., senior standing. Same as CVEN 5537.

Geotechnical
CVEN 3698-3. Engineering Geology. Highlights the role of geology in engineering minerals; rocks; surficial deposits; rocks and soils as engineering materials; distribution of rocks at and below the surface; hydrologic influences; geologic exploration of engineering sites; mapping; and geology of underground excavations, slopes, reservoirs, and dam sites. Includes a field trip.

CVEN 3708-3. Geotechnical Engineering 1. Studies basic characteristics of geological materials; soil and rock classifications; physical, mechanical, and hydraulic properties; the effective stress principle; soil and rock improvement; seepage, consolidation; stress distribution; and settlement analysis. Selected experimental and computational laboratories. Prereq., CVEN 3161.

CVEN 4728-3. Foundation Engineering. Focuses on geotechnical design of shallow and deep foundations, including spread footings, mats, driven piles, and drilled piers. Coverage includes bearing capacity, settlement, group effects, and lateral load capacity of the various foundation types. Additional topics include subsurface exploration, construction of deep foundations, and analysis of pile behavior using wave equation and dynamic monitoring methods. Prereq., CVEN 3718 or instructor consent. Same as CVEN 5728.

CVEN 5708-3. Soil Mechanics. Offers an advanced course in principles of soil mechanics. Coverage includes topics in continuum mechanics; elasticity, viscoelasticity, and plasticity theories applied to soils; the effective stress principle; consolidation; shear strength; critical state concepts; and constitutive, numerical, and centrifuge modeling. Prereq., CVEN 3718.

CVEN 5728-3. Foundation Engineering. Prereqs., CVEN 3718 and graduate standing. Same as CVEN 4728.

CVEN 5738-3. Applied Geotechnical Analysis. Studies applications of limiting equilibrium and limit plasticity analysis methods to stability problems in geotechnical engineering, such as slopes, lateral earth pressures on retaining structures, and bearing capacities of foundations. Also includes elastic and consolidation analysis of deformations in soil structures. Prereq., CVEN 5708 or instructor consent.

CVEN 5748-3. Design of Earth Structures. Covers theory, design and construction of earth embankments and waste facilities, including isolation systems. Uses published data, field exploration, and laboratory tests on soils and rock in investigating foundations and construction materials. Involves principles of compaction and settlement, permeability analysis, landslide recognition and control, use of composite clay, and liner systems. Prereq., CVEN 5708 or instructor consent.

CVEN 5758-3. Flow Processes in Soils. Examines fundamental principles of flow through porous media and related engineering problems. Topics include the saturated seepage theory and flow nets; the unsaturated flow theory; suction-saturation and saturation-hydraulic conductivity relationships; nonlinear finite strain consolidation and desiccation theory; laboratory and field testing methods for determining material characteristics; and numerical models for flow-related engineering problems. Prereq., CVEN 3718 or instructor consent.

CVEN 5768-3. Introduction to Rock Mechanics. Explores the nature of rocks and rock masses, index properties, rock and rock mass classifications, deformability and strength, rock hydraulic, and mechanical behavior of planes of weakness in rock. Laboratory and in situ testing. Prereq., CVEN 5708 or instructor consent.

CVEN 5798-3. Dynamics of Soils and Foundations. Examines the behavior of soils and foundations subjected to self-excited vibrations and earthquake ground motions. Looks at principles of wave propagation in geologic media; in situ and laboratory determination of engineering properties for dynamic analysis; and applications of these principles and properties in design and analysis of foundations and earth structures subjected to dynamic loading. Prereq., CVEN 5708 or instructor consent.

CVEN 7718-3. Engineering Properties of Soils. Considers constitutive behavior of cohesive and cohesionless soils including stress-strain, strength, pore water pressure, and volume change behavior under drained and undrained loading conditions. Also includes linear and nonlinear analysis techniques and determination of constitutive properties in the laboratory. Prereq., CVEN 5708 or instructor consent.

CVEN 7788-3. Soil Behavior. Topics include soil mineralogy, formation of soils through sedimentary processes and weathering, determination of soil composition, soil water, colloidal phenomena in soils, fabric property relationships, analysis of mechanical behavior including compressibility, strength and deformation, and conduction phenomena in terms of physicochemical principles. Involves applications to stabilization and improvement of soils, and disposal of waste materials. Prereq., CVEN 3718 or instructor consent.

Special Topics
CVEN 4039-1. Senior Seminar. Provides a series of lectures by outstanding university faculty members in the humanities and eminent professional engineers in special fields of practice, particularly on subjects with new developments. The EIT examination is required for successful completion of this course. Prereq., senior standing.

CVEN 4839 (1-6). Special Topics for Seniors. Offers a supervised study of special topics of interest to students, under instructor guidance. Prereq., instructor consent.

CVEN 4840–4878 (1-3). Independent Study. Involves an independent, in-depth study, research, or design in a selected area of civil or environmental engineering. Offerings are coordinated with individual faculty. Students should consult the Department of Civil, Environmental, and Architectural Engineering.

CVEN 4899-3. Senior Projects. Devotes an entire semester to work on a project of the student’s choice and the preparation of a report. Projects may include laboratory, analysis or design efforts and may be done by individual students or by groups. The project idea can be generated by the student or suggested by a faculty member. A list of projects is available in the departmental office at registration. Students are not permitted to register for this course during their last semester in residence and must obtain registration approval for a particular project from the faculty director. Prereq., senior standing.

CVEN 5849 (1-6). Independent Study. Available only through approval of graduate advisor. Subject arranged to fit needs of student.

CVEN 8929-3. Selected Topics. Credit and subject matter to be arranged. Prereq., instructor consent.

Computer Science
General Computer Science
CSCI 1200-4. Introduction to Programming. Presents an introduction to various uses of computers, including text processing, communication, spreadsheets, and database systems as well as an introduction to computer programming.
CSCI 1200-4. Computer Science 1: Programming. Instructs students in analyzing problems and synthesizing programs for the solution, emphasizing good engineering practices for program construction, documentation, testing, and debugging. Uses C++ for programming projects.

CSCI 2270-4. Computer Science 2: Data Structures. Studies data abstractions (e.g., stacks, queues, lists, trees) and their representation techniques (e.g., linking, arrays). Introduces concepts used in algorithm design and analysis including criteria for selecting data structures to fit their applications. Uses Unix systems. Prereq., CSCI 1300, APPM 1350, or MATH 1300.

CSCI 2830-3. Special Topics in Computer Science. Covers topics of interest in computer science at the sophomore level. Content varies from semester to semester. Prereq., instructor consent.

CSCI 2900 (1-3). Independent Study. Offers selected topics at the elementary level for students with little or no previous computing experience.

CSCI 4000-3. Entrepreneurship in Computing. Taught by an experienced entrepreneur. Examines the development of new venture creation from the entrepreneur's perspective. Provides an understanding of the entire process including opportunity identification, feasibility study, fundraising, organization, team creation, and exit strategies through case studies, oral and written presentations, and outside speakers.

CSCI 4830-3. Special Topics in Computer Science. Covers topics of interest in computer science at the senior undergraduate level. Content varies from semester to semester. Prereq., instructor consent.

CSCI 4900 (1-6). Independent Study. Provides opportunities for independent study at the upper-division undergraduate level. Students work on a small research problem or tutor lower-division computer science students. Prereq., CSCI 1200 or 1300.

CSCI 5000 (1-6). Independent Study. Provides opportunities for independent study at the master's level.

CSCI 6800-3. Master of Engineering Project. Students seeking the master of engineering degree must complete a creative investigation project, including a written report, supervised by a member of the graduate faculty. Prereq., completion of 21 hours towards the M.E. degree.

CSCI 6940-3. Master's Degree Candidacy. For students who need to be registered for the purpose of taking the master's comprehensive exam and who are not otherwise registered. Credit does not count toward degree requirements. Graded on a pass/fail basis.

CSCI 6950 (4-6). Master's Thesis.

CSCI 7000-3. Current Topics in Computer Science. Covers research topics of current interest in computer science that do not fall into a standard subarea. Prereq., instructor consent.

CSCI 7900 (1-6). Independent Study. For doctoral students.

CSCI 8990 (1-10). Doctoral Dissertation. Investigates some specialized field of computer science. Approved and supervised by faculty members.

Parallel Processing

CSCI 5551-3. Parallel Processing. Same as ECEN 5553.

CSCI 7111-3. Topics in Parallel Processing. Content varies, but subjects include parallel machine architecture, parallel algorithms, languages for parallel computation, and applications. Takes subject matter from current research. Prereq., instructor consent.

Artificial Intelligence

CSCI 3202-3. Introduction to Artificial Intelligence. Surveys artificial intelligence techniques of knowledge representation, search, learning, and natural language processing. Introduces artificial intelligence programming in Lisp. Prereq., CSCI 3104 and 3155, or instructor consent.

CSCI 4202-3. Artificial Intelligence 2. A second course in artificial intelligence. Topics may vary, but typically cover neural networks, natural language processing, and artificial life. Prereq., CSCI 3202 or instructor consent.

CSCI 5582-3. Artificial Intelligence. Surveys artificial intelligence methods, theories, and applications. Studies the relationship between artificial intelligence and psychology, linguistics, and philosophy. Introduces artificial intelligence programming. Prereq., CSCI 3155 or equivalent. Same as ECEN 5583.

CSCI 5592-3. Advanced Artificial Intelligence Programming. Discusses the role of programs in artificial intelligence and cognitive science as well as social implications. Further topics are theory and practice of languages (including Lisp, object-oriented extensions, production systems, higher-level languages built on Lisp, logic programming, and Prolog) and algorithms (control strategies, graph search, theorem-proving, planning, and rule-based systems). Prereq., CSCI 5582.

CSCI 5622-3. Issues and Methods in Cognitive Science. Introduces cognitive science. Examines ideas from cognitive psychology, philosophy, education, and linguistics via computational modeling and psychological experimentation. Includes philosophy of mind, learning, categorization, vision and mental imagery, consciousness, problem solving, decision making, game theory, language processing, and connectionism. Prereq., graduate standing or one course at the 3000-level or higher in computer science, linguistics, philosophy, or psychology. No background in computer science is presumed.

CSCI 6622-3. Advanced Connectionist Modeling. Evaluates papers from the current research literature, experiments with simulations of connectionist networks, and engages in semester-long research projects applying the connectionist approach to selected problems in machine learning, artificial intelligence, psychology, neurobiology, or linguistics. Prereq., CSCI 5622.

CSCI 7212-3. Topics in Symbolic Artificial Intelligence. Topics vary from year to year. Possible topics include search; knowledge representation and natural language understanding; deduction, planning, problem solving and automatic programming; instruction and cognitive models; vision and speech; and learning, induction, and concept formation. Prereq., CSCI 5582 or instructor consent. Highly recommended prereq., CSCI 5592.

CSCI 7222-3. Topics in Nonsymbolic Artificial Intelligence. Topics vary from year to year. Possible topics include human and machine vision, signal and speech processing, artificial life, mathematical foundations of connectionism,
and computational learning theory. Prereq., CSCI 5622 or instructor consent.

CSCI 7762-1. Readings and Research in Cognitive Science. Acquaints students with interdisciplinary reading of innovative theories and methodologies of cognitive science. Participants share interdisciplinary perspectives through in-class and on-line discussion and analysis of dense, controversial texts and their own research in cognitive science. Required for joint Ph.D. in cognitive science.

CSCI 7782-3. Topics in Cognitive Science. Addresses a different set of one to three topics each year. For each topic, one or two faculty members of the Institute of Cognitive Science present background material and present current research. Prereq., graduate standing or instructor consent.

Operating Systems and Hardware

CSCI 3753-4. Operating Systems. For computer science majors. Examines software comprising computing systems as it builds upon hardware to provide a programming environment. Looks at structure and function of editors, compilers/assembly, linkers, etc. Basic operating systems concepts and systems programming in high-level languages. Prereqs., CSCI 2270, 3308, and ECEN 2120.

CSCI 4113-3. UNIX System Administration Workshop. Introduces the internals of UNIX, trouble shooting system and network problems, hardware and software configuration and installation, and security aspects of hosts on the Internet. Offers students hands-on experience on dedicated laboratory workstations. Prereq., CSCI 2270 or instructor consent. Recommended, CSCI 3308.

CSCI 4273-3. Network Systems. Focuses on design and implementation of network programs and systems, including topics in network protocols, file transfer, client-server computing, remote procedure call, and other contemporary network system design and programming techniques. Prereqs., CSCI 3753 and familiarity with C and UNIX.

CSCI 4753-3. Computer Performance Modeling. Presents a broad range of system measurement and modeling techniques, emphasizing applications to computer systems. Topics include system measurement, work load characterization, and analysis of data; design of experiments; simulation; and queuing theory and queuing network models. Prereqs., CSCI 3753 or equivalent, and second-semester calculus. Recommended prereq., a course in statistics. Same as CSCI 5753 and ECEN 4753 and 5753.

CSCI 5573-3. Operating Systems. Studies supervisory programs within a computer system that interact most closely with hardware, and that allow efficient and shared access to the computer. Topics include processes (communication implementation and synchronization), memory management (storage allocation and virtual memory), and processor management (multiprogramming, timesharing, and scheduling). Same as ECEN 5573.

CSCI 5673-3. Distributed Systems. Examines systems that span multiple autonomous computers. Topics include system structuring techniques, scalability, heterogeneity, fault tolerance, load sharing, distributed file and information systems, naming, directory services, resource discovery, resource and network management, security, privacy, ethics, and social issues. Recommended prereq., CSCI 5573 or a course in computer networks. Same as ECEN 5675.

CSCI 7123-3. Topics in Operating Systems. Topics selected by instructor. Possible topics are system design, measurement and evaluation, simulation, mathematical modeling, and parallelism. Prereq., CSCI 5573.

CSCI 7143-3. Topics in Computer Systems. Topics selected by instructor. Possible topics are on-line systems, multiprocessing, microprogramming, architecture, data communications, and computing networks.

Theory of Computation

CSCI 3434-3. Computer Science Theory. Introduces the foundations of formal language theory, computability, and complexity. Shows relationship between automata and various classes of languages. Addresses the issue of which problems can be solved by computational means, and studies complexity of solutions. Prereqs., CSCI 3104 and 3155.

CSCI 5444-3. Introduction to Theory of Computation. Reviews regular expressions and finite automata. Studies Turing machines and equivalent models of computation, the Chomsky hierarchy, context-free grammars, push-down automata, and computability. Prereq., graduate standing or instructor consent.

CSCI 5454-3. Design and Analysis of Algorithms. Looks at techniques for algorithm design and analyzes correctness and efficiency, divide and conquer, dynamic programming, greedy method, balancing, amortization, and scaling. Also involves advanced data structures, algorithms in graph theory, computational geometry, parallel computation, VLSI, linear algebra, etc. Prereq., CSCI 2270 or equivalent.

CSCI 5714-3. Formal Languages. Explores context-free languages: pumping lemma and variants, closure properties, and decision properties. Involves parsing algorithms, including general and special languages, e.g., LR. Additional topics chosen by instructor. Prereq., CSCI 5444 or instructor consent.

CSCI 6454-3. Advanced Algorithms. Topics include matching and network flows, matroids, computational geometry, parallel computation (PRAM, hypercube, mesh). Also includes VLSI database theory, distributed computation, cryptography, robotics, scheduling, probabilistic algorithms, approximation algorithms, average case, and amortized analysis, time permitting. Prereq., CSCI 5454.

Programming Languages

CSCI 3155-4. Principles of Programming Languages. Studies the fundamental principles of programming language design and implementation. Draws examples from common programming languages such as Var, Fortran, Algol, Pascal, C, Ada, Modula 2, Lisp, and Prolog. Provides practical experience with a small number of new languages. Prereqs., CSCI 2270 and ECEN 2120.

CSCI 4555-3. Introduction to Compiler Construction. Same as ECEN 4553.

CSCI 5535-3. Fundamental Concepts of Programming Languages. Same as ECEN 5533.

CSCI 5565-3. Translation of Programming Languages. Same as ECEN 5563.

CSCI 7135-3. Topics in Programming Languages. Topics selected by instructor. Possible topics are syntax, semantics, metacompilers, compiler design, and translator writing systems. Prereq., instructor consent.

Numerical Computation

applied mathematical problems. Topics include floating point arithmetic, numerical solution of linear systems of equations, root finding, numerical interpolation, differentiation, and integration. Prereqs., two semesters of calculus, linear algebra, and one of the following: CSCI 1200 or 1300.

CSCI 4446-3. Chaotic Dynamics. Explores chaotic dynamics theoretically and through computer simulations. Covers standard computational and analytical tools used in nonlinear dynamics and concludes with an overview of leading-edge chaos research. Topics include time and phase-space dynamics, surfaces of section, bifurcation diagrams, fractal dimension, and Lyapunov exponents, etc. Prereqs., two semesters of calculus; CSCI 1200 or equivalent; and PHYS 1110. Recommended, PHYS 1120; CSCI 3656; MATH 3130.

CSCI 4576-4. High-Performance Scientific Computing 1. Introduces computing systems, software, and methods used to solve large-scale problems in science and engineering. Students use high-performance workstations and a supercomputer. First course in a two-semester sequence. Prereq., CSCI 3656 or equivalent.

CSCI 5676-3. High-Performance Scientific Computing 1. Same as CSCI 4676. This course cannot be used to fulfill the M.S. in computer science breadth requirement.

CSCI 5686-3. High-Performance Scientific Computing 2. Same as CSCI 4686. This course cannot be used to fulfill the M.S. in Computer Science breadth requirement.

CSCI 6446-3. Chaotic Dynamics. Same as CSCI 4446.

CSCI 7176-3. Topics in Numerical Computation. Topics selected by instructor. Possible topics are numerical linear algebra, solution of differential equations, nonlinear algebra and optimization, data fitting, linear and nonlinear programming, and solution of large problems. Prereq., instructor consent.

Database Systems

CSCI 3287-3. Database and Information Systems. Surveys data management, including file systems, database management systems design, physical data organizations, data models, query languages, concurrency, and database protection. Prereq., CSCI 3104.

CSCI 5817-3. Database Systems. Provides an advanced treatment of basic database concepts. Prereqs., CSCI 2270 and admission as a graduate student in computer science or electrical engineering. Recommended prereqs., CSCI 3287 and 3753.

CSCI 5917-3. Database Practicum. Addresses practical issues in implementation, modeling, and measurement of database systems. Centers around a significant software project. Prereqs., CSCI 5817 and significant software experience, or instructor consent.

CSCI 7717-3. Topics in Database Systems. Studies topics such as distributed databases, database interfaces, data models, database theory, and performance measurement in depth. Prereq., CSCI 5817 or instructor consent.

Software Engineering

CSCI 3308-3. Software Engineering Methods and Tools. Focuses on software engineering methods and tools for application development, including design and system organization; using and creating reusable libraries; building, testing, and debugging; and performance evaluation. Two hours of lecture, three hours of lab per week. Prereq., CSCI 2270.

CSCI 4308-4. 4318-4. Software Engineering Project 1 and 2. Provides an advanced practice in computer science for computer science majors. Students design, implement, document, and test software systems for use in local industry, in university departments, or government laboratories. Offers practical experience by working closely with project sponsors from these organizations and reviewing ongoing projects. Also offers extensive experience in oral and written communication through presentations throughout the software life cycle. Students must take CSCI 4308-4318 continuously, as the project spans entire academic year. Prereqs., CSCI 3104 and 3155 and 3753, and UWRP 3030. Open only to seniors.

CSCI 4448-3. Object-Oriented Programming and Design. Offers an applied programming and design course addressing object-oriented technology. Covers programming topics such as data abstraction, classes and objects, polymorphism, inheritance, contemporary object-oriented design and analysis models and methodology, and case studies of object-oriented systems. Prereq., CSCI 3155 or expertise in a high-level programming language similar to C. Same as CSCI 6448.

CSCI 5828-3. Foundations of Software Engineering. Explores techniques, languages, and tools for development and maintenance of software systems. Topics include specification languages, configuration modeling, testing techniques, process modeling, program annotations, and program proofs.

CSCI 6448-3. Object-Oriented Programming and Design. Same as CSCI 4448.

CSCI 6838-3. User Interface Design. Covers techniques for creating and evaluating effective user interfaces for computing systems. Introduces relevant findings and theory from psychology and human factors, as well as implementation methods. Prereq., graduate status or instructor consent.

Graphs

CSCI 4229-3. Computer Graphics. Studies design, analysis, and implementation of computer graphics techniques. Topics include interactive techniques, 2D and 3D viewing.
clipping, segmentation, translation, rotation, and projection. Also involves removal of hidden edges, shading, and color. Prereqs., knowledge of basic linear algebra and CSCI 2270. Same as CSCI 5229.

Electrical and Computer Engineering

General

ECEN 1200-3. Telecommunications 1. Covers the Internet and World Wide Web. Also introduces the main concepts of telecommunications, electronic publishing, audio, video, coding information theory, cryptography, data storage, and data compression.

ECEN 1400-3. Methods and Problems in ECE. Introduces types of problems that electrical and computer engineers are expected to solve and advanced topics such as vector graphics and computer arithmetic. Develops theory of complex numbers, phasors, and linear algebra and facility with computing tools such as MATLAB and mathematics. Prereqs., APPM 1350, and CSCI 1200 or 1300.

ECEN 1840–1849 (1-3). Independent Study. Provides an opportunity for freshmen to do independent, creative work. Prereq., instructor consent.

ECEN 2120-5. Computers as Components. Covers computer usage in system implementation, central processor capabilities, and managing concurrency. Includes computer architecture, instruction sets, programming, input/output, interrupts, block transfers, semaphores, shared procedures, multiple processors, and memory management. Prereq., CSCI 1300 or equivalent.

ECEN 2250-5. Digital Logic. Studies the design and applications of digital logic, including combinational and sequential logic circuits. Laboratory component introduces simulation and synthesis software and hands-on hardware design. Prereq., ECEN 2120.

ECEN 3170-3. Energy Conversion 1. Studies the use of magnetic fields as the transfer medium for electric energy in transformers and for conversion of electrical energy to mechanical torque in rotating machines. Applies basic magnetism theory to inductors, transformers, relays, stepper motors, AC and DC motors, and generators. Prereqs., ECEN 2260 and 3400.

ECEN 3250-5. Circuits/Electronics 3. Develops a basic understanding of active semiconductor devices. Focuses on building an understanding of BJTs and MOS devices in both digital and analog application. Prereq., ECEN 2260.

ECEN 3300-5. Linear Systems. Looks at characterization of signals and linear systems in time and frequency domains. Continuous and discrete time systems are considered. Lab exercises consider linear filters and applications using computer simulations. Draws examples from communication systems, control systems, and digital signal processing. Prereqs., ECEN 2260 and APPM 2360.

ECEN 3320-3. Semiconductor Devices. Highlights the fundamentals of semiconductor material and devices. Topics include the electrical and optical properties of semiconductors, the theory of pn junctions, bipolar and field-effect transistors, and optoelectronic devices. Prereq., ECEN 3250.

ECEN 3400-5. Electromagnetic Fields and Waves. Introduces electromagnetic fields, from electrostatics through DC current, magnetostatics, time-varying magnetic fields, waves on transmission lines, Maxwell's equations, plane waves, and basics of guided waves and antennas. Labs cover EM effects in circuits, four-point probe, ammeters, motors, inductive and capacitive coupling on a PC-board, time-domain reflectometry, and antennas. Prereqs., ECEN 2250 and APPM 2350.

ECEN 3810-3. Introduction to Probability Theory. Covers the fundamentals of probability theory and random variables. Provides a foundation for study of communication theory, control theory, and reliability theory. Prereqs., APPM 2350 and 2360, or equivalent.

ECEN 3840–3849 (1-6). Independent Study. Offers an opportunity for juniors to do independent, creative work. Prereq., instructor consent.

ECEN 4001–4099 (0-3). Special Topics. Credit and subject matter to be arranged. Prereqs. vary.

ECEN 4200-1. Effective Presentation. Prepares students to make polished and professional oral presentations. Stresses effective use of visual aids. Student presentations are critiqued by class and videotaped.

ECEN 4410-2. Careers in Electrical and Computer Engineering. Prepares students for the workplace. Includes how to perform key EE/ECE industrial assignments, engineering management tools and techniques, the job search (tuned to EE/ECE graduates), and lectures by industry practicing engineers.

ECEN 4610-3. Electrical Engineering Capstone Design Lab. Teams of 3-5 students propose, design, document, build, test, and demonstrate a working prototype of an electronic system. Topics can be selected from one or more EE areas, including bioengineering, communications and signal processing, control systems, electromagnetics, optoelectronics, power electronics, solid state materials, and devices. Each team is expected to complete a reliably operating electronic system with publication-quality technical documentation. Projects are demonstrated in an open-lab exposition at the end of the semester.

ECEN 4840–4849 (1-6). Independent Study. Offers an opportunity for seniors to do independent, creative work. Prereq., instructor consent.

ECEN 5000–5099 (0-3). Special Topics. Intermediate graduate-level courses of variable title and variable credit, usually offered once by guest lecturers. See current departmental notices for details.

ECEN 5840–5849 (1-6). Independent Study. Offers an opportunity for students to do independent, creative work at the master's level. Prereq., advisor consent.

ECEN 6000–6099 (0-3). Special Topics. Graduate courses of variable title and variable credit, usually offered on a one-time basis by guest lecturers. See current departmental notices for details.

ECEN 6950 (variable credit). Master's Thesis.
ECEN 6800 (0.8). Master of Engineering Report.

ECEN 7840–7849 (1.6). Independent Study. Offers an opportunity for students to do independent, creative work at the doctoral level. Prereq., advisor consent.

ECEN 8990 (0.10). Doctoral Thesis.

Bioengineering

ECEN 4811-3. Neural Signals. Analyzes information processing in the brain and peripheral nervous system in terms of fundamental signaling processes that occur at the neuronal level. Explores biophysical bases for these processes, including neural impulse generation, synaptic communication, and sensory reception in terms of molecular and membrane mechanisms. Approaches abstraction of biological neurons into computational neural elements, mainly from the viewpoint of neural networks and other forms of synthetic intelligence. Prereq., ECEN 2260 or 3030, or instructor consent. Same as ECEN 5811, ASEN 4216, and ASEN 5216.

ECEN 4821-3. Neural Systems. Explores the extension of cellular neuroelectric concepts into the arena of integrative neurophysiology and neuroethology. Topics include synaptic modulation of neuronal firing patterns, interactions in dendritic trees, computer simulation of interactive neural nets, the command neuron concept, sensory information processing, and the generation of simple behaviors directly correlated with neural network organization. Prereq., ECEN 2260 or 3030, or instructor consent. Same as ECEN 5821, ASEN 4426, and ASEN 5426.

ECEN 4831-3. Brains, Minds, and Computers. Provides background for the design of artificially intelligent systems based upon our present knowledge of the human brain. Includes similarities and differences between the brain and computers, robots, and common computer models of “brain” and “mind.” Emphasizes the neuron as an information processor, and organization of natural as well as synthetic neural networks. Prereq., ECEN 2260 or 3030, or instructor consent. Same as ECEN 5831, ASEN 4436, and ASEN 5436.

ECEN 5811-3. Neural Signals. Same as ECEN 4811, ASEN 4216 and 5216.

Communications

ECEN 4242-3. Communication Theory. Covers modern digital and analog communication systems, Fourier analysis of signals and systems, signal transmission, amplitude modulation, angle modulation, digital communication systems, and behavior of communication systems in the presence of noise, including both analog and digital systems. Topics include noise, AM, FM, PM, sampling, quantizing/encoding, TDM, FDM, equalizers, and a complete communication system. Prereq. or coreq., ECEN 2260 and 3810.

ECEN 4652-2. Communication Laboratory. Involves laboratory experiments demonstrating material taught in ECEN 4424. Uses spectrum analysis to study baseband signals and signal processors. Topics include noise, AM, FM, PM, sampling, quantizing/encoding, TDM, FDM, equalizers, and a complete communication system. Prereq. or coreq., ECEN 4242.

ECEN 5622-3. Information Theory and Coding. Involves information and entropy, Markov chains, combined systems, continuous systems, coding theory, channel capacity, modulation, and applications to communication engineering. Prereq., ECEN 3810 or MATH 4510 or instructor consent.

ECEN 5632-3. Theory and Application of Digital Filtering. Examines the characterization of linear discrete-time circuits by unit-pulse response, transfer functions, and difference equations; use of z-transforms and Fourier analysis; discrete Fourier transform and fast algorithms (FFT); design of finite and infinite impulse response filters; frequency transformations; and study of least squares filters for deterministic and stochastic inputs. Prereq., ECEN 3300 and 3810 or MATH 4510.

ECEN 5642-3. Modern Methods of Spectral Estimation. Reviews Fourier analysis for continuous, discrete, sampled-data, PAM, and sub-sampled signals; quadratic estimators of the power spectrum; autoregressive and autoregressive moving average models; modal analysis; nonstationary spectrum analysis; and least square theory of linear prediction. Covers applications to speech processing, seismic data, and radar and sonar processing. Prereq., ECEN 5612 and 5632.

ECEN 5652-3. Detection and Extraction of Signals from Noise. Introduces detection, estimation, and time series analysis. Topics include hypothesis testing, detection of known form and random signals, least squares parameter estimation, maximum likelihood theory, minimum mean-squared error estimation, Kalman-Wiener filtering, prediction in stationary time series, and modal analysis. Applications include studies in communications, control, and experimental modeling. Prereq., ECEN 5612.

ECEN 5662-3. Optimal Signal Processing and Stochastic Systems. Looks at constrained optimization, Kuhn-Tucker conditions, convex programming, and near-point problems in Hilbert Space. Also involves dynamic programming and Markov processes. Applications may include sequential decision theory, trajectory estimation, Wiener and Kalman filtering, data compression, pattern recognition, game theory, and system identification. Prereq., ECEN 3300 and 3810 or MATH 4510.

ECEN 5672-3. Digital Image Processing. Covers image formation and visual perception; digitization of images; transform coding, modeling, and image compression; image enhancement; filtering and image restoration; and reconstruction and tomographic imaging. Prereq., ECEN 5612 or equivalent.

ECEN 5692-3. Principles of Digital Communication. Explores fundamental principles underlying transmission of digital data over noisy waveform channels and mathematical description of signal and noise waveforms. Also focuses on digital waveform synthesis, optimum receiver principles, decision regions, and error probability for different modulation schemes. Prereq., ECEN 3300 and 3810 or instructor consent; coreq., ECEN 5612.

Computer and Digital Systems

ECEN 4553-3. Introduction to Compiler Construction. Introduces the basic techniques used in translating programming languages: scanning, parsing, definition table manage-
ment, operator identification and coercion, code selection and register allocation, and error recovery. Students build a complete compiler, by hand, for a simple language. Prereq., ECEN 3100. Same as CSCI 4555.

ECEN 4573-3. Electrical and Computer Engineering Capstone Design Laboratory. Studies design and construction of microprocessor systems in measurement and control applications and development of medium-sized systems based upon microprocessors. Student teams develop hardware and software. Requires design reviews and extensive documentation. Prereq., ECEN 3100.

ECEN 4583-3. Software Systems Development. Explores techniques for product requirements definition, project planning, coding, verification, validation, performance evaluation, and maintenance of medium-scale software systems. Primarily emphasizes practical application of these techniques to a specified software project. Students work in teams to produce appropriate documents for each phase and are responsible for project completion according to specification and schedule. Course project is written in C on a UNIX look-alike system; prior knowledge of C, UNIX, and CSCI 2270 strongly recommended. Prereq., ECEN 3100 and CSCI 1300.

ECEN 4593-3. Computer Organization. Studies computer design at the gate level. Discusses microprogrammed and hardwired control units, memory design, arithmetic and logic units, I/O, and peripheral devices. Briefly covers aspects of modern computer architecture such as parallel processing and reduced instruction set computers. Prereq., ECEN 3100. Same as CSCI 4593.

ECEN 4753-3. Computer Performance Modeling. Presents a broad range of system modeling techniques, emphasizing applications to computer systems. Covers stochastic processes, queueing network models, stochastic Petri nets, and simulation (including parallel processing techniques). Prereq., CSCI 3753 or equivalent and second-semester calculus. Recommended prereq., a course in statistics. Same as CSCI 4753, 5753, and ECEN 5753.

ECEN 5513-3. Real-Time Hardware-Software System Design. Centers on the design and use of real-time computer systems. Gives special attention to the design, implementation, and testing of concurrent high-level language software in real-time applications. Treats the design of computer/process interfacing systems in the context of representative real-time applications. Reinforces concepts developed during the lecture portion of the class with practical experience in the real-time computing laboratory. Prereq., ECEN 4593 and experience in programming sequential C or PASCAL. Same as CSCI 5513.

ECEN 5523-3. Compiler Construction Tools. Offers practical experience using state-of-the-art CAD tools on high-performance workstations. Provides skills needed to rapidly create "little languages" for specific problem domains and familiarizes students with automated software development. Same as CSCI 5525.

ECEN 5533-3. Fundamental Concepts of Programming Languages. Considers concepts common to a variety of programming languages—how they are described (both formally and informally) and how they are implemented. Provides a firm basis for comprehending new languages and gives insight into the relationship between languages and machines. Prereq., ECEN 3100, CSCI 3155, or instructor consent. Same as CSCI 5535.

ECEN 5543-3. Software System Engineering. Applies engineering principles to phases of software product development, project planning, requirements definition, design, implementation, validation, and maintenance. Emphasizes practical methods for communicating and verifying definitions and designs—prototyping, inspections, and modeling. Includes relation to RTS and object-oriented programming. Prereq., ECEN 4583 and CSCI 4318, or equivalent industrial experience.

ECEN 5553-3. Parallel Processing. Examines a range of topics involved in using parallel operations to improve computational performance. Discusses parallel architectures, parallel algorithms and parallel programming languages. Architectures covered include vector computers, multiprocessors, network computers, and data flow machines. Prereq., background in computer organization, introduction to programming languages, elementary numerical analysis, ECEN 4593 and CSCI 3656, or instructor consent. Same as CSCI 5551.

ECEN 5563-3. Translation of Programming Languages. Studies practical techniques for translating algorithms understood by humans into programs understood by machines. Concentrates on semantic analysis, code generation, and optimization methods supported by tools. Prereq., ECEN 4553, 5533, or instructor consent. Same as CSCI 5565.

ECEN 5583-3. Artificial Intelligence. Same as CSCI 5582. Prereq., CSCI 3155 or equivalent.

ECEN 5593-3. Advanced Computer Architecture. Provides a broad-scope treatment of important concepts in the design and implementation of high-performance computer systems. Discusses important issues in the pipelining of a machine and the design of cache memory systems. Also studies current and historically important computer architectures. Prereq., ECEN 4593 or instructor consent. Same as CSCI 5593.

ECEN 5603-3. Software Project Management. Presents topics and techniques critical to the management of software product development, including estimating, planning, quality, tracking, reporting, team organization, people management, and legal issues. Gives special attention to problems unique to software projects. Prereq., ECEN 4583, 5543, and CSCI 4318, or equivalent industrial experience.

ECEN 5673-3. Distributed Systems. Examines systems that span multiple autonomous computers. Topics include system structuring techniques, scalability, heterogeneity, fault tolerance, load sharing, distributed file and information systems, naming, directory services, resource discovery, resource and network management, security, privacy, ethics, and social issues. Recommended prereq., CSCI 5573 or a course in computer networks. Same as CSCI 5673.

Electromagnetics

ECEN 4614-3. Microwaves and Millimeter Waves. Provides senior students with an overview of devices, circuits, and systems operating in microwave and millimeter wave frequency ranges. Discusses semiconductor devices and vacuum tube sources available at these frequencies, transmission structures and circuit concepts, and system applications. Prereq., ECEN 3410.

ECEN 4634-2. Transmission Laboratory. Performs experiments to verify and extend concepts learned in ECEN 3410, including study of UHF and SHF sources and power measurement; coaxial and waveguide slotted-line impedance measurements and matching; transmission line modeling using the artificial line; time-domain reflectometer applications; s-parameter measurements using a network analyzer; microwave superheterodyne receiver characteristics; and antenna pattern measurements. Prereq., ECEN 3410 or equivalent.

ECEN 5104-3. Computer-Aided Microwave Circuit Design. Emphasizes the design of strip-line and microstrip circuits, using a CAD package. Discusses design of impedance transformers, amplifiers, switches, phase shifters, etc. Assignments include design of typical circuits and their analysis using a microwave circuit analysis program. Laboratory
includes measurements using a network analyzer facility on a typical circuit designed and fabricated by students. Prereq., ECEN 3410.

ECEN 514-3. Waveguides and Transmission Lines. Offers an intermediate-level fields course dealing with guided-wave systems at HF, microwave, and optical frequencies. Considers modern waveguiding structures, including circular metallic waveguides, microstrip transmission lines, and optical waveguides. Additional material may include waveguide losses, excitations of wave-guides, microwave network theory, coupled-mode theory, resonators, and pulse propagation in waveguides. Prereq., ECEN 3410 or equivalent.

ECEN 5124-3. Computer-Aided Microstrip Antenna Design. Studies modeling, analysis, and computer-aided design of microstrip patch antennas and arrays, including circular polarized and active antennas. Emphasizes use of design software developed at CU for practical microstrip antennas and their feed networks. Prereq., ECEN 3410 or equivalent.

ECEN 5134-3. Electromagnetic Radiation and Antennas. Covers elementary antenna source, cylindrical wire antennas, loop antennas, radiation patterns and antenna gain, aperture sources such as horns and dishes, linear arrays, mutual effects, ray formulations, antenna noise and temperature, and transmission formulations. Prereq., ECEN 3410.

ECEN 5144-3. Electromagnetic Boundary Problems. Provides mathematical and physical fundamentals necessary for the systematic analysis of electromagnetic fields problems. Requires some maturity in electromagnetics. Prereq., ECEN 5114 or 5134 or instructor consent.

ECEN 5154-3. Computational Electromagnetics. Provides a computational study of microwave circuits and antennas, using finite-difference, finite-element, and moment methods. Requires students to develop algorithms, write and execute programs, and prepare reports analyzing results. Circuits include waveguides, microstrip lines, and center-fed dipole antennas. Prereq., ECEN 3410.

ECEN 5254-3. Radar and Remote Sensing. Examines active techniques of remote sensing, wave propagation in the Earth's atmosphere, and signal-to-noise ratio in radio and radar. Looks at pulse-doppler, FW-CW, chirp, and synthetic aperture radars. Also includes scattering processes and applications of radar to remote sensing of the atmosphere, sea, and land. Prereqs., ECEN 3300 and 3410, or instructor consent.

ECEN 5264-3. Propagation Effects on Satellite and Deep-Space Telecommunications. Studies the role of propagation effects in design of Earth-space telecommunication systems. Looks at effects dependent upon total electron content (TEC) along path, including Faraday rotation and range delay. Also covers ionospheric and interplanetary scintillation; tropospheric clear-air effects, including refraction, ducting, and range delay; absorption, scatter, and cross polarization due to precipitation and clouds; effects of terrain and multipath propagation on mobile satellite operations; radio noise of atmospheric, terrestrial, and extraterrestrial origin; propagation effects on interference; telecommunications and radio science for deep-space missions; and CCIR models. Prereq., ECEN 3410.

ECEN 5274-3. Radar Science and Techniques. Studies atmospheric radar fundamentals. Examines scattering by precipitation and atmospheric turbulence; long-wavelength radars and the dynamics of the middle and upper atmosphere; design of meteorological and clear-air radars; profiling tropospheric winds, temperature, and humidity by radar and radiometry; and ionospheric sounding using ionosondes and incoherent-scatter radars. Prereq., ECEN 5254 or instructor consent.

Materials and Devices

ECEN 4345-3. Introduction to Solid State. Covers basic crystallography, lattice vibrations, free electron theory, energy band theory, and semiconductor, dielectric, and optical and superconducting materials and devices, emphasizing properties relevant to solid state electronics and optoelectronics. Prereq., ECEN 3400.

ECEN 4375-3 Microstructures Laboratory. Offers experience in monolithic silicon integrated circuit fabrication techniques, including IC layout, pattern compiling and generation, mask making, oxidation, photolithography, diffusion, implantation, metallization, bonding, process analysis, and testing. Includes design project. Prereq., ECEN 3320.

ECEN 5345-3. Introduction to Solid State. Covers basic crystallography; lattice vibrations; free electron theory; energy band theory; and semiconducting, dielectric, and optical and superconducting materials and devices, emphasizing properties relevant to solid state electronics and optoelectronics. Prereq., ECEN 3400.

ECEN 5365-3. Semiconductor Materials and Devices 1. Includes principles of heterojunctions and superlattices, lattice vibrations and phonons, time-dependent quantum mechanics and perturbation theory, the dynamics of electrons in a crystal, the Boltzmann transport equation, current, electron scattering with impurities and phonons, mobility, low- and high-field effects, and applications to conventional and submicron devices. Prereq., ECEN 5355 or instructor consent.

Optics

ECEN 5156-3. Physical Optics. Core course for the optics program. Covers the application of Maxwell's equations to optical waves and media. Topics include polarization, dispersion, geometrical optics, interference, partial coherence, and diffraction. Prereq., ECEN 3410.

ECEN 5166-3. Guided Wave Optics. Builds up the concepts necessary to understand guided wave optical systems. Topics include slab wave-guides, semiconductor lasers, fiber optics, and integrated optics. Prereqs., ECEN 4645 or 5645, and ECEN 5156.

ECEN 5606-3. Optics Laboratory. Consists of 13 optics experiments that introduce the techniques and devices essential to modern...
optics, including characterization of sources, photodetectors, modulators, use of interferometers, spectrometers, and holograms, and experimentation of fiber optics and Fourier optics. Prereq., undergraduate optics course such as PHYS 4510.

ECEN 5686-3. Optical Communication Systems. Studies the design of optical communication systems. Examines free-space, fiber-optic, and turbulent atmospheric channels and modal representation of random fields. Involves coherent and incoherent sources and modulation methods. Also includes modeling and statistical analysis of photodetectors, Poisson and related processes, thermal and shot noise, direct and heterodyne detection, analog and digital transmission, signal-to-noise ratios, error probabilities, and system optimization. Prereqs., ECEN 3410 and 4242, or instructor consent.

ECEN 5696-3. Fourier Optics and Holography. Topics include holography, Fourier transform properties of lenses, two-dimensional convolution and correlation functions, spatial filtering, and optical computing techniques. Also covers coherent and incoherent imaging techniques, tomography, and synthetic aperture radar. Prereqs., ECEN 3300, 3410, and 4106, or instructor consent.

Power
ECEN 4167-3. Energy Conversion 2. Studies the derivation of the dynamic equations of motion of electromechanical systems, e.g., relays, transducers, loudspeakers and microphones, linear and rotary motion machines based on variational principles and basic force laws (e.g., Newton’s law, Kirchoff’s laws, etc.). Looks at equivalent circuits in abc and dqo coordinates for AC and DC machines. Discusses conditions under which an electromagnetic torque can be produced. Applies theory to the most important modes of steady-state and transient operation of electrical energy converters. Prereq., ECEN 3170.

ECEN 4517-2. Power Laboratory 1. Explores basic concepts concerning electromagnetic energy conversion principles as related to practical devices. Provides an overview of magnetics, transformers, and rotating machinery. Emphasizes measurement techniques in power circuits. Prereq., ECEN 3170.

ECEN 5737-3. Adjustable-Speed AC Drives. Presents unified treatment of complete electrical drive systems: mechanical load, electrical machine, power converter, and control equipment. Emphasizes induction, synchronous, and permanent-magnet drives. Uses simulation programs (e.g., SPICE, Finite Element/Difference Program) to simulate drive system components (e.g., gating, inverter, electric machine). Prereq., ECEN 3170.

ECEN 5747-3. Synchronous Machines. Reviews equivalent circuit of synchronous machines in abc and dqo coordinates; phasor diagram; steady-state, transient and subtransient operating conditions; calculation and physical interpretation of reactances; and application of theory to short circuits, synchronization, damping torques, hunting, governor action, starting, etc. Discusses standard test procedures. Prereq., ECEN 3170.

ECEN 5797-3. Power Electronics 1. Introduces use of repetitively switched electronic circuits for conversion and regulation of electrical power. Analyzes basic converters and their steady-state operations. Provides dynamic modeling and analysis using state-space averaging method. Also involves fundamentals of inductor, transformer, and semiconductor switch design. Prereqs., ECEN 3170 and 3250, or instructor consent.

VLSI CAD Methods

ECEN 6139-3. Synthesis of VLSI Systems 2. Studies synthesis and optimization of sequential circuits, including retiming transformations and “don’t care” sequences. Gives attention to hardware description languages and their application to finite state systems. Also includes synthesis for testability and performance, algorithms for test generation, formal verification of sequential systems, and synthesis of asynchronous circuits. Prereqs., ECEN 5129, 5139, and CSCI 5454.

Engineering Management

EMEN 4030-3. Project Management Systems. Acquaints the student with multidisciplinary aspects of project management, including the relationship between schedule,
project cost, and performance. Uses qualitative and quantitative tools to facilitate project management skills.

EMEN 4040-3. Quality Improvement and Value Creation. Addresses quality improvement and value creation as a result from an appreciation for a system, understanding existing and emerging customer needs and wants, designing products or services that meet those needs/wants, and developing processes that produce that product/service. Provides an overview of philosophies, principles, strategies, economic foundations, and methodologies for quality improvement.

EMEN 4100-3. Business Methods and Economics for Engineers. Covers cost concepts, financial statements, and the company economic environment. Includes concepts and methods of analysis of the time value of money, comparison of project alternatives before and after taxes, cash flows, replacement analysis, risk management, and inflation.

EMEN 4500-3. Operations Management. Provides models, methods, and case studies illustrating the management of modern manufacturing operations. Topics include systems and process management, facilities management, equipment management, materials management, and labor management. Same as EMEN 5500.

EMEN 4820-3. Engineering Entrepreneurship. Analyzes organizational elements of the entrepreneurial corporation and gives some understanding of how such an organization functions, including the relationship between products of the corporation and the corporation itself, interaction between the engineering functions and other organizational elements of the corporation, how the product development activity is impacted by various functions of the corporation, and an introduction to various financial statements used in business. A multi-phase student team project illustrates the concepts covered.

EMEN 4825-3. Entrepreneurial Business Plan Preparation. Instructs students in the necessary elements of a business plan and how to prepare a complete well-written plan for an entrepreneurial business venture. Students work in interdisciplinary business-engineering five-person teams.

EMEN 4830-3. Special Topics. Recommended precourse, EMEN 5010 or instructor consent. Same as EMEN 4825.

EMEN 5040-3. Quality, Strategy, and Value Creation. The fourth required EMEN course. Rooted in the teachings of W. Edwards Deming, it establishes the foundations to understand the urgency for quality improvement as an executive priority. Covers the systems approach, theory of variation, theory of knowledge, and psychology relating to quality improvement within the global setting. Provides links to continuing discovery in the knowledge age and within the learning organization.

EMEN 5042-3. Methods for Quality Improvement. Addresses today’s global economic environment in that product, service, and process improvement are the platforms for innovation and value creation. Examines methods for linking customer needs and wants with products and services, as well as process development, control, and improvement. Methods covered include quality function deployment, statistical process control, and design of experiments.

EMEN 5050-3. Leadership and Management. The fifth core EMEN course. Gives working engineers background in leadership and management theory and enables them to develop practical skills in leading and managing. Topics include managerial styles, organizational factors, ethics, management of change, and conflict resolution.

EMEN 5300-3. Management of Research and Development. Explores how research and development contribute to technological innovation and how they are conducted and managed in American universities, government laboratories, and industry. Topics include research and development strategies, innovation and creativity concepts, the research and development process, and management of research and development organizations and personnel.

EMEN 5500-3. Operations Management. Recommended precourse, EMEN 5010 or instructor consent. Same as EMEN 4500.

EMEN 5825-3. Entrepreneurial Business Plan Preparation. Same as EMEN 4825.

EMEN 6800-3. Master of Engineering Project. Students seeking the M.E. degree must complete an individual capstone project covering an original, creative investigation that may be related to the student’s professional work. A member of the graduate faculty supervises the student.

Engineering Physics

See Physics in the College of Arts and Sciences for a listing of courses.

General Engineering

GEEN 1300-3. Introduction to Engineering Computing. Introduces use of computers in engineering problem solving, processing of data, and presentation of information. Emphasizes algorithm and data structure using a modern version of the Fortran programming language. Students also learn how to use packaged software such as spreadsheets to solve typical engineering problems.

GEEN 1350-1. Calculus 1 Work Group. Provides problem-solving assistance to students enrolled in APPM 1350. Student groups work in collaborative learning environment. Student participation is essential. Grading under pass/fail option only; this course cannot be used to meet engineering degree requirements. Coreq., APPM 1350 or MATH 1300.

GEEN 1360-1. Calculus 2 Work Group. Provides problem-solving assistance for students enrolled in APPM 1360. Conducted in a collaborative learning environment. Student work groups solve calculus problems with assistance of facilitator. Grading under the pass/fail option only; course cannot be used to meet engineering degree requirements. Coreq., APPM 1360 or MATH 2300.

GEEN 1400-3. Engineering Projects. Provides undergraduate engineering students with opportunity to apply mathematical and scientific skills in interdisciplinary engineering projects. Students work in teams on engineering projects under guidance of engineering faculty.

GEEN 1510-2. Self Management and Leadership Principles 1. Develops group cohesiveness, mutual support, multicultural awareness, and leadership skills. Topics include collaborative learning, motivation, time management and study skills, personal assertiveness, and career awareness. Open to new freshmen and transfer
students. Controlled enrollment through the SEED office.

GEEN 2400-3. Invention and Innovation. Introduces engineering and product innovation. Students explore the invention process, learn valuable engineering skills, and focus on aspects of entrepreneurship such as patenting and intellectual property considerations, marketing, and raising capital. Working in teams, students design, build, and test a potentially commercial product. Prereq.: PHYS 1110.

GEEN 2850 (1-3). Independent Study.

GEEN 3500-0. Cooperative Education. Assists students in maintaining enrollment at the university when participating in a previously arranged college-sponsored cooperative education program.

GEEN 4850 (1-3). Independent Study.

Humanities in Engineering

HUEN 1100-3. History of Technology. Places engineering and technology in a cultural, social, and historical context. Examines development of technology as a key to history of civilization in a comparative perspective. Technical innovation is made intelligible in terms of intellectual traditions, as a response to economic and political demands, and as a determinant of social change.

HUEN 1125-3. Exploring the Humanities. Offers coherent introduction to modes of thought found within humanities and social sciences. Course instructors come from academic disciplines in the College of Arts and Sciences and challenge engineering students to think from a variety of frames of reference. Not offered every year.

HUEN 3100-3. Humanities for Engineers 1. First course in four-semester sequence of Herbst Humanities Program for engineering students. Discusses culturally and historically significant readings in small group seminars. Prereqs.: junior standing and program approval.

HUEN 3200-3. Humanities for Engineers 2. Continuation of HUEN 3100. Discusses culturally and historically significant readings in small-group seminars. Prereq.: HUEN 3100.

HUEN 4100-3. Humanities for Engineers 3. Continuation of HUEN 3100 and 3200. Focuses on humanities themes or texts of increased complexity, often in comparative perspective, including nonliterary works. Prereqs.: HUEN 3100 and 3200.

HUEN 4200-3. Humanities for Engineers 4. Continuation of HUEN 4100. Provides opportunity to pursue a variety of humanistic themes related to Herbst Humanities Program. Prereq.: HUEN 4100.

Mechanical Engineering

Math

MCEN 1000-1. Introduction to Mechanical Engineering. Introduces facets of mechanical engineering including history of the profession, mechanical engineering curriculum, industries in which mechanical engineers practice, and expectations and tools for academic success. Students participate in hands-on experiences, visit industry, make oral presentations, meet faculty and practicing professionals, and develop a goals statement.

MCEN 4030-3. Computational Methods. Studies numerical techniques for solution of commonly encountered engineering problems. Includes methods for solving algebraic, ordinary, and partial differential equations; curve fitting; numerical integration; and optimization. Also involves extensive computer use. Prereqs.: GEEN 1300 and APPM 2360.

MCEN 4120-3. Engineering Statistics. Focuses on probability and statistics, emphasizing engineering applications. Studies frequency distributions; statistical hypotheses and estimation; nonparametric, linear regression, and correlation; nonlinear and multiple regression; analysis of variance; and quality control. Prereq.: APPM 2360.

Fluids

MCEN 3021-3. Fluid Mechanics. Examines fundamentals of fluid flow with application to engineering problems. Explores fluid statics and kinematics; conservation equations for mass, momentum, and energy; Bernoulli and Euler equations; potential flow; laminar and turbulent viscous boundary layers; laminar and turbulent pipe flow; and compressible fluid flow. Prereqs.: APPM 2360 and MCEN 2023.

MCEN 4131-3. Air Pollution Control Engineering. Introduces air-quality regulations, meteorology, and modeling; methods for controlling major classes of air pollutants, including particulate matter and oxides of sulfur and nitrogen; and control technology for industrial sources and motor vehicles. Requires interdisciplinary design projects. Prereq.: MCEN 3021 or equivalent. Same as MCEN 5131.

MCEN 4141-3. Indoor Air Pollution. Investigates air quality in indoor environments, including residences, commercial buildings, and transportation. Studies pollutants such as radon, environmental tobacco smoke, bioaerosols, and volatile organic compounds. Other topics include health effects, ventilation, modeling, instrumentation, and design of appropriate control technology. Prereq.: MCEN 3021 or equivalent. Same as MCEN 5141.

MCEN 5021-3. Introduction to Fluid Dynamics. Focuses on physical properties of gases and liquids, and kinematics of flow fields. Analyzes stress; viscous, heat-conducting Newtonian fluids; and capillary effects and surface-tension-driven flow. Other topics include vorticity and circulation, ideal fluid flow theory in two and three dimensions, Schwartz–Christoffel transformations, free streamline theory, and internal and free-surface waves. Coreq.: MCEN 5020 or equivalent.

MCEN 5041-3. Viscous Flow. Highlights exact solution of Navier–Stokes equations and fundamentals of rotating fluids. Considers Low Reynolds number flow; similarity solutions; viscous boundary layers, jets, and wakes; and unsteady viscous flow. Prereq.: MCEN 5021 or equivalent.

MCEN 5121-3. Compressible Flow. Applies energy, continuity, and momentum principles to compressible flow. Topics include normal and oblique shocks; Prandtl–Meyer expansion; methods of characteristics; and one-, two-, and three-dimensional subsonic, supersonic,
and hypersonic flows. Prereq., MCEN 5021 or equivalent.

MCEN 5131-3. Air Pollution Control Engineering. Same as MCEN 4131.

MCEN 5141-3. Indoor Air Pollution. Same as MCEN 4141.

Thermal

MCEN 3012-3. Thermodynamics. Explores fundamental concepts and basic theory, including first and second laws of thermodynamics, properties, states, thermodynamic functions, cycles, mixtures, and chemical and phase equilibrium. Prereq., MCEN 3012 and 3021.

MCEN 3042-3. Thermal Systems Design. Covers thermodynamics and principles of thermal systems; performance and analysis of thermal system components; system simulation; and thermal system design methodology. Includes a significant open-ended design project.

MCEN 4122-3. Engineering Thermodynamics 2. Offers advanced topics and applications, including thermodynamics of state, entropy and probability, thermodynamic cycles, and reacting and nonreacting mixtures. Provides application to engines and power generation by conventional and alternative energy technologies. Most assignments are design oriented. Prereq., MCEN 3012.

MCEN 4162-3. Energy Conversion. Examines common energy-conversion methods and devices. Topics include power-cycle thermodynamics, turbocompressor and expander processes, combustion systems, and applications and limitations of direct energy-conversion systems. Prereq., MCEN 3012.

MCEN 5022-3. Thermodynamics. Offers a comprehensive presentation of macroscopic and statistical thermodynamics and representative applications, from an axiomatic formulation designed to develop and clarify thermodynamic property relationships. Includes thermodynamic functions and derivatives, quantum mechanics, kinetic theory of gases, black body radiation, chemical equilibrium, and molecular spectroscopy.

MCEN 7122-3. Combustion Phenomena. Applies multicomponent fluid equations of motion and chemical thermodynamics to a variety of combustion problems. Covers droplet combustion, premixed and diffusion flames, boundary layer combustion, detonation wave theory, topics related to internal combustion engines, and liquid and solid rockets. Prereq., MCEN 3012 and 3021.

Solids

MCEN 2023-3. Statics and Structures. Covers vector algebra; equilibrium of particle systems and rigid bodies; free-body diagrams and equilibrium of rigid bodies; distributed forces; analysis of structures; friction; tension, compression and shear; axially-loaded members—deformation and stress; and virtual work. Introduces matrix analysis of truss structures. Lectures and homework assignments involve computer work and hands-on laboratory work in the Integrated Teaching and Learning Laboratory (ITLL), documented by written reports. Prereq., APPM 1360.

MCEN 3043-3. Dynamics. Covers dynamic behavior of particle systems and rigid bodies; 2-D and 3-D kinematics and kinetics; impulse, momentum, potential and kinetic energy; and work, collision, and vibration. Lectures and homework assignments involve computer work and hands-on laboratory work in the ITLL, documented by written reports. Prereq., MCEN 2023 and APPM 2350.

MCEN 4163-3. Introduction to Continuum Mechanics. Considers kinematics of deformable media, including mass, momentum and energy conservation principles, constitutive equations for linear elastic solids and Newtonian viscous fluids, and elements of tensor notation. Prereqs., MCEN 3043 and APPM 2360.

MCEN 4173-3. Finite Element Analysis. Introductory course covering the theory behind and applications of the finite element method as a general and powerful tool to model a variety of phenomena in mechanical engineering. Applications include structural mechanics, mechanics of elastic continua, and heat conduction. Prereqs., MCEN 2023 and 2063, or equivalents. Same as MCEN 5173.

MCEN 4183-3. Mechanics of Composite Materials. Introduces various kinds of composite materials, composite fabrication techniques, the physical and mechanical behavior of composites, and analytical and experimental methodologies. Prereq., MCEN 2063 and 3024, or equivalents. Same as MCEN 5183.

MCEN 5023-3. Solid Mechanics 1. Introduces stress, strain, and motion of a continuous system. Discusses material derivative; fundamental laws of mass, momentum, energy, and entropy; constitutive equations and applications to elastic and plastic materials. Prereq., MCEN 2063 or equivalent; coreq., MCEN 5020 or equivalent.

MCEN 5143-3. Dynamics. Explores elements of vector analysis, particle motion, kinematics of a rigid body, rotating axes, rigid body motion, and Euler’s equations. Introduces analytical mechanics, Hamilton’s principle, and Lagrange’s equations for holonomic and nonholonomic systems. Prereq., MCEN 3043 or equivalent; coreq., MCEN 5020 or equivalent.
MCEN 5173-3. Finite Element Analysis. Same as MCEN 4173.

MCEN 7123-3. Dynamics of Continuous Media. Reflects upon derivation of wave equations from the basic equations of dynamic elasticity. Topics include propagation of elastic waves in infinite and partially bounded media, Rayleigh waves and Love waves, Pochhammer solution for a rod, and waves in plates and in layered and anisotropic media. Prereqs., MCEN 5020, 5040, and 5043, or equivalents. Same as PHYS 6680 and GEOl 6680.

MCEN 7143-3. Advanced Theory of Elasticity. Studies variational principles and three-dimensional solutions. Examines concentrated and line loads in complete and half spaces including problems of Kelvin, Boussinesq, and Mindlin. Involves transform techniques, contact stresses, anisotropic and nonlinear elasticity, and thermoelastic problems. Prereq., MCEN 5043 or equivalent.

MCEN 7163-3. Theoretical Dynamics. Looks at tractable problems of particle and rigid body dynamics. Studies dissipative and nonholonomic systems, the principle of least action, the Hamilton-Jacobi equation, geometric theory, and Liapunov’s method. Prereqs., MCEN 5020, 5040, and 5143, or equivalents.

Materials

MCEN 2024-3. Materials Science. Structure, properties, and processing of metallic, polymeric, ceramic, and composite materials. Perfect and imperfect solids; phase equilibria; transformation kinetics; mechanical behavior; material degradation. Approach incorporates both materials science and materials engineering components.

MCEN 4124-3. Mechanical Behavior of Materials. Addresses the relationship between material structure and the fundamental processes of deformation, yield, and fracture. Examines elements of elasticity theory, introduction to plasticity, and formulation of failure criteria. Studies basic deformation processes in terms of dislocation mechanics and macroscopic mechanical behavior. Takes into consideration the influence of compositional and processing strengthening mechanisms on mechanical properties. Prereqs., MCEN 2063 and 3024.

MCEN 5024-3. Materials Science 1: Principles. Provides an unified presentation of scientific principles applicable to all materials systems. Topics include concepts of material structure from localized interatomic bonding to short- and long-range order in crystalline and noncrystalline solids; the nature and consequences of imperfections in solids; phase equilibria; and transformation kinetics. Considers metallic, polymeric, and ceramic materials. Prereq., MCEN 2024 or equivalent.

MCEN 5044-3. Materials Science 2: Behavior. Applies principles of materials science developed in MCEN 5024 to the study of physical and mechanical behavior of metals, polymers, ceramics, and their composites. Emphasizes structure-property relationships, use of primary and secondary processing steps to control material behavior, and influence of environment on in-service performance. Prereq., MCEN 5024 or equivalent.

MCEN 5124-3. Plasticity and Creep. Highlights inelastic deformation of materials such as metals, alloys, glasses, composites, polymers, etc., from the phenomenological and structural point of view. Involves yield surface and associated flow laws and isotropic and kinematic work-hardening. Also includes case studies of plastic and creep deformations in engineering materials. Prereq., MCEN 4124, 5044, or equivalent.

MCEN 5164-3. Fracture. Focuses on basic mechanisms controlling fracture in brittle materials, reduction of capacity for plastic deformation in engineering materials used at high-strength levels, and selection of materials in terms of toughness as well as strength. Prereq., MCEN 4124, 5044, or equivalent.

MCEN 6184-3. Structure and Properties of Polymers. Emphasizes the relationship between molecular structure and macroscopic properties. Structural aspects include chain conformation, configuration, and the crystalline and amorphous states. Discusses physical and mechanical properties with a focus on solution and phase behavior, transitions of bulk polymers, and rubber and viscoelastic behavior. Prereq., graduate standing and MCEN 5024, 5044, or equivalent.

Design

MCEN 1025-3. Computer-Aided Drawing and Fabrication. Discusses basic techniques in mechanical drawing and subsequent transformation into a product. Looks at pictorial representation (orthographic projection, isometric views, dimensioning, work drawings), computer-aided drafting, and computer-aided manufacturing. Uses CAD software and a CNC machine for a design/manufacturing project.

MCEN 4045-3. Mechanical Engineering Design Project 1. First part of a two-course capstone design experience in mechanical engineering. Covers problem definition, determining design requirements, alternative design concepts, engineering analysis, proof-of-concept prototype, and CAD drawings. Students make several oral design reviews, a final design presentation, and prepare a written report. Prereq., MCEN 3025. Coreq., MCEN 4026.

MCEN 4085-4. Mechanical Engineering Design Project 2. Second part of a two-course capstone design experience in mechanical engineering. Includes refinement of prototype, design optimization, fabrication, testing, and evaluation. Students orally present the final design and prepare a written report and operation manual for the product. Prereqs., MCEN 4026 and 4045.

MCEN 4125-3. Introduction to Computer-Aided Design. Reviews computer languages, programming, and special requirements. Covers linear and nonlinear programming, matrix methods and numerical techniques, constraints, simulation, graphical displays, and optimization methods. Applies knowledge to design of mechanical systems. Prereqs., GEEN 1300 or CSCI 1300, and APPM 2360.

MCEN 5045-3. Design for Manufacturability. Topics include general design guidelines for manufacturability; aspects of manufacturing processes that affect design decisions; design rules to maximize manufacturability; statistical considerations; value engineering and design for assembly (manual, robotic, and automatic). Presents case studies of successful products exhibiting DFM. Prereq., MCEN 4026 or equivalent.
MCEN 5125-3. Optimal Design of Mechanical Components. Applies linear and nonlinear optimization methods to the design of mechanical components and systems. Examines unconstrained and constrained optimization as well as formulation of objective functions, including cost, weight, response time, and deflection. Applies knowledge to gears, springs, cams, and linkages. Prereqs., MCEN 3025 and 4030 or equivalent.

Manufacturing and Systems

MCEN 4026-3. Manufacturing Processes and Systems. Studies manufacturing processes for metals, polymers, ceramics, and composites, as well as manufacturing systems that integrate these processes. Highlights forming and cutting, joining and assembling, process integration, inventory control, information handling, system management, system simulation, and optimization. Prereq., MCEN 2024.

MCEN 4146-3. Computers in Manufacturing. Reflects upon design, creation, testing, and operation of computer models for manufacturing, production, and management. Topics include renewal processes, statistical validation and simulation, policy comparison and manufacturing, optimization, and decision making. Prereq., GEEN 1300, CSCI 1200, or CSCI 1300.

MCEN 4166-3. Robotics. Explores design principles of robot manipulators, including grippers, control systems, sensing techniques, and robot applications. Prereq., MCEN 3043.

MCEN 5066-3. Principles and Practices of World Class Manufacturing. Introduces manufacturing principles and practices that are essential to competing successfully in a global environment. Topics include manufacturing as a competitive tool, total quality management, process control, benchmarking, total productive maintenance, just in time, design of experiments, flexible manufacturing, and case studies.

MCEN 5636-3. Micro-electro-mechanical Systems. Addresses issues of micro–electro-mechanical systems (MEMS) modeling, design, and fabrication. Emphasizes the design and fabrication of sensors and actuators due to significance of these devices in optics, medical instruments, navigation components, communications, and robotics.

Miscellaneous

MCEN 3017-3. Circuits and Electronics. Covers analysis of electric circuits using Ohm’s law, network reduction, node and loop analysis, Thévenin’s and Norton’s theorems, DC and AC signals, transient response of simple circuits, operational amplifiers, and basic logic circuits. Includes a lab in basic electrical instruments, signal measurements, transformers, and operational amplifiers. Prereq., APPM 2350 or equivalent.

MCEN 3027-3. Measurements Laboratory. One lecture and six hours of lab per week. Discusses principles of engineering measurements. Emphasizes methods and transducers for measuring various physical quantities such as temperature, pressure, flow rate, strain, and vibration. Analyzes experimental data and accuracy, error, and uncertainty. Prereq., APPM 2360, PHYS 1140, UWRP 3030, and ECEN 3000.

MCEN 4027-3. Mechanical Engineering Laboratory. One lecture and six hours of lab per week. Gives students the opportunity to participate in laboratory projects that extend over several weeks. Takes experiments from solid mechanics, fluid mechanics, thermal science, and materials science. Emphasizes planning an experiment, applying sound experimental procedures, keeping proper records, and communicating results orally and in lab reports. Includes a library research project that is presented orally to the class. Prereqs., MCEN 2063, 3022, 3024, and 3027.

MCEN 4197-1. Senior Seminar. Presents a broad range of professional opportunities available to graduating seniors through discussions with practicing engineers. Prereq., senior standing.

MCEN 5027-0. Graduate Seminar. Offers weekly presentations by visiting speakers, faculty, and students.

Special Topics

MCEN 1208–1298 (1-3). Special Topics in Mechanical Engineering. Subject matter to be selected from topics of current interest. Credit to be arranged. Prereq., instructor consent.

MCEN 2208–2298 (1-3). Special Topics in Mechanical Engineering. Subject matter to be selected from topics of current interest. Credit to be arranged. Prereq., instructor consent.

MCEN 3208–3298 (1-3). Special Topics in Mechanical Engineering. Subject matter to be selected from topics of current interest. Credit to be arranged. Prereq., instructor consent.

MCEN 4208–4298 (1-3). Special Topics in Mechanical Engineering. Subject matter to be selected from topics of current interest. Credit to be arranged. Prereq., instructor consent.

MCEN 4848–4898 (1-6). Independent Study. Subjects arranged in consultation with undergraduate advisor to fit the needs of the particular student. Prereq., senior standing.

MCEN 5208–5298 (1-4). Selected Topics. Credit hours and subject matter to be arranged.

MCEN 5848–5898 (1-6). Independent Study. Available only through approval of graduate advisor. Subjects arranged to fit the needs of the particular student. Prereq., graduate standing.

MCEN 6208–6298 (1-4). Selected Topics. Credit hours and subject matter to be arranged.

MCEN 6848–6898 (1-6). Independent Study. Available only through approval of graduate advisor. Subjects arranged to fit the needs of the particular student. Prereq., graduate standing.

MCEN 7208–7298 (1-4). Selected Topics. Credit and subject matter to be arranged.

MCEN 7848–7898 (1-6). Independent Study. Available only through approval of graduate advisor. Subjects arranged to fit needs of the particular student. Prereq., graduate standing.

Thesis

MCEN 6949 (variable credit). Master’s Degree Candidacy.

MCEN 6959 (variable credit). Master’s Thesis.

Telecommunications

TLEN 5120-3. Contemporary Issues in Telecommunications Policy. Lectures, selected readings, and class discussions of major issues in telecommunications policy. Stresses a multidisciplinary approach and explores basic values and goals for telecommunications policy making. Reviews existing policy structure and critiques. Draws topics from all areas of telecommunications policy—mass communications, common carrier, and spectrum management.

TLEN 5130-3. Strategic Planning in Telecommunications. Provides a clear understanding of basic trends, dynamic forces of change, and key planning and management techniques for coping with the field of telecommunications. Considers technological innovations, market and regulatory shifts, especially those related to privatization, competition, and liberalization. Also focuses on tools and methodologies for strategic planning and management, forecasting and modeling, and heuristic and analytic techniques used in strategic planning for telecommunications products and services. Case studies emphasize practical aspects of planning and management while case projects allow practice of these techniques.
TLEN 5190-3. Telecommunications Standards. Explores the importance of telecommunication standards from both technical and non-technical perspectives. Topics include frameworks and methodologies for assessing standardization issues, key international and domestic telecommunication standards organizations, and current issues in the telecommunication standards setting environment. Students conduct research on contemporary telecommunication standards issues and prepare relevant papers and reports. Special topics supplement the main topics discussed in the course.

TLEN 5300-3. Telecommunications Theory and Applications. Examines mathematical and physical theory of telecommunications. Deals with the fundamentals related to a wide range of topics including physical units, trigonometric functions, sine waves, logarithms, indices, decibels, complex numbers, elementary calculus, elementary probability, and power and circuit analysis. Provides technical overview and scope of telecommunications technology.

TLEN 5310-3. Telecommunications Systems. Core class required of all telecommunications degree students. Examines current, future, and basic technical concepts and related telecommunications operations; provides an in-depth look at basic telecommunications technology and terminology; and introduces voice and data networks, signaling, and modulation/multiplexing. Topics include spectral analysis of signals, signaling, modulation (AM, FM, PM, and PCM), digital coding/modulation, line coding, multiplexing, transmission and switching systems, OSI model, and traffic analysis. Prereq., TLEN 5300 or instructor consent.

TLEN 5330-3. Data Communications 1. Introduces data communications. Defines large segments of terminology, standards, design considerations and processes, models, and systems. Subdivided into four basic segments that support the interconnection and transmission of digital information, including analog, digital, networks, and protocols. Prereq., TLEN 5310 or instructor consent.

TLEN 5340-3. Digital Telecommunication Networks. Reviews digital networks providing voice and data communications over a wide area. Topics include digital transmission, digital switching, signaling, digital loops, and the requirements for those capabilities. Also covers ISDN, broadband ISDN, frame relay, asynchronous transfer mode (ATM), SONET, and signaling system no. 7 in detail. Packet speech services over frame relay and Internet protocol (IP) and network security are also introduced.

TLEN 5350-3. Satellite Communication Systems. Discusses fundamental concepts and parametric design parameters of communications systems. Emphasizes system through-put, sensitivity and selection of satellite orbit, orbital mechanics, frequency bands, modulation, coding, multiple-access schemes, on-board switching and processing, link budgets, and user terminal characteristics. Examines current and planned commercial satellite communication systems and makes comparisons to future needs and technologies. Aimed at a fundamental understanding of the design drivers of satellite communication system performance. Prereq., TLEN 5310 or instructor consent.

TLEN 5360-3. Telephone Systems. Gives students an understanding of the technological manifestations, marketplace, and regulatory arenas surrounding today’s telephone industry. Presents switching and transmission system technologies in moderate depth. Explains and applies principles in traffic theory along with telephone system design and evaluation techniques. Presents Key Systems, PBXs, and modern inside wiring schemes. Prereq., TLEN 5310.

TLEN 5400-3. Traffic and Queuing Theory. Provides analysis and methods of determining equipment requirements for telecommunication systems. Provides students with a fundamental understanding of traffic engineering concepts and an introduction to engineering data networks. Emphasizes practical application of mathematical models for determining telecommunications equipment requirements and expected blocking and/or delays. Prereq., TLEN 5310 or instructor consent.

TLEN 5420-3. Optical Communications. Addresses the engineering and cost benefits of optical fiber systems. Discusses and defines important engineering parameters and applies parameters to typical systems. Gives attention to certain matters affecting trade and commerce. Covers limitations and capabilities of certain components. Analyzes typical loss budgets and dispersion budgets, discusses cost-benefit analysis, and makes some comparison to other communication systems. Prereq., TLEN 5310.

TLEN 5460-3. Telecommunication Systems Laboratory. Provides hands-on experience in speech, hearing, analog voice channels, and copper wire drops, circuit and packet switched asynchronous data, quantizing and coding of analog signals, digital transmission systems, digital private branch exchange switching systems, Local Area Network installation and management, video teleconference and computer screen sharing, fiber optic splicing and transmission, and Integrated Services Digital Networks. Experiments demonstrate the relevance of such concepts as bandwidth, noise interference, channel capacity, computer communications, and digital network switching and transmission. Prereq., TLEN 5310 and 5330, or instructor consent.

TLEN 5470-3. Data and Computer Networks. Maintains a real-world approach to networking computers and other data communications devices in use today or that have been used in the past. Guest speakers from Colorado companies discuss the nature, history, rationale, and performance of networks used by their companies. Includes both transport networks and processors and communications software that run with them; covers networks ranging from the simplest transport network to “application” networks like SNA, and deals with operational issues such as the performance monitoring and network management. Prereq., TLEN 5310 or instructor consent.

TLEN 5500-3. Cable Television. Provides an in-depth and interdisciplinary survey and analysis of the cable industry from the perspectives of society, policy, business/economics, and technology. Examines from an historical, current, and future viewpoint the roles, responsibilities, and impacts of cable on entertainment, education, business, and society as a whole. Further investigates other growing forms of video outside today’s largely entertainment-oriented systems. Scientific visualization, CAD/CAM, Virtual Reality, Image Processing, and interactive video systems are included. Prereq., TLEN 5310 or instructor consent.

TLEN 5510-3. Wireless and Cellular Communications. Presents in detail the technologies and architectures employed in cellular and other modern wireless systems and discusses regulatory and other industry issues. Major topics include radio technology, multiple access techniques, analog and digital cellular telephony, and personal communications systems. Prereq., TLEN 5310 or instructor consent.

TLEN 5600-1. Telecommunications Seminar. Provides a series of weekly lectures with questions and discussion. Many of the speakers are nationally known experts in telecommunications. Fall and spring seminars are for 1-credit hour each, and attendance is required.

TLEN 5700-1. Capstone Seminar/Project.

TLEN 5920-3. Independent Study—Advanced Telecommunications Laboratory. Gives students the opportunity to complete a major telecommunications research project related to telephones, videos or computers, or data communications, with approval of the laboratory director. Students provide written and oral presentations of project results.

TLEN 6940 (1-3). Candidate for Degree.

TLEN 6960-3. Telecommunications Project.
Special Topics

TLEN 5106-3. International Telecommunications Policy. The ultimate use of technology depends on a number of variables, other than purely technical; political factors must also be considered. Institutions that affect the use of telecommunications are introduced, including various parts of the federal government such as the Department of Commerce, the FCC, and the Department of State. The major thrust of the seminar, however, is the role of international institutions, including the ITU, UNESCO, and various satellite organizations such as INTELSAT. Same as PSCI 5106.

TLEN 5831-3. Special Topics: The Future of Telecommunications. Explores the development of telecommunications in the past, present, and especially the future. Examines advanced applications such as HDTV, 3DTV, holovision, supercomputer data relays, telework, telehealth, tele-education, the telecity, teletelerobotics, and mobile communications. Explores advanced technologies such as repeaterless fiber optic cables, optoelectronic switching and computing, and infrared transmission and advanced satellite concepts. Discusses information overload, time compression, the 168-hour work week, human-machine interface, telewar, and electronic immigration and telecolonies. Creates an analytical framework for understanding how political changes and regulatory processes shape and even stimulate technological changes.

TLEN 5832-3. Engineering Economics. Discusses tools for financial and management decisions. Introduces techniques for making project and investment decisions. Topics include value of money, financial mathematics (present/annual worth and internal rate-of-return), analysis of alternatives, inflation, depreciation and taxes, and replacement analysis. Briefly introduces the "real options" analysis, which is the state-of-the-art technique to handle investment dynamics and uncertainties. Topics covered in this section include risks and uncertainty, sensitivity analysis/decision tree analysis (DTA), the cost of capital, capital asset pricing model (CAPM), and real options.

TLEN 5833-3. UNIX/C/C++. Gives students an understanding of the UNIX environment and of how to successfully do software development on it. Uses the C programming language and the object-oriented languages C++ and Objective-C. Uses techniques for source control, and stresses debugging aids. Teaches paradigms that are applicable in many computer environments.

TLEN 5835-3. Economics/Policy/Management Aspects of Telecommunications. Core curriculum course addresses key nontechnical aspects of telecommunications. Includes aspects of deregulation, common carriers, tariffs, basic standards, and management.

TLEN 5836-3. Special Topics: Law and Regulation. Addresses the issue that while technology is a necessary antecedent to mass communication, a society’s laws ultimately determine how the technology will be developed and how wide its reach will be. Examines past and current experiments by state and federal legislators, regulators, and the judiciary in directing the development and range of communications technology.

TLEN 5837-3. Special Topics: Management and Information Technology. Discusses trends in organizational management and information technology as they relate to new business tactics and emerging/converging communications, computing, and knowledge technologies. Focuses on business issues and how technology influences markets, economics, and business development worldwide.

TLEN 5838-3. Special Topics: Telecommunications Economics (Pricing). Addresses the foundation of economics as applied to the telecommunications industry. Examines pricing and costing methods and practices and their impact on specific telecommunications policies. Integrates concepts with a discussion of the economic history of the industry.

TLEN 5839-3. Special Topics: Advanced Topics in Telecommunications Economics (Regulatory). Addresses alternative means of regulating the telecommunications industry including rate base, rate of return regulation, and a variety of incentive regulations, from both the theoretical and applied aspects. The privatization section addresses when telecommunications entities should remain under government ownership or be privatized and if privatized, how regulated. Examines the UK and Japan cases in detail.

Aerospace Engineering Sciences

CHARBEL FARHAT, Department Chair; Professor. D.E., Ecole Centrale, Paris, France; M.S., Ph.D., University of California, Berkeley.

BRIAN M. ARGROW, Associate Professor. B.S., M.S., Ph.D., University of Oklahoma.

PENINA AXELRAD, Associate Professor. B.S., M.S., Massachusetts Institute of Technology; Ph.D., Stanford University.

MARK J. BALAS, Professor. B.S., University of Akron; M.A., University of Maryland; Ph.D., University of Denver.

CHARLES A. BARTH, Professor Adjunct. B.S., Lehigh University; M.A., Ph.D., University of California, Los Angeles.

ALFRED J. BEDARD, Associate Professor Adjunct. B.S., Boston College; M.S., Ph.D., University of Colorado.

SEDAT BIRINGEN, Professor. B.S., M.S., Robert College, Turkey; Diploma, von Karman Institute for Fluid Dynamics; D.Sc., University of Brussels.

GEORGE H. BORN, Professor. B.S., M.S., Ph.D., University of Texas.

ROBERT D. CULP, Professor. B.S., University of Oklahoma; M.S., Ph.D., University of Colorado.

JUDITH CURRY, Professor. B.S., Northern Illinois University; Ph.D., University of Chicago.

WILLIAM EMERY, Professor. B.S., Brigham Young University; Ph.D., University of Hawaii.

CARLOS A. FELIPPA, Professor. B.S., Universidad Nacional de Cordoba, Argentina; M.S., Ph.D., University of California, Berkeley.

JEFFREY FORBES, Professor. B.S., University of Rhode Island; M.S., University of Illinois; Ph.D., Harvard University.

PETER FREYMUTH, Professor. M.S., Ph.D., Technische Universitat, Berlin.

DONNA SUE GERREN, Lecturer. B.S., M.S., University of Colorado; M.S.E., University of Michigan; Ph.D., University of Kansas.

ELAINE HANSEN, Lecturer. B.A., Knox College; M.S., University of Wyoming.

LAKSHMI KANTHA, Professor. B.S., Banglore University, India; M.S., Indian Institute of Science; Ph.D., Massachusetts Institute of Technology.

JEAN N. KOSTER, Professor. Dip-Ing., Dok-Ing., University of Karlsruhe, Germany.

KRISTINE LARSON, Associate Professor. A.B. Harvard University; Ph.D., University of California, San Diego.

DALE A. LAWRENCE, Associate Professor. B.S., Colorado State University; M.S., Ph.D., Cornell University.

ROBERT R. LEBEN, Research Assistant Professor. B.S., M.S., Ph.D., University of Colorado.

MICHEL LESOINNE, Assistant Professor. B.S., University of Liege; M.S., Cranfield Institute of Technology; M.S., Ph.D., University of Colorado.

PETER F. MacDORAN, Professor Attendant Rank. B.S., California State University; M.S., University of California, Santa Barbara.

DONALD MACKISON, Lecturer. B.A., University of Denver; M.S., Ph.D., University of Colorado.

JAMES MASLANIK, Research Associate Professor. B.S., M.S., Pennsylvania State University; Ph.D., University of Colorado.

KURT MAUTE, Assistant Professor. Ph.D., University of Stuttgart.

WILLIAM E. McCLINTOCK, Lecturer. B.A., M.A., Ph.D., Johns Hopkins University.

MICHAEL THOMAS McGRATH, Lecturer. B.S., University of Colorado.
Civil, Environmental, and Architectural Engineering

HON-YIM KO, Department Chair; Professor. B.S., University of Hong Kong; M.S., Ph.D., California Institute of Technology.

BERNARD AMADEI, Professor. Dipl. Eng., School of Applied Geology and Mine Prospecting, E.N.S.G., France; M.S., University of Toronto; Ph.D., University of California, Berkeley.

GARY L. AMY, Professor. B.S., M.S., San Jose State University; Ph.D., University of California, Berkeley.

RAJAGOPALAN BALAJI, Assistant Professor. B.S., Regional Engineering College, India; M.S., Indian Statistical Institute; Ph.D., Utah State University.

L. DUANE BALL, Professor Emeritus.

ANGELA R. BIELEFELDT, Assistant Professor. B.S., Iowa State University; M.S.C.E., Ph.D., University of Washington.

MICHAEL J. BRANDEMUEHL, Associate Professor. Engineering. B.S., M.S., Ph.D., University of Wisconsin, Madison.

HYMAN BROWN, Senior Instructor. B.A., City University of New York.

JOHN P. CRIMALDI, Professor. B.E., Johns Hopkins University; M.S., Ph.D., Stanford University.

ROBERT DAVIS, Senior Instructor. B.S., M.S., Pennsylvania State University.

WARREN W. DeLAPP, Professor Emeritus.

JAMES E. DIEKMANN, Professor. B.S., M.S., University of Missouri; Ph.D., University of Washington.

DAVID L. DILAUER, Senior Instructor. B.A., Wayne State University.

JOHN O. DOW, Associate Professor. B.S., General Motors Institute; M.S., University of Michigan; Ph.D., University of Colorado.

CHUAN CHUNG FENG, Professor Emeritus.

DAN M. FRANGPOL, Professor. Dipl.-Ing., Institute of Civil Engineering, Bucharest, Romania; Ph.D., University of Liege, Belgium.

KURT H. GERSTLE, Professor Emeritus.

GEORGE G. GOBLE, Professor Emeritus.

VIJAY GUPTA, Professor. B.E., University of Roorkee, India; M.S., Colorado State University; Ph.D., University of Arizona.

MILAN F. HALEK, Senior Instructor. B.A., University of Colorado; M.S., Czechoslovakia Technical University.

JAMES P. HEANEY, Professor. B.S., Illinois Institute of Technology, M.S.; Ph.D., Northwestern University.

GEORGE HEARN, Associate Professor. B.S., The Cooper Union; M.S., Ph.D., Columbia University.

MARK HERNANDEZ, Assistant Professor. B.S., M.S., Ph.D., University of California, Berkeley.

MONCEF KRARTI, Assistant Professor. Dipl.-Ing. Ecole Nationale des Ponts et Chaussées; M.S., Ph.D., University of Colorado at Boulder.

JAN F. KREIDER, Professor. B.S., Case Institute of Technology; M.S., Ph.D., University of Colorado.

DIANE M. McKNIGHT, Professor. B.S., M.S., Ph.D., Massachusetts Institute of Technology.

KEITH MOLENAAR, Assistant Professor. B.S., M.S., Ph.D., University of Colorado at Boulder.

RALPH MUEHELEISEN, Assistant Professor. B.S., University of Wisconsin; Ph.D., Pennsylvania State University.

RONALD Y.S. PAK, Professor. B.E., McMaster University, Canada; M.S., Ph.D., California Institute of Technology.

HARIHAR RAJARAM, Associate Professor. B.Tech., Indian Institute of Technology, Madras; M.S., University of Iowa; Sc.D., Massachusetts Institute of Technology.

JOSEPH N. RYAN, Associate Professor. B.S., Princeton University; M.S., Ph.D., Massachusetts Institute of Technology.

VICTOR A. SAOMA, Professor. B.E., American University of Beirut; Ph.D., Cornell University.

P.S. BENSON SHING, Professor. B.S., M.S., Ph.D., University of California, Berkeley.

JOANN SILVERSTEIN, Professor. B.S., M.S., Ph.D., University of California, Davis.

ENRICO SPAONE, Assistant Professor. B.S., University of Rome, La Sapienza, Italy; M.S., Ph.D., University of California, Berkeley.

KENNETH M. STRZEPEK, Associate Professor. Sc.B., S.M., Ph.D., Massachusetts Institute of Technology.

STEIN STURE, Professor. B.S., M.S., Ph.D., University of Colorado.

LUIS L. SUMMERS, Professor. B.Arch., M.S., Ph.D., University of Notre Dame.

R. SCOTT SUMMERS, Professor. B.S., M.S., University of Cincinnati; Ph.D., Stanford University.

LEONARD G. TULIN, Professor Emeritus.

WALTER A. WEERS, Associate Professor Emeritus.

KASPAR J. WILLAM, Professor. Dipl.-Ing., Technical University, Vienna; M.S., California State University; Ph.D., University of California, Berkeley.

YUNPING XI, Associate Professor. B.S., Beijing Institute, Beijing; M.S., Central Research Insti-
HARRY F. JORDAN, Professor. B.A., Rice University; M.S., Ph.D., University of Illinois.

ROGER A. KING, Professor. A.B., Occidental College; M.S., Ph.D., University of Southern California.

MICHAEL MAIN, Associate Professor. B.S., M.S., Ph.D., Washington State University.

JAMES MARTIN, Associate Professor. B.S., Columbia University; Ph.D., University of California, Berkeley.

OLIVER McBRYAN, Professor. B.S., M.S., National University of Ireland; Ph.D., Harvard University.

MICHAEL MOZER, Associate Professor. B.S., Brown University; M.A., Ph.D., University of California, San Diego.

EVI NEMETH, Associate Professor Attendant Rank. B.S., Pennsylvania State University; M.S., Ph.D., University of Waterloo.

GARY J. NUTT, Professor. B.A., Boise State University; M.S., Ph.D., University of Washington.

LEYSIA A. PALEN, Assistant Research Professor. B.S., University of California, San Diego; M.S., Ph.D., University of California, Irvine.

ALEX REPENNING, Assistant Research Professor. B.S., Engineering College, Brugg-Windisch, Switzerland; M.S., Ph.D., University of Colorado at Boulder.

GRZEGORZ ROZENBERG, Professor Adjunct. M.S., Technical University of Warsaw, Poland; Ph.D., Polish Academy of Sciences.

BRUCE SANDERS, Senior Instructor. B.S., Louisiana State University; M.S., University of Colorado.

ROBERT B. SCHNABEL, Professor. B.A., Dartmouth College; M.S., Ph.D., Cornell University.

MICHAEL SCHWARTZ, Associate Professor Adjunct. B.S., University of California, Los Angeles; M.S., Ph.D., University of Washington.

TAMARA SUMNER, Assistant Professor. B.A., Oberlin College; M.S., Ph.D., University of Colorado at Boulder.

PAUL SWARZTRAUBER, Professor Adjunct. B.S., University of Illinois; M.S., Ph.D., University of Colorado at Boulder.

WILLIAM McCASTLINE WAITE, Professor. A.B., Oberlin College; M.S., Ph.D., Columbia University.

CATHLEEN WHARTON, Assistant Professor Adjunct. B.S., University of Denver; M.S., Ph.D., University of Colorado at Boulder.

KARL WINKLMAANN, Associate Professor Attendant Rank. B.S., Technical University, Munich; Ph.D., Purdue University.

ALEXANDER WOLF, Assistant Professor. B.A., Queens College, City University of New York; M.S., Ph.D., University of Massachusetts.

BEN ZORN, Professor Adjunct. B.S., Rensselaer Polytechnic Institute; M.S., Ph.D., University of California, Berkeley.

Electrical and Computer Engineering

RENJENG SU, Department Chair; Associate Professor. B.S., University of Delaware; M.S., D.Sc., Washington University.

RICHARD K. AHRENKIEL, Professor Adjunct. B.S., M.S., Ph.D., University of Illinois.

SVEIN G. ANDRESEN, Professor Emeritus.

JAMES P. AVERY, Associate Professor. B.S., Michigan State University; Ph.D., University of Illinois.

SUSAN K. AVERY, Professor. B.S., Michigan State University; M.S., Ph.D., University of Illinois.

BEN B. BALSLY, Research Professor. B.S., California Polytechnic College; M.S., Ph.D., University of Colorado.

FRANK S. BARNES, Professor. B.S., Princeton University; M.S., Engineer’s Degree, Ph.D., Stanford University.

DAVID E. BEEMAN, Professor Adjunct. B.S., Stanford University; Ph.D., University of California, Los Angeles.

ELIZABETH BRADLEY, Assistant Professor. B.S., M.S., Ph.D., Massachusetts Institute of Technology.

THOMPSON R. BROWN, Lecturer. B.S., Wichita State University.

TIMOTHY X BROWN, Assistant Professor. B.S., Pennsylvania State University; M.S., Ph.D., California Institute of Technology.

PALMER W. CARLIN, Professor Emeritus.

W. THOMAS CATHEY, Graduate Director; Professor. B.S., M.S., University of South Carolina; Ph.D., Yale University.

STEVEN T. CUNDIFF, Professor Adjunct. B.A., Rutgers University; M.S., Ph.D., University of Michigan.

RUTH H. DAMERON, Senior Instructor. B.S., Wheaton College; M.S., Syracuse University.

KENNETH DAMERON, Professor Adjunct. B.S., Ph.D., University of Wales.

GORDON W. DAY, Professor Adjunct. B.S., M.S., Ph.D., University of Illinois.

RONALD D. DEGROOT, Professor Adjunct. B.S., Baylor University; M.S., University of Texas; Ph.D., University of Colorado.

DONALD C. DEGROOT, Professor Adjunct. A.E.T., B.E.T., Andrews University; M.S., Ph.D., Northwestern University.
Vernon E. Derr, Professor Adjoint. A.B., St. John's College; Ph.D., Johns Hopkins University.

John M. Dunn, Associate Professor. B.A., Carleton College; A.M., Ph.D., Harvard University.

Robert W. Erickson, Professor. B.S., M.S., Ph.D., California Institute of Technology.

Delores M. Etter, Professor. B.S., M.S., Wright State University; Ph.D., University of New Mexico.

Robert Feuerstein, Assistant Research Professor. B.S., SUNY, Buffalo; M.S., West Virginia University; Ph.D., Polytechnic University.

Warren L. Flock, Professor Emeritus.

Ewald F. Fuchs, Professor. Dipl., Dipl. Ing., Technical University of Stuttgart; Ph.D., University of Colorado.

Jackson F. Fuller, Professor Emeritus.

Albin J. Gasiewski, Professor Adjoint. B.S., M.S., Case Western Reserve University; Ph.D., Massachusetts Institute of Technology.

Seymour Geller, Professor Emeritus.

George E. Gless, Professor Emeritus.

Kuldip C. Gupta, Professor. B.Sc., Punjab University; B.E., M.E., Indian Institute of Science; Ph.D., Birla Institute of Technology and Science.

Gary D. Hachtel, Professor. B.S., California Institute of Technology; Ph.D., University of California, Berkeley.

William J. Hanna, Professor Emeritus.

John E. Hauser, Associate Professor. B.S., United States Air Force Academy; M.S., Ph.D., University of California, Berkeley.

Russell E. Hayes, Professor Emeritus.

Vincent P. Heuring, Associate Professor. B.S., University of Cincinnati; M.S., University of Florida.

David A. Hill, Professor Adjoint. B.S., M.S., Ohio University; Ph.D., Ohio State University.

Brian Hooker, Associate Research Professor. B.A., Brown University; M.S., Ph.D., University of Arizona.

Carl T. A. Johnk, Professor Emeritus.

Harry F. Jordan, Professor. B.A., Rice University; M.S., Ph.D., University of Illinois.

Jerrold H. Krenz, Professor Emeritus.

Edward F. Kuester, Professor. B.S., Michigan State University; M.S., Ph.D., University of Colorado.

Leonard Lewin, Professor Emeritus.

Michael R. Lightner, Professor. B.S., M.S., University of Florida; Ph.D., Carnegie-Mellon University.

Arnoldo Majerfeld, Professor. School of Physics and Electronic Engineering, University of Buenos Aires, Argentina; Ph.D., Stanford University.

Dragan Maksimovic, Assistant Professor. B.S.E.E., M.S.E.E., University of Belgrade; Ph.D., Caltech.

George J. Maler, Professor Emeritus.

Samuel W. Malley, Professor Emeritus.

Angelo J. Mascarenhas, Professor Adjoint. B.Tech., IIT, Karagpur; M.S., Ph.D., University of Pittsburgh.

Peter Mathys, Associate Professor. Dipl. El. Ing., Ph.D., Swiss Federal Institute of Technology, Zurich.

William G. May, Professor. S.B., S.M., Ph.D., Massachusetts Institute of Technology.

Lindon B. McClure, Professor Adjoint. B.S., University of Maine at Orono; M.S., Ph.D., University of Colorado.

Douglas John Mcknight, Assistant Research Professor. B.Sc., Ph.D., University of Edinburgh.

David G. Meyer, Associate Professor. B.S., University of Wisconsin; M.S., Ph.D., Stanford University.

Francois G. Meyer, Assistant Professor. M.S., ENSIMAG, Grenoble; Ph.D., INRIA, Rennes.

Alan R. Mickelson, Associate Professor. B.S., University of Texas at El Paso; M.S., Ph.D., California Institute of Technology.

Richard T. Mihran, Assistant Research Professor. B.S., Case Western Reserve University; M.S., Ph.D., University of Colorado.

William C. Miller, Lecturer. B.S., University of Michigan.

Garret Moddel, Professor. B.S., Stanford University; M.S., Ph.D., Harvard University.

Clifford T. Mullis, Professor. B.S., M.S., Ph.D., University of Colorado.

Norris S. Nahman, Professor Adjoint. B.S., California State Polytechnic College; M.S., Stanford University; Ph.D., University of Kansas.

Gary J. Nutt, Professor of Computer Science. B.A., Boise State University; M.S., Ph.D., University of Washington.

Scott E. Palo, Assistant Research Professor. B.S., Clarkson University; M.S., Ph.D., University of Colorado.

Jacques I. Pankove, Professor Emeritus.

Lucy Y. PaO, Assistant Professor. B.S., M.S., Ph.D., Stanford University.

Sven Ivar Pearson, Professor Emeritus.

Melinda Piket-May, Assistant Professor. B.S., University of Illinois; M.S., Ph.D., Northwestern University.

Andrew R. Pleszkun, Associate Professor. B.S., Illinois Institute of Technology; M.S., Ph.D., University of Illinois.

Zoya Popovic, Associate Professor. B.S., University of Belgrade, Yugoslavia; M.S., Ph.D., California Institute of Technology.

Juan A. Rodriguez, Professor. B.E.E., City College of New York; M.S.E.E., New York University.

Norman Sanford, Professor Adjoint. B.S., Western Washington State College; M.S., Ph.D., Rensselaer Polytechnic Institute.

Jon R. Sauer, Professor. B.S., Stanford University; Ph.D., Tufts University.

Louis L. Scharf, Professor. B.S., M.S., Ph.D., University of Washington.

Joseph A. Shaw, Professor Adjoint. B.S., University of Alaska; M.S., University of Utah; M.S., Ph.D., University of Arizona.

Ernest K. Smith, Professor Adjunct. B.A., Swarthmore; M.Sc., Ph.D., Cornell University.

Fabio Somenzi, Associate Professor. Dr. Eng., Politecnico di Torino.

Richard G. Strauch, Professor Adjoint. B.S., University of Florida; M.S., University of Pennsylvania; Ph.D., University of Colorado.

John C. Twombly, Professor Emeritus.

Bart J. Van Zeghbroeck, Associate Professor. Dipl. Ing., Katholieke Universiteit Leuven; M.S., Ph.D., University of Colorado at Boulder.

Mahesh K. Varanasi, Associate Professor. B.E., Osmania University; M.S., Ph.D., Rice University.

Howard Wachtel, Professor. B.S., Cooper Union; M.S., Drexel Institute; Ph.D., New York University.

Kelvin H. Wagner, Associate Professor. B.S., M.S., Ph.D., California Institute of Technology.

William M. Waite, Professor. A.B., Oberlin College; M.S., Ph.D., Columbia University.

Min-Yen Wu, Associate Professor. B.S., National Taiwan University; M.S., University of Ottawa; Ph.D., University of California, Berkeley.

Matt Young, Professor Adjoint. B.S., Ph.D., Institute of Optics, Rochester.

Herbst Humanities

Paul Antal, Lecturer, Herbst Program of Humanities. Ph.D., University of Chicago.

Scott Douglass, Assistant Professor, Herbst Program of Humanities and Department of Comparative Literature. B.S., University of Arizona; Th.M., Dallas Seminary; Ph.D., University of Colorado.

Leland Giovannelli, Assistant Professor, Herbst Program of Humanities. B.A., St. John’s College. Annapolis; M.A., Ph.D., University of Chicago.
Mechanical Engineering

SUBHENDU K. DATTA, Department Chair; Professor. B.S., Presidency College, India; Ph.D., Jadavpur University, India.

MELVYN C. BRANCH, Professor. B.S.E., Princeton University; M.S., Ph.D., University of California, Berkeley.

VICTOR BRIGHT, Associate Professor. B.S., University of Colorado; M.S., Ph.D., Georgia Institute of Technology.

LAWRENCE E. CARLSON, Professor. B.S., University of Wisconsin; M.S., Dr.Eng., University of California, Berkeley.

RICHARD H. CRAWFORD, Professor Emeritus.

JOHN W. DAILY, Professor. B.S., M.S., University of Michigan; Ph.D., Stanford University.

MARTIN L. DUNN, Associate Professor. B.S., Montana State University; M.S., Ph.D., University of Washington.

KENNETH GALL, Assistant Professor. B.S., M.S., Ph.D., University of Illinois at Urbana-Champaign.

THOMAS L. GEERS, Professor. B.S., M.S., Ph.D., Massachusetts Institute of Technology.

ALAN R. GREENBERG, Professor. B.S., M.S., Ph.D., Drexel University.

JEAN R. HERTZBERG, Associate Professor. B.S., M.S., Ph.D., University of California, Berkeley.

HERBERT E. JOHNSON, Associate Professor Emeritus.

CHARLES H. KAHNG, Professor Emeritus.

DAVID R. KASSOY, Professor. B.S., Polytechnic Institute of Brooklyn; M.S., Ph.D., University of Michigan.

YUNG-CHENG LEE, Associate Professor. B.S., National Taiwan University; M.S., Ph.D., University of Minnesota.

ROOP L. MAHAJAN, Professor. B.S.M.E., M.S.M.E., Punjab University, India; Ph.D., Cornell University.

JANA B. MILFORD, Associate Professor. B.S., Iowa State University; M.S., Ph.D., Carnegie Mellon University.

SHELLY L. MILLER, Assistant Professor. B.S., Harvey Mudd College; M.S., Claremont College; M.S., Ph.D., University of California, Berkeley.

PHILLIP F. OSTWALD, Professor Emeritus.

RISHI RAJ, Professor. B.S., University of Newcastle-upon-Tyne; B.S., Allahabad University; Ph.D., Harvard University.

GANESH SUBBARAYAN, Assistant Professor. B.Tech., Indian Institute of Technology; M.S., Ph.D., Cornell University.

CHUNG-HA SUH, Professor Emeritus.

WILLIAM L. WAINWRIGHT, Associate Professor Emeritus.

PATRICK D. WEIDMAN, Associate Professor. B.S., California State Polytechnic College; M.S., California Institute of Technology; Dipl.-Ing., Von Karman Institute, Belgium; Engineer, California Institute of Technology; Ph.D., University of Southern California.

JACK ZABLE, Senior Instructor and Professor Attendant. B.S., City College of New York; M.S., Ph.D., Purdue University.

ROBERT J. WILLIAMS, Professor Emeritus.

PAUL ZOLLER, Professor Emeritus.

Telecommunications

JAMES H. ALLEMAN, Associate Professor. A.B., M.A., Indiana University; Ph.D., University of Colorado at Boulder.

GARY L. BARDSLEY, Associate Director. B.S., M.S., University of Colorado at Boulder.

FRANK S. BARNES, Professor. B.S., Princeton University; M.S., Engineer's Degree, Ph.D., Stanford University.

FLOYD K. BECKER, Director Emeritus—ITTP Laboratory. B.S., University of Colorado; M.S., California Institute of Technology.

SHARON K. BLACK, Lecturer. B.A., M.S., University of Colorado at Boulder; J.D., University of Denver.

RANDALL S. BLOOMFIELD, Lecturer. B.A., Colorado College; M.E., University of Virginia.

TIMOTHY X. BROWN, Assistant Professor. B.S., Pennsylvania State University; M.S., Ph.D., California Institute of Technology.

PAUL BURLINGAME, Lecturer. B.S., University of Colorado at Boulder; M.S., University of Arizona.

STAN BUSH, Director, Telecommunications Laboratory. B.S., University of Nevada; M.S., Rutgers University; M.B.A., Colorado State University.

GEORGE A. CODDING, JR., Professor Emeritus.

STEPHEN B. JONES, Assistant Dean, School of Journalism and Mass Communication; Instructor. B.A., M.A., West Virginia University; Ph.D., University of Utah.

KENNETH J. KLINGENSTEIN, Director, Computing and Network Services; Professor Adjunct. B.A., Brandeis University; M.A., Ph.D., University of California, Berkeley.

LEONARD LEWIN, Professor Emeritus. D.Sc. (Honorary), University of Colorado.

S. W. MALEY, Professor Emeritus.

ROBERT A. MERCER, Professor Adjunct. B.S., Carnegie Mellon; Ph.D., Johns Hopkins University.

GERALD A. MITCHELL, Senior Instructor. A.S., Boise State College; B.S., Regis College; M.S., University of Colorado at Boulder.

ALEXANDER J. ROBERTSON, Lecturer. B.A., University of Colorado; M.S., Ph.D., Colorado State University.

JON SAUER, Professor. B.S., Stanford University; Ph.D., Tufts University.

TIMOTHY D. SCHOECHLE, Lecturer. B.S., Pepperdine University; M.S., University of Colorado at Boulder.

J. HUTCH THOMPSON, Professor Adjunct. B.S., Lehigh University; M.S., Ph.D., University of Rochester.

PHILLIP WEISER, Associate Professor. B.A., Swarthmore College; J.D., New York University School of Law.

Engineering (General)

JAMES C. SHERMAN, Director, Student Services. B.S., University of Northern Arizona; M.A., University of Arizona; M.A., Ph.D., University of Denver.

SHERRY SNYDER, Director, Student Programs. B.A., Ashland University; M.S., Nazareth College; Ed.S., University of Colorado; Ph.D., Colorado State University.
Making Room for Books

The university opened with no books. Mr. Charles Buckingham of Boulder donated $2,000 to start a library, which was located in the southwest corner of Old Main on the second floor, looking out at the Flatirons. Library furniture was purchased from the proceeds of lectures, concerts, a festival, and a play, and the first librarians were students. In 1903, a greatly expanded collection moved into its own building (now University Theatre).
Graduate work at the University of Colorado began on a small scale in 1892. Following years of development, the Graduate School was organized in 1909 with a separate faculty. Each of the four campuses of the University of Colorado system now offers graduate degree programs, and a dean is in residence on each campus. The Graduate School at CU-Boulder is governed by its own set of Graduate School Rules.

Degrees

The Graduate School of the University of Colorado at Boulder offers instruction leading to the following advanced degrees:

- Master of Arts (M.A.)
- Master of Engineering (M.E.)
- Master of Fine Arts (M.F.A.)
- Master of Music (M.Mus.)
- Master of Music Education (M.Mus.Ed.)
- Master of Science (M.S.)
- Doctor of Musical Arts (D.Mus.A.)
- Doctor of Philosophy (Ph.D.)

M.A. degree programs in:
- Anthropology
- Classics
- Communication
- Comparative Literature
- East Asian Languages and Cultures
- Economics
- Education
- English
- Environmental, Population, and Organismic Biology
- Fine Arts
 - Art History
- French
- Geography
- German
- History
- Journalism
- Linguistics
- Mathematics
- Molecular, Cellular, and Developmental Biology
- Philosophy
- Political Science
- Psychology
- Religious Studies
- Sociology
- Spanish
- Speech, Language, and Hearing Sciences
- Theatre

M.E. degree programs in:
- Aerospace Engineering Sciences
- Chemical Engineering
- Civil Engineering
- Computer Science
- Electrical Engineering
- Mechanical Engineering
- Telecommunications

M.F.A. degree programs in:
- Dance
- Fine Arts
- M.Mus.
- M.Mus.Ed.

M.S. degree programs in:
- Aerospace Engineering Sciences
- Applied Mathematics
- Astrophysical and Planetary Sciences
- Atmospheric and Oceanic Sciences
- Business Administration
- Chemical Engineering
- Chemistry
- Civil Engineering
- Computer Science
- Electrical Engineering
- Environmental Studies
- Geological Sciences
- Geophysics
- History
- Journalism (through Communication track)
- Kinesiology
- Linguistics
- Mathematics
- Mechanical Engineering
- Molecular, Cellular, and Developmental Biology
- Music
- Philosophy
- Physics
- Political Science
- Psychology
- Sociology
- Spanish
- Speech, Language, and Hearing Sciences
- Theatre

Inquiries regarding admission to graduate programs should be addressed to the graduate department in which the applicant wishes to study (see the University of Colorado at Boulder Directory for campus addresses).

Concurrent Bachelor’s/ Master’s Degree Programs

Concurrent B.S./M.S. and B.A./M.A. degree programs are offered in several departments at CU-Boulder. These programs allow a student to receive both a bachelor’s and master’s degree in five years of study without compromising the academic integrity of either degree.

Currently approved concurrent degree programs in arts and sciences include cognitive psychology, East Asian languages and cultures, economics, EPO biology, Germanic studies, French, linguistics, and mathematics; in business, accounting/accounting, finance/accounting, information systems/accounting, information systems/telecommunications; and all departments in engineering.

These concurrent degree programs are open only to highly qualified CU-Boulder undergraduates. Students are formally admitted at the end of their sophomore year or the beginning of their junior year. They are admitted through the admission procedure of their department and do not go through the normal process of admission to Graduate
School. When students have completed the program requirements, they receive both a bachelor’s and a master’s degree simultaneously. Students wishing to continue studying toward a doctorate must formally apply for admission to the Graduate School.

Students interested in a concurrent bachelor’s/master’s program should inquire in the department.

ACADEMIC EXCELLENCE

Scholarships and Fellowships
CU-Boulder administers various forms of financial assistance for graduate students: fellowships, traineeships, scholarships, research and teaching assistantships, and awards from outside agencies.

The Graduate School offers University of Colorado fellowships, diversity fellowships, chancellor’s graduate fellowships, enrollment enhancement fellowships, and Colorado graduate need grants.

University of Colorado fellowships are awarded to entering and continuing regular degree graduate students on the basis of academic promise or academic success. Students holding these fellowships must reapply each year to maintain renawal.

The Chancellor’s Graduate Fellowship Program, instituted in 1984-85, attracts outstanding students for graduate study at the University of Colorado. Selected students receive a stipend of $16,500 for two academic years and a full waiver of all tuition and fees. Recipients must be entering master’s or doctoral degree students and be nominated by their department.

Enrollment enhancement fellowships are awarded by eligible departments to increase graduate enrollments. Additional fellowships are available from private sources. Fellowships, traineeships, and scholarships are also offered by some departments. Applications for financial support are due in the departments by the announced deadlines; most departments must receive applications by January 15.

For information about assistantships, see Financial Aid for Graduate Study.

For further details, contact the fellowship coordinator in the Graduate School.

ACADEMIC STANDARDS

Grade Point Average
A student is required to maintain at least a B (3.00) average in all work attempted while enrolled in the Graduate School, and must have at least a 3.00 overall average to receive a graduate degree.

Nonacceptable Grades
1. A student who receives a grade of C or below in a course may repeat that course once, provided the course has not been previously applied toward a degree.
2. Courses in which grades below B (2.70) are received are not accepted for doctoral programs.
3. Courses in which grades below C (2.00) are received are not accepted for master’s degree programs or for the removal of academic deficiencies.
4. Courses taken toward the fulfillment of requirements for graduate degrees may not be taken pass/fail.

Probation and Suspension
A student whose cumulative grade point average (GPA) falls below 3.00 is placed on academic probation. The student has two semesters in which to raise the cumulative GPA to 3.00 or above. If the student’s cumulative GPA is at or below 2.50, a dean’s administrative stop is placed on the student’s record, and the student may be withdrawn from course work for upcoming semesters.

If, after the two-semester probationary period, the student’s cumulative GPA is still below 3.00, a dean’s administrative stop will be placed on the student’s record and he or she may be subject to dismissal.

A provisionally admitted student whose GPA falls below 3.00 has a dean’s administrative stop placed on his or her record pending a review by the major department and the Graduate School.

No Credit
Course work to be applied toward an advanced degree may not be taken for no credit. Courses taken for no credit cannot be used toward the minimum credit load requirement for full-time or half-time status.

Pass/Fail
No course work to be applied toward an advanced degree may be taken pass/fail.

Student Ethics
Students are expected to adhere to the highest codes of personal and professional ethics. Students who do not adhere to written guidelines regarding academic honesty and/or academic or research ethics may be dealt with according to the appropriate policy documents. Students found guilty of misconduct in any of these areas may have sanctions imposed, or may be dismissed from CU-Boulder.

ADMISSION AND ENROLLMENT POLICIES

Application Procedures
Students seeking admission to a CU-Boulder master’s or doctoral program apply directly to the appropriate department, not the Graduate School. An applicant for admission must present complete application materials that include:

1. Part I and part II of the graduate application, available from academic departments.
2. Two official transcripts of all academic work completed to date.
3. A $40 nonrefundable application fee (check or money order). No application will be processed unless this fee is paid. The fee for the application for foreign students is $60.
4. Four letters of recommendation.
5. Test scores and other materials as required by specific departments.

A completed application must be in the major department at least 120 days before the term for which admission is sought. Most departments require a much earlier application deadline. Qualified applicants may find that their application cannot be processed for a specific term if enrollment levels have been reached.

Foreign students coming from abroad should have complete applications on file in the Office of Admissions before December 1 for the fall semester and October 1 for the spring semester. Foreign students currently studying in the United States should follow deadlines set for U.S. citizens.

Admission Requirements
A graduate student may be admitted to CU-Boulder as either a regular degree student or a provisional degree student.

Regular Degree Students
Qualified students may be recommended for admission to regular degree status by approved programs of the Graduate School provided they meet the following criteria:

1. They hold a baccalaureate degree from an accredited college or university or have done work equivalent to that required for such a degree.
2. They show promise of ability to pursue advanced study and research, as judged by their scholastic record.
3. They have had adequate preparation to enter graduate study in the chosen field.
4. They have at least a 2.75 (2.00 = C) undergraduate grade point average (for engineering, 3.00). (Note: Applicants who cannot meet criterion 4 may still secure regular admission if they have completed 12 semester courses with a grade point average of 3.00 or above.)
hours of relevant graduate course work with at least a 3.25 average.)

5. They meet additional requirements for admission established by the major department.

Provisional Degree Students

Students who do not meet the requirements for admission as regular degree students may be recommended for provisional degree status by their major department. With the concurrence of the dean of the Graduate School, these students are admitted for a probationary term of either one or two semesters of full-time study (or the equivalent for part-time students). At the end of the specified probationary period, provisional degree students must be either admitted to regular degree status or dismissed from the graduate program. Provisional students are subject to the same standards of performance required of regular degree students, plus any other requirements imposed by the program faculty as conditions of admission.

Credit earned by persons in provisional degree status may count toward a degree at CU-Boulder.

To meet the standard terms of provisional admission, the student must complete 12 hours in two semesters (or equivalent for part-time students) with a 3.25 cumulative GPA. Program faculty may recommend additional or alternative conditions as appropriate.

Admission to a Concurrent Bachelor’s/Master’s Degree Program

A number of CU-Boulder departments offer concurrent bachelor’s/master’s degrees, which enable CU undergraduate students to pursue undergraduate and graduate programs simultaneously and to receive both degrees in a shorter time period than it would take to pursue them separately.

Highly qualified undergraduate students may be recommended for admission to a concurrent bachelor’s/master’s degree program at the end of their sophomore year or the beginning of their junior year. Such students are not formally admitted to the Graduate School. Standards for admission as well as eligibility to remain in the program are specified in each department’s program guide.

Admission of Seniors

A CU-Boulder senior who is not pursuing the concurrent bachelor’s/master’s degree, but who has satisfied the undergraduate residence requirement and does not need more than 6 semester hours of advanced subjects to meet the requirements for a bachelor’s degree, may be admitted to the Graduate School.

Admission of Nondegree Students to Regular Degree Status

Students with nondegree status who wish to apply for regular student status must complete their application for admission before completing 9 semester hours as nondegree students at CU-Boulder.

Admission of Former and Suspended Students

Students who were previously admitted to a graduate degree program but who did not complete that degree and who have not been continuously registered at CU-Boulder must complete the following steps before being readmitted:

1. Clarify their status with the department to determine their eligibility to return and pursue the same degree.
2. Submit an application to the department (departmental approval is required) before enrollment levels are met or deadlines passed for the term in which they expect to return to CU-Boulder.

A regular degree student who is dismissed for failure to maintain a 3.00 grade point average is eligible to apply for readmission after one year. Approval or rejection of this application rests jointly with the student’s major department and the dean of the Graduate School. The final decision will be made by the dean.

Students Transferring from Other CU Campuses

Students transferring from another CU campus to CU-Boulder must apply to and be accepted by the Boulder campus.

Students Changing Major Departments

Students who want to change major departments must apply to and be accepted by the new department. Students must also be released from their previous program.

Admission of Faculty Members

No member of the faculty above the rank of instructor may be working toward an advanced degree from CU-Boulder.

Credit Policies

Transfer Credit

Transfer credits from accredited institutions are accepted by CU-Boulder only after approval by the department chair/program director and the dean of the Graduate School, and under conditions outlined below. Transfer credit is defined as any credit earned at another accredited institution, credits earned on another campus of the CU system, or credits earned as a nondegree student within the CU system.

The following rules apply to transferring credit to CU-Boulder graduate programs:

1. The maximum amount of work that may be transferred to CU-Boulder depends upon the graduate degree sought (individual departments may have more restrictive limits).

Degree Semester Hours

<table>
<thead>
<tr>
<th>Degree</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.A., M.E., M.S., M.Mus., M.Mus.Ed., or D.M.A.</td>
<td>9</td>
</tr>
<tr>
<td>M.F.A.</td>
<td>18</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>21</td>
</tr>
</tbody>
</table>

2. Work already applied toward a graduate degree received from CU-Boulder or another institution cannot be accepted for transfer toward another graduate degree of the same level at CU-Boulder. In addition, work completed for a doctoral degree may not be applied toward a subsequent master’s degree. Extension work completed at another institution cannot be transferred, and correspondence work, except to make up deficiencies, is not recognized.

3. All courses accepted for transfer must be graduate-level courses. Courses to be applied to a master’s degree must have been completed within five years of acceptance to the program or be validated by special examination. A course in which a grade of B- or lower was received will not be accepted for transfer.

4. Credit may not be transferred until the student has established a satisfactory record of at least one semester as a regular, degree-seeking student with a 3.00 GPA at the CU-Boulder Graduate School. Transferred credits do not reduce the residence requirement, but may reduce the amount of work to be done in formal courses.

5. Excess undergraduate credits from another institution may not be transferred to the CU-Boulder Graduate School.

Graduate Credit for CU-Boulder Seniors

With the exception of students enrolled in a concurrent bachelor’s/master’s degree program, seniors at CU-Boulder may earn graduate credit for a limited amount of graduate-level work (up to 9 semester hours), provided such work is completed with a grade of B or above in the senior year at CU-Boulder; comes within the five-year course time limit; has not been applied toward another degree; and is recommended for transfer by the department concerned, and such transfer is approved by the dean of the Graduate School.

Registration

Registration procedures are sent to new graduate students when they confirm their intent to enroll. Please refer to Registration in the General Information chapter of this catalog for further information.
Late registration is held only if enrollment levels have not been reached. Graduate students (including candidates for degrees and students taking only thesis hours) who fail to complete registration and pay fees during regular registration may be charged a late registration fee.

Concurrent Registration

Boulder campus students unable to obtain courses required for their degree program on the Boulder campus may register for up to two courses or 6 credit hours, whichever is greater, on another University of Colorado campus. The course work must be required for their degree program; they must have their dean’s permission; they must be enrolled for at least one course on the Boulder campus; and enrollment levels must not have been reached on the other campus. Contact the Office of the Registrar for additional information.

Reciprocal Exchange Agreement Program

Reciprocal registration enables University of Colorado graduate students to attend classes at other northern Colorado institutions, including Colorado School of Mines, Colorado State University, and the University of Northern Colorado. For further information, contact the Office of the Registrar.

Withdrawal

A graduate student who desires to withdraw from the university should go to Regent Administrative Center 125 for a withdrawal interview. A student who discontinues attendance in a course without officially withdrawing is marked as having failed that course. Except under extreme circumstances, graduate students are not permitted to withdraw after the last day of classes.

FINANCIAL AID FOR GRADUATE STUDY

The University of Colorado offers several types of financial assistance for graduate students who demonstrate financial need. Students apply for assistance by submitting a financial aid application (the FAFSA) as soon as possible after January 1.

The Colorado Graduate Grant Program is open to graduate students who are Colorado residents. Nonresidents are eligible for student fee grants. To receive assistance, students must be nominated by their departments.

Graduate students may apply for long-term loans through the Stafford Loan (formerly GSL) program or the Perkins Loan program (formerly the National Direct Student Loan) and for part-time jobs through the College Work-Study program.

Graduate Part-Time Instructors and Teaching Assistants

Many departments employ graduate students as graduate part-time instructors (GPTIs) or as teaching assistants (TAs). GPTIs are full-time, regular degree graduate students who have a master’s degree or the equivalent and who have demonstrated competence in classroom teaching. Teaching assistants are also full-time regular degree graduate students, but they are not required to have previous experience.

GPTIs and TAs must have a cumulative GPA of at least 3.00. Students are compensated for teaching on the basis of the percentage of time worked. Tuition credits are also based on the student’s percentage of time worked. Nonresident students employed as assistants are eligible for the nonresident tuition differential waiver only for their first-year appointment, with the exception of foreign students. Explanations beyond the first year must be approved in advance by the dean.

Research Assistants

In many departments, research activities provide opportunities for graduate students to work part-time as research assistants. All research assistants must maintain a cumulative GPA of at least 3.00. Students are compensated and receive tuition credits based on the percentage of time they work. General fund research assistants, except for international students, are eligible to receive the nonresident tuition differential for only one year. Research assistants must be full-time regularly enrolled graduate students.

Graduate Teacher Program

The Graduate Teacher Program (GTP) offers teacher training to all graduate students who teach courses, labs, and recitations, or who assist with office hours and grading. The GTP conducts intensives and workshops before the beginning of fall and spring semesters and follow-up workshops throughout the year. Topics covered include effective teaching and grading strategies, communication skills, ethics, and professional development. A special cultural intensive is conducted for foreign teaching assistants that focuses on issues involved in teaching American students. The GTP also offers a graduate teacher certificate for students who complete training requirements including workshop attendance, videotape consultation, and evaluation.

The GTP provides discipline-specific teacher training through the Lead Graduate Teacher Program. Lead graduate teachers design and implement TA training activities for their home departments.

REQUIREMENTS FOR ADVANCED DEGREES

A graduate student is responsible for becoming informed about and observing all regulations and procedures required by the graduate program pursued. Ignorance of a rule does not constitute a basis for waiving that rule. Any exceptions to the policies stated in this catalog must be approved by the dean of the Graduate School.

Animal and Human Research

Research involving the observation or participation of human subjects or the use of animals must have the approval of the Human Research Committee or the Animal Care and Use Committee. Forms are available in the Graduate School.

Master of Arts and Master of Science

A student enrolled in a master’s program must satisfy the degree requirements of both the Graduate School and the major department. The requirements listed below are the minimum standards of the Graduate School; additional requirements are set forth by the major department.

Minimum Requirements

The minimum requirement for the master’s degree is 30 credit hours. A student may complete a plan I (thesis) option, or a plan II (course work) option. At least 24 hours must be completed at the 5000 level or above; these 24 hours may include a minimum of 4, but not more than 6, thesis hours for those students completing a plan I degree. A maximum of 6 credit hours may be completed at the 3000 or 4000 level at the discretion of the academic department.

Independent study course work cannot exceed 25 percent of the course work required for the master’s degree.

Master’s Thesis

A thesis, which may be research or expository, critical, or creative work, is required of every master’s degree candidate under plan I. Every thesis presented in partial fulfillment of the requirements for an advanced degree must accomplish the following:

- represent the equivalent of 4-6 semester hours of work, and
- comply in mechanical features with the specifications for theses and dissertations available in the Graduate School.

The final grade is withheld until the thesis is completed; if the thesis is not finished at the end of the term in which the student is registered, an in-progress (IP) grade is reported.
Language Requirement

There is no campuswide foreign language requirement for the master’s degree. The decision regarding the foreign language requirement for each graduate degree is the responsibility of the graduate program.

Time Limit

Master’s degree students have four years (six years for students pursuing an M.E.) from the date of the start of course work to complete all degree requirements. The phrase “all degree requirements” includes the filing of the thesis with the Graduate School if plan I is followed. Students who fail to complete the degree in this four-year period may be dismissed from their program with the concurrence of the major advisor and/or appropriate departmental personnel. To continue, the student must file a petition for an extension of the time limit with the dean of the Graduate School. Such petitions must be endorsed by the student’s major advisor and/or other appropriate departmental personnel and may be granted for up to one year. Students who do their work exclusively in summer sessions must complete all degree requirements within six years from the start of course work.

Any course work taken more than five years (six years for M.E.) prior to passing the master’s comprehensive-final exam or culminating activity must be validated by special examination. Students who need to leave CU-Boulder for a period of time may apply to the Time Out Program for up to one year. Participation in the Time Out Program does not extend the student’s time limit, but may be used as a reason to request an extension.

Students whose residence at CU-Boulder is interrupted by military service may apply to the dean of the Graduate School for an extension.

Residence

Master’s degree residence requirements can be met only by residence at CU-Boulder for at least two semesters, at least three summer sessions, or a combination of at least one semester and two summer sessions.

For purposes of deciding resident credit toward a graduate degree, a student must be registered as a full-time student. One semester of residence credit may be earned for full-time registration during the fall or spring semesters or two summer semesters. To be a full-time master’s student, a student must carry one of the following course loads: a minimum of 5 credits of graduate course work, 8 credits of combined undergraduate and graduate course work, at least 1 master’s thesis hour, or at least 1 hour of “Master’s Candidate for Degree.”

Candidacy

To be granted a master’s degree, a student must become a candidate for that degree by filing an Application for Admission to Candidacy with the Graduate School no later than the posted graduation deadlines during the semester in which he or she plans to have the degree conferred.

Comprehensive-Final Examination

Each candidate for a master’s degree is required to take a comprehensive-final examination, or complete a culminating synthesizing activity after the other requirements for the degree have been substantially completed. This examination may be given near the end of the last semester of residence while the candidate is still taking required courses for the degree, provided satisfactory progress is being made in those courses.

The following rules apply to the comprehensive-final examination or culminating activity.

1. A student must be registered on the Boulder campus as a regular degree-seeking student during the semester the examination is passed.
2. Notice of the examination/activity must be filed by the major department in the Graduate School at least two weeks prior to the examination/activity. The examination/activity must be scheduled no later than the posted deadline for the semester in which the degree is to be conferred.
3. The exam is given by a committee of three graduate faculty members appointed by the department with approval of the dean of the Graduate School. The chair of the committee must have a regular or tenured graduate faculty appointment. A department using a culminating or synthesizing activity must submit an exam report form signed by three graduate faculty members.
4. The examination, which may be oral, written, or both, must cover the thesis (which should be essentially complete), other work completed in courses and seminars in the major field, and all work presented for the degree.
5. A student must have an affirmative vote from the majority of the committee members to pass. A student who fails the comprehensive-final examination may not attempt the examination again for at least three months and until any work prescribed by the examining committee has been completed. The student may retake the examination only once.

Supplemental Examination

A master’s supplemental examination is simply an extension of the original examination and is given immediately after it. If the student fails the supplemental examination, three months must elapse before he or she may attempt the comprehensive examination again.

Doctor of Philosophy and Doctor of Musical Arts

The doctor of philosophy (Ph.D.) and the doctor of musical arts (D.Mus.A.) are the highest academic degrees conferred by CU-Boulder. The requirements stated below are minimal requirements for all candidates for the Ph.D. degree; additional conditions are found in department announcements. Additional requirements for the doctor of musical arts are available from the College of Music.

Admission

A student admitted to the Graduate School for the master’s program must reapply for admission for the doctoral program.

Minimum Course Requirement

The minimum requirements for the Ph.D. or D.Mus.A. degree are 30 credit hours of course work at the 5000 level or above. Those students pursuing the Ph.D. shall complete a minimum of 30 credit hours of dissertation work beyond the minimum course work requirement.

Unless otherwise specified by departmental requirements, all courses taken at the 5000 level or above that were taken for the master’s degree at CU-Boulder may be applied toward the doctoral degree. Course work taken in pursuit of a doctoral degree cannot be applied toward a subsequent master’s degree.

Dissertation Credit-Hour Requirement

To complete the requirements for the Ph.D. degree, a student must register for a minimum of 30 dissertation credit hours. Distribution of those hours is as follows:

1. A student may not register for more than 10 dissertation credit hours in any one semester.
2. Not more than 10 dissertation credit hours taken in semesters prior to the semester in which the comprehensive examination is passed may be counted in the 30 dissertation hours required for the degree.
3. Not more than 10 dissertation hours of credit taken in the semester in which the comprehensive examination is passed may be included in the 30 dissertation credit hours required for the degree.

Residence

The minimum residence requirement for doctoral students is six semesters beyond the attainment of an acceptable bachelor’s degree. Two semesters of residence credit may be allowed for a master’s degree from another institution of approved standing; however, at least
four semesters of residence credit, two of which must be consecutive in one academic year, must be earned for work taken at CU-Boulder.

For purposes of deciding resident credit toward a graduate degree, a student must be registered as a full-time student. One semester of residence credit may be earned for full-time registration during the fall or spring semester or during two summer semesters. To be a full-time doctoral student, a student must carry one of the following course loads: a minimum of 5 credits of graduate-level course work before passing the comprehensive exam; 8 credits of combined undergraduate and graduate course work before passing the comprehensive exam; at least 1 doctoral dissertation hour before passing the comprehensive exam; or a minimum of 5 dissertation hours after passing the comprehensive exam.

Preliminary Examination
Each department determines for itself (by examination or other means) that students who wish to study for the doctoral degree are qualified. The means by which each department makes this evaluation are specified in departmental requirements. Students who are thus evaluated are notified immediately of the results.

Language Requirement
There is no campuswide foreign language requirement for the doctoral degree. The decision regarding the foreign language requirement for each graduate degree is the responsibility of the graduate program.

Comprehensive Examination
Before admission to candidacy for the doctoral degree, students must pass a comprehensive examination in the field of concentration and related fields.

The following rules apply to the doctoral comprehensive examination.

1. Students must be registered (P/F or credit) on the Boulder campus as regular degree-seeking students when they pass the comprehensive examination.

2. Notice of the examination must be filed by the major department with the Graduate School at least two weeks before the examination.

3. The examination is conducted by an examining board appointed by the chair of the major department and approved by the dean of the Graduate School. The board consists of the major advisor and additional members as necessary to a minimum of five. The chair must have a regular or tenured graduate faculty appointment. Successful candidates must receive affirmative votes from a majority of the members of their examination board. A candidate who fails the examination may attempt it once more after a period of time determined by the examination board.

4. The examination, which may be oral, written, or both, tests mastery of a broad field of knowledge, not merely formal course work. The oral part is open to members of the graduate faculty.

Admission to Candidacy
A student must formally apply for admission to candidacy for the doctoral degree on forms supplied by the Graduate School at least two weeks before attempting the comprehensive examination. Before being admitted to candidacy a student must earn at least three semesters of residence and pass the comprehensive examination.

Continuous Registration Requirement
A Ph.D. student is required to register continuously for a minimum of 5 dissertation hours in the fall and spring semesters of each year, beginning with the semester following the passing of the comprehensive examination and extending through the semester in which the dissertation is successfully defended (final examination). D.Mus.A. students must maintain continuous registration for at least 1 credit of course work numbered 8200 to 8399 (or TMUS 8029).

1. A student not required to maintain full-time status and not using campus facilities may claim off-campus status, which allows registration for 3 rather than the minimum of 5 dissertation credit hours. Off-campus status (3 credits of dissertation hours) is considered part-time. All CU-Boulder considerations for part-time status apply.

2. A student who fails to register continuously for dissertation credit hours after passing the comprehensive examination must retake and pass the comprehensive examination, and validate any course work more than five years old, in order to regain status as a student in good standing in the Graduate School. At its discretion, the department may petition the dean of the Graduate School for a time limit for completion of all degree requirements of up to one year after the retaking of the comprehensive exam.

The department must petition the dean of the Graduate School to waive the requirement to retake the comprehensive exam.

3. A Ph.D. student must be registered for a minimum of 5 dissertation hours during the semester (including summer session) in which the dissertation defense is held. A student must be registered for at least 1 credit the semester in which the final exam is held.

Dissertation Requirements
A Ph.D. student must write a dissertation based upon original investigation, showing mature scholarship and critical judgment, as well as familiarity with tools and methods of research. The subject must be approved by the student’s major department.

1. Every dissertation presented in partial fulfillment of the requirements for an advanced degree must represent the equivalent of at least 30 semester hours of work.

2. The student is responsible for notifying the Graduate School of the exact title of the dissertation on or before the posted deadlines during the semester in which the doctoral degree is to be conferred.

3. The dissertation must comply in mechanical features with the specifications for theses and dissertations available in the Graduate School.

The final grade is withheld until the dissertation is completed. In progress (IP) grades are assigned during each semester until the defense is successfully completed and the final copy of the dissertation is accepted by the examination committee, at which time the final grade for all dissertation hours is submitted to the Graduate School.

Dissertation Defense
After the dissertation has been accepted for defense by the student’s committee, a final examination on the dissertation and related topics is conducted.

The following rules apply to the dissertation defense.

1. A student must be registered as a full-time, regular degree-seeking student at CU-Boulder, for a minimum of 5 dissertation hours during the semester in which the final examination is passed.

2. Students must notify the Graduate School of their final oral examination at least two weeks before their scheduled examination date.

3. This examination is wholly or partly oral, the oral part being open to anyone.

4. The examination is conducted by a committee appointed by the chair of the major department and approved by the dean of the Graduate School, which consists of at least five persons, one of whom must be from outside the student’s major department. Three of the members must be CU-Boulder graduate faculty. The chair and outside member of the committee must have regular or tenured graduate faculty appointments. The other committee members must have either regular or special graduate faculty appointments. The chair and a majority of the committee must be present on the Boulder campus for the examination.
More than one dissenting vote disqualifies the candidate in the final examination.

5. A student who fails the examination may attempt it once more after a period of time determined by the examining committee.

Time Limit

Doctoral degree students are expected to complete all degree requirements within six years from the date of the start of coursework in the doctoral program. The phrase “all degree requirements” includes the filing of the dissertation and all accompanying forms with the Graduate School. Students who fail to complete the degree in this six-year period may be dismissed from their program with the concurrence of the major advisor and/or appropriate departmental personnel. To continue, the student must file a petition for an extension of the time limit with the dean of the Graduate School. Such petitions must be endorsed by the student’s major advisor and/or other appropriate departmental personnel and may be granted for up to one year. If the dean of the Graduate School and the department chair/program director cannot agree on whether a student should continue, the Graduate School’s executive advisory council makes the final decision.

Students who need to leave CU-Boulder for a period of time may apply to the Time Out Program for up to one year. Doctoral students who are required to maintain continuous registration may petition for an exception in order to participate in the Time Out Program for parental leave or other extenuating circumstances. Participation in the Time Out Program does not extend the student’s time limit, but may be used as a reason if applying for an extension.

Students whose residence at CU-Boulder is interrupted by military service may apply to the dean of the Graduate School for an extension of time.

Sequestration of Dissertations

Dissertations approved by the departments and the Graduate School are released to the university’s executive advisory council of proposed course selection.

Applying for an extension.

1. Approval by the PAOS certificate committee of proposed course selection.

2. Completion of a total of four courses from the approved list of PAOS courses (below), each with a grade of B or better.

3. Upon completion of course work, submission of a letter to the PAOS graduate secretary requesting a certificate in atmospheric and oceanic sciences, for consideration by the PAOS certificate committee.

Courses for the PAOS Certificate

- ASEN 5215 Oceanography
- ASEN/ATOC 5225 Thermodynamics of Atmospheres and Oceans
- ASEN/ATOC 5235 Remote Sensing of Atmospheres and Oceans
- ASEN 5315 Ocean Modeling
- ASEN 5325 Small-Scale Processes in Geophysical Fluids
- ASEN 5335 Aerospace Environment
- ASTR/ATOC/GEOL 5810 Planetary Atmospheres
- ATOC 4710/5710 Introduction to Atmospheric Physics
- ATOC 4720/5720 Introduction to Atmospheric Dynamics
- ATOC 5060 Dynamics of the Atmosphere
- ATOC 5061 Dynamics of the Oceans
- ATOC/CHM 5151 Atmospheric Chemistry
- ATOC/ASTR 5560 Radiative Processes in Planetary Atmospheres
- ATOC 5600 Physics and Chemistry of Clouds and Aerosols
- ATOC 5610 Predicting Weather and Climate
- GEOG 5231 Physical Climatology: Field Methods
- GEOL 5060 Oceanography
- Courses that may be taken if they are not in the student’s home department include:
 - ASEN 5051 Introduction to Fluid Mechanics
 - ASTR 5250 Planetary Aeronomy
 - ASTR/PHY 5220 Nonlinear Dynamics
 - ASTR/ATOC 5400 Introduction to Fluid Dynamics
 - ASTR/ATOC 5410 Fluid Instabilities, Waves, and Turbulence
 - ASTR/PHY 5220 Nonlinear Dynamics
 - CHEM 5161 Analytical Spectroscopy
 - GEOG 5221 Synoptic and Dynamic Climatology
 - GEOG 5331 Mountain Climatology
 - GEOG 5961/ATOC 5960 Theories of Climate and Climate Variability

Applied Behavioral Science

The graduate certificate in applied behavioral science is offered by faculty from the Institute of Behavioral Science (IBS)—one of the nation’s leading interdisciplinary social science research institutes—and the departments of anthropology, economics, geography, political science, psychology, and sociology. The goal of the certificate program is to train a new kind of social scientist who understands the social and economic changes that impact contemporary communities, can utilize a variety of research methodologies, is sensitive to ethical issues in applied behavioral research and teaching, and is comfortable in settings of ethnic, cultural, and racial diversity.

The general requirements for the certificate are four courses and participation in IBS research and scholarly activities. Students take a two-semester (6-credit) seminar in applied behavioral science, which focuses on the logic, theories, and methods of interdisciplinary inquiry, problem solving in research settings, methods of inquiry, and ethical issues. They also take a two-course graduate research methods sequence in a department other than their home department. Certificate students are required to spend one year as a participating member of an IBS research team and attend IBS research colloquia.

Atmospheric and Oceanic Sciences

The interdisciplinary Program in Atmospheric and Oceanic Sciences (PAOS) provides an educational and research environment to examine the dynamical, physical, and chemical processes that occur in the atmosphere and the ocean. A major theme is the establishment of a physical basis for understanding, observing, and modeling climate and global change.

Graduate students, research staff, and faculty work together on a wide range of research topics, such as large-scale dynamics of ocean and atmosphere, air-sea interaction, radiative transfer and remote sensing of ocean and atmosphere, sea ice and its role in climate, cloud-climate interactions, atmospheric chemistry and aerosols, atmospheric technology, hydrological processes, and boundary-layer measurement and modeling.

In addition to doctoral and master’s degrees, PAOS offers a graduate certificate in atmospheric and ocean sciences. Students majoring in atmospheric sciences or other associated departments may wish to consider obtaining the graduate certificate in atmospheric and ocean sciences, known as the PAOS certificate, to emphasize on their vita that they have specialized in that additional area.

Requirements for the graduate certificate in atmospheric and oceanic sciences are:

1. Approval by the PAOS certificate committee of proposed course selection.

2. Completion of a total of four courses from the approved list of PAOS courses (below), each with a grade of B or better.

3. Upon completion of course work, submission of a letter to the PAOS graduate secretary requesting a certificate in atmospheric and oceanic sciences, for consideration by the PAOS certificate committee.
For additional information about the PAOS certificate, contact the Program in Atmospheric and Oceanic Sciences, University of Colorado at Boulder, 311 UCB, Boulder, CO 80309-0311, 303-492-7167.

Behavioral Genetics
The Institute for Behavioral Genetics (IBG) offers a training program in behavioral genetics. The goal of the program is to train scientists capable of working both within their academic disciplines and in the broad interdisciplinary field of behavioral genetics.

The program features a core set of courses and continuous research apprentice training with one or more IBG faculty members, and furnishes valuable opportunities for interaction among scholars with widely varying academic backgrounds. A student wishing to specialize in behavioral genetics must be regularly enrolled as a graduate student in an academic department of the university.

The training program requires completion of six of the following nine courses (at least three of the courses must be from the first four listed): behavioral genetics, genetics, quantitative genetics, molecular genetics and behavior, biometrical methods in behavioral genetics, a graduate-level statistics course, concepts in behavioral genetics, research in behavioral genetics, and a seminar in behavioral genetics.

Each trainee works as a teaching assistant for one semester in a course relevant to his or her professional specialty. An IBG trainee’s doctoral dissertation research must be conducted on a topic directly relevant to animal or human behavioral genetics.

A student in the interdisciplinary certificate program must have an IBG faculty member as an advisor and an advisory committee composed of faculty from both IBG and the academic department. The advisory committee evaluates the student’s progress and may impose additional requirements.

Further information about the IBG interdisciplinary certificate program may be obtained by contacting the Institute of Behavioral Genetics, University of Colorado, 447 UCB, Boulder, CO 80309-0447; 303-492-7362; fax 303-492-8063.

Biotechnology
The graduate certificate program in biotechnology provides integrated, interdisciplinary training that encompasses both modern biological sciences and biochemical engineering. The goal of the program is to help students acquire the skills and credentials to undertake interdisciplinary research in modern industrial, academic, and government biotechnology research laboratories and the perspective to serve as leaders in the advancement of beneficial applications of modern biotechnology.

The graduate biotechnology program is offered cooperatively by the Departments of Chemical Engineering, Chemistry and Biochemistry, and Molecular, Cellular, and Developmental Biology. The program awards a certificate, not a separate degree; each student enrolls in a participating department and meets the degree requirements for that department.

A student must take 6 semester credit hours of graduate biotechnology courses outside the home department, including CHEN 5830 Introduction to Modern Biotechnology and CHEN 5831 Biotechnology Case Studies.

For the remaining credits, bioscience graduate students choose from bioengineering courses, and bioengineering students choose from bioscience courses.

During their first year, students take laboratory rotations in participating faculty laboratories. At least one laboratory rotation must be outside the student’s home department. Students receive up to 7 semester credit hours of independent study or laboratory-methods credit for these rotations.

All students are expected to undertake internships with local biotechnology companies. These internships usually take place during the summer after the first year of graduate study.

For further information on the biotechnology certificate program, contact Professor Robert Davis, Department of Chemical Engineering, University of Colorado at Boulder, 424 UCB, Boulder, CO 80309-0424, or call 303-492-7314.

Chemical Physics
The interdepartmental doctoral program in chemical physics prepares students for research in such interdisciplinary fields as atomic and molecular radiative processes, spectroscopy, laser chemistry and physics, atmospheric chemistry, molecular quantum mechanics, statistical mechanics, kinetics, chemistry and physics of the surface and condensed phase, semiconductors, and nanoscale processes.

Students wishing to pursue the doctoral degree in chemical physics should apply for admission to either the Department of Chemistry and Biochemistry or the Department of Physics.

Entering students take a qualifying examination in the area of their undergraduate major. The comprehensive examination tests their knowledge of both chemistry and physics. Certain requirements associated with the regular doctoral programs in the participating departments will be replaced by requirements in the complementary field; each student’s program of course work and research will be individually planned according to the student’s special needs.

The program is administered by an interdepartmental committee. For further information, contact the graduate program assistant in either the Department of Chemistry and Biochemistry or the Department of Physics.

Cognitive Science
The cognitive science academic program includes a joint Ph.D. degree between cognitive science and a core discipline, and a certificate at the graduate level of study. The cognitive science curriculum is designed to provide broad, in-depth training in cognitive sciences. The program is administered by the Academic Programs Committee of the Institute of Cognitive Science (ICS) of the University of Colorado at Boulder. Graduate students in cognitive science are admitted to graduate programs in participating departments that have cognitive science faculty and must meet the requirements for admission and degree completion in their home department.

Students wishing to attain a certificate in cognitive science must formally apply to the Academic Programs Committee of ICS. To be admitted they must be a student affiliate of ICS, which requires being a graduate student in good standing in a member department, and they must be sponsored by an ICS faculty member. Students who enter the Graduate School without a master’s degree may be admitted to the program upon completion of their first year of study; students with a master’s degree may be admitted during their first year.

The degree and certificate programs in cognitive science require students to demonstrate acceptable performance in interdisciplinary coursework and courses outside their home department. The courses must be offered by the departments of computer science, education, linguistics, philosophy, psychology, or another department in which there is an ICS faculty member. Details about requirements for the degree and certificate programs can be obtained through the Director of Academic Programs for ICS, or by contacting the ICS main office at 344 UCB, Boulder, CO 80309-0344; 303-492-5063.

Environmental Policy
The graduate certificate program in environmental policy provides an interdisciplinary specialization for students in regular master’s and doctoral programs. Environmental issues—water policy, wilderness preservation, air quality, energy development, and global change—transcend ordinary academic boundaries. Policy analysis that deals with these problems must integrate insights and information from many disciplines.

The program draws on courses in anthropology, economics, geography, philosophy, political science, psychology, sociology, the
The program is administered by the geophysics graduate program committee, which includes representatives from each of the participating departments. The comprehensive examination and the dissertation defense are directed by this committee, with a faculty member of the home department normally chairing these procedures.

Exceptional research opportunities are available through the university research institutes, especially the Cooperative Institute for Research in Environmental Sciences (CIRES) and JILA, as well as within the special laboratories of the participating departments.

For further information, see www.colorado.edu/geophysics, or call or write the Director, Geophysics Program, Department of Geological Sciences, University of Colorado at Boulder, 399 UCB, Boulder, CO 80309-0399; 303-492-1143.

Human Language Technology

The recent growth of the World Wide Web and the vast improvements in computing power of the last decade have led to a huge need for education and research in human language technology. This interdisciplinary field includes key technological and scientific areas such as automatic speech recognition and synthesis, natural language understanding and generation, augmentative and alternative communication, text-based information retrieval, and grammar and spelling aids.

The curriculum for the certificate includes five core courses, consisting of a computer programming foundation course plus four courses in human language technologies (e.g., natural language processing, morphology and syntax, speech processing, and recognition). At least two of the language technologies courses must be outside the student’s home department.

Students are required to major in computer science, electrical and computer engineering, linguistics, or speech, language, and hearing sciences. The program is available to master’s or Ph.D. students at CU-Boulder, including students in concurrent bachelor’s/master’s programs.

Master of Engineering Program

The master of engineering (M.E.) degree program is administered by the Graduate School, the Engineering Management Program, the engineering departments, and the Interdisciplinary Telecommunications Program. The requirements for admission and for academic work are the same as those for the master of science degree awarded in the College of Engineering and Applied Science.

The master of engineering degree permits flexibility in course selection. It meets the needs of practicing engineers working full time outside the university. It allows participants to specialize in one engineering discipline and select courses from other engineering fields and business subjects related to the student’s professional work.

The program is offered both on campus and through the Center for Advanced Training in Engineering and Computer Science (CATECS), which delivers graduate courses taught on the Boulder campus to business, industry, and government agencies by live television with two-way audio communication. Courses are also available by videotape to sites outside the signal range. Each year, CATECS offers over 100 graduate courses to approximately 1,700 students at 250 industrial sites.

A prospective student is required to present a well-defined objective to be admitted to the program.

Requirements

The requirements for the M.E. degree are 30 credit hours plus a written report on a creative investigation, which may be related to the student’s professional work. The report must be defended orally or via teleconference. A student must be registered during the semester of the oral defense. At least 15 credit hours must be taken in a particular engineering discipline at the 5000 level or above. The additional 15 credit hours may be selected from the same discipline, other engineering fields, or business. Credit in courses below the 4000 level does not apply toward degree requirements.

Requirements relating to the following are the same as those for the master of science degree awarded in the College of Engineering and Applied Science: admission to the Graduate School, application procedures, registration, quality of graduate work, status, credit by transfer, and admission to candidacy. Applicants may petition for credit for up to an additional 3 hours of transfer credit. The time limit to complete this program is six years.

The admission of each student to graduate study, approval of the degree program, admission to candidacy for the degree, and approval of the awarding of a degree originate through a specific department of the College of Engineering and Applied Science, or the appropriate degree program steering committee, in the same manner as for the master of science program. An advisor will be appointed for each student by the major department promptly upon the student’s acceptance into the graduate program. At that time, a plan of study is completed and a copy placed on record with the department office. Changes in the plan must be approved by the advisor and reported to the department’s graduate office.
An advisory committee consisting of the advisor and two other faculty members is responsible for approving the individual’s degree program and admission to candidacy; it approves the student’s written report and the awarding of the degree. The student should also see the requirements of the departments involved.

Media and Communication

The certificate program in media and communication offers graduate students an interdisciplinary perspective on communication and information technology. Departments participating in the program include business, communication, economics, electrical engineering, journalism, sociology, political science, and philosophy.

A certificate in media and communication studies is awarded upon completion of four courses:

- TELS 6000 Emerging Communication Technologies
- TELS 6001 Media Applications
- TELS 6002 Media Theory and Research
- TELS 6001 and TELS 6002 refer to a variety of courses that may be taken to fulfill these two requirements.

A fourth course may be chosen from courses listed under TELS 6001 or TELS 6002. At least three of the four courses must be taken on top of the requirements for the degree program.

The certificate is available to students currently seeking a master’s or Ph.D. degree in an existing department and to nondegree students who have an advanced degree or equivalent professional experience.

A student must formally apply to the telecommunication studies curriculum committee for admission to the certificate program. The student must be in good standing in a member department and be sponsored by a faculty member on the steering committee. Students without a master’s degree may be admitted to the program after their first year of study. Students who have a master’s degree may be admitted during their first year.

Molecular Biophysics

The goal of the molecular biophysics certificate program is to introduce graduate students to the field of biophysics, its methodologies, and the state-of-the-art biophysical research efforts being carried out in diverse laboratories and departments on the CU-Boulder campus. The program creates interdepartmental connections that provide the breadth of training needed to develop biophysical scholars.

Students must be admitted through the regular admissions process to a Ph.D. program in one of the following departments: chemical engineering, chemistry and biochemistry, EPO biology, MCD biology, or physics. They must satisfy all of their home department’s requirements to receive a Ph.D.

The first requirement of the molecular biophysics certificate is participation in one to three laboratory rotations outside the thesis lab, which provide experience with a range of biophysical methods.

The second component of the program is the completion of two courses chosen from a list of approved courses. Currently this list includes 15 courses in areas ranging from theoretical physics to molecular and cellular biophysics.

Students are expected to take part in a seminar series, which introduces internationally renowned speakers and their research. They also are required to participate in supergroup meetings and symposia, which provide forums for them to present their own research in front of their colleagues and advisory committee.

Museology

The professional certificate in museology provides professional museum training for CU-Boulder graduate students and for museum professionals who seek to upgrade their skills and credentials. The museology certificate serves a range of disciplines in the arts and sciences, education, and engineering, as well as the Colorado museum community.

The curriculum for the professional certificate consists of the core museology sequence for the Museum and Field Studies degree program: MUSM 5011 Introduction to Museum Studies; MUSM 5031 Museums and the Public or MUSM 5041 Museum Administration or MUSM 5030 Museum Education; MUSM 5051 Collections Management; and MUSM 6110 Seminar in Museum Issues. This 15-credit curriculum is supplemented by a 75-hour internship (which may be waived for comparable professional experience).

Program Tracks

Two tracks are available: a collection/field track and an administrative/public track.

The collection/field track offers training for students interested in the curatorial and research aspects of museum work, such as floristic or faunistic studies of the past and present, material culture of the past and present, and biological inventory. The curriculum gives students academic training as well as experience in all areas of museum work. Field experience is offered through the curatorial and field practica.

The administrative/public track offers education for students interested in the public aspects of the museum such as program development and evaluation, exhibition planning and design, education, and the organization and management of museums. The curriculum offers both academic training in a discipline and hands-on experience with all aspects of the public museum.

Admission

Students must meet university requirements for admission to graduate school and have a baccalaureate degree and at least a B (3.00) grade-point average in previous academic work. The baccalaureate degree should be in anthropology, biology, geology, geography, history (including archival studies), classics, fine arts, or education, although other majors will be considered. Acceptance to the program is decided by the admissions committee of the University Museum in consultation with the student’s department. The student must be accepted by an advisor in his or her discipline.

Requirements

The degree in museum and field studies is a two-year program requiring a total of 31 credit hours. Students may choose either the thesis or nonthesis plan. Depending on the track and plan, students complete from 9 to 15 credit hours in a department and from 13 to 22 credit hours in museology courses. One hundred fifty work hours of internship are required. The thesis plan requires the completion and successful defense of a thesis; the nonthesis plan requires the completion of a paper or a project.

For current course information, consult the Museum section under the College of Arts and Sciences chapter in this catalog. For new course or admissions information, please write the Museum and Field Studies Program, University Museum, University of Colorado at Boulder, 218 UCB, Boulder, CO 80309-0218, or call 303-492-5437 or e-mail mfsinfo@colorado.edu.
Neuroscience and Behavior

The graduate certificate program in neuroscience and behavior focuses on understanding the nervous system and its relationship to disease and behavior. This understanding encompasses the molecular, cellular, and behavioral aspects of neuroscience.

Students come from such graduate programs as environmental, population, and organismic biology; behavioral genetics; molecular, cellular, and developmental biology; psychology; and kinesiology. They receive a Ph.D. in their department and a certificate in neuroscience.

The neuroscience core curriculum includes courses in the following areas: neuroscience methods laboratory, neuroanatomy (PSYC 5263), neurochemistry or neuropharmacology (e.g., PSYC 5062, PSYC 5132), neurophysiology or systems neuroscience (e.g., PSYC 5042, EPOB 5190), behavioral neuroscience or animal behavior (e.g., EPOB 5240, KINE 5610, PSYC—to be developed), molecular neuroscience or molecular genetics or developmental neuroscience (e.g., PSYC 5232, EPOB 5200, MCDB—to be developed).

Students are required to attend a weekly journal club or discussion group and neuroscience colloquia.

Optical Sciences and Engineering

The graduate certificate program in optical science and engineering offers training in the interdisciplinary area of optics, including knowledge, methods, and applications of the field. The participating academic and research units include the departments of physics, chemistry and biochemistry, and electrical and computer engineering, along with JILA (formerly the Joint Institute for physics, chemistry and biochemistry, and research units include the departments of science and engineering offers training in

Course work for the certificate comprises the following full-semester courses:

<table>
<thead>
<tr>
<th>Introduction to Optics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Measurement and Components</td>
</tr>
<tr>
<td>Laser-matter Interaction</td>
</tr>
<tr>
<td>Non-linear Optics</td>
</tr>
<tr>
<td>Advanced Optics Laboratory</td>
</tr>
<tr>
<td>Seminar in Optics</td>
</tr>
<tr>
<td>Business Basics for Science and Engineering</td>
</tr>
<tr>
<td>Graduate Students (optional)</td>
</tr>
</tbody>
</table>

Optics students also are required to take the following minicourses: technical communication, machine design, and electronics design.

Population Studies

The graduate certificate program in population studies, offered through the population program of the Institute of Behavioral Science, recognizes master’s and doctoral degree students for interdisciplinary work in demography. The population program, which is international in scope and has an applied and policy-oriented focus, fosters research on population trends and patterns and provides training in population analysis. Students who are earning graduate degrees through the Departments of Economics, Geography, or Sociology and are interested in majoring in demography are eligible to petition for admission to the program.

The population program emphasizes research training through direct faculty—student interaction and involvement in research projects. Students are required to take three core courses: ECON 8666 Economic Demography; GEOG 6732 Formal Population Geography; and SOCY 5012 Population Issues, Problems, and Policies. Students are granted a certificate on the basis of the three core courses, their applied research, and their thesis or dissertation.

Questions about the certificate program in population studies should be directed to the Population Program, Institute of Behavioral Science, University of Colorado at Boulder, 484 UCB, Boulder, CO 80309-0484; 303-492-7986.

Remote Sensing

Remote sensing (satellite and ground-based) is increasingly used to probe the Earth’s atmosphere, ocean, and land surfaces. Probing of other planets is accomplished largely by satellite remote sensing. Because of national priorities in climate and global change, the interest in remote sensing will continue to increase.

Graduate students, research staff, and faculty work on a wide variety of topics, ranging from the theory of remote sensing to its applications. These applications include: use of satellite remote sensing to determine ocean surface temperature and heat fluxes; use of surface radar to improve the determination of clouds and precipitation from satellite; determination of surface biological characteristics and productivity from satellite; mapping of land use from satellite; mapping of surface landform and topographical features; searching for locations of buried artifacts; use of surface radar and aircraft remote sensing to assess the validity of satellite retrieval algorithms of surface and atmospheric characteristics.

A certificate in remote sensing is offered by the Graduate School. The certificate is not a substitute for a degree. A certificate in remote sensing is awarded based on a written request by the student to the Remote Sensing Graduate Committee, provided that the following course requirements have been met.

Students must complete at least three remote sensing core courses with a grade of B or better and register for ATOC 7500 Remote Sensing Seminar, for at least one semester. The remote sensing graduate core courses are:

- ASEN 5168 Experimental Space Science
- ASEN/ATOC 5235 Remote Sensing of the Atmosphere and Oceans
- ASEN 5337 Remote Sensing Data Analysis
- ECEN 5254 Radar and Remote Sensing
- ECEN 5274 Radar Science and Techniques
- GEOL 5093 Remote Sensing of the Environment
- GEOL 5240 Remote Sensing Image Analysis
- GEOL 6340 Remote Sensing of Planetary Surfaces
- GEOL 6440/GEOG 6443 Remote Sensing Field Methods

Telecommunications

The graduate interdisciplinary program in telecommunications provides the opportunity for study in the field of technology, planning, and management of telecommunications systems. Students may pursue studies toward the master of science (M.S.) in telecommunications or the master of engineering (M.E.). The program also offers a graduate certificate in media and communication.

The program involves a number of university units or programs, including journalism and mass communication, computer science, electrical and computer engineering, business, and political science. The program offers courses on technology of existing and future telecommunications systems, their cost effectiveness, their capacity for expansion, and trends in telecommunications traffic. The curriculum includes detailed study of the political aspects of telecommunications. Also included is a study of the financing and sociocultural impact of telecommunications.

Students entering the M.S. program are expected to be adept in mathematics through trigonometry. Students without a year of calculus and a semester of computer science will be expected to attain proficiencies as part of their curriculum.

Master’s Degree Programs

Students selecting to receive an M.E. with an emphasis in telecommunications must have a 3.00 undergraduate GPA in electrical engineering, computer science, or engineering physics with proficiency in linear systems, probability, linear algebra, computer systems, and communications theory. In addition to course work in telecommunications technology, policy, management, and business, M.E. students must take at least 9 credit hours of graduate-level electrical engineering courses. The M.E. degree has no residency requirement; course work may be completed via CATECS or the National Technological University satellite delivery system. Students must complete 30 credit hours of course work, submit a report on a creative investigation, and make an oral defense.
The minimum duration for either the M.S. or M.E. program is 12 months. Most students are expected to pursue a 16-24 month curriculum. For the M.S. degree, a minimum of 32 hours, including 6 hours of thesis, is needed to graduate, but students are encouraged to take at least 40 hours. For the M.E. degree, a minimum of 33 hours, including 3 hours for a project, is required. M.E. degree students work with their advisor to integrate three electrical and computer engineering graduate courses into their course work.

Women’s Studies
The graduate certificate in women’s studies offers a graduate-level education in the systematic approach to the study of gender from an interdisciplinary perspective. It provides a coherent and intellectual context in which students study feminist theory and methodology at an advanced level. At the same time, the certificate program bridges the gap between discipline-centered studies and the interdisciplinary foundations of women’s studies, thereby enhancing the student’s ability to conduct gender-based research.

Students wishing to take part in the women’s studies certificate program must be enrolled in a master’s or doctoral degree program at CU-Boulder and have completed at least 6 hours of graduate study.

The certificate program has two components: course work based in the interdisciplinary women’s studies curriculum, and course work drawing upon gender studies in other disciplines. The program’s curriculum consists of two required courses:

- WMST 5010 Feminist Methodologies
- WMST 5090 Feminist Theories

Two elective courses on gender-related issues from different departments outside the student’s discipline are also required.

Students in the program work with an advisor to develop an elective course plan and research emphasis that reflects a coherent and interdisciplinary plan. Departments in which electives may be taken include anthropology, economics, English, fine arts, history, journalism, law, music, philosophy, and sociology.

PROFESSIONAL CERTIFICATE PROGRAMS

Design and Manufacturing
Offered by the Department of Mechanical Engineering, the professional certificate in design and manufacturing provides training that addresses changes in this field, such as the evolution from sequential design processes to nonlinear team approaches, the integration of design and production, and the development of modeling based on CAD databases. The program is directed toward product design and manufacturing engineers, as well as project managers involved in design and manufacturing activities. The certificate program requires the successful completion of four graduate courses: MCEN 5045 Design for Manufacturability; MCEN 5066 Principles and Practices of World Class Manufacturing; MCEN 5025 Computer-Aided Design of Mechanical Systems; and MCEN 5173 Finite Element Analysis.

Electronics Packaging
The professional certificate in electronics packaging introduces students to the field of electronics packaging, including all thermal, mechanical, and electrical issues. Offered by the Department of Mechanical Engineering, the certificate is directed toward enhancing the knowledge and skills of engineers and managers engaged in the packaging and manufacture of electronics products. The certificate requires successful completion of four graduate courses: MCEN 5166 Electronics Packaging and Manufacturing; MCEN 5173 Finite Element Analysis; MCEN 5042 Heat Transfer; and MCEN 5208 Advanced Project in Electronics Packaging.

Embedded Systems
In the last few years, commercially available digital systems (microprocessors, microcontrollers, memory chips, interface systems, and systems that handle image, voice, and other types of signals) have experienced explosive growth in the electronics industry. These devices are increasingly powerful, cheap, and flexible as design components.

The certificate in embedded systems, which is offered by the Department of Electrical and Computer Engineering, offers graduate students the knowledge and skills needed to design and implement these systems. The curriculum consists of three core courses: ECEN 5013 Introduction to Embedded Systems; ECEN 5003 Real-time Embedded Systems Programming; and ECEN 5023 Embedded Systems Design Project.

Applicants for the certificate program must have a baccalaureate degree from an accredited institution and have satisfied the prerequisites for each course through classwork or work experience. They need not be enrolled in a degree-granting program at CU-Boulder.

Engineering Management
The professional certification of advanced study in engineering management provides a focused technical education designed to prepare engineers and other professionals for the transition into technical/engineering management positions. The target populations are persons working in high technology environments who have a nontechnical undergraduate degree, and engineering professionals who wish to take only core technical management courses. The certificate, which is offered through the Engineering Management Program, requires the successful completion of four courses in the engineering management curriculum. Students must complete EMEN 5010 Introduction to Engineering Management and EMEN 5050 Leadership and Management. Students may also select two other courses in one of the following areas of emphasis: quality (EMEN 5040 and EMEN 5042), project management (EMEN 5020 and EMEN 5030), research and development (EMEN 5300 and EMEN 5400), or operations and logistics (EMEN 5500 and EMEN 5600).

Interpreter Education in American Sign Language
The professional certificate in interpreter education in ASL develops the linguistic and assessment skills necessary for interpreters, interpreter mentors, and faculty in interpreter education programs and ASL programs. The program provides a set of core courses in information fundamental to interpreting, which is lacking in many interpreter training programs. The program is offered by the Department of Speech, Language, and Hearing Sciences.

The certificate program requires completion of three 3-credit courses: SLHS 5035 Linguistic Structure of ASL; SLHS 5045 Discourse Analysis of ASL; and SLHS 5055 Assessing First and Second Languages. Each course includes a research component for successful completion. Applicants to the program should have conversational skill in ASL.

RESEARCH SUPPORT
The University of Colorado at Boulder takes an active part in research in a wide variety of fields.

More than $214 million in sponsored research and programs was generated this past year. Research and training grants and contracts awarded by various agencies of the federal government are the principal sources of these funds. The University of Colorado’s research activity is also supported by appropriations from the state of Colorado, private foundations, and private donors.

Research Institutes
The Cooperative Institute for Research in Environmental Sciences (CIRE) is jointly sponsored by the University of Colorado and the National Oceanic and Atmospheric Administration (NOAA). CIRE employs...
almost 500 faculty, students, and staff from a variety of disciplines. Academic departments represented in CIREs are astrophysical and planetary sciences, atmospheric and oceanic sciences; chemistry and biochemistry; environmental, population, and organismic biology; geography; geological sciences; electrical and computer engineering; mechanical engineering; and physics. The institute serves as a center for multidisciplinary collaboration among environmental scientists from Boulder and throughout the world. A visiting fellowship program enables scientists from other institutions to spend time at CIREs.

CIREs research programs involve field investigations conducted in the mountains of Colorado, the Aleutian Islands, the Arctic and Antarctic regions, Hawaii and various Pacific atolls, and elsewhere. Results of this research bear on such practical societal problems as destruction of the Earth’s ozone shield by pollutants, acid deposition in rain and snow, degradation of air and water quality, toxic waste treatment, understanding climate change, and earthquake prediction.

Current CIREs research programs, in which approximately 45 graduate students participate, can be grouped into four areas. In environmental chemistry and biology, ongoing research involves measurements of constituents and reactions in the atmosphere, kinetics of reactions in the stratosphere and troposphere, aerosol chemistry, and leaching of toxic wastes from mining. Studies of atmospheric and climate dynamics include air-sea interactions, dynamics of the atmospheric boundary layer, ocean dynamics, ice nucleation physics, cryosphere-climate interactions, ice sheet dynamics, and contemporary and paleo-climatology.

Research in solid earth geophysics includes earthquake prediction and earthquake physics, plate tectonics, seismic wave propagation, nuclear test discrimination, rock deformation and fracture, strains and tilts associated with Earth tides and secular deformation, and normal modes of vibrations of the Earth.

The Cryospheric and Polar Processes division is a national leader in the study of polar processes. Its research emphasizes studies in high latitude regions, using numerical techniques and satellite remote sensing. Research activities are supported by the World Center for Glaciology, the National Snow and Ice Data Center, and the Snow and Ice Distributed Active Archive Center.

The Institute of Arctic and Alpine Research (INSTAAR) is an interdisciplinary research institute with ongoing programs in many alpine and most polar regions of the world. It operates the Mountain Research Station and publishes the quarterly journal *Arctic, Antarctic, and Alpine Research*. Faculty from environmental, population, and organismic biology; geological sciences; geography; environmental studies; and the College of Engineering and Applied Science are associated with the institute, as are about 60 graduate and 80 undergraduate students.

Disciplines within INSTAAR include plant and animal ecology, paleoecology, palynology, geochronology, climatology, oceanography, hydrology, remote sensing, sedimentology, geophysics, glaciology, and glacial geology. The Center for Geochronological Research is involved in amino acid, fission-track, thermoluminescence and potassium/argon dating, stable isotope geochemistry, dendrochronology, and dendroclimatology.

The Mountain Research Station, located at 2,900 m (9,500 feet) in the Front Range of the Rocky Mountains, is operated for the university by INSTAAR. The station, a national center for field studies in the biological and physical sciences, is especially well known for long-term ecological, climatological, and atmospheric research.

The station offers researchers easy access to a variety of terrestrial and aquatic habitats at altitudes from 1,500 m to 3,800 m. A wide variety of courses is offered in areas such as plant and animal ecology, climatology, geomorphology, and hydrology. The station maintains the mountain climate program in support of the environmental field research conducted in the area.

Weather observing stations have been operated since 1952 at four altitudes between 2,200 and 3,750 m, and additional stations are established for new projects.

The Institute for Behavioral Genetics (IBG) is an organized research unit whose personnel conduct research on the genetic bases of individual differences in behavior and provide research training in this interdisciplinary area. This rapidly developing field brings to bear upon behavioral research the perspectives of biochemical genetics, cytogenetics, developmental genetics, evolutionary genetics, molecular genetics, pharmacogenetics, and quantitative genetics. Facilities are available for research on a variety of organisms, including humans, laboratory mice, and nematodes. Institute faculty currently are applying the concepts and tools of behavioral genetics to such diverse areas as aging, alcoholism, cognitive development, drug addiction, learning disabilities, neurological diseases, personality, and psychopathology.

The Institute of Behavioral Science (IBS) is an interdisciplinary research organization serving faculty and graduate students in the behavioral sciences. Its principal functions are to conduct and sponsor research programs involving two or more of the behavioral sciences and related fields; to provide research facilities, equipment, and administrative services for participating faculty; to facilitate graduate and undergraduate research training; and to disseminate information about its activities and findings to scientific groups and institutions.

The institute’s principal administrative units conduct research in the areas of problem behavior, population processes, environment and behavior, and political and economic change. Included in IBS is the Social Science Data Analysis Center, which provides general user assistance in social science research and statistical computing. In addition, IBS now includes a Center for the Study and Prevention of Violence and a Center for Research and Information on Natural Hazards.

The Institute of Cognitive Science (ICS) was established to promote interdisciplinary research in the fields of psychology, computer science, linguistics, philosophy, and other cognitive sciences. Its major research programs fall into five areas: natural language processing; human-computer interaction and knowledge-based systems; connectionist modeling; human information processing and skilled performance; and judgment and decision making. These programs include the use of artificial intelligence techniques and cognitive simulations in gaining an understanding of basic cognitive processes as well as educational and industrial applications.

Since its founding in 1962, JILA (formerly the Joint Institute for Laboratory Astrophysics) has played an international role in research and education in the physical sciences and technology. The institute offers training for academic researchers and industry scientists, facilitates research in the physical sciences, and fosters the invention of applications for other research laboratories as well as commercial companies. Academic disciplines span theoretical and experimental physics, chemical physics, stellar and galactic astronomy, atomic physics, geophysics, and measurement science. Specific strengths include laser technology, optoelectronics, precision metrology, state-of-the-art electronic and optical feedback control of dynamical systems, chemistry and physics of materials and processes, ultra-high precision spectroscopy and optics, and high-performance computing and image processing.

Applied technical contributions include laser wavefronts, uniquely precise mirror mounts, laser intensity stabilization technology, high-precision gravimeters, and vibration isolation techniques, as well as software that delivers international time standards over Internet. Scientists trained at JILA have joined such firms as Boeing, DuPont, Ford, General Electric; numerous entrepreneurial companies; Massachusetts Institute of Tech-
The laboratory’s Lincoln Laboratory, Oak Ridge National Laboratory, and other major laboratories; and universities throughout the country, including the University of California, Georgia Institute of Technology, University of Wisconsin, and Yale University.

The senior technical staff comprises scientists from the National Institute of Standards and Technology (NIST) and the University of Colorado. The Departments of Physics, Chemistry and Biochemistry, and Astrophysical and Planetary Sciences are affiliated with JILA. The institute offers a rich mix of research and educational experience that makes graduate study at JILA a distinctly interdisciplinary endeavor. Each year, the institute attracts numerous scientific visitors and seminar speakers. In addition, graduate students attend in-house seminars to enhance their skills in laboratory electronics, instrument making, computing, and technical writing.

The JILA building centers around a 10-story tower containing offices for scientific and administrative support staff, a 128-seat auditorium, and a laboratory wing with an isolated, underground research bay. A new four-story south wing contains some of JILA’s computing systems, laboratories for advanced laser studies and experiments, a reading room, meeting rooms, and private offices. Research and education are supported by expert, professionally staffed electronics and instrument shops; computing, networking, and administrative services; and by a Scientific Reports Office.

A brochure describing JILA is available by writing the University of Colorado at Boulder, JILA Chairman, 440 UCB, Boulder, CO 80309-0440, or by calling 303-492-6787. Information about JILA is also available on the World Wide Web (www.boulder.nist.gov/jila/jilahome.html).

The Laboratory for Atmospheric and Space Physics (LASP) is a center for basic theoretical and experimental research in planetary, atmospheric, solar, and space physics. LASP scientists also explore the potential uses and development of space operations and information systems, as well as develop scientific instrumentation.

Students and faculty from the Departments of Astrophysical and Planetary Sciences; Physics; Geological Sciences; the College of Engineering and Applied Sciences; and the Space Grant College pursue their research interests under the auspices of the laboratory. LASP has experiments on several NASA spacecraft including the Voyager mission to Jupiter, Saturn, Uranus, and Neptune; and the Pioneer mission to Venus. LASP scientists are using the Hubble Space Telescope to study the surface and atmospheric changes on Mars, and are taking part in the SOLSTICE mission to study the Sun’s influence on the Earth’s atmosphere. LASP has developed a data-handling system for use with its space experiments.

Data analysis is proceeding on the ultraviolet spectrometer and extreme ultraviolet spectrometer for the Galileo mission that reached Jupiter in 1995. Analysis continues on data from the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) launched in July 1992 and on data from the Clementine spacecraft launched in 1994. Flight software has been developed and final calibrations undertaken for the CEPPAD and CAMMICE instruments launched on NASA’s POLAR spacecraft in November 1995.

New study missions include the Venus composition probe and the Hermes global orbiter, both Discovery-class missions; the Pluto Fast Flyby; and the TONE ultraviolet spectrometer.

LASP scientists are studying the application of spacecraft operations and data management concepts to several NASA missions, including the space station. Laboratory experiments, such as developing sensitive photoelectric array detectors for ground-based and space astronomical observations, are also being pursued. Active sounding rocket programs complement the research in planetary atmospheres, atmospheric processes, and solar physics.

Research Centers

The Business Research Division performs contract research and provides the Colorado business community with information and special studies on the state’s economy and business problems. The division is also responsible for the organized research activities of the College of Business and Administration, which are conducted through four organizations. The Center for Sustainable Tourism is a think tank where students meet with faculty, industry leaders, and government officials to acquire technical and industry knowledge about sustainable tourism development for their eventual role as leaders in the tourism industry. The CU Business Advancement Center and the Rocky Mountain Trade Adjustment Assistance Center provide management assistance, business information, and consulting services to small and medium-sized businesses in the region. The Mid-America Manufacturing Technology Center Colorado, with locally based field engineers and project management staff, provides on-site assessments of the business and technical aspects of small manufacturing operations in the state and recommends priority actions to improve a company’s competitive position.

The College of Engineering oversees 19 interdisciplinary research centers whose programs augment discipline-based research in traditional academic fields. These research centers have a wide variety of research focuses such as the commercial development of space (BioServe);decision support for water and environmental systems (CADSWES); manufacturing and packaging microwave, optical, and digital electronics (CAMMODE); applied parallel processing (CAPP); computer simulations in aerospace structures (CAS); astrodynamics research (CCAR); combustion research (CCER); information storage (CCIS); drinking water optimization (CDWO); photopolymerization methods (CFAP); biotechnology seed grants, fellowships, internships, and symposia (CIRB); power electronics (CoPEC); pharmaceutical biotechnology (CPB); RNA technology (CRC); international standardization (ICSR); lifelong learning and design (L3D); separations using thin films (MAST); micro-electromechanical devices in medical applications (MEDICA); and optoelectronics in computing systems (OCS).

A number of research centers are affiliated with other academic departments, schools, colleges, or programs.

The Center for Astrophysics and Space Astronomy (CASA) is a research center within the Department of Astrophysical and Planetary Sciences. CASA provides a focus for campuswide expertise in experimental, observational, computational, and theoretical astrophysics, including solar and stellar physics, interstellar and intergalactic medium studies, star and planetary system formation, galactic and extragalactic astrophysics, and cosmology. Staff members carry out research involving x-ray, far-UV, optical, infrared, and radio observations using both satellites and ground-based facilities.

CASA scientists play leading roles in data analysis for NASA astrophysics missions such as the Hubble Space Telescope. CASA instrumentalists manage an active sounding rocket program, develop payloads for NASA’s airborne telescope SOFIA, build the primary spectographs for the upcoming Far Ultraviolet Spectroscopic Explorer (FUSE), and are developing the Cosmic Origins Spectrograph (COS) to be installed in the Hubble Space Telescope in 2003.

Other CASA programs include laboratory experimentation on molecules of astrophysical interest, space and ground-based observations in all wavelength bands from x-ray to radio, extensive numerical modeling of the evolution of matter in the early universe to study the formation and evolution of galaxies and intergalactic medium, and theoretical investigations in many areas of astrophysics.
The Center for British Studies promotes research in all aspects of British culture, history, and contemporary life. Its resources include the outstanding research collections of the University of Colorado Libraries, including a wide range of microfilmed copies of original materials from Britain. The center is the leading research facility in British studies in the Rocky Mountain/high plains area. The center sponsors visiting lecturers, colloquium series, and conferences, and serves as a gathering point for scholars and students in the region. It welcomes outside users of the research collections and continues to develop the research base. The center also cooperates with community groups in sponsoring activities dealing with British politics, business, and the arts.

The Center for Comparative Politics promotes institutional support for cross-national research on the political institutions, processes, and policy issues of contemporary nations. A major focus of research is the politics of ethnicity and intergroup conflict in plural societies. Other foci are democratization and the comparative study of public policy in advanced industrial societies.

The Center for Economic Analysis provides opportunities for research in all fields of economics. The center seeks to identify, acquire, and distribute new and underutilized data sources. It also encourages research in topics of interest to members of the economics department and offices of state and local government. It assists in distributing such research to inform the scholarly community and the Colorado policy community.

The Center for International Relations serves as a base for international studies and research at the university. Its purpose is to encourage individual and cooperative research in the field of international relations. The center also promotes the teaching of international relations at the graduate and undergraduate levels within the Department of Political Science and the College of Arts and Sciences. Support has been received from the National Science Foundation, the National Endowment for the Humanities, the International Institute for Communications, and UNESCO, as well as the College of Arts and Sciences and the Institute of Behavioral Science at the University of Colorado at Boulder.

The Center for Labor Education and Research (CLEAR) conducts labor education programs and research in various aspects of labor relations. Noncredit courses are offered for members of organized labor as the university’s service to the labor community of Colorado. Graduate students may attend conferences with staff members and use available library facilities. CLEAR staff members also teach credit courses in other schools and colleges.

The Center for Public Policy Research stresses the integration of knowledge and practice to improve public policy. The research program includes policy analysis in such areas as environment, natural resources, poverty, growth management, and economic development, as well as the development of theory and methods for the policy sciences. The center also supervises the public policy curriculum for the M.A. in political science (public policy option).

The McGuire Center for International Economics, organized within the Department of Economics, is dedicated to research and graduate training in a broad range of international topics. Specialties of faculty associated with the center include international trade and finance, monetary theory and policy, monetary history and reform, and economic development and macroeconomics. Research on questions concerning international debt and trade relations in the Pacific region is given particular emphasis and support. The center offers opportunities for students and faculty interested in interdisciplinary work between international economics and areas such as international politics, conflict and peace studies, and international business.

Laboratories and Special Equipment
Laboratories, special classrooms, and specialized equipment are essential to graduate training and research. Some of the facilities at the University of Colorado are described in the following paragraphs.

Aerospace engineering sciences is equipped with both high-end workstations and PCs; a low-turbulence wind tunnel; laboratories in structural dynamics and controls; a guidance and control laboratory; a Global Positioning System laboratory; and the Lockheed Martin Room, dedicated to senior design teams. Space hardware laboratories aid in developing expertise in electronics, structures, fluids, and thermal control for the development, testing, and operation of small payloads; and space biotechnology laboratories develop expertise in microgravity studies involving animal physiology, agricultural products, bioprocessing, and advanced spacecraft life support systems. Computer laboratories are equipped for use in upper-division and graduate courses and for graduate research, with special capabilities for computer-aided control systems design, satellite image processing, satellite mission design, and parallel processing for computational structural mechanics, fluid dynamics, control, acoustics, and optimization. A NOAA satellite receiving station is available to the department for use in teaching and research.

The Department of Astrophysical and Planetary Sciences emphasizes studies of theoretical and observational astrophysics (including the sun), planetary atmospheres and surfaces, astrophysical fluid dynamics, space physics, and plasma astrophysics. The department operates the Sommers-Bausch Observatory and laboratories for space astrophysical hardware, computational fluid dynamics, and UV/IR/X-ray astronomy. Also used are observational facilities of Cerro Tololo Inter-American Observatory in Chile; the Kitt Peak National Observatory in Tucson, Arizona; the Very Large Array (VLA) in New Mexico; and many NASA astronomical and planetary satellites, such as the Hubble Space Telescope, Galileo and Cassini Space probes, and Far Ultraviolet Spectroscopic Explorer. Teaching and research are conducted in collaboration with the Laboratory for Atmospheric and Space Physics (LASP), JILA, the National Center for Atmospheric Research (including the High Altitude Observatory), and the Center for Astrophysics and Space Astronomy (CASA).

Chemical engineering research facilities are extensive and modern. Nearly all research equipment is interfaced to microcomputer systems for automated data collection, monitoring, and control.

Studies in heterogeneous catalysis and surface science use ultrahigh vacuum systems located in the chemical engineering laboratories.

Research in chemical process control makes extensive use of an array of real-time computer systems and experimental units.

The suspension fluid dynamics laboratories include microfilters, sedimentation devices, and particle size analyzers.

Membrane studies use casting machines for fabricating flat sheet and hollow fiber membranes, and a variety of analytical equipment. A pendant drop tensiometer is used to study membrane formation via interfacial polymerization. A differential scanning calorimeter is used for determining the glass-transition and crystallization temperatures as well as other properties of polymeric membrane materials.

The biotechnology research laboratories are equipped with highly instrumented and controlled fermenters, high-performance liquid chromatographs, a flow cytometer, a UV-vis scanning spectrophotometer, an electron paramagnetic resonance spectrometer, a phosphorescence imager, centrifuges, and other standard bioprocess and bioanalytical equipment.

In the polymer laboratories, the latest differential scanning calorimeter is used to study photopolymerization reactions and phase transitions. Nonlinear optical polymeric materials are characterized on an optical bench equipped with a Neodymium/YAG
laser and photo detection system. The laboratories are also equipped with a Hewlett Packard UV-visible spectrophotometer and facilities to perform photopolymerizations to produce membranes and polymer films.

The ceramics processing laboratory includes a high-temperature furnace, a thermal gravimetric analyzer, and several fluidized beds.

Civil, environmental, and architectural engineering research interests and facilities include extensive research laboratories for use in the areas of structural mechanics and geotechnical engineering. Excellent facilities are available for research in water quality, environmental engineering, hydraulics, hydrology and water resources as well as in construction management and building energy engineering. Unique to the department are a 10 g-ton and a 400 g-ton centrifuge for geotechnical, hydraulic and structural model studies. The department has numerous computing facilities and is the college’s largest computer user.

Current research covers such topics as water and wastewater treatment, groundwater hydrology, hydraulic and hydrologic modeling, composting of wastes and activated sludge processes, research on construction contracts using artificial intelligence, design of construction operations, risk analysis, and construction management. The area of building systems engineering includes research in energy conservation, solar applications, and lighting systems. Offshore structures, centrifugal modeling, excavations, tunneling, mine waste planning, and rock and soil mechanics are being studied. In structures research, includes focus on buckling, finite element techniques, reinforced concrete, earthquake behavior, masonry structures, and prestressed concrete.

The Department of Computer Science supports its own domain (cs.colorado.edu), which is a 10/100 mb network connected to the campus and the world by ATM, FDDI, and fast ethernet. Research and academic computing needs are handled by the department staff. Most architectures and operating systems are supported, giving students the opportunity to learn about and use state-of-the-art equipment and software.

The current hardware inventory includes Sun Microsystems workstations and servers, Digital Compaq workstations, an Alpha parallel processing cluster, Macintoshes and NT desktop workstations, HP workstations, NCD xterminals, and various other systems. All are networked with 10 or 100 mb networks connected with switches and hubs to the firewalled gateway. Of particular interest is the Sun workstation teaching lab, which features 20 Ultra 10s and an Enterprise 3500 server donated by Sun Microsystems to the department in 1998.

Electrical and computer engineering special equipment and facilities include a class 1,000 clean room facility for epitaxial growth and fabrication of microwave and optical devices; high-vacuum and vacuum deposition equipment for thin-films research; an integrated circuits laboratory; ion implantation equipment; crystal growing facilities; a modern systems laboratory; undergraduate laboratories in circuits, electronics, and energy conversion; a holography and optics laboratory; numerous special purpose computers; mini- and micro-processors and a computer laboratory; a roof-mounted antenna range; an anechoic chamber for studying propagation effects at microwave frequencies; a special microscope for laser manipulation of microorganisms in vivo; and a biomicroscope laboratory.

The department has a large variety of computing equipment to support its research and instructional activities. Most machines are connected via Ethernet, which also provides access to a large number of shared computing resources on campus. Department facilities include over 75 minicomputers and workstations, including SUN and Hewlett-Packard 9000 series systems.

Mechanical engineering laboratories provide for experimental studies of thermal, mechanical, and electronic systems. Typical areas of study include heat transfer, fluid and solid mechanics, mechanical behavior of materials, combustion, prosthetic device performance, electronic packaging and manufacturing, and design optimization.

The combustion laboratory contains instrumentation for velocity, temperature, and composition measurements in chemically reacting flows. Included are systems for gas chromatography, laser-induced fluorescence spectroscopy, laser absorption spectroscopy, laser schlieren, laser interferometry, and laser doppler anemometry. The laboratory is also equipped for computer control of the instrumentation and automatic data reduction including graphics capabilities.

The materials laboratory is well equipped for the measurement of the physical and mechanical properties of polymers, metals, ceramics, and composites. Major facilities include a pressure dilatometer with capabilities to 200 MPa and 450°C for determination of solid and melt equations of state, a forced-oscillation dynamic mechanical analyzer as well as a large capacity torsion pendulum for measurement of modulus and damping behavior, a modern servohydraulic mechanical test system for the analysis of tensile and relaxation properties, and an acoustic microscope for morphological studies.

The fluid mechanics laboratory is equipped with several basic facilities for experimentation in fluid systems. The Stokes flow apparatus is devoted to measurement of drag in highly viscous fluid flow using laser-timer instrumentation. The Taylor-Couette apparatus incorporates thermistor sensors, laser sheet visualization, and computer data acquisition to study instabilities of fluid motion between rotating cylinders with a radial temperature gradient. A humidity-controlled room provides an environment for studying the stability of rotating capillary rivulets. A Linn vibration exciter provides the basis for g-jitter experiments on the stability of differentially heated fluid layers.

The packaging laboratory is equipped with a quick prototyping workcell for semiconductor multichip modules, two fluxless solder reflow chambers, a thermosonic flip-chip bonding machine and a thermal-chip testing system. The electronic manufacturing laboratory houses a mock-up chemical vapor deposition reactor, a condensation soldering set-up, a wind-tunnel for testing various high performance heat sinks, and a Czochralski crystal growth simulator. This equipment supports work on novel packaging and process control techniques, including artificial neural networks and fuzzy logic.

The Mechatronics Laboratory has state-of-the-art facilities to lay out MEMS designs using Tanner Research Tools and IntelliCAD simulation software. The laboratory has probe stations equipped with computer control, video cameras, and power supply units. Personnel are able to activate, record, and evaluate MEMS to be fabricated for the proposed study.

Various optical instruments are available to verify the electromechanical behavior of fabricated MEMS in real time as a function of environmental temperature and pressure. For temporal response studies, an optical interferometer is available. For static deformation studies, a Zygo Interferometric Microscope (New View 200) is available in the MEMS R&D Laboratory. This imaging system uses noncontact scanning white light interferometry and provides 3-D surface analysis with Z-scan from 1 nm to 5,000 um with 0.1 nm height resolution. The field of view is adjustable from 1 um to 50 mm. With this unique system staff can visualize and study any MEMS deformation induced by internal material stresses and or applied external forces, as well as the wear effects due to friction.

The Nuclear Physics Laboratory, of the Department of Physics, conducts theoretical and experimental research in nuclear physics. Theoretical work is directed primarily to the studies of the structure and interactions of
strongly interacting particles. Experimental work is focused on intermediate and high energy electron and meson beam interactions with nucleons and with complex nuclei. The laboratory is well equipped with shop, laboratory, and computing facilities for the preparation of experimental equipment and for the analysis of data.

Graduate students and faculty of the laboratory carry out experiments at CEBAF, Brookhaven National Laboratory, TRIUMF (in Vancouver, Canada), DESY (in Hamburg, Germany), and elsewhere. Support for the research program comes from the U.S. Department of Energy. Research assistantships are available in both theoretical and experimental studies.

The High Altitude Observatory (HAO) is an internationally recognized center for the study of solar, solar-terrestrial, and related astrophysics with emphasis on the interrelationships. Established in 1940, HAO has its central laboratory and administrative offices in the National Center for Atmospheric Research (NCAR) building in south Boulder.

HAO is a part of NCAR, which is sponsored by the National Science Foundation. HAO’s extensive research facilities are used by graduate students pursuing advanced studies in atmospheric sciences and physics.
Norlin’s Legacy

George Norlin, professor of Greek, assumed the presidency of the university in 1919 and served in that capacity for over 20 years. During his tenure he oversaw Charles Klauder’s redesign of the Boulder campus, stood up to the Klu Klux Klan when it was a powerful influence in Colorado politics, led the university through the hard years of the Depression, and eloquently defended academic excellence and freedom. By 1939, he had raised the prominence of CU to rank among the best “medium-sized” institutions of higher education in the nation.
Formal instruction in journalism began at the University of Colorado at Boulder in 1909. Journalism was made a department of the College of Arts and Sciences in 1922 and became the College of Journalism within the College of Arts and Sciences in 1937. The Board of Regents authorized a separate School of Journalism in 1962. In 1985, the name of the program was changed to the School of Journalism and Mass Communication to reflect its broad range of instructional and research activities.

The school offers its undergraduate majors superior professional and media studies instruction with a broad education in the liberal arts. It conducts research in mass communication and provides service to the mass media, other state educational institutions (including high schools), and the public at large. The school makes courses available to nonjournalism majors within the limits of space and equipment, upon which majors properly have first claim.

Accreditation

The School of Journalism and Mass Communication is accredited by the Accrediting Council on Education for Journalism and Mass Communications. It is a fundamental principle of the ACEJMC that education for journalism be broadly based. Accordingly, undergraduate journalism and mass communication students at CU-Boulder take approximately three-fourths of their college work outside the school and approximately one-fourth in the school.

Accredited programs, as described by the ACEJMC, are distinguished by the following characteristics:

1. They maintain a professional curriculum with one or more specialties leading to a bachelor’s degree and/or advanced degree or degrees in journalism.
2. They carry on the professional training of general practitioners for the field of journalism while giving due consideration to service, the profession, and research.
3. They strive to serve national media as well as media of their own states.
4. They are committed to a philosophy of professional training that places strong emphasis on liberal arts studies.
5. They provide close relationships between students and teachers.

Facilities and Research Activities

Laboratories. Students work in laboratories designed for reporting, editing, advertising, graphics, radio, television, and photodocumentation. They have opportunities to use video cameras and recorders, video display terminals, personal computers, radio and television studios, and the Associated Press wire service.

Reading Room. A reading room for students contains daily and weekly newspapers from Colorado and elsewhere, scholarly and trade publications, and other professional material.

Internships. The school, through the office of the Director for Internships, assists students in locating and participating in internships. In addition to working for the school’s newspaper, the *Campus Press*, students intern with weekly and daily newspapers, advertising and public relations agencies, social service agencies, businesses, and radio and television stations. Students also work for the *Colorado Daily*, an independent newspaper affiliated with the university; the campus cable network; and KVCU, the university’s student radio station.

Center for Environmental Journalism. The center seeks to enrich and elevate the quality, range, and significance of media coverage of environmental issues. The center’s activities involve three interrelated areas: student education, including a master’s degree with an emphasis in environmental journalism; professional development for working journalists; and communication with scientists and the public.

Center for Mass Media Research. The center is responsible for encouraging and focusing interdisciplinary research in a wide array of areas involving mass communication. Students and faculty participate in its programs and projects, which focus on research in the social, cultural, economic, and policy aspects of the mass media and telecommunications.

Career Opportunities

The school offers undergraduate programs in advertising, broadcast news, broadcast production management, media studies, and news-editorial. Graduates find careers with newspapers, magazines, broadcast, cable and audio/video production companies, advertising and public relations firms, in science, industry, and government, and in secondary and higher education. The School of Journalism and Mass Communication assists students in career planning and job placement.

Study Abroad Programs

The School of Journalism and Mass Communication, in conjunction with the Office of International Education, encourages students to participate in the university’s study abroad programs. Study abroad usually is undertaken during the junior year. Since an additional semester may be necessary to meet graduation requirements, prospective majors are urged to plan early and seek advising from the journalism and mass communication faculty. Programs are offered in over 35 countries worldwide. Information and application forms are available at the Office of International Education, University of Colorado at Boulder, 123 UCB, Boulder, CO 80309-0123.

Student Organizations

Through an elected student government, students conduct a wide range of activities and assist in forming policies of the school.

The school has chapters of the Society of Professional Journalists (Sigma Delta Chi), Association for Women in Communication, the American Advertising Federation, the Radio and Television News Directors Association, and MEMO (Multi-Ethnic Media Organization).
Scholarships, Loans, and Awards
The following scholarships, loan funds, and awards are available annually to officially admitted journalism and mass communication majors.

More detailed information is available in the School of Journalism and Mass Communication office. Applications must be submitted to the dean of the school by December 1 of each year.

- Boulder Press Club Scholarship
- Burns Memorial Scholarship, awarded to an advertising major
- Gene Cervi Memorial Scholarship
- Colorado Press Women Scholarship, awarded to a woman student
- Denver Women’s Press Club, awarded to a woman student
- Alvin G. Flanagan Scholarship
- Lisa Gorman Memorial Scholarship
- Marcella Gibbons Hertzog Scholarship, endowed by Georgene Carlson
- Brian Hostetler Memorial Scholarship, awarded to a broadcast major
- Raymond B. Johnson Memorial Fund, provided for student loans
- Nonie Lann Endowed Scholarship
- Lehman Communications Corporation Endowment Fund, scholarships for students in underrepresented ethnic groups
- Winton Lemen Scholarship
- William M. Long Memorial Fund, provided for student loans
- Dominic Manzanares Memorial Scholarship, awarded to a minority and/or Colorado resident
- Mile High Kennel Club Scholarship, awarded to a senior from the Denver metropolitan area
- L. C. Paddock Memorial Scholarship
- Bob and Gloria Palmer Scholarship, awarded to a broadcast major
- Gladys Van Vranken Parce Memorial Scholarship, awarded to a print journalism major
- J. Ember and Agnes P. Sterling Scholarship
- Sid Wells Memorial Fund, provided for student loans

ACADEMIC STANDARDS

Scholastic Suspension
Journalism students are subject to suspension if they do not maintain a cumulative university grade point average of 2.25 and a cumulative journalism and mass communication grade point average of 2.50.

Students whose grade point averages fall below either of these levels are normally placed on probation for one semester, during which they have an opportunity to raise their averages to the required levels. Students whose averages continue below the required levels are subject to suspension from the School of Journalism and Mass Communication and will be notified in writing.

Scholastic records will be reviewed as soon as possible after each semester, and students will be informed in writing if they are to be placed on probation or suspension.

The normal period of suspension is two regular semesters (one academic year, excluding summer sessions). The period of suspension will be stated in the suspension notice to the student. A student suspended a second time will be reinstated only on the basis of unusual circumstances, which the student should state in a petition to the dean of the school.

Academic Dishonesty
The School of Journalism and Mass Communication has adopted a statement on academic dishonesty to maintain the highest standards of intellectual honesty. Copies of the statement are available from all advisors and in the school office.

ADMISSION AND ENROLLMENT POLICIES

Requirements for Admission
Students planning to major in journalism and mass communication at the University of Colorado normally enroll as prejournalism and mass communication freshmen in the College of Arts and Sciences, or complete their freshman year in some other collegiate institution. See Undergraduate Admission in the General Information chapter of this catalog for admission standards for transfer students.

Prejournalism and Mass Communication
Prejournalism and mass communication students are enrolled in the College of Arts and Sciences until they are eligible to transfer into the School of Journalism and Mass Communication, which normally occurs at the end of the freshman year. They must have completed or be working toward completing 30 semester hours with a grade point average of at least 2.25. These students must consult with advisors in the school.

Before they can apply for admission to the school, prejournalism and mass communication majors must make satisfactory progress in courses that meet the core areas of study requirements in the College of Arts and Sciences. Students must complete two journalism classes (JOUR 1001 and 1002) with a GPA of at least 2.50 before applying.

Students wishing to apply to the School of Journalism and Mass Communication must fill out an intraniversity transfer (IUT) form and a letter of application by October 1 for spring admission or February 20 for fall admission. Students must indicate the major sequence in which they wish to enroll. Meeting these minimum requirements does not guarantee a student admission to the school.

Transfer Students
Students applying to transfer into the School of Journalism and Mass Communication from another institution should have 30 semester hours of college credit and should have completed two introductory courses in journalism with a GPA of at least 2.50 before they apply. Students without 30 hours of credit should apply to the College of Arts and Sciences’ prejournalism major. See Undergraduate Admission in the General Information chapter of this catalog for transfer student admission standards.

Attendance Regulations
Students are expected to attend classes regularly and to comply with the attendance regulations specified by their instructors at the beginning of each semester. A student who does not attend any of the first week’s sessions of a class during a term may be dropped from the class.

Credit Policies
Pass/Fail
In addition to the university’s general policies, majors in the School of Journalism and Mass Communication may not take any journalism and mass communication course pass/fail, but any other course may be taken pass/fail. Up to 16 hours of nonjournalism courses may be taken pass/fail, except for transfer students, for whom the limit is one hour in every eight attempted at the University of Colorado. Only six hours of pass/fail may be taken in any one semester.

Transfer Credits
Credit in subjects transferred from other institutions to the University of Colorado is limited to the amount of credit given for similar work at the University of Colorado. Transfer credits in journalism and mass communication are limited to 12 semester credits from four-year institutions and 6 semester credits from two-year institutions. All transfer credit is subject to approval of the dean of the school. A proficiency examination in journalistic writing and language skills may be required of those who wish to transfer credit equivalent to JOUR 1002. For additional information on transfer of credit policies, please see the Transfer of College-Level Credit section in the first chapter of this catalog.

Residence Requirement
A candidate for a degree from the School of Journalism and Mass Communication must
earn the last 30 hours in residence at the University of Colorado. This may include courses taken on the Boulder, Denver, or Colorado Springs campus.

Senior Requirement
Seniors should file a diploma card with the school by October 15 for May graduation and March 1 for August and December graduation. Diploma cards are available at the office of the School of Journalism and Mass Communication.

Withdrawal
Students may withdraw at any time prior to the start of the final examination period. Students are encouraged to consider the Time Out Program when their withdrawal from the university is temporary.

UNDERGRADUATE DEGREE REQUIREMENTS

General Education in Journalism

The undergraduate degrees in journalism and mass communication emphasize knowledge and awareness of:

- the nature and functions of contemporary mass media;
- the history of national and international mass communication;
- the unique role and responsibility of mass communication in a democracy;
- the Constitutional provisions relating to freedom of the press and expression;
- the laws controlling and supporting freedom of the press and expression;
- the formation and influence of public opinion; and
- social responsibility and media ethics.

In addition, students completing a degree in journalism and mass communication acquire the ability and skills to:

- gather information from records and by asking questions;
- write correctly, concisely, and interestingly; and
- perform in a professional setting.

The degree in advertising emphasizes knowledge and awareness of:
- the relationship of advertising to the presentation of news and entertainment;
- the organization of the advertising industry;
- research techniques applicable to the industry;
- how advertising programs are planned and evaluated;
- the principles of advertising writing, design, and campaign planning;
- issues and controversies surrounding the effects of the industry in society at large.

In addition, students completing the degree in advertising acquire the ability and skills to:
- analyze a communication problem in order to determine if it’s amenable to solution through advertising;
- analyze alternative solutions to a communication problem and to present succinct arguments for recommendations;
- develop a comprehensive written plan for the solution of a communication problem; and
- present complex material persuasively using oral, visual, and written forms.

The degrees in broadcast emphasize knowledge and awareness of:
- the economics of broadcast production;
- electronic media organization;
- the principles of radio and television production; and
- evaluation of broadcast media performance.

In addition, students completing either of the degrees in broadcast acquire the ability and skills to:
- write general news pieces as well as specialized report packages; and
- use equipment to shoot and edit broadcast materials.

The degree in media studies emphasizes knowledge and awareness of:
- the economics of media industries;
- the media’s place in contemporary political life, in both the U.S. and internationally;
- the history of media and communication and the social implications of existing and emerging communication technologies;
- media and the law, including issues of freedom of the press and responsibility of the media in a democracy; and
- the media’s role in producing and circulating cultural values and meanings.

In addition, students completing the media studies degree acquire the ability to:
- interpret and evaluate media content;
- analyze the relationship of media industries and audiences; and
- make connections between media theory and media practice.

The degree in news-editorial emphasizes knowledge and awareness of:
- the structure and organization of print media in the United States;
- the economics of print media organizations; and
- evaluation of print media performance.

In addition, students completing the news-editorial degree acquire the ability and skills to:
- report with accuracy, fairness, and balance;
- write general news pieces as well as specialized reports;
- correct and perfect story manuscripts for publication; and
- execute appropriate publication design.

Advising

Majors and premajors are required to consult an advisor each registration period. Advising is available from faculty and staff throughout the academic year, and major advising sheets are provided for each sequence. However, students are ultimately responsible for fulfilling all degree requirements.

Requirements for Graduation

The undergraduate degree offered is the bachelor of science degree.

A total of 124 semester hours with a grade point average of not less than 2.25 overall and 2.50 in journalism and mass communication courses is required for the degree. Of these 124, at least 40 must be upper-division credits—12 hours must be upper division in an area of concentration, and 28 to 39 must be in journalism. In addition, 65 of the 124 hours must be in arts and sciences.

No student may take more than 39 hours of journalism in the 124 hours required for graduation.

The upper limit is imposed to ensure wide exposure of majors to liberal arts courses. Students who wish to develop expertise in a particular specialty are advised to take courses in science, business, political science, or other relevant areas.

Double-Degree Programs

Students may complete requirements in two fields and receive two degrees from the university. Such double-degree programs are available combining journalism and mass communication with business, music, or disciplines in the College of Arts and Sciences. In addition, 65 of the 124 hours must be in arts and sciences.

Students interested in the relationships among mass media, culture, society, criticism, and policy.
Advertising
Advertising is designed to prepare students for careers with newspapers, magazines, radio, television, and advertising and public relations firms.

Required Courses Semester Hours
JOUR 1001 Contemporary Mass Media3
JOUR 1002 Critical Thinking and Writing3
JOUR 2002 Electronic Information
 Strategies ..3
JOUR 2011 Media and Public Culture3
JOUR 2403 Principles of Advertising3
JOUR 3453 Advertising Copy and Layout3
JOUR 3463 Advertising Media3
JOUR 3473 Advertising Research3
JOUR 4403 Advertising Campaigns4
JOUR 4931 Internship or JOUR 3913
 Advertising Practicum ...3
 Journalism electives ..0-8
 ECON 2020 Principles of Macroeconomics4
 BCOR 2050 Adding Value with Management
 and Marketing I ...1-3
 MKTG 3250 Buyer Behavior3

Broadcast News
Broadcast news is designed to prepare students as news directors, reporters, editors, and writers for television or radio stations.

Required Courses Semester Hours
JOUR 1001 Contemporary Mass Media3
JOUR 1002 Critical Thinking and Writing3
JOUR 2002 Electronic Information
 Strategies ..3
JOUR 2011 Media and Public Culture3
JOUR 3604 Radio and Television News3
JOUR 3644 Principles of Broadcast
 Production ..3
 JOUR 4354 TV Reporting3
 JOUR 4624 News Team ...3
 JOUR 4651 Mass Communication Law3
 Journalism electives ..1-12

Broadcast Production Management
Broadcast production management is designed to prepare students for other careers in radio or television, including positions in programming, advertising, promotion, and management.

Required Courses Semester Hours
JOUR 1001 Contemporary Mass Media3
JOUR 1002 Critical Thinking and Writing3
JOUR 2002 Electronic Information
 Strategies ..3
JOUR 2011 Media and Public Culture3
JOUR 3604 Radio and Television News3
JOUR 3644 Principles of Broadcast
 Production ..3
 JOUR 3674 Television Production 23
 JOUR 4644 Electronic Media Management3
 JOUR 4651 Mass Communication Law3
 Journalism electives ..1-12

Media Studies
Media studies is designed to prepare students for government and private industry careers evaluating and critically analyzing the impact of the media on society and culture, as well as evaluating and establishing mass media policy.

Required Courses Semester Hours
JOUR 1001 Contemporary Mass Media3
JOUR 1002 Critical Thinking and Writing3
JOUR 2002 Electronic Information
 Strategies ..3
JOUR 2011 Media and Public Culture3
JOUR 2403 Principles of Advertising3
JOUR 4301 Media Ethics and Professional
 Practice ...3
 JOUR 4311 Mass Media Criticism3
 JOUR 4321 Media Institutions and
 Economics ...3
 JOUR 4651 Mass Communication Law3
 JOUR 4711 Mass Media and Culture3
 Journalism electives ..0-9

News-Editorial
News-editorial is designed to prepare students for positions as reporters, editors, and writers for newspapers, news services, magazines, trade and technical publications, company publications, and government.

Required Courses Semester Hours
JOUR 1001 Contemporary Mass Media3
JOUR 1002 Critical Thinking and Writing3
JOUR 2002 Electronic Information
 Strategies ..3
JOUR 2011 Media and Public Culture3
JOUR 3001 Reporting of Public Affairs3
JOUR 3012 News Editing3
JOUR 4002 Reporting 2 ...3
JOUR 4502 Advanced Reporting3
JOUR 4651 Mass Communication Law3
 Journalism electives ..1-12

GRADUATE DEGREE PROGRAMS

Master’s Degrees
A Master of Arts in journalism and mass communication is awarded after a student has demonstrated an advanced understanding of the role of mass media in society as well as competence or potential as a professional. Students may come into the master’s program with or without a foundation of educational or practical experience in journalism and mass communication. Upon completion of the program, students may enter or return to journalism, teach, or continue graduate studies in a doctoral program. The School of Journalism and Mass Communication offers a mass communication research program and professional programs in news, integrated marketing communications, and an advanced professional track for practicing journalists with a minimum of three years of full-time, professional journalism experience.

Graduate students should read carefully requirements for advanced degrees in the Graduate School chapter of this catalog.

Journalism and mass communication is available as a minor in other fields of advanced study to which it is logically related. The school is also an active participant in the interdisciplinary telecommunications and environmental policy programs (see the Graduate School Interdisciplinary Programs section of this catalog).

Requirements
The master’s program in news provides students with the knowledge and skills needed to enter the print or broadcast media. Students concentrate on in-depth reporting in either print or broadcast, although they are enrolled together in both required and elective courses. Students are advised and encouraged to develop an area of reporting specialization to combine with their professional skills training. Such specialties might include education, business, the environment, science, politics, or the arts. The program culminates with a professional project. Students complete a minimum of 30 graduate semester hours and should be able to finish the degree in three semesters plus a summer. Students who enter the master’s program in news are not expected to have a background in journalism.

The advanced professional track is for practicing journalists who wish to upgrade their professional skills and broaden their knowledge in a specific subject area outside the mass communication field. The curriculum concentrates on both professional and conceptual courses, with two to four courses coming from outside the school. A minimum of 24 credits in addition to a professional project is required.

The Integrated Marketing Communication (IMC) master’s degree is a marketing communication management program that concentrates on a variety of functional areas, including advertising, public relations, direct response, sales promotion, and packaging. The program’s focus is on strategic planning. Students complete a balanced curriculum that includes both theory and practice. Students are required to do an oral defense of their work in the IMC program. In addition, students must complete an on-site audit of an organization’s marketing communication program. Three undergraduate prerequisites and 44 graduate credit hours are required for the IMC program, which students should be able to complete in 16 months.
The M.A. program in Mass Communication Research is designed for students who seek to pursue media studies or enhance an undergraduate or professional background. The curriculum concentrates on theories of mass communication, research methods, and concepts in law, history, politics, public opinion, international mass communication, and ethics. The degree requires a thesis. Students must complete a minimum of 28 graduate semester hours, including a thesis. They can complete the degree in three semesters plus a summer.

Every effort is made to suit the course work, both within the journalism and mass communication curriculum and the field, to each candidate’s interests and goals. For details about the programs, write to the Coordinator of Master’s Programs, School of Journalism and Mass Communication, University of Colorado at Boulder, 287 UCB, Boulder, CO 80309-0287.

Ph.D. Degree
The School of Journalism and Mass Communication offers a media studies track in the Ph.D. program in Communication. The program examines interactions among the major components of mass communication—media institutions, their contents and messages, and their audiences or publics—as a process by which cultural meaning is generated. It examines that process through communication and through social, economic, political, historical, and legal theories from both national and international perspectives.

Requirements
The Ph.D. curriculum includes requirements in foundation theory and perspective, methods, and elective options in the School of Journalism and Mass Communication and other appropriate academic units. Comprehensive examinations and a dissertation also are required.

Students may enter the program without a professional or academic background in the media, but will be required to augment their studies through selected course work. Under certain circumstances, the school will consider granting admission to applicants without master’s degrees. For current admission requirements and curriculum information, contact the Director of the Doctoral Program, School of Journalism and Mass Communication, University of Colorado at Boulder, 287 UCB, Boulder, CO 80309-0287.

COURSE DESCRIPTIONS
The following courses are offered in the School of Journalism and Mass Communication on the Boulder campus. This listing does not constitute a guarantee or contract that any particular course will be offered during a given year.

For current information on times, days, and instructors of courses, students should consult the Registration Handbook and Schedule of Courses issued at the beginning of each semester.

Some courses may be open to nonmajors. Students should check for current policies.

Courses numbered in the 1000s and 2000s are intended for lower-division students and those in the 3000s and 4000s for upper-division students. Courses numbered in the 5000s are primarily for graduate students, but in some cases may be open to qualified undergraduates. Normally, courses at the 6000, 7000, and 8000 level are open to graduate students only.

Courses are organized by subject matter and are listed numerically by last digit (courses ending in the number “0” are listed before courses ending in “1,” and so on). The number after the course number indicates the semester hours of credit that can be earned in the course.

Abbreviations used in the course descriptions are as follows:
Prereq.—Prerequisite
Coreq.—Corequisite
Lab.—Laboratory
Rec.—Recitation
Lect.—Lecture

Core Curriculum and General Electives

JOUR 1001-3. Contemporary Mass Media. Examines the mass media’s interaction with society and looks at journalism and the mass media in historical, intellectual, economic, political, and social contexts.

JOUR 2011-3. Media and Public Culture. Introduces the rise and development of mediated communication and its impact on and role within the formation of modern culture and public life.

JOUR 4201-3. International Mass Communication. Covers mass media in the international system, including comparative examinations of national and international press organizations, methods, and content. Also looks at the role of mass media in developed and developing countries and the international flow of news and opinion.

JOUR 4301-3. Media Ethics and Professional Practice. Provides a theoretical framework within which to spot and analyze ethical issues in the mass media. Awakens students to ethical issues; allows them to question the profession’s conventional wisdom; and teaches them how to change those conventions.

JOUR 4311-3. Mass Communication Criticism. Introduces students to the critical perspectives most often employed in qualitative media analysis: semiology, structuralism, Marxism, psychoanalytical criticism, sociological criticism, etc. Students work with texts from contemporary print and broadcast media.

JOUR 4321-3. Media Institutions and Economics. Introduces the institutions and practices of the media industries. Surveys the histories, structures, and activities of these organizations and the contemporary issues surrounding them.

JOUR 4331-3. Women and Popular Culture. Studies how women are portrayed in mass media, particularly advertising, television, film and contemporary popular literature. Uses critical methods with a focus on producing responsible viewers and readers.

JOUR 4561-3. Electronic Publishing. Studies emerging information dissemination techniques variously called teletext, videotext, etc. Students participate in writing, editing, advertising, and promoting school-operated cable television text-on-screen system.

JOUR 4651-3. Mass Communication Law. Studies state and federal laws and court decisions that affect mass communication in order to develop knowledge of mass media rights and responsibilities and an understanding of the legal system.

JOUR 4661-3. Newspaper Management. Covers management and organization of newspapers, including an understanding of daily management considerations and what is involved in being an employee in today’s newspaper environment. Same as JOUR 5661.

JOUR 4711-3. Mass Media and Culture. Examines culture in the form of discourse, symbols, and texts transmitted through mass media. Explores the relationship between such mediated culture and social myth and ideology.
JOUR 4791-3. Mass Communication and Public Opinion. Topics include opinion-shaping role of the mass media, theories of public opinion and propaganda, polling, communication effects, and communication theories. Same as JOUR 5791.

JOUR 4831-3. Publication Design and Production. Covers editorial and production aspects of magazines, both general and specialized, including company publications, industrial journals, and other types of limited-audience publications. Same as JOUR 5831.

JOUR 4841 (1-3). Undergraduate Independent Study.

JOUR 4871 (1-3). Special Topics.

JOUR 4931 (1-3). Internship.

JOUR 5001 (1-4). Research in Journalism. Offers students the opportunity to participate in research projects with faculty members or pursue their own primary research interests.

JOUR 5201-3. International Mass Communication. Same as JOUR 4201.

JOUR 5301-3. Media Ethics and Professional Practice. Same as JOUR 4301.

JOUR 5321-3. Media Institutions and Economics. Same as JOUR 4321.

JOUR 5331-3. Women and Popular Culture. Same as JOUR 4331.

JOUR 5511-3. Newsgathering 1. Covers problems and practice in reporting news of government, politics, the courts, and industry, business, science, and other areas involving public issues. For graduate students only.

JOUR 5521-3. Precision Journalism. Introduces students in computer-assisted reporting, including a knowledge of electronic mail, bulletin boards, commercial databases, and global information networks such as the Internet as well as the use of spreadsheets to analyze census data and the like.

JOUR 5661-3. Newspaper Management. Same as JOUR 4661.

JOUR 5711-3. Media and Culture. Examines how various communication channels such as television, advertising, film, newspapers, magazines, and popular music interact with culture. Looks at media not only as conduits of cultural values, but also as industries, and at the audiences and the role they play in creating meaning from media texts.

JOUR 5831-3. Publication Design and Production. Same as JOUR 4831.

JOUR 5841 (1-3). Graduate Independent Study.

JOUR 5851 (1-3). Graduate Professional Project.

JOUR 5861-3. Visual Communication. Focuses on the perceptual foundations of visual communication and applies these principles to specific practices in mass communication.

JOUR 5871 (1-3). Special Topics.

JOUR 5931 (1-3). Internship.

JOUR 6051-3. Theories of Mass Communication. Studies theories and perspectives of mass communication and explores the role of mass media in society.

JOUR 6201-3. Readings in International Mass Communication. Covers mass communication within the international system, including similarities and differences in functions, facilities, and content; social theories of the press; and the international flow of mass communication.

JOUR 6211-3. New Media and Development. Studies and analyzes communications technologies and techniques used in addressing social problems in developing countries.

JOUR 6301-3. Communication, Media, and Concepts of the Public. Introduces students to historical and contemporary uses of fundamental concepts in research and theory about media institutions, particularly public, community, mass, publicity, public space, public opinion, public interest, and the public sphere.

JOUR 6321-3. Literary Journalism. Analyzes the work of journalists who became some of the greatest fiction writers of the 19th and 20th centuries, and examines the increasingly indistinct lines between journalism and narrative fiction.

JOUR 6551-3. Telecommunication Policy. Surveys historical and contemporary developments in telecommunications policy, emphasizing social and cultural dimensions, and focusing primarily on the context of the United States.

JOUR 6651-3. Press and the Constitution. Graduate seminar in communications law. Studies changing law and applied legal research techniques.

JOUR 6661-3. Media Ethics and Responsibility. Develops a theoretical framework with which to recognize and analyze ethical issues as they arise in the mass media.

JOUR 6711-3. Mass Communication and the Arts. Inquiry into relationship of the arts and the mass media, including study of critics, their function, and their works.

JOUR 6721-3. Message Effectiveness. Investigates such areas as information processing and its relationship to message objectives. Examines such areas as how messages design decisions, and the effects of various types of communication efforts.

JOUR 6781-3. Economic and Political Aspects of Mass Communication. Discusses economic problems and political issues relevant to newspapers, magazines, broadcasting, and CATV. Examines problems of telecommunications and the impact of future technology on mass communication.

JOUR 6940-3. Master’s Degree Candidate.

JOUR 6951 (1-6). Master’s Thesis.

JOUR 7011-3. Proseminar in Communication Theory 1. Introduces the principal concepts, literature, and theoretical and paradigmatic perspectives of media studies and mass communication and their ties and contributions to parallel domains in the social sciences and humanities.

JOUR 7871-3. Special Topics.

JOUR 8991 (1-10). Doctoral Thesis.
JOUR 1002-3. Critical Thinking and Writing. Reviews grammatical and organizational principles, experiments with several rhetorical modes, summarizes and analyzes media texts, and teaches techniques for writing and editing clearly and effectively. Uses library resources and computer databases to conduct basic research. Students study personal writing, informative writing, persuasive writing, and promotional writing.

JOUR 2002-3. Electronic Information Strategies. Helps students develop a research strategy, become familiar with the essential tools of computer-assisted research, and comprehend statistical data as a basis for good communication of information. Covers what information is needed for stories, reports, or other copy, and how to find and evaluate it efficiently and by the deadline.

JOUR 3102-3. Press Photography. Covers the camera as a reporting tool, training in the use of cameras, composition, and darkroom procedures.

JOUR 3902 (1-3). Newspaper Practicum. Gives students the opportunity to participate in news work on Campus Press. May be repeated for a total of 6 credit hours.

JOUR 4002-3. Reporting 2. Looks at repeated for a total of 6 credit hours.

JOUR 4502-3. Advanced Photography. Highlights copy editing, headline writing, page designing, and news evaluating. Emphasizes day-to-day newsroom operations in a newsroom environment. Students edit the Campus Press using Compugraphic computer equipment.

JOUR 4562-3. Electronic Journalism. Involves studying and writing about existing electronic publications and on-line publishing policies. Teaches methods of electronic journalism from simple text to the more sophisticated graphics, photos, movies, and sound and text presentations.

JOUR 4602-3. Editorial and Opinion Writing. Concentrates on several of the subjective areas of journalism. Emphasizes editorial writing, editorial pages, critics, and criticism of the performing arts. Same as JOUR 5602.

JOUR 4702-3. Critical Writing for the Journalist. Analyzes the entertainment area, especially as it pertains to the print media. Emphasizes the composition of criticism and the attitudes and writing techniques of individual critics. Same as JOUR 5702. Prereq., JOUR 3001.

JOUR 5002. Same as JOUR 4102.

JOUR 5027-3. Public Relations. Same as JOUR 4272.

JOUR 5272-3. Public Relations Programs. Same as JOUR 4282.

JOUR 5502-3. Advanced Reporting. Same as JOUR 4502.

JOUR 5512-3. Investigative Reporting. Shows how to dig beneath the surface of issues and events. Focuses on research, interviewing, and writing.

JOUR 5552-3. News Editing. Same as JOUR 3552.

JOUR 5562-3. Electronic Journalism. Same as JOUR 4562.

JOUR 5602-3. Editorial and Opinion Writing. Same as JOUR 4602.

JOUR 5702-3. Critical Writing for the Journalist. Same as JOUR 4702.

JOUR 5802-3. Magazine and Feature Writing. Same as JOUR 4802.

JOUR 5812-3. Science Writing. Helps students acquire the basic skills and knowledge required of science journalists. Also examines the scientific method, the nature of scientific knowledge, and how the media covers science.

JOUR 5822-3. Reporting on the Environment. Involves reporting and writing about the environment by taking into account the scientific, technological, political, economic, and cultural dimensions of environmental subjects.

JOUR 5872-3. Special Topics—Print.

Advertising

JOUR 3463-3. Advertising Media. Studies media, markets, and audiences, and their relationships to advertising messages. Prereq., JOUR 2403.

JOUR 3473-3. Advertising Research. Introduces students to applied research methods and provides practice in using research in marketing and advertising decision making.

JOUR 3913 (1-3). Advertising Practicum. Provides students with the opportunity to do advertising work for the Campus Press and the virtual mall. May be repeated for a total of 6 credit hours.

JOUR 4403-4. Advertising Campaigns. Discusses advanced copy and layout. Emphasizes planning integrated advertising campaigns for national and regional audiences. Same as JOUR 5403. Prereq., JOUR 3453, 3463, 3473.

JOUR 4453-3. Advertising and Society. Examines criticisms and contributions of advertising in society and the economy. Same as JOUR 5453.

JOUR 5403-4. Advertising Campaigns. Same as JOUR 4403.

JOUR 5413-4. IMC Principles and Practices. Reviews the functional marketing communication areas such as advertising, public relations, sales promotion, and direct response in terms of their strengths and weaknesses in an integrated program. Focuses on strategy...
and planning, with students concentrating on integrating targets, timing, and message strategies. Looks at both U.S. and global marketing communication practices.

JOUR 5423-3. IMC Cases. Uses the case method to analyze and evaluate IMC strategy and planning. Also uses real-life examples, both domestic and international, from service marketing, industrial marketing, consumer products, and nonprofit organizations to give students a chance to analyze and critique the use of IMC strategies and practices.

JOUR 5433-4. IMC—Creative Strategy. Focuses on strategic thinking and critical skills in the development of a variety of marketing communication messages. Teaches students to develop strategy, evaluate creative work, and maintain strategic and executional continuity across media. Students also position products in terms of the competitive situation, the circumstances of use, and the cultural environment.

JOUR 5453-3. Advertising and Society. Same as JOUR 4453.

JOUR 5513-3. International Marketing Communication. Examines integrated marketing communications from a global perspective, such as how to build stockholder relationships and corporate reputation across borders.

JOUR 5523. IMC Campaigns. As the capstone IMC course, prepares students for an integrated marketing communications campaign for a selected business. Involves primary research, prioritizing stakeholders and contact points, determining communication objectives and strategies, producing copy and layouts, and budgeting.

JOUR 5873-3. Special Topics—Advertising.

Broadcast

JOUR 3614-3. Radio Programming and Production. Introduces audio console, microphones, turntables, tape recorders, tape editing, timing, and combo operation. Emphasizes applying the basic principles to professional production of radio programs.

JOUR 3644-3. Principles of Broadcast Production. Introduces the use of television equipment. Emphasizes applying the basic principles to professional program production. Prereq., JOUR 1002 and 2002.

JOUR 3674-3. Television Production 2. Covers studio productions for “News Team Boulder.” Students also do porta-pak projects to sharpen their writing, video production, and editing skills. Prereq., JOUR 3644.

JOUR 4344-3. TV Documentary. Designed to give advanced broadcast students the opportunity to create through research, writing, videotaping, and editing a long-form, nonfiction television program.

JOUR 4354-3. TV Reporting. Covers basic broadcast reporting skills, where to find news and how to cover it, and how to analyze and organize news stories. Skills are linked with advanced concepts of shooting and editing videotape in order to produce news stories on deadline.

JOUR 4614 (1-3). Advanced Radio Practices. Applies the theory of radio programming and production. Assignments include producing radio programming for radio stations in Colorado and weekly discussion-critique sessions. Prereq., JOUR 3614.

JOUR 4624-3. News Team. Emphasizes visualization. Covers special advantages and limitations of broadcasting news and public affairs. Students also participate in “News Team Boulder” by preparing newscasts for Boulder Cable Channel 53. Same as JOUR 5624. Prereq., JOUR 3001, 3604, 3644.

JOUR 4644-3. Electronic Media Management. Analyzes station operations, public relations, personnel, financing, labor relations, and laws and regulations as well as the manager’s ethical and social responsibilities. Same as JOUR 5644.

JOUR 4674 (1-4). Television Production 3. Provides in-depth experience in one facet of a complex television production; e.g., directing, producing, writing, sports, and commercials.

JOUR 5344-3. TV Documentary. Same as JOUR 4344.

JOUR 5514-3. Newsgathering for Television. Covers principles and techniques involved in the preparation of news for broadcasting. Introduces the use of television equipment.

JOUR 5524-3. Television Investigative Reporting. Covers how to produce quality, substantive, in-depth stories for television. Covers the basics of investigative reporting, research, and working with sources.

JOUR 5624-3. News Team. Same as JOUR 4624.

JOUR 5634-3. Broadcast News Projects. Same as JOUR 4634.

JOUR 5644-3. Electronic Media Management. Same as JOUR 4644.

JOUR 5874-3. Special Topics—Electronic Media.

Faculty

P. DELBERT BRINKMAN, Dean; Professor. B.A., Emporia State University; M.A., Ph.D., Indiana University.

LEN ACKLAND, Associate Professor. B.A., University of Colorado; M.A., Johns Hopkins School of Advanced International Studies.

SAMUEL J. ARCHIBALD, Professor Emeritus.

JOANNE EASLEY ARNOLD, Professor Emerita.

SHU-LING C. BERGEGREEN, Associate Professor. B.A., Fu-Zen University; M.S., Southern Illinois University; Ph.D., University of Tennessee.

ANDREW CALABRESE, Associate Professor. B.A., Denison University; M.A., Ph.D., Ohio State University.

ROSLYN DAUBER, Associate Professor. A.B., University of California, Berkeley; M.A., George Washington University; M.A., Annenberg School of Communications, University of Southern California.

MALCOLM A. DEANS, Senior Instructor Emeritus.

THOMAS R. DUNCAN, Associate Professor. B.S., M.A., Northwestern University; Ph.D., University of Iowa.

BRUCE HENDERSON, Associate Professor. B.A., University of Wisconsin, Milwaukee; M.A., University of Wisconsin, Madison.

LEONA HOOD, Assistant Professor. B.J., University of Missouri; M.A., University of Colorado.

STEWART HOOVER, Professor. B.A., McPherson College; M.A., Ph.D., Annenberg School of Communications, University of Pennsylvania.

STEPHEN B. JONES, Assistant Dean; Instructor. B.A., M.A., West Virginia University; Ph.D., University of Utah.

FRANK L. KAPLAN, Professor Emeritus.

SAM KUCZUN, Professor Emeritus.

POLLY E. MCLEAN, Associate Professor. B.A., Richmond College, City University of New York; M.S., Columbia University; Ph.D., University of Texas.

WILLIAM I. MCREYNOLDS, Professor Emeritus.

SANDRA E. MORIARTY, Professor Emeritus. B.A., M.S., Ph.D., Kansas State University.

MARGUERITE J. MORITZ, Associate Dean; Associate Professor. B.S., M.S., Ph.D., Northwestern University.
JANICE A. PECK, Associate Professor. B.A., University of Utah; M.A., University of Washing-
ton; Ph.D., Simon Fraser University.

PATRICIA RAYBON, Associate Professor. B.A., Ohio State University; M.A., University of Colorado.

ROBERT B. RHODE, Professor Emeritus.

BRETT ROBBS, Associate Professor. B.A., Rhodes College; M.A., Ph.D., Vanderbilt University.

WILLARD D. ROWLAND, JR., Professor. B.A., Stanford University; M.A., University of Pennsylvania; Ph.D., University of Illinois.

DAVID SLYDEN, Associate Professor. B.A., Southern Illinois University; M.A., University of Chicago; Ph.D., Indiana University.

DON S. SOMERVILLE, Professor Emeritus.

MICHAEL TRACEY, Professor. B.A., University of Exeter; Ph.D., University of Leicester.

ROBERT TRAGER, Associate Dean; Professor. B.A., San Francisco State College; M.A., Ph.D., University of Minnesota; J.D., Stanford University.

JAN WHITT, Associate Professor. B.A., M.A., Baylor University; Ph.D., University of Denver.

THOMAS YULSMAN, Associate Professor. B.A., Harpur College, State University of New York at Binghamton; M.S., Columbia University Graduate School of Journalism.
The “Laws” Move in

The law school, established in 1893, soon became one of the most distinguished divisions of the university. Law school graduates were pursuing outstanding careers that reflected favorably on CU. Entrance requirements were a good moral character and a high school education. Special attention was paid to jurisprudence, particularly related to the West, such as mining and irrigation law. In 1909, the Guggenheim Law Building was dedicated and remained the home of the law school until the 1950s. The CU Law School is renowned to this day for its environmental law programs.
The School of Law was established in 1892. It is a charter member of the Association of American Law Schools, organized in 1901, and has been on the list of approved law schools of the American Bar Association since the first publication of such a list in 1923. Such approval is based upon high scholastic standards, a three-year program of full-time resident study, a well-qualified faculty, good library facilities, and high admission qualifications. At the University of Colorado School of Law, a relatively small student body of 500 and a favorable faculty-student ratio produce classes of a size that encourages discussion. Classes are rarely larger than 83 students, and many are much smaller. In addition, faculty are readily available for informal conferences with individual students.

Courses are offered in a wide range of law-related subjects. Students are free to take almost all second- and third-year courses as electives after a required first-year curriculum. Areas of curricular strength at the School of Law include natural resources, the environment, criminal law, business, constitutional law, taxation, public law, American Indian law, litigation, intellectual property, and jurisprudence. Graduates are academically qualified to take the bar exam in any jurisdiction of the United States. Students comply academically with any individual requirements of states in choosing their curricula, students comply academically with any individual requirements of states in which they intend to practice.

Law Building and Law Library
The School of Law is housed in the Fleming Law Building, located on the southern edge of the campus. Teaching facilities include an excellent library, classrooms, seminar rooms, a complete trial and appellate courtroom, and videocassette equipment. The building also contains suites for the Legal Aid and Defender Program, Natural Resources Law Center, Indian Law Clinic, Entrepreneurial Law Center, Silicon Flats Telecommunications Center, the Byron White Center for the Study of American Constitutional Law, offices for various student organizations, the University of Colorado Law Review, the Colorado Journal of International Environmental Law and Policy, faculty and administrative offices, and a student lounge. A new law building is scheduled for occupancy in 2004. The law library contains one of the premier legal reference collections in the western United States. The collection consists of over 400,000 volumes and microform equivalents. Students and faculty have access to a comprehensive collection of American case law from all jurisdictions, statutes of all states (in annotated form when available), and the major digests, encyclopedias, periodicals, and texts dealing with American law. English, Canadian, and other Commonwealth materials are almost as complete. A collection of books in German, French, and other foreign languages as well as international law holdings provide a basis for comparative law studies.

The Law Library offers a full range of electronic resources to law students and faculty, including access to on-line databases, the Internet and World Wide Web sites, and CD-ROM products. Computer labs and workstations are provided to students, and instruction is provided for both book and electronic materials.

Career Services
The Office of Career Services provides students and alumni with personal and group career counseling to assist and prepare them with decisions about career direction, legal employers, and alternatives to traditional law careers.

The Office annually offers workshops, symposia, and clinics focusing on resume preparation, interviewing skills, judicial clerkship applications, and self-directed job search strategies.

Extended daily office hours are maintained during the academic year and summer to allow for additional access to professional personnel and resources. The office maintains its own Career Resource Library which offers students access to a growing collection of career development and job search aid materials. Students can visit the Office of Career Services' web site at www.colorado.edu/law/career.html.

The Office of Career Services sponsors an on-campus interview program, providing students with the opportunity to interview with numerous legal employers from throughout the country. Most second- and third-year students participate in the fall semester interviews while first-year students begin their self-directed job search and limited on-campus interviews during the spring semester.

In addition to hosting the traditional on-campus and off-campus interview programs, the Office of Career Services provides expanded and varied programming throughout the academic year. For example, the Annual Legal Career Options Day, held in mid-November, provides law students the chance to network with a multitude of practitioners from the corporate, private, government, and public sectors.

The CU-Boulder alumni jobs bulletin, The Buffalaw, gives alumni another opportunity to find job openings in the Denver metropolitan area, the state, and the nation. All new graduates receive a one-year complimentary subscription.

Lectureships
In 1955, a trust fund was established in memory of John R. Coen to bring to the School of Law a prominent jurist, scholar, or other public figure to deliver a lecture to the students and faculty of the School of Law each year. Recent lecturers in the series have included Geoffrey C. Hazard, Jr., Sterling Professor of Law, Yale Law School; Vincent A. Blasi, the Corliss Lamont Professor of Civil Liberties at Columbia Law School; Susan Rose-Ackerman, the Ely Professor of Law and Political Economy at Yale Law School; Martha Minow, Harvard Law School Professor; Friedrich-Juenger, University of California at Davis Professor; Akhil Amar, Yale Law School Professor; Supreme Court Justice Antonin Scalia; and the Honorable Alex Kozinski, U.S. Court of Appeals, 9th Circuit.

The Austin Scott, Jr. Lecture Series was established in 1973. Lectures in this series are given by members of the faculty of the School of Law, generally on research in progress. Although the topics vary with the interests of the lecturer, lectures are always topical and stimulating. Recent lectures have included Professor Dennis J. Hynes, whose lecture was titled “Waiver of Fiduciary Duties Among Partners: Freedom of Contract or Moral Outrage”; Professor Pierre Schlag, who lectured on legal philosophy; Professor Clyde O. Martz and Professor David H. Getches, both of whom lectured on water policy; Professor Richard Delgado, who lectured on affirmative action; and Barbara Bintliff, who lectured on the effects of computer technology on legal research.

Clinical and Extern Programs
Under the supervision of full-time clinical faculty who are experienced trial attorneys, the Legal Aid and Defender Program allows students to represent low-income clients in...
Activities
The School of Law offers many activities in addition to those available for students in the university as a whole. The Rothgerber Moot Court Competition, Carrigan Cup Competition, Jessup International Law Moot Court Competition, and the Saul Lefkowitz National Moot Court Competition offer students an opportunity to refine their research skills, as well as develop skills in advocacy at the trial and appellate levels. In addition, CU law students have recently participated in the Indian Law Moot Court, the Pace University School of Law National Environmental Law Moot Court, Hispanic National Bar Moot Court, and the ABA/LSD Negotiation Competition. In these competitions, students thoroughly prepare and brief hypothetical cases and then argue before panels of distinguished judges and lawyers.

The University of Colorado Law Review, a professional journal edited entirely by students, publishes scholarly articles and comments on matters of concern to the legal profession at both the national and state levels. The Colorado Journal of International Environmental Law and Policy, a scholarly journal dedicated to examining the legal and policy implications of international environmental issues, was formed by students in the spring of 1989.

ACADEMIC EXCELLENCE

Order of the Coif
The Order of the Coif is a national law school honor society founded to encourage legal scholarship and to advance the ethical standards of the profession. The University of Colorado is one of only 77 law schools entitled to award the Order of the Coif. Members are selected for demonstrated scholarship from among seniors ranking scholastically in the top 10 percent of their class.

ACADEMIC STANDARDS

Honor System
On the premise that academic dishonesty is incompatible with the dignity and responsibility of the legal profession, the School of Law operates under an honor code that is subscribed to by all entering students. The honor code is a system of rules administered by student officers and demands high ethical conduct, and prohibits, for example, resorting to unauthorized sources in examinations. The same code also allows students considerable individual freedom and responsibility.

Grading and Point System
The School of Law grades on the following numerical basis:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Numerical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>93-100</td>
</tr>
<tr>
<td>A-</td>
<td>90-92</td>
</tr>
<tr>
<td>B+</td>
<td>86-89</td>
</tr>
<tr>
<td>B</td>
<td>83-85</td>
</tr>
<tr>
<td>B-</td>
<td>80-82</td>
</tr>
<tr>
<td>C+</td>
<td>76-79</td>
</tr>
<tr>
<td>C</td>
<td>73-75</td>
</tr>
<tr>
<td>C-</td>
<td>70-72</td>
</tr>
<tr>
<td>D+</td>
<td>66-69</td>
</tr>
<tr>
<td>D</td>
<td>63-65</td>
</tr>
<tr>
<td>D-</td>
<td>60-62</td>
</tr>
<tr>
<td>F</td>
<td>59 or below</td>
</tr>
</tbody>
</table>

One semester hour of credit represents one 50-minute class period per week through a semester.

In courses designated as pass/fail or pass/graded, the grade of pass is given when in the judgment of the instructor the quality and quantity of work is such that on a graded basis the work would be the equivalent of at least a 72. If the instructor judges the work not the equivalent of a 72, the work is assigned that letter and numerical grade between 50 (F) and 71 (C) which the instructor determines to be appropriate.

ADMISSION AND ENROLLMENT POLICIES

Prelegal Preparation
The School of Law at the University of Colorado prescribes no specific pre-law curriculum. Students should pursue their interests, the offerings of their particular colleges, and their personal objectives in studying law. In general, the prelaw student should place primary emphasis on acquiring excellent methods of study, thought, and communication, especially writing. Obviously,
these skills can be acquired in a number of different areas, and successful law students and lawyers have college majors in almost every field. College courses should be chosen with care to produce a balanced pattern of skills and insights. An undergraduate major field should be one that requires rigorous application of one’s abilities.

Admission Requirements and Standards
The School of Law grants admission to qualified applicants who have received a baccalaureate degree from a properly accredited institution.

The applicant also must show substantial intellectual promise and give evidence of high moral and ethical standards. The entering class in 2000 had a median GPA of 3.56 and a median Law School Admission Test (LSAT) score of 160.

Admission decisions are based heavily on undergraduate grade point averages and LSAT scores. Other indicators of ability and motivation are also considered in the admissions process. Because the School of Law believes student body diversity will contribute to everyone’s educational experience, a class of students with a mixture of backgrounds, experiences, interests, goals, and talents is the goal of the Admissions Committee. Thus, as important as the results of the Law School Admissions Test and the applicant’s undergraduate record are, they are not the only factors considered. The School of Law takes affirmative action to increase ethnic, cultural, and other diversity of its student body. Colorado residency is also given special consideration, since the university is a state school.

Due to the large number of applicants seeking admission, personal interviews are neither required nor encouraged. Applicants are required to submit a personal statement and one or two letters of recommendation in support of their application.

Beginning students are admitted for the fall semester and only on a full-time basis. The School of Law does not have an evening division of study.

Tutorial assistance will be available for first-year students who desire it and whose qualifications suggest that this type of support might be beneficial.

How and When to Apply
1. Information about the law school and an application are available on the web at www.colorado.edu/law. Alternatively, a catalog and application can be requested by writing to the University of Colorado at Boulder, School of Law, 403 UCB, Boulder, CO 80309-0403, or by calling 303-492-7203 and pressing 5.

2. Students must return a completed application for admission and a nonrefundable application fee of $45 by February 15. Applicants are responsible for arranging for submission of all supporting documents, including materials from the Law School Data Assembly Service, and for ensuring that materials are received by the School of Law in a timely fashion. Late applications will be considered, but those that are timely will be reviewed first. Only the strongest late applicants have any chance of admission.

Some forms of financial aid will be jeopardized by late application. All applicants who seek financial aid should ensure compliance with the Free Application for Federal Student Aid instructions, available at any high school, college, or university, on the Web at www.fafsa.ed.gov, or in the Office of Financial Aid.

Admission Process
Beginning in January, completed applications are considered by the Admissions Committee. Applicants are notified in writing of their decision from mid-January until the class is filled, usually late in May. Files are reviewed at the discretion of the Admissions Committee, and in general, those with the strongest credentials are reviewed first. If the committee is unable to reach a decision to admit or deny a particular candidate, the application may be placed in a “hold” category to be reviewed again after the application deadline has passed and other applications have received initial consideration. In these cases, an applicant is not notified until further action has been taken.

When all places in the class have been filled—usually in May—a waitlist is established and those who are included on the waitlist are notified of this decision and asked to confirm their acceptance of a place on the waitlist.

Upon acceptance for admission, an applicant is required to send a confirmation form and a $200 enrollment deposit to the School of Law by a date specified in the letter notifying the applicant of admission. Each admitted student is asked to respond within two weeks of receipt of the letter (but not earlier than April 1).

Transfer and Visiting Students
Transfer students must have completed at least one full year of study at a law school accredited by the American Bar Association and must meet all standards and requirements set forth above for students who have not previously attended law school.

Applicants must arrange to have sent, in addition to the above items: 1) an official transcript showing all law school work undertaken; 2) upon completion of all law school work undertaken, a letter from the law school dean stating that the applicant is in good standing and eligible to continue without condition; and 3) class rank or normal grade distribution for the law school attended.

A limited number of second-year transfer students are accepted each year. Decisions are based heavily on law school performance.

Admitted students, having previously attended other fully accredited law schools, may receive advanced standing credit for work done in such law schools in an amount and on such conditions as determined by the Office of the Dean.

The School of Law may admit one or more visiting students who may study at the school for a semester or a year, but who will receive their law degree from their school of origin. Admission as a visiting student is available only to applicants who have completed one or two years of high-quality work at another law school and who have demonstrated a compelling need to attend the University of Colorado School of Law.

Application procedures are the same as for transfer applicants. In addition, however, the dean of the school of origin must send a letter agreeing to accept work satisfactorily completed at the University of Colorado School of Law for credit toward the student’s law degree. Admission as a visiting student allows enrollment in courses on a space-available basis. As a rule, financial aid for a visiting student is handled by a consortium agreement between the School of Law and the degree-granting institution.

International Student Information
The University of Colorado School of Law offers only the juris doctor (J.D.) degree. The School of Law does not offer the master of law (L.L.M.). Foreign students are considered within the following parameters: applicants must submit a completed application including a personal statement, transcripts showing completion of the equivalent of a bachelor’s degree from a United States institution, a letter of recommendation, current LSAT scores, and the application fee in United States currency. All documents must be in English. The TOEFL is not required. However, a good command of English is crucial to success in law school and can be demonstrated by the LSAT, the personal statement, and other written communication required by the application process.

Applicants possessing a law degree from a international law school may apply for admission as transfer students by submitting a letter of good standing from the dean (or equivalent) of their previous law school, LSAT scores, official law school transcripts, and all documents mentioned in the previous paragraph. The School of Law accepts a maxi-
mum of one year of credit from an international law school; normally, transfer students must complete the first-year curriculum at the School of Law.

The school has no scholarship or loan assistance available for international students. All international students must submit a financial affidavit after admission to the School of Law stating that they possess the financial resources to support themselves while attending school in the United States.

Transcripts—Withdrawal of Admission
At least one week prior to enrolling in the School of Law, all students who have been admitted and have confirmed their admission must submit two official transcripts from each college and law school attended, showing all college and postgraduate work completed. Such transcripts must show the student has received a baccalaureate degree from a properly accredited institution. These transcripts must also show any subsequent work undertaken, whether or not the work was included in the LSDAS evaluation. If such subsequent work is not of substantially similar quality to that included in the LSDAS evaluation, or if the transcripts fail to show the student has received the required baccalaureate degree, the student’s prior admission may be withdrawn.

Attendance
Class attendance is of great importance. A student who has been absent from more than 20 percent of the total number of classes in a course may be excluded from the final examination and will receive a failing grade in the course.

Classification of Students
To be ranked in the second-year class, a student must have passed 30 semester hours of work; to be ranked in the third-year class, 59 hours of work.

Normal Course Load
The normal course load is 14 or 15 hours per semester. Students may not register for more than 16 hours or fewer than 10 hours without special permission, and first-year students must obtain permission in order to register for less than a full schedule. A student who discontinues a course at any time without notifying the Office of the Dean and processing the necessary papers will receive an F.

Dropping Courses
Any first-year student who desires to drop a course must first obtain the permission of the dean. Clinical courses and waitlisted courses may be dropped until the sixth day of classes, and other upper-division courses may be dropped until the end of the sixth week of classes. After the applicable deadline, a course may be dropped for good cause and with the consent of the instructor and the dean’s office. If a student drops a course after the applicable deadline without such consent, he or she will receive a failing grade in the course.

Summer Session
A limited summer curriculum is offered at the School of Law. Any student who has completed at least one year in an ABA-accredited law school may register for courses offered during the summer session upon submission of a summer application form with a letter of good standing from his or her law school. A student may enroll in courses totaling no more than 8 semester hours without special permission from the dean’s office.

A schedule of summer courses with an application form may be obtained after March 1 by writing to the Office of Admissions, School of Law, University of Colorado at Boulder, 403 UCB, Boulder, CO 80309-0403.

Transcripts
Official transcripts of credit should be ordered from the Office of the Registrar transcript section, Regent Administrative Center 105, either in person or in writing. Official transcripts are prepared only at the student’s request. Unofficial law school transcripts indicating class standing, numerical averages, and attendance dates may be made in person or by writing to the School of Law Registrar, Room 141.

Withdrawals
Students may withdraw from the School of Law at any time up to two days before the beginning of final examinations by obtaining permission of the Office of the Dean. Re-admission will be at the discretion of the faculty. Tuition and fee refunds are based on withdrawal date. Consult the Law School Registrar and/or the Bursar’s Office for refund deadlines.

EXPENSES AND FINANCIAL AID
Colorado residents enrolled in the School of Law paid $6,069 in tuition and fees for the 2000-01 academic year; nonresidents paid $18,549. The School of Law’s Office of Admissions tentatively classifies applicants as resident or nonresident students, but the final decision is made by the tuition classification officer. For more information concerning resident and nonresident classification, consult Academic Records in the General Information chapter of this catalog.

Living expenses, books, and incidental costs in the amount of approximately $13,410 per year should be added to tuition figures in estimating yearly expenditures.

The Free Application for Federal Student Aid (FAFSA) is the only financial aid application that will be accepted for 2001-02. FAFSA forms will be available from local high schools, colleges, and universities after January 1, 2001. The University of Colorado participates in the Federal Direct Stafford/Ford Loan program. Students receive a maximum of $18,500 through this program. If a student’s cost of attendance is greater than $18,500, alternative private loans through Law Access, Citifirst, or other private lenders also may be available.

Grants are available on a limited basis to eligible residents and are awarded on the basis of need and timeliness of filing the financial aid application. Nonresident students may not be awarded grants from state funds under present state policy but may be considered for loans and work-study. (Note: Work-study is available only to second- and third-year students). Scholarships are given each year on a competitive basis, including both academic and financial considerations. Scholarships are awarded by the financial aid committee for the School of Law.

The status of financial aid applications submitted to CU-Boulder cannot be confirmed until students have been officially admitted to the School of Law. Students missing the admission deadline are considered late, even if they meet the financial aid application filing deadline.

The priority date for financial aid is March 1. This means all financial aid applicants should have a complete file, consisting of student tax information and the FAFSA, by March 1. A completed file is essential for the Office of Financial Aid to process an award offer.

All students who receive financial aid are required to understand and comply with minimum standards of reasonable academic progress. The Reasonable Academic Progress policy is available to students upon request at the university’s Office of Financial Aid.

For further information regarding financial assistance, contact either the Dean for Admissions and Financial Aid, School of Law, University of Colorado at Boulder, 403 UCB, Boulder, CO 80309-0403, 303-492-7203, or the Office of Financial Aid, University of Colorado at Boulder, 106 UCB, Boulder, CO 80309-0106, 303-492-5091.

Part-Time Employment
The study of law is essentially a full-time task. Most students devote from 50 to 70 hours a week to classroom attendance, preparation for
class, and other activities directly related to their legal education. These include participation in appellate briefing and argument competitions and work in the school’s clinical program. As a consequence, the opportunity for self-support through employment while attending law school is limited. Students may not accept outside employment during the critical first year. Law-related employment for a limited number of hours may actually enhance the educational experience of second- and third-year students, but students may not commit themselves to employment of more than 20 hours per week, or schedule employment that will interfere with class attendance.

The School of Law’s Office of Career Services assists students in obtaining part-time hourly and summer employment as well as permanent employment for graduates. The university’s Office of Career Services aids those who wish to find conventional employment or work-study placement.

DEGREE REQUIREMENTS

Methods of Instruction
Law school classes are conducted primarily as discussions rather than as lectures. Judicial opinions and statutes are critically analyzed and the principles extracted are used in arguments about hypothetical situations. Other methods of instruction include research and writing, seminars, and practical experience both in clinical programs and by simulation. Transmission of knowledge of established law is only one element of legal education. The School of Law seeks to train students to use the law, to research and analyze relevant materials, to speak and write effectively, and to evaluate arguments. Significant changes in the law occur frequently, and knowledge of specific laws may become obsolete, but the ability to analyze, argue, and evaluate endures.

Graduation Requirements
The juris doctor (J.D.) degree is conferred on students who have satisfactorily completed the six-semester curriculum in accordance with School of Law rules. All law school work must be taken in residence; that is to say, in the classroom or under direct personal supervision of the instructor and not by correspondence or extension. No credit toward graduation from the School of Law is given for any pre-law courses.

The requirements for the J.D. degree are:
1. Completion of 89 semester hours of credit with a numerical average of 72 or better.
2. Completion of all required courses listed under the School of Law curriculum.
3. Completion of one seminar.
4. Study for at least six semesters or equivalent in residence at this or some other accredited law school, with at least 45 hours in residence at the School of Law. If a student is not in residence at the School of Law during the last two semesters, at least 60 hours in residence is required at the school.

Half a semester’s time and residence credit may be earned in a summer term, if at least 5 credit hours are earned. By enrolling in two summer terms and earning a minimum of 5 credit hours in each, the student can obtain a full semester of residence credit and earn a degree one semester earlier than normal.

5. Satisfaction of any conditions imposed at the time of admission.

Law Curriculum
The curriculum of the School of Law is designed to give students a thorough training in fundamental principles of English and American law, to permit moderate specialization in areas of personal interest, and to prepare them to practice in any state or country where Anglo-American law prevails.

The first-year curriculum of Contracts, Civil Procedure, Property, Torts, Criminal Law, Legal Writing, and Appellate Advocacy is required of all students. The second and third years are largely elective; the only required courses are Constitutional Law, Evidence, Professional Responsibility, Trial Advocacy or comparable trial experience in a clinical course, and a seminar. Eleven clinical hours are allowed to count toward the graduation requirement of 89 hours.

Students have the responsibility to plan their second- and third-year schedules to complete all required courses and to enroll for at least 10 credit hours in each semester. The value of the course in semester hour credits is indicated by the figure following the identifying department number. For example, in LAWS 5101-3, LAWS 5101 is the department number, and the -3 indicates that the course is for 3 hours of credit.

The right to change the schedule of courses and instructors is expressly reserved to the dean and faculty.

First-Year Curriculum
The following first-year courses are required of all J.D. candidates. In the absence of special authorization from the dean, all first-year students must take the full schedule of courses—15 hours in the fall semester and 15 hours in the spring semester. Each first-year student will be assigned to one small section course, normally numbering not more than 30 students.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAWS 5223-2</td>
<td>Appellate Court Advocacy</td>
</tr>
<tr>
<td>LAWS 5303-3</td>
<td>Civil Procedure 1</td>
</tr>
<tr>
<td>LAWS 5313-3</td>
<td>Civil Procedure 2</td>
</tr>
<tr>
<td>LAWS 5101-3</td>
<td>Contracts 1</td>
</tr>
<tr>
<td>LAWS 5111-3</td>
<td>Contracts 2</td>
</tr>
<tr>
<td>LAWS 5503-4</td>
<td>Criminal Law</td>
</tr>
</tbody>
</table>

Second- and Third-Year Courses
(in alphabetical order)

Business

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAWS 6281-3</td>
<td>Accounting Issues for Lawyers</td>
</tr>
<tr>
<td>LAWS 6201-3 (3-4)</td>
<td>Agency, Partnership, and the LLC</td>
</tr>
<tr>
<td>LAWS 7201-3</td>
<td>Antitrust</td>
</tr>
<tr>
<td>LAWS 7021-3</td>
<td>Bankruptcy</td>
</tr>
<tr>
<td>LAWS 7211-3</td>
<td>Business Planning</td>
</tr>
<tr>
<td>LAWS 7601-3</td>
<td>Business Transactions</td>
</tr>
<tr>
<td>LAWS 7751-3</td>
<td>Commercial Arbitration</td>
</tr>
<tr>
<td>LAWS 7301-3</td>
<td>Copyright</td>
</tr>
<tr>
<td>LAWS 6211-3</td>
<td>Corporations</td>
</tr>
<tr>
<td>LAWS 6251-4</td>
<td>Corporations and Creditors’ Remedies and Debtors’ Protection</td>
</tr>
<tr>
<td>LAWS 7631-2</td>
<td>Doing Business with Mexico</td>
</tr>
<tr>
<td>LAWS 7541-3</td>
<td>Employment Discrimination</td>
</tr>
<tr>
<td>LAWS 7611-2 (3-3)</td>
<td>International Business Transactions</td>
</tr>
<tr>
<td>LAWS 7451-3</td>
<td>International Law and Finance for Entrepreneurs</td>
</tr>
<tr>
<td>LAWS 6501-3</td>
<td>Labor and Employment Law</td>
</tr>
<tr>
<td>LAWS 7411-3</td>
<td>Mergers, Acquisitions, and Reorganizations</td>
</tr>
<tr>
<td>LAWS 7311-2 (3-3)</td>
<td>Patent Law</td>
</tr>
<tr>
<td>LAWS 6011-3</td>
<td>Payment Systems</td>
</tr>
<tr>
<td>LAWS 7024-3</td>
<td>Real Estate Planning</td>
</tr>
<tr>
<td>LAWS 6021-3</td>
<td>Secured Transactions</td>
</tr>
<tr>
<td>LAWS 7401-3</td>
<td>Securities Regulation</td>
</tr>
<tr>
<td>LAWS 8251-2</td>
<td>Seminar: Advanced Corporate Law</td>
</tr>
<tr>
<td>LAWS 8421-2</td>
<td>Seminar: Duties of the Professional Advisor</td>
</tr>
<tr>
<td>LAWS 8341-3</td>
<td>Seminar: Law and Economics of the Information Age</td>
</tr>
<tr>
<td>LAWS 7331-2</td>
<td>Sports Law</td>
</tr>
<tr>
<td>LAWS 7241-3</td>
<td>Telecommunications Law and Policy</td>
</tr>
<tr>
<td>LAWS 7341-3</td>
<td>Trademark and Unfair Competition</td>
</tr>
</tbody>
</table>

International

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAWS 7200-3</td>
<td>Anthropology of Law</td>
</tr>
<tr>
<td>LAWS 6210-3</td>
<td>Comparative Law</td>
</tr>
<tr>
<td>LAWS 7058-3</td>
<td>Conflict of Laws</td>
</tr>
<tr>
<td>LAWS 7631-2</td>
<td>Doing Business with Mexico</td>
</tr>
<tr>
<td>LAWS 7065-3</td>
<td>Immigration and Citizenship Law</td>
</tr>
<tr>
<td>LAWS 7611-2 (3-3)</td>
<td>International Business Transactions</td>
</tr>
<tr>
<td>LAWS 6510-2 (3-3)</td>
<td>International Environmental Law</td>
</tr>
<tr>
<td>LAWS 6400-3</td>
<td>International Litigation</td>
</tr>
<tr>
<td>LAWS 7300 (2-3)</td>
<td>International Moot Court Competition</td>
</tr>
<tr>
<td>LAWS 7406-1</td>
<td>International Taxation</td>
</tr>
<tr>
<td>LAWS 7617-3</td>
<td>Seminar: Comparative Labor Law</td>
</tr>
<tr>
<td>LAWS 8521-2</td>
<td>Seminar: International Human Rights</td>
</tr>
<tr>
<td>LAWS 8440-2</td>
<td>Seminar: International Human Rights</td>
</tr>
</tbody>
</table>
Jurisprudence and Perspective Courses
LAWS 7200-3 Anthropology of Law
LAWS 6210-3 Comparative Law
LAWS 7228-2 Intellectual Origins of the Constitution
LAWS 6510-3 International Environmental Law
LAWS 7128-3 Jurisprudence
LAWS 6318-2 Law and Economics
LAWS 7708-3 Law and Social Science
LAWS 7218-2 Legal History
LAWS 7418-2 Legal Imagination
LAWS 6128-3 Legislation
LAWS 8528-2 Seminar: Contemporary Jurisprudence
LAWS 8128-3 Seminar: Jurisprudence
LAWS 8318-2 Seminar: Law and Economics
LAWS 8628-2 Seminar: Law, Power, and Politics
LAWS 8718-2 Seminar: Modern Theorists and Law
LAWS 8548-2 Seminar: Power, Ethics, and Professionalism
LAWS 8428-2 Seminar: Theory of Punishment
LAWS 8428-2 Seminar: Women in Law and Literature

Natural Resources
LAWS 7735-2 Advanced American Indian Law
LAWS 7725-3 American Indian Law
LAWS 7402-2 Environmental and Toxic Torts
LAWS 6112-3 Foundations of Natural Resources Law and Policy
LAWS 7102-3 Oil and Gas
LAWS 7202-3 Pollution Law
LAWS 6002-3 Public Land Law
LAWS 7802-2 Readings on the American West
LAWS 8725-2 Seminar: Advanced American Indian Law
LAWS 8112-2 Seminar: Advanced Natural Resources Law
LAWS 8302-2 Seminar: Advanced Problems in Water Resources Law
LAWS 8212-2 Seminar: Environmental Law Practice and Policy
LAWS 8222-2 Seminar: Environmental Philosophy and Law
LAWS 8202-2 Seminar: Environmental Policy
LAWS 8122-2 Seminar: Mineral Development
LAWS 8012-2 Seminar: Public Land Law and Policy
LAWS 8022-2 Seminar: Protected Public Lands
LAWS 7307-3 Taxation of Natural Resources
LAWS 6302-3 Water Resources

Practice and Procedure
LAWS 7205-3 Administrative Law
LAWS 7345-2 Comparative Criminal Procedure
LAWS 7303-3 Complex Civil Litigation
LAWS 6045-3 Criminal Procedure
LAWS 7045-3 Criminal Procedure: Adjudicative Process
LAWS 6353-3 Evidence (required course)
LAWS 7003-3 Federal Courts
LAWS 7523-2 Juvenile Law
LAWS 7419 (2-3) Legal Negotiation and Dispute Resolution
LAWS 7255-3 Local Government Professional Responsibility (required course)
LAWS 7433-3 Remedies
LAWS 7363-2 Scientific Analysis and the Law
LAWS 8613-2 Seminar: Civil Liberties Litigation
LAWS 7013-2 Supreme Court Decision Making

Practice—Clinical
LAWS 7159-2 Advanced Trial Advocacy
LAWS 7309 (2-3) American Indian Law Clinic
LAWS 7029-3 Appellate Advocacy Clinic
LAWS 7529-1 Appellate Advocacy Competition
LAWS 7399 (2-4) Extern Program
LAWS 6090-4 Legal Aid Civil Practice
LAWS 6090-4 Legal Aid Civil Practice 1
LAWS 6091-3 Legal Aid Civil Practice 2
LAWS 6079-4 Legal Aid Criminal Practice
LAWS 6029-4 Legal Aid Criminal Practice 1
LAWS 6039-3 Legal Aid Criminal Practice 2
LAWS 7419 (2-3) Legal Negotiation and Dispute Resolution
LAWS 7169-2 Motions Advocacy
LAWS 7209-3 Natural Resources Litigation Clinic
LAWS 7609-1 Small Practice Management
LAWS 6109-2 Trial Advocacy
LAWS 7509-1 Trial Competition
LAWS 6179-2 Trial Practice

Property
LAWS 7301-3 Copyright
LAWS 7151-3 Land Use Planning
LAWS 7311 (2-3) Patent Law
LAWS 7024-3 Real Estate Planning
LAWS 6024-3 Real Property Security
LAWS 6021-3 Secured Transactions
LAWS 6104-3 Wills and Trusts

Public
LAWS 7205-3 Administrative Law
LAWS 7735-2 Advanced American Indian Law
LAWS 7125-2 Advanced Domestic Relations
LAWS 7475-2 Advanced Torts
LAWS 7725-3 American Indian Law
LAWS 7025-3 Civil Rights Legislation
LAWS 7345-2 Comparative Criminal Procedure
LAWS 6005-3 Constitutional Law (required course)
LAWS 7315-3 Criminal Justice Policy and Practice
LAWS 6045-3 Criminal Procedure
LAWS 7045-3 Criminal Procedure: Adjudicative Process
LAWS 7105-3 Domestic Relations
LAWS 7055-3 Education Law
LAWS 7003-3 Federal Courts
LAWS 7015-3 First Amendment
LAWS 7425 (2-3) Health Law
LAWS 7065-3 Immigration and Citizenship Law

Tort
LAWS 7228-2 Intellectual Origins of the Constitution
LAWS 7085-3 Law and Religion
LAWS 7115-2 Legal Rights of Children
LAWS 7005-3 Local Government Media Law
LAWS 8725-2 Seminar: Advanced American Indian Law
LAWS 8315-2 Seminar: Advanced Criminal Justice
LAWS 8375-2 Seminar: Advanced Immigration and Citizenship Law
LAWS 8445-2 Seminar: Alternative Dispute Resolution
LAWS 8415-2 Seminar: Bioethics and Law
LAWS 8613-2 Seminar: Civil Liberties Litigation
LAWS 8521-2 Seminar: Comparative Labor Law
LAWS 8015-3 Seminar: Constitutional Theory
LAWS 8125-2 Seminar: Law and Politics of Family Law
LAWS 8095-2 Seminar: Problems in Constitutional Law
LAWS 8075-2 Seminar: Race, Racism, and American Law
LAWS 8325-2 Seminar: Reforming Criminal Trials
LAWS 8355-2 Seminar: Sentencing Law and Policy
LAWS 7375 (2-3) U.S. Races and Justice Systems
LAWS 7095-2 Seminar: Women in Law

Research and Writing
LAWS 6856-2 Advanced Legal Research
LAWS 7529-1 Appellate Advocacy Competition
LAWS 7846-1 Independent Legal Research
LAWS 7916-1 Independent Legal Research Journal of International Environmental Law and Policy
LAWS 7896-1 Independent Legal Research: Law Review
LAWS 7906-2 Independent Legal Research: Law Review
LAWS 7406-1 International Moot Court Competition
LAWS 7106-1 Rothgerber Moot Court Competition
LAWS 7509-1 Trial Competition

Taxation
LAWS 7211-3 Business Planning
LAWS 6157-3 Corporate Taxation
LAWS 7217-2 Estate Planning
LAWS 7207-3 Federal Estate and Gift Tax
LAWS 6007-4 Income Taxation
LAWS 7617-3 International Taxation
LAWS 7024-3 Real Estate Planning
LAWS 8407-2 Seminar: Tax Policy
LAWS 7307-3 Taxation of Natural Resources
LAWS 6167-3 Taxation of Conduit Entities
Dual-Degree Programs

The School of Law offers three dual-degree programs: juris doctor/master of business administration (J.D./M.B.A.) with the Graduate School of Business Administration; juris doctor/master of international affairs (J.D./M.I.A.) with the Department of Political Science; and juris doctor/master of public affairs (J.D./M.P.A.) with the Graduate School of Public Affairs on the Denver campus. Through these programs, each school accepts a specified number of hours of course work taken at the other school as part of the requirements for completion of its degree. School of Law credit for work in the Graduate School of Business Administration or Public Affairs is conditioned upon completion of the M.B.A. or M.P.A. program. School of Law credit for work in the Graduate School of Business Administration or Public Affairs is treated on a pass/fail basis and is not computed in class rank or used in the computation of the cumulative 72 grade point average requirement for graduation from the School of Law.

To become eligible for either dual-degree program, a student must apply separately to and be admitted by each of the two schools under their respective admissions procedures and standards. Students may elect the dual-degree program at the time of initial application to both schools.

A student enrolled in a dual-degree program may commence studies under the program in either school. However, a student in either dual-degree program is required by the School of Law to take the first year of the juris doctor curriculum as a unit exclusively in the School of Law. The Graduate School of Business Administration requires that the first year of the M.B.A. program also be taken as a unit.

To request further information on and an application for the M.B.A. program, write to the Graduate School of Business Administration, University of Colorado at Boulder, 419 UCB, Boulder, Colorado, 80309-0419, 303-492-1831. For more information about the M.I.A. program, write to the Department of Political Science at 333 UCB, Boulder, CO 80309-0333, 303-492-7871. For more information on the M.P.A. program, write to the Graduate School of Public Affairs, 142 UCB, P.O. Box 173364, Denver, CO 80217-3364, 303-556-5970.

Certificate Programs

Tax Emphasis Program

The School of Law offers a program of law study that leads to a juris doctor degree with a certificate evidencing an emphasis in the area of taxation.

This program is designed to provide a student with a credential that the School of Law believes will be attractive to many potential legal employers, as well as employers in the accounting profession. The certificate signifies taxation law experience beyond what is normally obtained by law graduates. The school believes that a number of employers desire law graduates with additional experience in the taxation area, but are unwilling to incur the additional expense required, or are unable to provide the full-time work in the tax area necessary, to hire a person with a graduate tax degree.

The program requires a participating student to earn at least 95 semester hours of course credit for graduation (as contrasted with the usual 89 semester hours), and to earn at least 18 of these credits in the area of taxation. These 18 hours must include Income Taxation, Advanced Taxation, and Federal Estate and Gift Tax; at least one tax planning course (Business Planning, Estate Planning, or Real Estate Planning); and Tax Policy (if available at the School of Law or, if not offered, either the Tax Policy course at the Graduate School of Business Administration or Public Finance in the Department of Economics).

A sufficient additional number of elective credits to make up the minimum 18 hours may be chosen from among the tax courses in the School of Law or from among the graduate tax offerings in the business school approved for law credit.

Business school and economics courses taken for law school credit under the tax emphasis program are limited to 6 semester hours of credit and must have received prior approval from the faculty.

A student must receive at least a B in the business school course or in the public finance course in order for the course to count for law school credit under the program. The business school or public finance courses will be treated as pass/fail courses for the School of Law transcript; that is, these courses will count toward the 95 hours required for the degree but will not be taken into account in computing the law student’s grade point average.

A student may take more than the required 18 semester hours of tax courses under the tax emphasis program. However, in order to ensure that the student’s law program is sufficiently broad, the faculty requires that at least 73 semester hours of credit be earned in courses outside of the taxation area.

A student should be able to complete this program within the normal three-year law degree period by planning the program of law study effectively and taking either a summer session of law study or a somewhat heavier than average load in each semester after the first year of law study. Law students who wish to participate in the program should contact the registrar of the School of Law for enrollment forms. Students interested in this program are encouraged to complete the forms during the spring semester of their first year.

Graduate Certificate in Environmental Policy

Students at the University of Colorado School of Law may enroll in an interdisciplinary program in the Graduate School providing the certificate in environmental policy. Environmental issues—such as water policy, wilderness preservation, air quality, energy development, and global climate change—transcend ordinary academic boundaries. Policy analyses dealing with these problems must integrate insights and information from many disciplines. The program draws on courses in several departments in the College of Architecture and Planning, the College of Arts and Sciences, the College of Engineering, and the School of Law.

Two team-taught capstone seminars are offered each year: Environmental and Natural Resource Policy and Policy Responses to Global Change. Each focuses on a policy research problem, emphasizing the contribution of different disciplines to the understanding of that problem and the integration of disciplinary perspectives in the analysis of alternative policy recommendations.

Admission to the certificate program is open to law students and students in any regular graduate degree program. To qualify for the certificate, students must complete at least 18 hours from a list of eligible courses, including the two capstone seminars. At least 12 of the 18 hours must be in courses outside the law school. Up to 6 of these 12 hours may be applied toward the J.D. degree under certain circumstances.

The award of the certificate recognizes the additional course work beyond that required for the student’s regular degree program.

Questions about the certificate program in environmental policy should be directed to Professor Sam Fitch, Interim Director, Graduate Interdisciplinary Program in Environmental Policy, University of Colorado at Boulder, 333 UCB, Boulder, CO 80309-0333, 303-492-2954, or to Professor David Getches, School of Law, University of Colorado at Boulder, 401 UCB, Boulder, CO 80309-0401, 303-492-7577.

COURSE DESCRIPTIONS

The following courses are offered in the School of Law on the Boulder campus. This listing does not constitute a guarantee or contract that any particular course will be offered during a given year.
For current information on times, days, and instructors of courses, students should consult the Registration Handbook and Schedule of Courses issued at the beginning of each semester.

Courses are organized by subject matter and are listed numerically by last digit (courses ending in the number “0” are listed before courses ending in “1,” and so on). The number after the course number indicates the semester hours of credit that can be earned in the course.

Abbreviations used in the course descriptions are as follows:

Prereq.—Prerequisite
Coreq.—Corequisite
Lab.—Laboratory
Rec.—Recitation
Lect.—Lecture

I. International

LAWS 6210-3. Comparative Law. Considers foreign solutions to certain key legal problems. Focuses on general problems of legal process, rather than on substantive rules. Topics include the role of lawyers, civil dispute resolution, criminal procedure, and employment discrimination. Covers different legal systems in different years.

LAWS 6400-3. International Law. Examines the nature and sources of international law, relationship between international law and domestic U.S. law, role of international organizations such as the United Nations, methods of resolving international disputes, bases of international jurisdiction, and select substantive areas of international law, including laws governing the use of force and the protection of human rights.

LAWS 6510 (2-3). International Environmental Law. Examines theory and rules of international environmental law, including transboundary environmental harm generally and specific activities leading to international environmental effects such as global warming or atmospheric ozone depletion. Addresses the existence and content of norms of international environmental law and whether international environmental norms should give special consideration to developing countries. A course in public international law is not a prerequisite, but students who have not taken such a course will probably find it useful to do some additional background reading. Offered in alternate years.

LAWS 7200-3. Anthropology of Law. Offers a detailed review of the relationship between the social and cultural features of a society and the formal and informal legal institutions that operate within them. Presents legal cases and materials from several different societies—Nigeria, Tanzania, Papua New Guinea, Turkey, and Tibet—and compares them to American cases. Considers the nature of social control and constraint, forms of judicial reasoning, fact-finding procedures, conciliation, mediation and arbitration modes, and the nature of legal discourse.

LAWS 7300 (2-3). International Litigation. Examines the special issues that arise in litigation in U.S. courts when one or more of the parties is a foreign individual, corporation, or government, or when the subject of the litigation concerns events occurring wholly or partly outside of this country. Includes personal jurisdiction over foreign defendants, extraterritorial service of process and evidence gathering, choice of forum, foreign sovereign immunity, the act of state doctrine, extraterritorial application of U.S. law, and recognition of enforcement of foreign judgments.

LAWS 8440-2. Seminar: International Human Rights. Investigates the sources of international human rights law and issues of jurisdiction to prescribe, adjudicate, and enforce norms. Students study treaties and reservations, customary law, declarations, resolutions, and the U.S. courts’ and activists’ use of materials. Topics include sovereignty and self-determination, culture, privacy, right to equality, language and speech rights, right to development, immigration, workers and globalization, and citizenship.

II. Business

LAWS 6011-3. Payment Systems. Examines the methodology and policies of Articles 3 and 4 of the Uniform Commercial Code, dealing with such topics as negotiable instruments, bank deposits, collections, letters of credit, and electronic fund transfers.

LAWS 6021-3. Secured Transactions. Explores the methodology and policies of Article 9 of the Uniform Commercial Code, dealing with financing transactions in personal property.

LAWS 6201 (3-4). Agency, Partnership, and the LLC. The LLC (limited liability company) is a relatively new entity that, like the partnership, enjoys widespread use by small businesses. The law of partnership itself has undergone substantial legislative change in the last several years, including making limited liability available to partners who file an appropriate document under state legislation. Agency issues (including apparent authority, imputed knowledge, and the undisclosed principal, among others) are raised when one person acts on behalf of and subject to the control of another. The law of agency is constantly in play in business transactions. It also plays a major role in many personal, nonbusiness matters like the increasing use of durable powers of attorney for personal health care and financial issues.

LAWS 6211-3. Corporations. Covers formation of corporations and their management; relations between shareholders, officers, and directors; the impact of federal legislation on director duties; and the special problems of closed corporations.

LAWS 6251-4. Corporations. Covers formation of corporations and their management; relations between shareholders, officers, and directors; the impact of federal legislation on director duties; and the special problems of closed corporations.

LAWS 6821-3. Accounting Issues for Lawyers. Studies accounting and auditing problems in the form they are placed before the lawyer, including a succinct study of basic bookkeeping, in-depth legal analysis of the major current problems of financial accounting, and consideration of the conduct of the financial affairs of business.

LAWS 6501-3. Labor and Employment Law. Covers decisions and statutes concerning the employment relationship, including issues such as employment-at-will; health and safety; drug testing; job security; and the rights of employees, unions, and employees under the National Labor Relations Act and related legislation.

LAWS 7011-3. Creditors’ Remedies and Debtors’ Protection. Examines typical state rights and procedures for the enforcement of claims and federal and state law limitations providing protection to debtors in the process. Includes prejudgment remedies, statutory and equitable remedies, fraudulent conveyance principles, and exemptions and other judicial protections afforded debtors.

LAWS 7201-3. Antitrust. Studies American competition policy: collaborations among competitors, including agreements on price, boycotts, definition of agreement, monopolization, vertical restraints such as resale price maintenance, and territorial confinement of dealers. Offered in alternate years.

LAWS 7241-3. Telecommunications Law and Policy. Examines laws governing telecommunications industries, including federal and state regulation and international aspects. Includes telephone; cable; satellite, cellular, and other wireless systems; and the Internet.

LAWS 7301-3. Copyright. Examines state and federal laws relating to the protection of works of authorship ranging from traditional works to computer programs. Studies the 1976 Copyright Act as well as relevant earlier acts. Gives attention to state laws, such as interference with contractual relations, the right of publicity, moral right, protection of
ideas, and misappropriation of trade values, that supplement federal copyright.

LAWS 7311 (2-3). Patent Law. Covers selected topics such as patentable subject matter, patentability, and utilization of patent rights through licensing and infringement litigation. Also covers practice and procedure of the Patent and Trademark Office. Offered in alternate years.

LAWS 7331-2. Sports Law. Covers the application of rules from agency, antitrust, contracts, constitutional law (including sex discrimination), labor law, property, torts, unincorporated associations, and other subjects to those persons involved in the production and delivery of athletic competition to consumers. Explores the development of the application of these rules to a sports setting and related economic issues.

LAWS 7341-3. Trademark and Unfair Competition Law. Examines trademark protection, the interaction of trademark and unfair competition law with other intellectual property doctrines, the requirements for acquiring and retaining federal trademark rights, false advertising and other misrepresentations, the right of publicity and related claims, remedies for infringement, and international aspects of trademark protection.

LAWS 7401-3. Securities Regulation. Stresses statutory interpretation of the various federal statutes regulating the issue of corporate securities and the cases and regulations that have arisen out of those statutes.

LAWS 7411-3. Mergers, Acquisitions, and Reorganizations. Studies the planning of corporate mergers, acquisitions, and reorganizations, examining the application and integration of state corporate law, federal securities law, accounting principles, tax law, labor law, products liability law, environmental law, ERISA, and antitrust law.

LAWS 7451-3. Law and Finance for Entrepreneurs. Studies unique legal problems faced by entrepreneurs, including formation (choice of entity, rights of the founders, initial investors), operation (governance, key employees, intellectual property, property, financing), IPOs, and buy-outs.

LAWS 7541-3. Employment Discrimination. Examines statutory and constitutional prohibitions of discrimination in employment on the basis of race, gender, age, religion, national origin, and disability.

LAWS 7601-3. Business Transactions. Provides a practical understanding of how to apply the law in both transactional and litigation settings. Gives an interdisciplinary look at how various areas of the law are brought together in common factual settings. Teaches students to negotiate, document, and close the acquisition of a business covering the areas of practice of corporate, contracts, real property, secured transactions, and bankruptcy law. Tests, in a litigation setting, the decisions made during the acquisition stage.

LAWS 7611 (2-3). International Business Transactions. Examines the sources of international business law, the relationship between such law and the U.S. legal system, the choice of law in international business disputes, the special issues that arise when doing business with foreign governments, the law governing international sales and the shipment of goods, and international intellectual property protection. Offered in alternate years.

LAWS 7631-2. Doing Business with Mexico. Explores the legal and practical difficulties for U.S. companies seeking to do business in Mexico, including restrictions on foreign investment, tax problems, and environmental concerns. Studies implications of NAFTA. Offered in alternate years.

LAWS 7751-3. Commercial Arbitration. Discusses the nature of arbitration, tactical considerations in whether to use this form or another form of dispute resolution, the drafting of effective contracts to arbitrate the enforceability of these contracts, and the enforcement of arbitration awards. Covers the preclusive effect of arbitration proceedings, multi-party arbitration, and choice of law. Students conduct simulated arbitrations.

LAWS 8251-2. Seminar: Advanced Corporate Law. Explores current issues in corporate and securities law, including developments in fiduciary duties of officers and directors, corporate governance, executive compensation, revisions to the model business corporation act, and state and federal litigation reform.

LAWS 8341-3. Seminar: Law and Economics of the Information Age. Examines basic regulatory and legal challenges of our information economy and digital age. Emphasizes the “networked” information industries, the proper role of “unbundling” policies to advance competition, and how intellectual property and antitrust rules should be developed. Prereqs., LAWS 7201, 7241, and 7301.

LAWS 8421-2. Seminar: Duties of the Professional Advisor. Studies ethical and legal regulation of lawyers, auditors, and investment bankers who have been described as “gatekeepers” to the investment markets. Considers changes in ethical and legal regulation that can be adopted to restore a sense of integrity for these professionals.

LAWS 8521-2. Seminar: Comparative Labor Law. Explores the laws of foreign states (e.g., Canada, Mexico, Sweden, and Japan), transnational legal regimes (e.g., NAFTA), transnational institutions (e.g., the International Labor Organization), and economic transformations (e.g., “globalization,” and the rise of “fast capitalism”) that affect labor relations on a global scale. Specific topics include the rights of workers to organize and strike; ethnic and gender issues; the various functions and agendas of labor unions; the interface between labor and employment law; and the rise of the state in labor relations.

Natural Resources

LAWS 6002-3. Public Land Law. Deals with the legal status and management of resources on federal lands, including national forests, parks, and BLM lands. Explores federal law, policy, and agency practice affecting the use of mineral, timber, range, water, wildlife, and wilderness resources on public lands.

LAWS 6112-3. Foundations of Natural Resources Law and Policy. Examines the historical, political, and intellectual influences that shaped major areas of law that govern land and natural resources development and conservation, especially in the American West. Readings include works by leading writers as well as landmark court decisions. Enables students with a passing interest in natural resources to take a single course in the field. Students going on to take other natural resources courses begin with more advanced treatment of the subject matter in those courses. Strongly recommended for students before taking courses in public land law, mining law, pollution law, water law, American Indian law, or seminars in natural resources law.

LAWS 6302-3. Water Resources. Analyzes regional and national water problems, including the legal methods by which surface and ground water supplies are allocated, managed, and protected.

LAWS 7102-3. Oil and Gas. Deals with the legal problems associated with private arrangements for the ownership and development of oil and gas: deeds and leases to oil and gas rights, trespass, adverse possession, implied covenants in leases, conveyances of fractional interests, and the interaction of private rights and conservation regulation.

LAWS 7202-3. Pollution Law. Examines and analyzes important federal pollution control statutes, including the National Environmental Policy Act, the Clean Air Act and Clean Water Act, Solid Waste Act, and Superfund. Considers related economic theory, ethics, and policy issues.

LAWS 7402-2. Environmental and Toxic Torts. Examines statutorily imposed responsibility and common-law tort and product liability exposure related to the growing problem of the handling and disposal of toxic substances and hazardous waste as they impact public health and the environment. Focuses on federal law and that of several states regulating chemical and toxic substances, hazardous waste disposal, and clean-up of contaminated sites.

LAWS 7802-2. Readings on the American West. Explores the ideas that are shaping the
future of natural resources law and policy in the west. Students read the works of leading western writers, such as Terry Tempest Williams, Don Snow, Wallace Stegner, Peter Decker, Tom Power, Rudolfo Anaya, Edward Abbey, Teresa Jordan, Rick Bass, Jack Turner, Linda Hogan, Dan Kemmis, and others. We will also use the book *Fire on the Plateau*. Requires reading a book each week and is demanding. Grading is on a pass/fail grade basis.

LAWS 8012-2. Seminar: Public Land Law and Policy. Addresses the legal and policy aspects of current issues in topic areas of mineral development, timber harvesting, grazing, water use, and biodiversity protection related to federal public lands.

LAWS 8022-2. Seminar: Protected Public Lands. Explores the effectiveness of various techniques to balance the increasing interest in visiting national parks, wilderness, and other protected areas against the need to preserve ecological systems and biological diversity.

LAWS 8112 (2–3). Seminar: Advanced Natural Resources Law. Designed for students with a strong interest in natural resources issues in the American West and based on biological and geographical classifications where numerous resource issues converge. Studies historical, literary, and scientific materials and analyzes current problems relating to matters such as federal public lands, wildlife habitat, water quantity, ocean and coastal law, land-use planning, pollution control, Indian law, and state-federal authority. Requires additional fieldtrip expenses for students.

LAWS 8202-2. Seminar: Environmental Policy. Examines issues of environmental justice, including the disparate impacts of pollution and land use controls on certain communities and ethnic groups. Topics may include concentration of waste facilities in neighborhoods occupied by poor and minority populations, adequate protection of migrant farm workers from the impacts of pesticide hazards, and environmental controls that inhibit economic growth and development sought by Indian tribes.

LAWS 8212-2. Seminar: Environmental Law Practice and Policy. Focuses on the translation of environmental policies and purposes into environmental law and practice. Investigates policy issues on prevention of significant deterioration of air quality, the particulate matter national ambient air quality standard (PM NAAQS), and global climate changes. Emphasizes legal structure issues, including the role of national, state, and local governments in implementing environmental law and policy as well as counterpart global structures and mechanisms for responding to global or transboundary environmental problems. Prereq., LAWS 7202.

LAWS 8222-2. Seminar: Environmental Philosophy and Law. Investigates the philosophical underpinnings of U.S. environmental law and policy. Considers the ways in which some environmental philosophies are excluded from or pose significant challenges to our laws and policies. When environmental philosophies conflict with the structure of legal environmental protection, how are outcomes affected? Does or can law change in response to philosophic shifts? In turn, how are philosophic approaches affected by legal disputes about the environment?

LAWS 8302-2. Seminar: Advanced Problems in Water Resources Law. Explores the use of watersheds as geographic and political entities for addressing water-related issues. Looks at the ways in which laws and institutions facilitate or impede watershed-based problem solving or decision making. Students prepare and present major research papers focusing on a particular water issue and explore solutions in the context of the entire watershed with its related problems and multiple, interconnected interests.

Practice and Procedure

LAWS 6103-2. Professional Responsibility. Examines the legal profession as an institution, its history and traditions, and the ethics of the Bar with particular emphasis on the professional responsibilities of the lawyer. Discusses the Model Rules of Professional Conduct.

LAWS 6553-3. Evidence. Studies the methods and forms of proof in litigation, including de- tailed consideration of hearsay, impeachment of witnesses, relevancy and certain restrictions on authentication and best evidence doctrines, and privileges.

LAWS 7003-3. Federal Courts. Looks at structure and jurisdiction of the federal courts, emphasizing problems of federalism and separation of powers and their relationship to resolution of substantive disputes.

LAWS 7013-2. Supreme Court Decision Making. Students deliberate over several important cases as “justices” of the Supreme Court. Class is divided into three “courts” with the first hour spent in deliberation and the second hour in discussion of the deliberative process as well as the substantive issues.

LAWS 7303-3. Complex Civil Litigation. Covers civil procedure in modern complex multi-party suits, including class actions in such settings as employment discrimination and mass torts, and problems in discovery, joinder, res judicata, collateral estoppel, and judicial management in such suits. Offered in alternate years.

LAWS 7433-3. Remedies. Examines the types of relief available to vindicate various rights. Covers damages, specific performance, injunctions, and restitution. Emphasizes the planning aspect of enforcement, in view of the limitations and problems of proof associated with specific remedies.

LAWS 7523-2. Juvenile Law. Takes a critical look at the juvenile justice system and how it responds to the needs of juveniles who are either delinquents and/or victims of abuse. Issues include the rights and responsibility of parents, parental responsibility programs, delinquents, and the future of our juvenile courts.

LAWS 8613-2. Seminar: Civil Liberties Litigation. Studies issues unique to the prosecution and defense of civil liberties lawsuits. Discusses litigation strategies with reference to lawsuits involving voting rights currently pending in the federal courts.

Property

LAWS 6024-3. Real Property Security. Examines basic mortgage law, including use of mortgage substitutes (e.g., deeds of trust and installment land contracts). Covers foreclosure and redemption and related problems; special priority problems in land acquisitions and construction financing; special financing devices, including variable-interest and wraparound mortgages; and problems relating to the transfer of the mortgagor’s and mortgagee’s respective interests.

LAWS 6104-3. Wills and Trusts. Covers intestate succession; family protection; execution of wills; revocation and revival; will contracts and will substitutes; creation of trusts; modification and termination; charitable trusts; fiduciary administration, including probate and contest of wills; and construction problems in estate distribution.

LAWS 7024-3. Real Estate Planning. Considers various contemporary legal problems involved in the ownership, use, development, and operation of real estate. Emphasizes the income tax and financing aspects of commercial and residential use and development such as shopping plazas and apartment buildings.

LAWS 7154-3. Land Use Planning. Discusses public control of private land uses through planning, zoning, and regulation of land development, including consideration of constitutional and statutory limitations on legislatively created techniques. Offered in alternate years.

LAWS 6045-3. Criminal Procedure. Focuses primarily on the constitutional limitations applicable to such police investigative techniques as arrest, search, seizure, electronic surveillance, interrogation, and lineup identification.

LAWS 7005-3. Media Law. Surveys common, statutory, and regulatory law as applied to the mass media. Focuses on the law as it affects the gathering and publishing of news. Also examines the regulation of the electronic media.

LAWS 7015-3. First Amendment. Examines speech and religion clauses of the First Amendment. Includes the philosophical foundation of free expression, analytical problems in First Amendment jurisprudence, and the relationships between free exercise of religion and the separation of church and state.

LAWS 7025-3. Civil Rights Legislation. Presents a comprehensive study of federal civil rights statutes briefly reviewed in other courses (e.g., Constitutional Law or Federal Courts). Studies federal civil rights statutes, their judicial application, and their interrelationships as a discretely significant body of law of increasing theoretical interest and practical importance.

LAWS 7045-3. Criminal Procedure: Adjudicative Process. Focuses primarily on criminal procedure at and after trial. Looks at bail, prosecutorial discretion, discovery, plea bargaining, speedy trial, jury trial, the right to counsel at trial, double jeopardy, appeal, and federal habeas corpus.

LAWS 7055-3. Education Law. Considers issues raised by the interaction of law and education. Issues may include the legitimacy of compulsory schooling, alternatives to public schools, socialization and discipline in the schools, and questions of equal educational opportunities.

LAWS 7065-3. Immigration and Citizenship Law. Covers legal issues pertaining to noncitizens of the United States, especially their right to enter and remain as immigrants and nonimmigrants. Topics include admission and exclusion, deportation, and refugees and political asylum. Approaches topics from various perspectives, including constitutional law, statutory interpretation, planning, ethics, history, and policy.

LAWS 7085-3. Law and Religion. Uses judicial decisions as well as historical and theoretical materials to explore significant aspects of the relationship between law and religion. The religion clauses of the First Amendment are a central but not exclusive subject of study. Offered in alternate years.

LAWS 7095-2. Women in Law. Explores the role of women in the legal system by looking at women as parties, jurors, witnesses, lawyers, law professors, and judges. Explores the relationship of law and society to women as victims and offenders. Investigates law and society’s response to adoption, lesbian/gay issues, rape, surrogate and bad mothers, and sexual harassment.

LAWS 7105-3. Domestic Relations. Focuses on nature of marriage, actions for annulment and divorce, problems of alimony and property division, separation agreements, and custody of children. Also considers illegitimacy, abortion, contraception, the status of married women in common law and under modern statutes, and relations of parent and child.

LAWS 7125-2. Advanced Domestic Relations. Offers advanced study of several domestic relations subjects, including both theoretical and lawyering issues. Tentative subjects include discovery, client interviewing and deposition preparation, asset valuation, working with expert witnesses, children as clients, and alternative dispute resolution. Recommended prerequisite: LAWS 7105.

LAWS 7205-3. Administrative Law. Covers practices and procedures of administrative agencies and limitations thereon, including the Federal Administrative Procedure Act, and the relationship between courts and agencies.

LAWS 7255-3. Local Government. Studies state legislative and judicial control of the activities, powers, and duties of local governmental units, including home-rule cities and counties, and some problems of federal, state, and local constitutional and statutory limitations on governmental powers when exercised by local governmental units (e.g., the powers to regulate private activities, tax, spend, borrow money, and condemn private property for public uses). Offered in alternate years.

LAWS 7315-3. Criminal Justice Policy and Practice. Focuses on policy and practice issues rather than case law. Examines how American criminal justice is (and has been) dispensed in the vast majority of cases that never reach trial. Devotes attention to systemic issues rather than case-specific problems. Studies policy behavior, prosecutorial charging and bargaining discretion, the provision of defense services, bail and preventive detention, plea negotiation, and sentencing—aspects of the criminal process that affect huge volumes of cases and require thought in global terms.

LAWS 7345-2. Comparative Criminal Procedure. Takes an in-depth look at some of the basic features of modern criminal justice systems that share the civil law tradition with the hope that such study will provide a vehicle for a deeper understanding of the strengths and weaknesses of the American system of criminal justice. Prerequisite: LAWS 6045.

LAWS 7375-2. U.S. Race and Justice Systems. Examines the unique but related legal, social, and economic problems and accomplishments of those persons in this country whose ancestry originated in Africa, Asia, Latin America, or North America, and explores the developing literature on whites and whiteness.

LAWS 7425 (2-3). Health Law. Acquaints students with the issues arising at the interface between law and medicine through analysis of cases and other materials. Critically analyzes methods used by courts and legislatures to address medical/legal problems in an effort to determine whether the legal resolution was reasonable and appropriate in light of medical, social, and political considerations. Offered in alternate years.

LAWS 7475-2. Advanced Torts. Studies selected tort actions and theories. Topics covered may include “dignitary torts” (e.g., defamation, privacy, etc.), business torts, and product liability. Offered in alternate years.

LAWS 7725-3. American Indian Law. Investigates the federal statutory, decisional, and constitutional law that bears upon American Indians, tribal governments, and Indian reservation transactions.

LAWS 8015-3. Seminar: Constitutional Theory. Examines the role of the courts and the other branches of government in defining and enforcing constitutional values. Relevant readings are from philosophy, social sciences, and legal scholarship, as well as cases.

LAWS 8075-2. Seminar: Race, Racism, and American Law. Focuses on issues of race reform law, in particular the group of issues dealing with Black Americans. (Students of all races and persuasions are welcome.) Offers an interpretive or critical dimension, rather than a litigation-oriented one. Helps students understand how race reform law works and how attitudes and historical forces have shaped that body of law.

LAW 8125-2. Seminar: Law and the Politics of Family Law. Examines issues that have been raised under the United States Constitution with respect to state regulation of families. Topics include questions of family and individual privacy, the status of children, procreation, marriage and divorce, the definition of family relationships, and problems of federalism and the role of the Supreme Court in the regulation of families.

LAW 8315-2. Seminar: Advanced Criminal Justice. Studies policy and practice issues rather than case law. Focuses primarily on how American criminal justice is dispensed in cases that do not reach trial, including police behavior, prosecutorial discretion, defense services, bail, plea bargaining, and sentencing.

LAW 8325-2. Seminar: Reforming Criminal Trials. Starts from the premise that reform of our criminal trial system to make it less complicated, less expensive, and more reliable should be considered. Examines trial systems in other countries and U.S. changes over recent decades. Student papers make and defend proposals for reform.

LAW 8355-2. Seminar: Sentencing Law and Policy. Studies sentencing law against the backdrop of criminal justice policy. Focuses on concerns of public policy. Readings are in criminological literature of incapacitation, deterrence, rehabilitation, and in the moral theory of just punishment. Considers the merits of different sentencing structures and procedures, such as those found in traditional “indeterminate” sentencing jurisdictions and in new sentencing guideline systems. Evaluates national efforts to make greater use of nonincarcertive sanctions and gain control of exploding prison populations. Confronts problems of race, class, and other disparities in criminal sentencing.

LAW 8375-2. Seminar: Advanced Immigration and Citizenship. Explores the law and policy of citizenship in the United States, starting with legal questions regarding acquisition and loss of citizenship as well as the consequences of citizenship, but also examines the fundamental premises underlying American citizenship and the concept of citizenship generally.

LAW 8415-2. Seminar: Bioethics and Law. Focuses on legal, moral, and economic analyses of problems posed or soon to be posed by advances in biomedical technologies.

LAW 8445-2. Seminar: Alternative Dispute Resolution. A study of alternative dispute resolution (ADR) theory, its application in specific contexts (e.g., civil rights), procedural approaches to ADR, advantages and disadvantages of using ADR, and the attorney’s role in ADR processes.

Research and Writing

LAW 6856-2. Advanced Legal Research. Offers an in-depth look at research resources and methods. Includes sources from the judicial, legislative, and executive branches of federal and state government; research in topical areas such as environmental law, taxation, and international law; and extensive coverage of secondary and non-law resources. Covers both print and electronic sources.

LAW 7106-1. Rothgerber Moot Court Competition. Offers an intensive involvement in legal research, appellate brief writing, and oral arguments in a competitive context. Student finalists may continue involvement in regional and national competitions. Credit is limited to students who complete two rounds of the competition.

LAW 7406-1. International Moot Court Competition. Open only to students who actively participate in the seminar preparing for the competition, in the preparation of memorials for the competition, and in the practice of oral arguments or regional oral arguments.

Taxation

LAW 6007-4. Income Taxation. Emphasizes the fundamentals of the federal income tax system and examines its impact on the individual.

LAW 6157-3. Corporate Taxation. Includes the most pertinent aspects of regular “C” corporation federal income taxation (excluding tax deferred reorganizations, carryovers of tax attributes, affiliated and multiple corporations, and consolidated income tax returns). Topics include corporate income tax classification, personal services corporations, nominee corporations, formation, operations, non-liquidating distributions, reorganizations, stock dividends, liquidations, taxable acquisitions, personal holding companies, accumulated earnings tax, and collapsible corporations. Recommended prereq. or coreq. LAW 6167.

LAW 6167-3. Taxation of Conduit Entities. Examines the federal income tax treatment of pass-through entities and their participants. Analyzes the income tax consequences of certain typical transactions that occur during the life of a pass-through entity such as formation, operation, sale of an interest, distribution, redemptions, and dissolution. Includes general partnerships, limited liability partnerships, limited partnerships, limited liability limited partnerships, limited liability companies, and subchapter S corporations. Considers specialized pass-through entities such as real estate investment trusts and real estate mortgage investment conduits if time permits. Recommended sequence is to take this course before or with LAWS 6157.

LAW 7207-3. Federal Estate and Gift Tax. Analyzes federal estate and gift taxation of inter vivos and testamentary transfers, introduces income taxation of estates and trusts, and involves elementary estate planning.

LAW 7217-2. Estate Planning. Discusses problems and solutions for owners of various-sized estates and different types of assets including jointly-held property, stock in closely-held corporations and farms, analysis of federal taxation of generation-skipping transfers in trust, postmortem estate planning, and drafting of trusts and wills. Prereqs., LAWS 6104 and LAWS 7207.

LAW 7307-3. Taxation of Natural Resources. Considers the federal income tax aspects applicable to the exploration for, the development of, and the operation of natural resources, as well as the financing thereof. Also considers oil and gas, hard minerals, timber, and water. Recommended prereq., LAWS 6007. Offered in alternate years.
LAWS 7617-3. International Taxation. Covers basic aspects of the United States taxation of income earned abroad by its citizens and the taxation of income derived by foreign persons from U.S. sources, including the implications of income tax treaties.

LAWS 8407-2. Seminar: Tax Policy. Considers questions of fairness, efficiency, and promotion of social goals as they arise in federal, state, and local systems of raising revenue through user fees and through taxation of income, sales, property, and estates and gifts. Past seminar papers have covered the taxation of business organizations, the value added tax, the social security tax, the taxation of farming, and the tax exemption of religion. Offered in alternate years.

Jurisprudence and Perspective Courses

LAWS 6128-3. Legislation. Examines theories of legislation and the relation between legislatures and courts, emphasizing problems of statutory interpretation and other issues in the judicial use or misuse of statutes.

LAWS 7128-3. Jurisprudence. Considers a variety of themes and issues central to legal thought, including the controversy between positivism and natural law, the meaning of “interpretation” in law, the nature of judicial decision making, and the strengths and weaknesses of “policy,” or “rights,” and other approaches to legal problems.

LAWS 7218-2. Legal History. Starts with developments in Anglo-American legal history, including the evolution of the common law; the origins of equity; the origins of the jury; and the reception of English law in America. Focuses on the evolution of American law, including consideration of some of the major jurisprudential movements that have shaped today’s law.

LAWS 7418-2. Legal Imagination. An advanced course in reading and writing for law students. Varies literary and other works are read. May be of interest to the student interested in the question: Does my choice to become a lawyer mean the sacrifice of my ambitions to be a serious writer (or person)?

LAWS 7708-3. Law and Social Science. Introduces some of the major thinkers and traditions of scholarship in the area of law and society. Focuses on the actual and potential uses of social science research in the American legal process. Includes methods of asking for, gathering, and interpreting information for Brandeis briefs and the role of social science data in cases of discrimination in education, obscenity, civil rights, and other areas. Offered in alternate years.

LAWS 8128-3. Seminar: Jurisprudence. Considers some major jurisprudential themes using classical and more contemporary materials. Includes the positivist, natural law, and common law conceptions of law, the nature of legal authority, and the problem of legal interpretation.

LAWS 8318-2. Seminar: Law and Economics. Introduces the uses and limitations of microeconomic theory for understanding and resolving legal problems. Emphasizes concepts prominent in the law and economics literature such as cost, transaction costs, utility, and rational self-interest.

LAWS 8428-2. Seminar: Women in Law and Literature. Considers both legal and literary depictions of women and their legal and extralegal situations. Topics may include women as mothers, women as sexual beings, women’s silence, women’s violence and women as criminals, women at work, and women as the “other” in law and literature.

LAWS 8528-2. Seminar: Contemporary Jurisprudence. Explores theories that inform contemporary legal thought. Readings are drawn from a variety of approaches, such as legal positivism, legal realism, rights and principles scholarship, law and economics, legal institutionalism, critical legal studies, and feminist jurisprudence.

LAWS 8548-2. Seminar: Theory of Punishment. Explores the various justifications that philosophers have developed to explain why we have the right to punish. Examines the historical evolution of our punishment system and focuses on the death penalty as a critical contemporary issue in the debate about the proper role of punishment in our society.

LAWS 8608-2. Seminar: Power, Ethics, and Professionalism. Examines critically the possibility and character of ethical reasoning within the legal profession in light of its institutional structures. Explores descriptive/normative accounts of the profession’s structure, “professionalism,” and individual conscience. Put simply, the seminar explores whether it is possible to be a good lawyer and ethical person.

LAWS 8628-2. Seminar: Law, Power, and Politics. Draws upon various works of political theory, social theory, and jurisprudence to examine different conceptualizations of politics, power, law, and their relations.

LAWS 8718-2. Seminar: Modern Theorists and Law. Considers the work of Levi-Strauss, Steven Lukes, Pierre Bordieu, Alfred Schutz, Anthony Giddens, Culler, David Harvey, Denis Cosgrove, Michel Foucault, and Emily Martin with respect to social control and law. Focuses on the way in which social control is exercised through the organization of space, time, and the human body. Topics include consideration of meaning, intersubjectivity in the law, social construction of time, and the body as a real and cultural artifact.

Practice—Clinical

LAWS 6009-4 Legal Aid Civil Practice 1. Emphasizes procedural and practical remedies and defenses available in civil litigation. Assigns civil cases related to the course material. Develops working knowledge of courtroom skills. Prereq. or coreq., LAWS 6353.

LAWS 6019-3. Legal Aid Civil Practice 2. Emphasizes procedural and practical remedies and defenses available in civil litigation. Assigns civil cases related to the course material. Develops working knowledge of courtroom skills. Prereq. or coreq., LAWS 6353.

LAWS 6069-4. Legal Aid Civil Practice. Emphasizes procedural and practical remedies and defenses available in civil litigation. Students are assigned civil cases related to the course material. Develops working knowledge of courtroom skills. Concludes with full mock trial. Prereq. or coreq., LAWS 6353.

LAWS 6179-2. Trial Practice. Students apply the rules and doctrine of evidence in simulated trial settings. Must be taken with Professor Wesson’s section of Evidence. Enrollment is limited to 24. Satisfies the trial practice requirement and counts two hours toward the 11-hour maximum of clinical hours counted toward graduation. This is a graded course—not pass/fail.

LAWS 7029-3. Appellate Advocacy Clinic. Provides a clinical course that enables students to work on briefs of criminal cases being handled by the Appellate Division of the Public Defender or Attorney General’s Office. Instruction in oral advocacy is given. Enrollment limited to 8 students.

LAWS 7159-2. Advanced Trial Advocacy. Offers an advanced course covering trial practice elements. Open only to students who have taken LAWS 6109.
LAW 7169-2. Motions Advocacy. Provides practical training in preparing and arguing pre-trial, post-trial, and chambers motions to an experienced federal judge based on materials from actual case files. Assigns some research papers. Limited to 15 third-year students with interest in trial advocacy and willingness to participate in confrontational exercises. Counts as practice hours.

LAW 7209-3. Natural Resources Litigation Clinic. Offers hands-on experience in the practice of natural resources law in the Rocky Mountain region to a select number of clinic students. The clinic’s docket of active cases focuses on public land law and the environmental statutes protecting those lands and their resources. Students participate in projects that test the full range of lawyering skills, including traditional litigation, administrative advocacy, legislative drafting, and the conduct of complex negotiations and settlements.

LAW 7309 (2-3). American Indian Law Clinic. Offers a clinical education course involving participation in the representation and advocacy of Indian causes—land or water claims, Indian religious freedom, job or other discrimination based on race, and issues implicating tribal sovereignty. Recommended prereq., LAW 7725.

LAW 7419 (2-3). Legal Negotiation and Dispute Resolution. Explores the fundamentals of effective negotiation techniques and policies for lawyers. Engages students in mock negotiations of several legal disputes. Examines a variety of dispute-resolution processes, such as mediation, arbitration, mini-trials, and court-annexed settlement procedures, as alternatives to traditional court adjudication.

LAW 7509-1. Trial Competition. Student teams further develop trial and advocacy skills in a competitive mock-trial format involving two or more rounds of trials. Requires preparation of trial briefs and drafting other court pleadings and documents. Credit is limited to the top two teams (six students). Student finalists may continue involvement in regional and national competitions.

LAW 7529-1. Appellate Advocacy Competition. Gives students the opportunity to participate in an intermural appellate advocacy competition, in which a brief must be filed and reviewed, critiqued, and deemed creditworthy by a member of the faculty. (Law School Rule 3-2-9 (b) should be consulted prior to enrollment.)

LAW 7609-1. Small Practice Management. Studies the establishment of a solo or small-firm legal practice. Topics include the business structure (P.C., LLC, etc.), office systems, marketing and development, staffing, liability insurance, managing time, technology, and billing. This course is a practice course which counts toward the 11-credit maximum of practice hours). Course supported by the Section of Law Practice Management of the ABA in memory of Harold A. Feder, CU Law ’59.

LAW 7939 (2-4). Extern Program. Externship credit may be earned for uncompensated work for a sponsor, which may be any lawyer, judge, or organization that employs lawyers or judges and is approved by the Academic and Student Affairs Committee. Work is done under the direction of a field instructor, who shall be a lawyer or judge as the sponsor, and of a member of the law faculty. Requires a substantial writing component and fifty hours of working time per credit hour. A minimum of 2 and a maximum of 4 credit hours may be earned. Classified as practice credit.

Faculty

Harold H. Bruff, Dean; Professor, B.A., Williams College; J.D., Harvard Law School.

Norman F. Aarons, Clinical Professor of Law, Legal Aid and Defender Program, B.A., Brandeis University; J.D., Boston University Law School.

Barbara Bintliff, Associate Professor; Library Director. B.A., Central Washington State College; J.D., M.L.L., University of Washington.

Clifford J. Calhoun, Professor Emeritus.

Emily M. Calhoun, Professor, B.A., M.A., Texas Tech University; J.D., University of Texas School of Law.

Paul F. Campos, Professor, A.B., M.A., University of Michigan; J.D., University of Michigan Law School.

Amy Christoffersen, Associate Professor, B.A., Drake University; J.D., University of Minnesota Law School.

Homer H. Clark, Jr., Moses Lasky Professor Emeritus.

James N. Corbridge, Jr., Professor Emeritus.

Richard Delgado, Jean N. Lindley Professor, A.B., University of Washington; J.D., University of California, Berkeley.

Vine Deloria, Jr., Professor Adjunct. B.S., Iowa State University; Master of Sacred Theology, Lutheran School of Theology; J.D., University of Colorado School of Law.

Robert J. Dieter, Clinical Professor of Law, Legal Aid and Defender Program, B.A., Yale University; J.D., University of Denver College of Law.

Allison Hartwell Eid, Associate Professor, A.B., Stanford University; J.D., University of Chicago Law School.

Ann Laquer Estin, Associate Professor, A.B., Dartmouth College; J.D., University of Pennsylvania Law School.

Rebecca French, Associate Professor; Charles Inglis Thomson Fellow. B.A., University of Michigan; J.D., University of Washington Law School; L.L.M., Yale Law School; Ph.D., Yale University.

H. Patrick Furman, Clinical Professor of Law, Legal Aid and Defender Program; Director of Clinical Programs. B.A., University of Colorado; J.D., University of Colorado School of Law.

Wayne M. Gazur, Associate Professor; Charles Inglis Thomson Fellow. B.S., University of Wyoming; J.D., University of Colorado School of Law; L.L.M., University of Denver College of Law.

Juliet C. Gilbert, Clinical Professor of Law, Legal Aid and Defender Program, B.A., Valparaiso University; J.D., University of Denver College of Law.

Kimberly J. Gruber, Associate Professor; Adjoint. B.S., Arizona State University; J.D., Arizona State University College of Law.

David S. Hill, Associate Professor. B.S., University of Nebraska; J.D., University of Nebraska School of Law.

J. Dennis Hynes, Nicholas Rosenbaum Professor. B.A., University of Colorado; L.L.B., University of Colorado School of Law.

Douglas Kenney, Research Associate, Natural Resources Law Center. B.A., University of Colorado; M.S., University of Michigan; Ph.D., University of Arizona.

Howard C. Kleeme, Professor Emeritus.

Sarah A. Krakoff, Associate Professor. B.A., Yale University; J.D., University of California, Berkeley.

Mark J. Loewenstein, Associate Dean for Research; Professor; Charles Inglis Thomson Fellow. A.B., University of Illinois; J.D., University of Illinois College of Law.

Thomas Lustig, Associate Professor Adjunct. A.B., Washington University; M.S., University of Michigan; J.D., University of Colorado School of Law; Ph.D., Massachusetts Institute of Technology.
OSCAR J. MILLER, Professor Emeritus.

HIROSHI MOTOMURA, Nicholas Doman Professor of International Law. B.A., Yale College; J.D., University of California, Berkeley.

CHRISTOPHER B. MUELLER, Henry S. Lindsley Professor of Procedure and Advocacy. A.B., Haverford College; J.D., University of California, Berkeley.

KATHRYN MUTZ, Research Associate, Natural Resource Law Center. B.A., Denison University; LL.B., Stanford Law School.

ROBERT F. NAGEL, Chair, Ira C. Rothgerber Jr. Professor of Constitutional Law; Director, Byron R. White Center for American Constitutional Study. B.A., Swarthmore College; J.D., University of Texas School of Law.

J. WILLIAM PIZZI, Professor; Byron R. White Center for American Constitutional Study. B.A., Swarthmore College; J.D., Yale Law School.

CHARLES F. WILKINSON, Distinguished University Professor; Moses Lasky Professor. B.A., Denison University; LL.B., Stanford Law School.

Legal Writing Faculty

KARI L. BOURG, Instructor in Legal Writing and Appellate Advocacy. B.S., University of North Carolina at Chapel Hill; J.D., University of Virginia Law School.

JAMES B. LEVY, Instructor in Legal Writing and Trial Advocacy. B.A., Colby College; J.D., Suffolk University Law School.

GABRIELLE MARKS STAFFORD, Instructor in Legal Writing and Appellate Advocacy. B.A., Southern Methodist University; J.D., Boston University School of Law.

TODD STAFFORD, Instructor in Legal Writing and Appellate Advocacy. B.A., Southern Methodist University; J.D., Drake University.

Library Faculty

BEV CUMMINGS AGNEW, Reference Librarian. B.A., M.L.S., Indiana University School of Library Science and Information Studies; J.D., Indiana University School of Law.

GEORGIA BRISCOE, Associate Director and Head of Technical Services. B.S., Washington State University; M.A., University of San Diego; A.M.L.S., University of Michigan.

MITCH FONTENOT, Head of Public Services. B.A., Louisiana State University; M.L.I.S., University of Texas at Austin.

ROBERT C. RICHARDS, JR., Technical Services Librarian. B.A., Yale University; M.A., University of Iowa; M.S., University of Illinois at Urbana-Champaign.

KAREN SELDEN, Catalog Librarian. B.S., Pennsylvania State University; M.L.S., Simmons College.

JANE THOMPSON, Head of Faculty Services. B.A., University of Missouri–Columbia; J.D., M.A., University of Denver.

Professional Staff

ANTHONY L. BASTONE II, Assistant Dean for Career Services. B.S., University of Texas at Arlington and Northeastern State University; M.A., Sam Houston State University.

GARY C. BRYNER, Director of the Natural Resources Law Center. B.A., M.A., University of Utah; J.D., Brigham Young University; Ph.D., Cornell University.

JERILYN DECOTEAU, Director of the Indian Law Clinic. B.S.Ed., Mayville State College; M.A.Ed., University of North Dakota; J.D., University of Oregon Law School.

JEAN E. KLINE, Assistant to the Dean. B.S., University of Colorado; Certified Public Accountant.

BARBARA B. LEGGATE, Registrar. B.S., University of Colorado.

ALICE D. MADDEN, Director of Alumni Relations. B.A., University of Colorado at Boulder; J.D., University of Colorado School of Law.

CAROL NELSON-DOUGLAS, Assistant Dean for Admissions and Financial Aid. B.A., Michigan State University; M.S.A., University of Notre Dame.

ROBIN F. SKELTON, Assistant to the Dean. B.A., Hamilton College.

CAROLYN J. MOORE WHITEHEAD, Director of Development. B.A., St. Andrews Presbyterian College.

CONNIE A. ZUBLER, Associate Director of Career Services. B.S., Drake University; J.D., Southern Methodist University School of Law.
Music, Music, Music

The very popular University Band was formed by 14 students in 1909 and funded by the students themselves. After the band played in a blinding snowstorm, the Regents voted to buy them uniforms. Sixty-one members comprised the band at the dedication of the new stadium in 1924. Hugh McMillan, appointed Director of the Marching Band in 1936, brought the band to national prominence and its membership swelled to 85 members. During WWII, the official band was an “all-girl” band because of the lack of male musicians.
The College of Music provides specialized training designed to prepare students for a variety of careers in music. The college offers three undergraduate degrees, two certificate programs, and four graduate degrees; numerous performance opportunities are also available. Established by the Regents of the University of Colorado in 1920, the College of Music is a fully accredited member of the National Association of Schools of Music.

The mission of the College of Music at CU-Boulder is to establish excellence in music through distinguished instruction in performance, composition, musicology, theory, and teacher preparation for our graduate and undergraduate students, and to provide opportunities for performance, creative activities, research and scholarship, and teaching experiences.

The college is dedicated to:
• providing music majors and non-majors the opportunity to develop their knowledge, understanding, and ability in the various aspects of music at a level appropriate to their needs and interests;
• preparing students for careers as performers, composers, scholars, teachers, administrators, and other professionals in the field of music;
• broadening and deepening the knowledge and understanding of music through research, teaching, creative activities, and publication; and
• enriching the lives of students and faculty as well as the community, state, nation, and the world with performances of a wide variety of music presentations and publications.

The College of Music is an academic community committed to maintaining a climate of mutual respect and collegiality. The members of this community:
• share a spirit of cooperation and helpful, constructive, and friendly consideration for each other’s activities;
• maintain open communication in both formal and informal contexts;
• defend academic freedom;
• encourage an environment of safety and well-being; and
• show respect for a diversity of musical cultures and individual backgrounds.

The widely varied functions of music in the world today present many challenging and interesting opportunities for teachers, performers, creative artists, technicians, and commercial personnel. While these different pursuits require specialized emphases, the faculty of the College of Music recognize the musical and educational experiences that are common to all. Each curriculum of the College of Music is designed, therefore, to present music as an integrated whole. Solo performance and technique, ensemble performance, historical and theoretical studies, concert and recital opportunities, and elective courses both inside and outside the college are intended to give students a balanced approach to musical understanding and musicianship.

The college maintains a ratio of one faculty member for every 10 students. This enables our students to benefit from dynamic, personal interaction with their professors. The college also provides students with regular academic advising and regular degree audits to ensure that they complete their degrees without unnecessary delay.

In addition to training in the various professions of music, the college provides general music studies and activities for the non-major; broad cultural programs (concerts, recitals, lectures) for the university and Boulder communities; favorable conditions for research in music; and service activities to the state and nation.

Major Fields and Degrees
Undergraduate degrees include the bachelor of music (B.Mus.), the bachelor of arts in music (B.A.), and the bachelor of music education (B.Mus.Ed.). Students also may elect to earn a certificate in jazz studies or music technology in conjunction with their degree. In addition to a substantial core of studies in music, the B.A. in music program allows a wide choice of study in areas outside of music. B.Mus. areas of concentration are in composition, history and literature of music, performance, and voice theatre. The major areas in the B.Mus.Ed. program are in teaching choral, general, or instrumental music.

Incoming freshmen and transfer students in incoming freshman and transfer students who plan to major in music, the college provides general music studies and activities for the non-major; broad cultural programs (concerts, recitals, lectures) for the university and Boulder communities; favorable conditions for research in music; and service activities to the state and nation.

The college’s outstanding Music Library is a research degree for all fields of music and music education.

Graduate degrees are offered through the Graduate School and additional information can be found in the Graduate School chapter of this catalog as well as in the curricula listed later in this chapter. Correspondence regarding details of the various curricula and questions concerning how students may work toward double degrees in music and engineering, music and business, and others may be directed to the Associate Dean for Undergraduate Studies, College of Music.

Graduate degrees include the master of music (M.Mus.), the master of music education (M.Mus.Ed.), doctor of musical arts (D.Mus.A.), and doctor of philosophy (Ph.D.). Major fields in the master of music and doctor of musical arts degrees are conducting, composition, pedagogy, and performance. The master of music in music literature provides training in musicology and music theory. The master of music education degree is designed to provide advanced instruction for teachers in the elementary and secondary schools. The master of music in jazz performance and pedagogy provides training for teaching and performing jazz in a range of styles. The Ph.D. is a research degree for all fields of music and music education.

Graduate degrees are offered through the Graduate School and additional information can be found in the Graduate School chapter of this catalog as well as in the curricula listed later in this chapter. Correspondence regarding details of the various curricula and questions concerning how students may work toward double degrees in music and engineering, music and business, and others may be directed to the Associate Dean for Undergraduate Studies, College of Music.

Facilities
The College of Music has several beautiful performance halls, including the 2,000-seat Macky Auditorium, the 500-seat Grusin Music Hall, and the 1,200-seat Chamber Hall. The college is located primarily in the Imig Music Building, a large complex containing 84 practice rooms, 54 faculty studios, offices, ensemble rehearsal areas, seminar facilities, and classrooms. Additional rehearsal and classroom facilities are located in Macky.

The college’s outstanding Music Library is considered to be among the nation’s most comprehensive. The library contains over 150,000 volumes, scores, recordings, and periodicals. Computerized facilities are provided for listening to recordings and practicing ear training. Computer terminals are available for computer-based reference searching. The
Music Library houses the American Music Research Center, a unique facility dedicated to the discovery of new information about American music. The center sponsors concerts and scholarly activities and serves as an archive for several extensive collections of American music.

The college also features extensive facilities for music technology and electronic music study. The Computer-Assisted Music Laboratories (I and II) are multi-purpose labs designed primarily for classroom instruction. They feature numerous workstations, each with a Musical Instrument Digital Interface, sampling keyboard, and a computer. The Film Scoring Lab is equipped with complete pre- and post-production equipment that allows students to learn by creating professional quality sound tracks for film and video. The Class Piano Laboratory is equipped with thirteen digital pianos.

Performances
Each year the College of Music presents over 400 exciting concerts by talented students and faculty. In addition to individual musical pursuits, students at all levels have the opportunity to perform in a variety of outstanding ensembles including orchestras, choirs, bands, chamber and early music groups, jazz ensembles and combos, opera productions, and musicals. Many of these groups have been invited to perform at prestigious national and international events. Recitals by students and faculty are supplemented by visits from world-class guest artists, all of which provide the Boulder community with the chance to hear some of the finest music being performed today. The vast majority of these excellent performances are free and open to the public. In addition, CU concerts include the Artist Series, CU Opera, Takács Encore Series, and the Holiday Festival. For a schedule of all College of Music performances, call 303-492-8008.

International Study
The college encourages the educational breadth that comes with study abroad. For instance, there is a program at the Hochschule für Musik in Berlin as well as one in Regensburg, Germany, which offer study in performance and music history. These programs are coordinated in conjunction with the Office of International Education, which may be contacted for further information.

Student Organizations
The student body of the College of Music has its own government, represented by the Associated Students of the College of Music and the Graduate Music Student Council. Honorary music fraternities are Phi Mu Alpha, Sigma Alpha Iota, Kappa Kappa Psi, and Tau Beta Sigma. Pi Kappa Lambda, the national scholastic honorary music fraternity, is also an active organization on this campus. Music education majors are eligible for membership in the student chapter of the Music Educators’ National Conference.

Entrepreneurship Center
The Entrepreneurship Center for Music helps students think creatively about using their talents and interests in the music industry. The traditional job choices for music students—teaching and performing—are only two of the hundreds of employment options in the $40 billion global music industry. The center helps students develop an entrepreneurial spirit through music entrepreneurship courses, guest speakers, workshops, and individual appointments to discuss career options. The internship program provides valuable experience outside of the classroom in arts organizations around the country. More information about the center is available on the Web at www.colorado.edu/music/entrepreneurs.

ACADEMIC EXCELLENCE

Honors
Upon recommendation of the faculty, honors may be awarded to students who show outstanding ability and who have demonstrated superior musicianship and scholastic accomplishment through a minimum 3.70 GPA.

Scholarships and Awards
Several scholarships and awards are designed specifically for students in the College of Music. Students are eligible for scholarships or renewal of their scholarships as long as they make satisfactory progress in their major and maintain a minimum cumulative grade point average of 2.75.

Nancy and Ted Anderson Music Awards
Applied Music Scholarships
Joyce Mata Ashley Scholarship Fund
John W. (Jack) Bartram Memorial Fund
Virginia Blake Becker Flute Scholarship Fund
Bone Brothers Founding Fathers Marching Band Scholarship
Darrell and Lauren Boyle Music Theatre Scholarship
Carol and Lois Butts Instrumental Music Scholarship
Charles A. Byers Choral Music Education Scholarship
John Carter Graduate Scholarship in Clarinet
Rebecca Beardmore Chavez Scholarship Fund
William Clendennin Music History Scholarship
Berron Coffin Graduate Scholarships in Voice
Walter and Jenny Kate Collins Memorial Graduate Fellowship in Choral Studies
Viola Vestal Coulter Foundation Voice Scholarship in honor of Harold A. Norblom
Wilma and Perry Louis Cunningham Scholarship in Voice
Frank and Gina Day Performance Fellowship Dean’s Honor Awards

Denver Lyric Opera Guild Scholarship
Barbara M. Doscher Scholarship
Cecil Effinger Graduate Theory/Composition Memorial Scholarship
Robert R. Fink Undergraduate Scholarship in Music Theory
Wallace F. Fiske Performance Awards
Alan Frederickson Endowment
Gordon Getty Foundation Scholarship
James M. Grossi Composition Scholarship
Dave Grusin Graduate Fellowship
Charles Haertling Piano Scholarship
Jessie and Albert Henry Memorial Scholarships
Honors String Quartet Awards
Lucky Hudson Jazz Scholarship Fund
Warner Imig Choral Conducting Scholarship
Dale R. Johnson Opera Scholarship
Denés Koromzay String Chamber Music Award
Robert K. McIntosh Fund for Music Instruction for Disadvantaged Children
Vera McWharther Memorial Voice Scholarship
Trudie Mielziner Graduate Opera Scholarship
Mile High Band Music Education Award
Music History Academic Achievement Award
Harold A. Norblom Scholarship (sponsored by the Coulter Foundation)
Noris Graduate Piano Award
Noris Graduate Voice Scholarships
Gabor Ormai String Scholarship
Phyllis and Paul Parmelee Memorial Piano Scholarship
John M. Parsons Musicology Fund
Peercy-Roth Memorial Scholarship
Theodore Presser Academic Performance Award
Gregory Philip Ranno Excellence in Music Scholarship
Anthony and Dorothy Riddle Lyric Theatre Performance Prize
Walter Orr Roberts Music Scholarship
William Earl Rose, Sr. Scholarship Fund
Robin Sawhill Award for Excellence in Piano Performance
Virginia Schwatfel Fund for Music Education
Fay Shwyader String Quartet Awards
Eric Sutton Skinner Memorial Scholarship Fund
Pete Smythe Scholarship Fund
Galen and Ada Belle Files Spencer Fellowship in Voice
Pete and Julianne Steinbauer Fund
“Crick” Streamer Memorial Scholarship Award
Don T. Swall Band Scholarship Fund
Louise Touhy Music Scholarship
Howard B. Waltz Music Scholarship
Judith Richardson Waterman Choral Music Education Scholarship
Betty M. Weir Memorial Voice Scholarship
Katherine Anne Suber Whiton Music Scholarship Fund
Lynn Whitten Fellowship in Graduate Choral Conducting
Brownlow V. Wilson Music Education Award
Paula Marie and H. Rolan Zick Endowment

ACADEMIC STANDARDS

Academic Ethics
Students are expected to conduct themselves in accordance with the highest standards of honesty and integrity. Cheating, plagiarism,
illegitimate possession and disposition of examinations, alteration, forgery, or falsification of official records, and similar acts or the attempt to engage in such acts are grounds for suspension or expulsion from the university.

In particular, students are advised that plagiarism consists of any act involving the offering of the work of someone else as their own. It is recommended that students consult with their instructors as to the proper preparation of reports, papers, etc., in order to avoid this and similar offenses.

Scholastic Requirements
Any undergraduate student who has a cumulative or semester grade point average below 2.00 is automatically placed on probation for the following three semesters. (Cumulative grade point average is calculated on grades earned at this university.) If, at the end of each semester and cumulative probationary period, the semester grade point average is not 2.00 or above, automatic suspension results.

Undergraduate students who have a cumulative or semester grade point average of 1.00 or below are automatically suspended. Suspended students must attend a summer term or continuing education classes to raise their grade point averages. Those attempting to do this must successfully complete 12 credits in one semester with no withdrawals and no incomplete grades.

Undergraduate students under scholastic suspension may petition for readmission and may receive a personal hearing before the associate dean for undergraduate studies.

Students who have been dismissed must reapply for admission to the university after being reinstated by the college, unless they are dismissed in May and raise their cumulative GPA to 2.00 during the following summer.

Graduate students should see “Quality of Graduate Work” under the Graduate School chapter of this catalog for scholastic requirements.

Appeals
Students have the right to appeal decisions of academic dishonesty and to petition for exceptions to the academic policies stated in this catalog. Appeals should be directed to the Office of the Dean.

College of Music policies stated below are in addition to the campus policies found in this catalog.

ADMISSION AND ENROLLMENT POLICIES

Admission Requirements
In addition to the entrance requirements of the university outlined in Undergraduate Admission in the General Information chapter, freshman and transfer students must meet College of Music entrance requirements. A knowledge of the rudiments of music theory and good sight-reading ability in the major instrument or voice is expected. Prospective music majors are also advised to develop fluent reading ability in treble and bass clefs and at least elementary piano skill. Students with appropriate skill in piano sight reading and keyboard harmony may be able to test out of all or part of the secondary (class) piano requirement if it is included in their degree plan.

History and literature majors should have a performance skill. Instrumental majors and singers should possess a well-grounded technique sufficient to play and sing music of moderate difficulty.

Auditions
An audition is required for all entering undergraduate music majors. Undergraduate auditions are held in Boulder on Saturdays in February. Alternate audition dates may also be scheduled if necessary. If travel distance is prohibitive prospective students may substitute a high-quality cassette tape. The college ordinarily expects to receive tapes by February 15 in order for students to be considered for financial assistance. Students should prepare a 10–20 minute audition program in accordance with the guidelines stated below. This list is intended to serve only as an example of suggested repertoire for undergraduate admission.

Specific audition information for each instrument is available upon request or as part of the admission packet.

Graduate auditions are arranged by appointment; audition tapes may be submitted. Contact the Graduate Music Office at 303-492-2207 for further information.

Voice: Two contrasting songs, including at least one from the classical repertoire. All songs must be memorized. In the event of off-campus auditions, all auditionees must submit a high-quality recording. Video tapes are not acceptable.

Keyboard: Three contrasting selections (highly recommended: one composition by J. S. Bach).

Strings: One work at least at the level of a Mozart concerto, and one contrasting solo.

Guitar: Three selections from different historical periods.

Woodwind: Two contrasting works.

Brass: Two contrasting works.

Percussion: Demonstrate performance ability on snare drum, mallets, and tympani.

Composition: Submit scores and tapes of at least two original works, and audition on one of the performance instruments listed above.

Provisional Admission
Applicants who meet all admission requirements except the minimum academic preparation standards (MAPS) may petition the associate dean for undergraduate studies for admission as a provisional student. Such applicants must offer at least three units of English and six additional units in academic fields.

Transfer Students
Transfer students from within the university and from other universities must meet the general requirements of the university and the specific requirements of the College of Music, including the audition. Please see Undergraduate Admission in the General Information chapter of this catalog for specific requirements.

Nondegree Students
With the written permission of the instructor, nondegree students may take any class offered by the College of Music except private applied instruction. However, those students intending to become degree students the following semester may petition the dean for permission to register for private applied instruction.

Attendance Requirements
Students are expected to attend classes regularly and to comply with the attendance requirements specified by their instructors. For performance groups, these requirements include attendance at concerts and trips as well as rehearsals. Unexplained absences from three class periods are reported to the student’s associate dean by the instructor.

Convocations and Recitals
All degree students are required to register for Music Convocation (CONV 1990) for a minimum of six semesters. Transfer students normally do four semesters. Graduation is not permitted until this requirement is met. Deficiencies can be removed only during the academic year. If necessary, students may register for two convocations in one semester (CONV 1990 and 2990).

Each semester, students are given a list of convocations and recitals from which a minimum of seven must be attended to receive a passing grade. Events in which the student participates do not count toward this requirement. Monitors are present at each event to distribute and collect attendance slips.

Ensembles
All undergraduate students enrolled in applied music must participate in a university ensemble appropriate to and required by their degree program. Voice performance majors are not required to be in ensembles during the semester of their senior recital. Any student
who studies applied music beyond degree requirements must participate concurrently in a university ensemble. Double majors need be in only one ensemble at a time.

Course Load
The normal academic load for an undergraduate student in the College of Music is 15 to 17 semester hours. Schedules of fewer than 12 or more than 19 hours must have approval of the associate dean for undergraduate studies of the College of Music.

See limitations on registration under the Graduate School chapter of this catalog for graduate student course load stipulations.

Dropping a Course
Students should adhere to the deadlines for dropping a course in the registration handbook distributed each semester. After a certain date each semester, a special action form signed by the instructor and associate dean for undergraduate studies is required to drop a course.

Pass/Fail Option
The pass/fail option for 12 credits is open only to undergraduate students. Pass/fail hours are to be selected from non-music courses and are in addition to those that may be taken in honors and student teaching. Courses so elected are taken according to the pass/fail policies of the college or school concerned.

Pass/fail hours that transfer students can apply toward degree requirements from departments within the university are limited to 1 in every 8 semester hours earned in the College of Music.

Residence Requirement
Of the hours required for an undergraduate degree, the last 56 credits must be completed in residence in the College of Music. This may be reduced by the faculty for excellent work done in this university and for high scholarship exhibited at previous institutions attended. In no case shall the minimum be fewer than 40 hours distributed over three semesters. At least 9 hours in applied music (private instruction) must be earned in college for the degrees bachelor of music and bachelor of music education, and 6 hours for the bachelor of arts in music.

Student Work
A copy of all scholarly student papers that generate credit (dissertations, theses, projects, lecture recitals and other document-producing activities), whether undergraduate or graduate, is placed in the Music Library. More than one copy may be required in individual degree programs. To ensure that degree requirements have been met and the document is appropriate for placement in the Music Library, all faculty-approved documents must be presented to the appropriate associate dean’s office at least two weeks before the graduation date.

Students who cannot meet the proficiency requirements after two semesters of private study receive a grade of incomplete fail (IF) or incomplete withdrawal (IW) and cannot progress to the next level until the proficiency is achieved. Advisors provide students with proficiency and repertoire requirements.

Any recital required for graduation is recorded. Arrangements are to be made through the College of Music Concerts Office, and a recording fee is charged. The original recording is placed in the Music Library.

Withdrawal
Students may withdraw from the College of Music through the sixth week of the semester by obtaining the signature of the Associate Dean of Undergraduate Studies on a withdrawal form available from the Office of the Registrar. For more information, please refer to the general information/registration section of this catalog.

UNDERGRADUATE DEGREE PROGRAMS

The bachelor of arts in music degree has as its goal a broad education in music within a liberal arts context. Although students may elect within their programs courses that permit them to pursue special interests, and even some graduate study, the primary emphasis is on the development of basic musicianship, an ability to perform music, and a broad knowledge of the foundations and principles of music as an art.

The strength of the bachelor of arts in music resides in the three options that are available within this degree.

1. Students may take courses as listed below, selecting a range of electives outside of music from many different areas, thus achieving a nonprofessional degree in music within the context of a liberal arts education.

2. Students may use the 32 non-music electives to take a second major in another college (students have been successful using this plan to complete the B.A. in music with additional majors in broadcasting, business, dance, musical theatre, elementary teacher education, and other fields).

3. Students may use the 32 non-music electives plus additional course work to fulfill requirements in a second degree program (students have used this option to receive a second undergraduate degree, for example, in engineering, business, or journalism).

For options 2 and 3 above, students are reminded that the second major and second degree can only be completed with the advise ment and approval of the second major or degree-granting department, school, or college. Some of these double majors, and most of the double degrees, may require more than four years to complete.
A minimum of 124 semester hours with an overall grade point average of 2.00 must be earned for the B.A. in music degree. Of these hours, at least 72 must be in non-music courses. Thirty must be at the 3000 or 4000 level. A minimum of 40 hours or a maximum of 54 hours is required in music courses.

The normal pattern for private applied instruction in this degree is one half-hour lesson per week for 2 semester hours of credit or one one-hour lesson for 3 semester hours credit, although some of this study may take place in class instruction. The minimum proficiency is equal to the bachelor of music education sophomore level. Not more than 16 semester hours of credit in private instruction may be used toward the degree.

Students registered for applied music must participate in an ensemble as recommended by their applied faculty. A maximum of 4 credit hours in ensemble can apply to the B.A. in music degree.

A recital may be given with permission of the chair of the faculty concerned and the student’s advisor.

Honors students in theory and musicology may elect to write a senior thesis in accord with their goals and interests. Topics are selected and prepared in a junior research seminar. The approved thesis is due in the Office of the Associate Dean of Undergraduate Studies two weeks before the end of the semester of graduation. See Guidelines for the Preparation of Formal Undergraduate Theses (available in the associate dean’s office) for complete procedures relating to the thesis. Other students take the junior research seminar and elect a 4000-level musicology or theory class to substitute for the thesis.

Students may choose to complete requirements from a wide selection of courses offered. If students wish to select courses forming a concentrated area of interest, this determination must be made in consultation with the major advisor by the beginning of the sophomore year. Possible areas of interest are listed following the degree requirements.

Minimum Requirements

In addition to the general requirements listed above, the following specific requirements must be met:

1. One semester of English composition.
2. Basic proficiency in one foreign language equal to three semesters at the university level. This requirement also may be fulfilled by three years of study in high school in one language or by passing a university proficiency examination.
3. Non-music electives to fulfill the minimum requirement of 72 semester hours of credit. Of the non-music electives, 34 semester hours of credit must be fulfilled through the College of Arts and Sciences’ core curriculum (see the Arts and Sciences chapter of this catalog.)

Courses and Curricula

For the B.A. in music degree, students must complete the courses listed below. More detail is given in the degree sheet available from the Associate Dean of Undergraduate Studies.

Semester Hours

Freshman Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONV 1990 Convocation (two semesters)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Applied instruction (lessons and literature class)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Music theory, 4000 level</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Non-music electives</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONV 1990 Convocation (two semesters)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MUSC 3802, 3812 History of Music</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Music theory, 4000 level</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Non-music electives</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSC 2101, 2111 Theory 3 and 4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MUSC 2121, 2131 Aural Skills 3 and 4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MUSC 2987 Intro, to Music Research</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Non-music electives</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Bachelor of Music

The four-year professional curriculum leading to the bachelor of music degree emphasizes creative skill, academic achievement, and artistic performance in music. Concentration areas are offered in church music, composition, musicology, performance, and voice theatre. Performance areas include brass, guitar, organ, percussion, piano, string instruments, voice, and woodwinds.

A half recital in the junior year and a full public recital in the senior year are required of students in the performance concentration areas, except church music and voice theatre. Students should check with their advisor about preview policies.

A thesis is required of students in the composition area and in the history and literature area. For composition students, the thesis should be an original composition; for history and literature students, a major paper. Students should check with their advisor for details.

A thesis is required of church music students and may consist of several minor research projects, choral arrangements, composition projects, or the preparation and production of a short cantata. A senior project is required of students in the voice theatre area. This project may be a senior recital, major role, or direction or design of a major show.

Specific performance group requirements are controlled by the degree plan in each concentration area and are subject to the advisor’s judgment in the best interest of the student.

The bachelor of music degrees include requirements in theory, history, and literature of music. Elective study in most degrees requires 30 non-music credits, including 3 in English composition, and 12 free electives that may be music or non-music courses. A suggested course sequence is shown below. (More detail is given on the degree sheets available from the Associate Dean for Undergraduate Studies.)

English Composition

Students pursuing the bachelor of music degree will be required to take one 3-hour course in English composition through the English department or the University Writing Program. Courses such as Freshman Writing Seminar, Introduction to Creative Writing, or Introduction to Expository Writing fulfill the requirement. Scoring three or higher on the AP English test in high school or passing the arts and sciences placement test also fulfills this requirement. The credit hours are applied in the liberal arts electives category. Students are strongly encouraged to complete this requirement by the end of their sophomore year.

Courses and Curricula

A minimum of 244 credit points, with a C overall grade point average and 122 semester hours, must be earned for the bachelor of music degree. Most concentration areas require more than 122 hours.

Church Music Concentration Area

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONV 1990 Convocation (two semesters)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PMUS 1616 Applied Organ Instruction (lessons and literature classes)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Performance minor</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ensemble</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MUSC 1101, 1111 Theory 1 and 2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MUSC 1121, 1131 Aural Skills 1 and 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MUSC 1802 Introduction to Music</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Non-music electives</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONV 1990 Convocation (two semesters)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PMUS 2616 Applied Organ Instruction (lessons and literature classes)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Ensemble</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Composition Concentration Area

Freshman Year
CONV 1990 Convocation (two semesters)0
PMUS 4616 Applied Organ Instruction
(lessons and literature classes)8
Ensemble ...2
MUSC 3176, 3186 Conducting 1 and 24
Electives ...15

Junior Year
CONV 1990 Convocation (two semesters)0
PMUS 4616 Applied Organ Instruction
(lessons and literature classes)7
Ensemble ...2
MUSC 4245, 4255 Church Music6
MUSC 4977 Senior Thesis ...2
MUSC 4977 Senior Recital ..1
Electives ..12

Guitar Performance Concentration Area

Semester Hours

Freshman Year
CONV 1990 Convocation (two semesters)0
PMUS 1566 Applied guitar instruction
(lessons and literature classes)8
MUSC 4061, 4071 Analysis 1 and 24
Non-western musicology, 2000/4000 level..................3
MUSC 4957 Senior Thesis ...0
Electives ..11

Sophomore Year
CONV 1990 Convocation (two semesters)0
PMUS 2566 Applied guitar instruction
(lessons and literature classes)8
Ensemble ...2
MUSC 2101, 2111 Theory 3 and 44
MUSC 2121, 2131 Aural Skills 3 and 42
Electives ..16

Senior Year
CONV 1990 Convocation (two semesters)0
PMUS 4566 Applied guitar instruction
(lessons and literature classes)7
MUSC 4061 Analysis 1 ...2
MUSC 3802, 3812 History of Music6
MUSC 3176 Conducting 1 ...2
MUSC 3997 Junior Recital ..1
Electives ..11

Organ Performance Concentration Area

Semester Hours

Freshman Year
CONV 1990 Convocation (two semesters)0
PMUS 1616 Applied organ instruction
(lessons and literature classes)8
Performance minor ..2
Electives ..8

Sophomore Year
CONV 1990 Convocation (two semesters)0
PMUS 2616 Applied organ instruction
(lessons and literature classes)8
Performance minor ..2
Electives ..8

Junior Year
CONV 1990 Convocation (two semesters)0
PMUS 3616 Applied organ instruction
(lessons and literature classes)7
Performance minor ..2
Electives ..7

Musicology Concentration Area

In addition to the requirements applying to all bachelor of music curricula, a second year proficiency is required in one foreign language.

Semester Hours

Freshman Year
CONV 1990 Convocation (two semesters)0
Applied instruction (lessons and literature classes)4
Ensemble ...2
MUSC 1101, 1111 Theory 1 and 24
MUSC 1121, 1131 Aural Skills 1 and 22
MUSC 1326 Guitar Sight Reading1
MUSC 1802 Introduction to Music3
MUSC 2365 Introduction to Accompanying2
English composition ..3
Electives ..11

Sophomore Year
CONV 1990 Convocation (two semesters)0
PMUS 1616 Applied organ instruction
(lessons and literature classes)8
Performance minor ..2
Electives ..8

Senior Year
PMUS 4566 Applied organ instruction
(lessons and literature classes)7
Non-western musicology, 2000/4000 level3
MUSC 4106 Guitar Literature2
MUSC 4977 Senior Recital ..1
Electives ..11

PMUS 4526 Composition (and Composition Seminar)6
MUSC 4011, 4021 16th/18th-Century Counterpoint4
MUSC 4061, 4071 Analysis 1 and 24
Non-western musicology, 2000/4000 level3
MUSC 4957 Senior Thesis ...0
Electives ..11

Sophomore Year
CONV 1990 Convocation (two semesters)0
Applied instruction (lessons and literature classes)4
Ensemble ...2
MUSC 2101, 2111 Theory 3 and 44
MUSC 2121, 2131 Aural Skills 3 and 42
MUSC 1802 Introduction to Music3
English composition ..6
Foreign language ...8
Electives ... 3

Junior Year
CONV 1990 Convocation (two semesters)0
PMUS 1105, 1205 Keyboard Musicianship
1 and 2 ..2
Elective ...0
MUSC 2101, 2111 Theory 3 and 44
MUSC 2121, 2131 Aural Skills 3 and 42
MUSC 3802, 3812 History of Music6
History of Western Civilization 1 and 26
Foreign language ...8
Non-western musicology, 2000/4000 level3
Piano Performance Concentration Area

Freshman Year
- CONV 1990 Convocation (two semesters) ...0
- PMUS 1636 Applied piano instruction (lessons and literature classes) ...8
- MUSC 1101, 1111 Theory 1 and 2 ...4
- MUSC 1121, 1131 Aural Skills 1 and 2 ...2
- MUSC 1325 Sight Reading for Piano ...1
- MUSC 2365 Introduction to Accompanying ...2
- MUSC 1802 Introduction to Music ...3
- English composition ...3
- Electives ...9

Sophomore Year
- CONV 1990 Convocation (two semesters) ...0
- PMUS 2636 Applied piano instruction (lessons and literature classes) ...8
- MUSC 2101, 2111 Theory 3 and 4 ...4
- MUSC 2121, 2131 Aural Skills 3 and 4 ...2
- MUSC 2325 Applied Harmony for the Keyboard ...2
- Chamber music ...2
- Electives ...15

Junior Year
- CONV 1990 Convocation (two semesters) ...0
- PMUS 3636 Applied piano instruction (lessons and literature classes) ...7
- Band, orchestra, or choir ...2
- MUSC 3176 Conducting ...2
- MUSC 3345, 3355 Piano Pedagogy ...2
- MUSC 3802, 3812 History of Music ...6
- Performance minor ...4
- MUSC 3997 Junior Recital ...1
- MUSC 4061 Analysis 1 ...2
- Theory elective ...2
- Electives ...3

Senior Year
- PMUS 4646 Applied piano instruction (lessons and literature classes) ...6
- MUSC 4997 Senior Recital ...1
- Performance minor ...2
- MUSC 4031 Scoring and Arranging ...2
- EMUS 3642 History of Jazz ...3
- MUSC 3253 Jazz Techniques ...2
- EMUS 1427 Jazz Ensemble ...2
- EMUS 1437 Jazz Combo ...2
- Electives ...12

Saxophone Performance with Secondary Emphasis in Jazz Concentration Area

Freshman Year
- CONV 1990 Convocation (two semesters) ...0
- PMUS 1646 Applied saxophone instruction (lessons and literature classes) ...6
- MUSC 1101, 1111 Theory 1 and 2 ...2
- MUSC 1121, 1131 Aural Skills 1 and 2 ...2
- MUSC 1802 Introduction to Music History ...3
- English composition ...3
- Band (Wind Sym., Symphonic, Concert) ...2
- Electives ...6

Sophomore Year
- CONV 1990 Convocation (two semesters) ...0
- PMUS 2646 Applied saxophone instruction (lessons and literature classes) ...6
- MUSC 2101, 2111 Theory 3 and 4 ...4
- MUSC 2121, 2131 Aural Skills 3 and 4 ...2
- EMUS 1407 Chamber Music (Woodwind) ...2
- Performance minor ...2
- PMUS 1806 Jazz Piano ...1
- Band (Wind Sym., Symphonic, Concert) ...2
- Electives ...12

Junior Year
- PMUS 4646 Applied saxophone instruction (lessons and literature classes) ...6
- MUSC 3997 Senior Recital ...1
- Performance minor ...2
- PMUS 3327 Orchestra ...2
- MUSC 4997 Senior Recital ...1
- Electives ...9

Senior Year
- PMUS XXXX Applied string instruction (lessons and literature classes) ...7
- Chamber music ...2
- EMUS 3327 Orchestra ...2
- MUSC 4997 Senior Recital ...1
- Theory or musicology elective ...2
- Electives ...10
- Non-western musicology, 2000/4000 level ...3

Voice Performance Concentration Area

One year of study at the university level of each of two languages is required of vocal performance majors.

Freshman Year
- CONV 1990 Convocation (two semesters) ...0
- PMUS 1105, 1205 Keyboard Musicanship 1 and 2 ...2
- PMUS 1726 Applied voice instruction (lessons and literature classes) ...8
- Ensemble ...2
- MUSC 1101, 1111 Theory 1 and 2 ...2
- MUSC 1121, 1131 Aural Skills 1 and 2 ...2
- MUSC 1444 Italian/English Diction and Repertoire ...2
- MUSC 1802 Introduction to Music ...3
- English composition ...3
- Electives ...8

Sophomore Year
- CONV 1990 Convocation (two semesters) ...0
- PMUS 2105, 2205 Keyboard Musicanship 3 and 4 ...2
- PMUS 2726 Applied voice instruction (lessons and literature classes) ...8
- Ensemble ...2
- MUSC 2101, 2111 Theory 3 and 4 ...4
- MUSC 2121, 2131 Aural Skills 3 and 4 ...2
- Electives (including foreign language) ...16

Junior Year
- CONV 1990 Convocation (two semesters) ...0
- PMUS 3726 Applied voice instruction (lessons and literature classes) ...7
- Ensemble ...2
- MUSC 3176 Conducting ...2
- MUSC 3193 Pedagogy for Young Voices ...2
- MUSC 3176 Conducting ...2
- MUSC 3273 String Pedagogy ...2
- Electives ...9
Voice Performance with Elective Studies in Music Theatre

Semester Hours

- **Freshman Year**
 - CONV 1990 Convocation (two semesters) \(\ldots \) 0
 - PMUS 1105, 1205 Keyboard Musicianship 1 and 2 \(\ldots \) 2
 - PMUS 1726 Applied Voice Instruction (lessons and literature classes) \(\ldots \) 6
 - Choir \(\ldots \) 2
 - MUSC 1101, 1111 Theory 1 and 2 \(\ldots \) 4
 - MUSC 1121, 1131 Aural Skills 1 and 2 \(\ldots \) 2
 - MUSC 1144 Italian/English Diction and Repertoire \(\ldots \) 2
 - MUSC 1802 Introduction to Music \(\ldots \) 3
 - English composition \(\ldots \) 3
 - Theatre/dance elective (to include ballet) \(\ldots \) 1
 - Electives \(\ldots \) 6

- **Sophomore Year**
 - CONV 1990 Convocation (two semesters) \(\ldots \) 0
 - PMUS 2105, 2205 Keyboard Musicianship 3 and 4 \(\ldots \) 2
 - PMUS 2726 Applied Voice Instruction (lessons and literature classes) \(\ldots \) 6
 - Choir \(\ldots \) 2
 - MUSC 2101, 2111 Theory 3 and 4 \(\ldots \) 4
 - MUSC 2121, 2131 Aural Skills 3 and 4 \(\ldots \) 2
 - THTR 2013 Performance of Literature \(\ldots \) 3
 - Beginning ballet \(\ldots \) 1
 - Electives \(\ldots \) 12

- **Junior Year**
 - CONV 1990 Convocation (two semesters) \(\ldots \) 0
 - PMUS 3167 Stagecraft \(\ldots \) 3
 - PMUS 3726 Applied Voice Instruction (lessons and literature classes) \(\ldots \) 6
 - MUSC 4138 Opera Theatre \(\ldots \) 4
 - MUSC 4167 Theatre Lab \(\ldots \) 1
 - MUSC 3176 Conducting \(\ldots \) 2
 - MUSC 3802, 3812 History of Music \(\ldots \) 6
 - THTR 2003 Acting: Beginning \(\ldots \) 3
 - THTR 2023 Acting: Intermediate \(\ldots \) 3
 - Electives \(\ldots \) 5
 - Theory elective \(\ldots \) 2

- **Senior Year**
 - PMUS 4148 Opera Theatre \(\ldots \) 1
 - PMUS 4167 Theatre Lab \(\ldots \) 2
 - PMUS 4726 Applied Voice Instruction (lessons and literature classes) \(\ldots \) 6
 - MUSC 4997 Senior Project (or major role, or design or direction of a major production) \(\ldots \) 0
 - THTR 2095 History of Fashion 2 \(\ldots \) 3
 - Elective in theatre and dance \(\ldots \) 1
 - Free electives \(\ldots \) 12
 - Non-western musicology \(\ldots \) 3

Woodwind, Brass, and Percussion Instruments Performance Concentration Area

Semester Hours

- **Freshman Year**
 - CONV 1990 Convocation (two semesters) \(\ldots \) 0
 - PMUS XXXX Applied wind/percussion instruction (lessons and literature classes) \(\ldots \) 8
 - PMUS 1105, 1205 Keyboard Musicianship 1 and 2 \(\ldots \) 2
 - MUSC 1101, 1111 Theory 1 and 2 \(\ldots \) 4
 - MUSC 1121, 1131 Aural Skills 1 and 2 \(\ldots \) 2
 - Free electives \(\ldots \) 12
 - Non-western musicology \(\ldots \) 3

- **Sophomore Year**
 - CONV 1990 Convocation (two semesters) \(\ldots \) 0
 - PMUS XXXX Applied wind/percussion instruction (lessons and literature classes) \(\ldots \) 8
 - Music electives \(\ldots \) 4
 - Chamber music \(\ldots \) 2
 - Ensemble \(\ldots \) 2
 - MUSC 2101, 2111 Theory 3 and 4 \(\ldots \) 4
 - MUSC 2121, 2131 Aural Skills 3 and 4 \(\ldots \) 2
 - Electives \(\ldots \) 12

- **Junior Year**
 - PMUS XXXX Applied wind/percussion instruction (lessons and literature classes) \(\ldots \) 7
 - Non-western musicology, 2000/4000 level \(\ldots \) 3
 - MUSC 4997 Senior Recital \(\ldots \) 1
 - MUSC 2071 Instrumentation \(\ldots \) 2
 - Electives \(\ldots \) 9

- **Senior Year**
 - PMUS XXXX Applied wind/percussion instruction (lessons and literature classes) \(\ldots \) 7
 - Non-western musicology, 2000/4000 level \(\ldots \) 3
 - MUSC 4997 Senior Recital \(\ldots \) 1
 - MUSC 2071 Instrumentation \(\ldots \) 2
 - Electives \(\ldots \) 12

Bachelor of Music Education

The program leading to the bachelor of music education degree is designed to provide superor preparation for the teaching of music in primary and secondary schools. The various demands made upon music teachers and the opportunities open to them have been carefully considered in formulating the courses of study.

Although most students may ultimately specialize in either general music, choir, band, or orchestral work, some may be called upon in their first professional position to teach in two or three of these fields. Even the music educator who teaches in only one of these areas must have a sufficiently broad knowledge of the entire music program to be able to understand the role of music in contemporary American education and to interpret the music program to colleagues and community members. The courses of study are designed to provide a suitable balance between specialization and generalization.

Courses and Curricula

Three basic curricula are provided for the candidate pursuing the bachelor of music education degree: choral, general music, and instrumental emphases. Within each basic curriculum, options are provided so that students may vary their programs in accordance with their needs and interests.
A minimum of 128 semester hours with an overall grade point average of 2.75 must be earned for the B.Mus.Ed. degree, with no grade below C- in a course. Forty semester hours in the liberal arts are required.

Liberal Arts Requirements

All students entering the music education program, whether freshmen, transfers, or those holding a degree, shall take the general education core curriculum designated by the College of Music curriculum committee for the bachelor of music education degree. Students should check with their advisor each semester before final selection of courses.

Admission to the Teacher Education Program

Teacher education is a campuswide function at the University of Colorado. Admission to the music education program in the College of Music does not constitute admission to the teacher education program. Students must apply to the School of Education through the chair of the music education faculty for admission to this program no later than the second semester of their junior year. Students may not register for certain education courses and student teaching until they are admitted to the teacher education program.

Requirements for recommended admission to the teacher education program are:

1. Minimum grade point average of 3.00 in music and music education, and a minimum overall grade point average of 2.75.
2. Minimum grade of C- in MUSC 2103.
3. Twenty-five hours of documented, supervised field experience.
4. Satisfactory functional piano ability as demonstrated by passing the proficiency examination or completing prescribed course work.
5. Satisfactory performance ability as demonstrated by meeting the sophomore proficiency requirements in an applied area of study.
6. Satisfactory scores on the PLACE Basic Skills Test.
7. Recommendation by the music education faculty.

An interview with each student is held by the members of the music education faculty during the first semester of the sophomore year to review the student’s progress and qualifications for admission to the teacher education program.

Student Teaching

Students wishing to receive a student teaching assignment must complete an application and submit it to the School of Education through the chair of the music education faculty early in the semester preceding the student teaching semester. Prerequisites for student teaching are:

1. Admission to the teacher education program.
2. A minimum GPA of 2.75.
3. Completion of all required music education and education courses in a music education curriculum.
4. Satisfactory performance ability as demonstrated by meeting the junior proficiency requirements in a private applied area of study.
5. Recommendation by the music education faculty.

Choral Music Emphasis

Students must take keyboard or voice as the primary applied area. Five of the seven semesters of required ensemble registration must be in a concert ensemble (University Singers, University Choir, Collegiate Chorale, or Women’s Chorus).

Freshman Year

CONV 1990 Convocation (two semesters) ...0
PMUS XXXX Applied instruction (lessons and literature classes)6
Piano/voice class ...2
Ensemble ..2
MUSC 1101, 1111 Theory 1 and 24
MUSC 1121, 1131 Aural Skills 1 and 22
MUSC 1802 Introduction to Music3
English composition ...3
Electives in liberal arts ..12

Sophomore Year

CONV 1990 Convocation (two semesters) ...0
PMUS XXXX Applied instruction (lessons and literature classes)6
Piano/voice class ...2
Ensemble ..2
MUSC 2101, 2111 Theory 3 and 44
MUSC 2103 Introduction to Music Education (fall)3
MUSC 2121, 2131 Aural Skills 3 and 42
MUSC 3023 Woodwind Class or MUSC 3033 Brass Class (spring)1
MUSC 3113 Introduction to the Arts (spring)3
MUSC 3193 Vocal Pedagogy and Literature for Young Voices (spring)2
EDUC 3013 Proseminar I (spring)4
Electives in liberal arts (fall) ...6

Junior Year

CONV 1990 Convocation (two semesters) ...0
PMUS XXXX Applied instruction (lessons and literature classes)5
Ensemble ..2
Theory elective - 4000 level (fall)2
MUSC 3033 String Class (fall) ..1
MUSC 3123 Teaching Choral Music (fall)3
MUSC 3133 Teaching General Music 1 (fall)2
MUSC 3176, 3186 Conducting 1 and 24
MUSC 3802, 3812 History of Music6
MUSC 3997 Junior Recital ...1
MUSC 4203 Music Methods Practicum (fall)2
MUSC 4113 Teaching General Music 2 (spring)3
Choral music elective (spring) ...2
EDUC 3023 Proseminar 2 (spring)4

Senior Year

PMUS XXXX Applied instruction (lessons and literature classes)3
Ensemble (fall) ..1
Non-western musicology, 2000/4000 level (fall)3
General music elective (fall) ...2
MUSC 4103 Introduction to Student Teaching1
MUSC 4153 Percussion Class (fall)1
MUSC 4193 Student Teaching Seminar (spring)1
EDUC 4112 Educational Psychology (fall)3
EDUC 4732 Student Teaching (spring)8

General Music Emphasis

Students must take keyboard or voice as the primary applied area. Five of the seven semesters of required enrollment must be in a concert ensemble (University Singers, University Choir, Collegiate Chorale, or Women’s Chorus).

Freshman Year

CONV 1990 Convocation (two semesters) ...0
PMUS XXXX Applied instruction (lessons and literature classes)6
Piano/voice class ...2
Ensemble ..2
MUSC 1101, 1111 Theory 1 and 24
MUSC 1121, 1131 Aural Skills 1 and 22
MUSC 1802 Introduction to Music3
English composition ...3
Electives in liberal arts ..12

Sophomore Year

CONV 1990 Convocation (two semesters) ...0
PMUS XXXX Applied instruction (lessons and literature classes)6
Piano/voice class ...2
Ensemble ..2
MUSC 2101, 2111 Theory 3 and 44
MUSC 2121, 2131 Aural Skills 3 and 42
MUSC 3023 Woodwind Class or MUSC 3033 Brass Class (fall)1
MUSC 3113 Introduction to the Arts (spring)3
MUSC 3193 Vocal Pedagogy and Literature for Young Voices (spring)2
EDUC 3013 Proseminar I (spring)4
Electives in liberal arts (fall) ...6

Junior Year

CONV 1990 Convocation (two semesters) ...0
PMUS XXXX Applied instruction (lessons and literature classes)5
Ensemble ..2
Theory elective at 4000 level (fall)2
MUSC 3113 Introduction to the Arts (spring)3
MUSC 3133 Teaching General Music 1 (fall)2
MUSC 3176, 3186 Conducting 1 and 24
MUSC 3802, 3812 History of Music6
MUSC 3997 Junior Recital ...1
MUSC 4203 Music Methods Practicum (fall)2
MUSC 4113 Teaching General Music 2 (spring)3
Choral music elective (spring) ...2
EDUC 3023 Proseminar 2 (spring)4
MUSC 3802, 3812 History of Music...........6
MUSC 3997 Junior Recital..........................1
MUSC 4113 Teaching General Music 2
(spring)...3
MUSC 4153 Percussion Class (fall).............1
MUSC 4203 Music Methods Practicum (fall)...1
EDUC 3023 Proseminar 2 (fall)..................4

Senior Year
PMUS XXXX Applied instruction
(lessons and literature classes)...............3
Ensemble (fall)..1
Non-western musicology, 2000/4000 level (fall)..................4
General music elective (fall).....................2
MUSC 3123 Teaching Choral Music
(fall)..2
MUSC 4103 Introduction to Student Teaching ..1
MUSC 4193 Student Teaching Seminar
(spring)...1
EDUC 4112 Educational Psychology (fall).....3
EDUC 4732 Student Teaching (spring)..........8

Instrumental Music Emphasis
For string players, five of the seven semesters
of required ensemble registration must be in
a concert ensemble (Symphony Orchestra,
Chamber Orchestra, Wind Ensemble, Sym-
phonic Band, or Concert Band). For wood-
wind, brass, and percussion players, five
semesters must be in a concert ensemble,
and one semester must be in marching band.

Semester Hours

Freshman Year
CONV 1990 Convocation (two semesters).....0
PMUS XXXX Applied instruction
(lessons and literature classes)...............6
Keyboard musicianship................................2
Ensemble ..2
MUSC 1101, 1111 Theory 1 and 24
MUSC 1121, 1131 Aural Skills 1 and 2.........2
MUSC 1802 Introduction to Music3
English composition3
E lectives in liberal arts............................12

Sophomore Year
CONV 1990 Convocation (two semesters).....0
PMUS XXXX Applied instruction
(lessons and literature classes)...............6
Ensemble ..2
MUSC 2101, 2111 Theory 3 and 44
MUSC 2121, 2131 Aural Skills 3 and 4.........2
MUSC 2103 Introduction to Music Education
(fall)..3
MUSC 3113 Introduction to the Arts
(spring)..3
MUSC 3153 Teaching Woodwind
Instruments (spring)................................3
MUSC 3133 Teaching General Music 1 (fall)....2
MUSC 3253 Jazz Techniques for the Music
Educator or MUSC 3273 String Pedagogy
and Literature (spring).........................2
EDUC 3013 Proseminar 1 (spring)..............4
E lectives in liberal arts (fall)...................6

Junior Year
CONV 1990 Convocation (two semesters).....0
PMUS XXXX Applied instruction
(lessons and literature classes)...............5
EMUS 1184 Voice Class................................1
Ensemble ..2
MUSC 3163 Teaching String Instruments
(fall)..2
MUSC 3176, 3186 Conducting 1 and 2...........4
MUSC 3193 Vocal Pedagogy and Literature
for Young Voices (spring).......................2
MUSC 3223 Teaching Brass Instruments
(spring)..2
MUSC 3363 Marching Band Techniques
(fall)..2
MUSC 3812 History of Music (spring).........3
MUSC 3997 Junior Recital............................1
MUSC 4203 Music Methods Practicum
(spring)..1
MUSC 4443 Teaching Instrumental Music
(spring)..3
EDUC 3023 Proseminar 2 (fall)..................4

Senior Year
PMUS XXXX Applied instruction
(lessons and literature classes)...............3
Ensemble (fall)..1
Theory elective at 4000 level (fall).............2
Non-western musicology, 2000/4000 level (fall)..................3
MUSC 4103 Introduction to Student Teaching ..1
MUSC 4153 Percussion Class (fall).............1
MUSC 4193 Student Teaching Seminar
(spring)..1
EDUC 4112 Educational Psychology (fall).....3
EDUC 4732 Student Teaching (spring)..........8

UNDERGRADUATE CERTIFICATE PROGRAMS

Certificate in Jazz Studies
The certificate in jazz studies is designed to
allow a select number of students to study
 jazz more in depth and at a higher level than
 music degrees currently require. The cur-
riculum is in addition to requirements of
each degree plan and consists of a minimum
of 18 credit hours, including topics such as
 jazz theory, aural foundations to jazz impro-
visation, jazz improvisation, history of jazz,
scoring and arranging, jazz keyboard, elec-
tronic music, jazz combo, and jazz ensemble.
Enterance into the program is by
audition in the sophomore year.

Certificate in Music Technology
The certificate in music technology provides a
limited number of students with an opportu-
nity to study music technology in greater
depth than music degrees currently allow.
Each participating student must elect the cer-
fificate’s curriculum in addition to the normal
requirements of their degree program.
The certificate is available to students in the
College of Music only. The curriculum consists
of 18 credit hours, and includes such topics as
an introduction to music technology, com-
puter programming for musicians, music and
media, sound synthesis, and electronic music
ensemble. Entrance into the program is by
audition in the sophomore year.

GRADUATE DEGREE PROGRAMS

All graduate degrees in music are granted by
the Graduate School of the University of Col-
orado upon the recommendation of the facul-
yty of the College of Music and approval by
the administrative officers of the Graduate
School. The information supplied here is sup-
plemental to and must be read in conjunc-
tion with the information contained in the Gradu-
ate School chapter of this catalog. Information
applicable to master of music and master of
music education degrees is discussed under the
heading Master of Arts and Master of Science
in the Graduate School chapter; information
pertaining to doctor of philosophy in music
and doctor of musical arts degrees is discussed
under the heading Doctor of Philosophy.
Other information regarding rules applying to
graduate degree students in music may be
found in supplements to the catalog and in the
Graduate Studies in Music Handbook, both
available in the office of the College of Music’s
Associate Dean for Graduate Studies.

Admission Requirements

Admission requirements for specific degree
programs that supplement the Graduate
School requirements are discussed in the
degree program descriptions that follow.
Students are urged to take the general (verbal,
quantitative, analytical) and subject (music)
portions of the Graduate Record Examination
(GRE). GRE scores are required as part of the
application to the Ph.D. in music program
and the M.Mus. in music literature program,
and are recommended for the D.Mus.A.

Preliminary Examinations

Just before the beginning of their first
semester of work toward a master’s or doc-
toral degree, students are given placement
exams covering the major field, several areas
of music theory, and music history. Specific
requirements vary with the student’s degree
and program. Students pursuing the mas-
ter’s and doctoral degrees in voice also must
pass preliminary requirements in both piano
proficiency and diction in four languages
(English, French, German, and Italian).
Any deficiencies demonstrated by the
placement examination scores must be
removed early in the degree program. Applic-
atation for candidacy and required examina-
tions cannot be approved until deficiencies
are removed. Thesis and dissertation pro-
jects may not be completed while prelimi-
nary examination deficiencies remain.
Results from the major-field examination serve as one basis for recommending specific course work in the program. The major-field examination in composition covers music literature and compositional methods; in history and literature, essay questions cover score analysis and identification of terms. The music-education examination covers general knowledge of philosophy and history of music education, organization and supervision of music teaching, and methods and materials for the individual areas of vocal, string, and instrumental music. Conducting majors should be knowledgeable in areas of repertoire, score analysis, and conducting techniques; and for performance majors, technique, repertoire, stylistically informed performance, and pedagogy are covered.

College Teaching Area

For graduate students in music who intend to teach at the college level and who have had no prior college teaching experience, a teaching module of at least 6 hours of courses is recommended. This module can consist of professional education courses, music education courses, teaching-skills courses, or teaching practica. The teaching-area module is not normally used toward the minimum 30-hour course requirement for master’s or D.Mus.A. programs. Workshops, videotaping of students’ teaching, observation, and consultation services are available through the Graduate Teacher Program. Students who participate in this program are eligible to receive a graduate teacher training certificate.

Financial Aid

In addition to the opportunities for financial aid described in the Graduate School chapter, the College of Music grants graduate assistantships and part-time instructorships to approximately 59 students each year. The assistantships and instructorships, which are considered one-quarter time, include both a stipend and the waiver of 6 credit hours of tuition each semester. Applications for these positions must be filed with the Office of the Associate Dean for Graduate Studies by March 1 of the preceding academic year. There are also scholarships offered by the individual faculties and grants-in-aid given for various college-related responsibilities. (See Scholarships and Awards in this chapter.)

Master of Music

The major fields for this degree are composition, conducting, literature of music, performance, and the double major of performance and pedagogy. Conducting students may concentrate in choral, orchestral, or wind symphony/band areas. Performance and performance/pedagogy majors may concentrate in jazz, piano, organ, harpsichord, string instruments (including guitar), harp, voice, or woodwind/brass/percussion instruments.

Major work in the conducting degrees includes advanced conducting, analytical studies, score reading, orchestration, arranging, performance-related writing, and conducting practica. In music literature, courses in musicology and two thesis projects are required. In pedagogy, courses in the psychology of music and the pedagogy and literature of a specific performing area and a written thesis are required. In performance, students complete applied study, recitals, and courses that investigate the repertoire of their performance areas. All master’s students are required to take a course in bibliographic research and a block of credits outside their major area.

Conducting, percussion, string, voice, and woodwind/brass/percussion majors are required to participate in a music ensemble. Faculty chairs advise students concerning the appropriate choice of ensemble.

Prerequisites

As noted in the Graduate School chapter, students are expected to present undergraduate preparation equivalent to that expected for the bachelor’s degree at this university. Normally this is a bachelor of music degree in the proposed area of concentration.

Before admission, composition majors should submit both scores and tapes of their original work and a list of completed compositions; music-literature majors must submit GRE scores (the general test and one subject test in music) and examples of their research papers; performance majors must submit a repertoire list and arrange for an audition or submit a non-returnable recording of their performance. Conducting majors must submit a videotape of their performance.

Program of Study

The master of music (M.Mus.) degree, which the Graduate School considers a plan II program, requires a minimum of 30–32 semester hours of graduate course work, including thesis projects. Most students find it necessary to exceed this minimum in order to meet the musical and academic standards demanded by the qualifying and comprehensive-final examinations. Outlines of specific programs may be secured from the Office of the Associate Dean for Graduate Studies in the College of Music.

Each student’s program is directed by a three-member advisory committee headed by the major advisor (generally the student’s major professor) or a designated substitute. A second member is chosen from the major area, and a third from outside the major area. (The four major areas are music education, musicology, music theory, and performance.) During the second month of the second semester of residence, the student should complete a tentative degree plan and obtain the approval of the advisor(s) and the associate dean for graduate studies.

Examinations

In addition to the preliminary examinations, master’s degree students in music must take qualifying (written) and comprehensive-final (oral) examinations. The procedures, guidelines for registration, and deadlines for taking these examinations, which must be observed, are published and posted, and are available in the Graduate Music Office. The qualifying (written) examination must be taken no later than the semester preceding that of the comprehensive-final (oral) examination.

Recital/Thesis Requirements

The recital/thesis requirement for the major in composition is: composition during the period of graduate study of several works of major proportion, at least one of which must receive public performance. For the major in conducting, the requirement is a public practicum and a performance-related or other scholarly document. For the major in music literature, it is two written projects that provide focus to the candidate’s work. For the major in performance, preparation and performance of two public recitals (in some areas, preparation from a repertoire list and chamber music/ accompanying may be required in conjunction with the recitals) generally meets the requirement. For the major in performance and pedagogy, a full-length recital and documentation of research in pedagogy meets the requirement.

Master of Music Education

The master of music education (M.Mus. Ed.) program addresses the professional development needs of music teachers in the field and prepares individuals for careers as supervisors or consultants in elementary and secondary schools. Master of music education students are challenged to develop a greater understanding and mastery of music teaching-learning processes, to improve personal musicianship, and to become committed leaders within the music education profession.

Prerequisites

Applicants are expected to provide evidence of undergraduate preparation equivalent to that required for the bachelor of music education degree at this university. Applicants also must possess a music teaching certificate/license or agree to work toward a Colorado music teaching license. GRE scores are not required for admission, but can be helpful in determining qualifications for graduate awards. Individuals who wish to pursue music performance or conducting as their minor field must meet at least senior-level standards of their particular medium.
Program of Study

Students earning the M.Mus.Ed. degree must complete a minimum of 30 hours of course work, including 12 hours in music education, 12 hours in music, and 6 hours of electives in a specialization area or other areas of interest.

The music education component of the degree includes three required courses: MUSC 6113 Foundations of Music Education, MUSC 6203 Psychology of Music Learning, and MUSC 5183 Research in Music Teaching. Elective courses include MUSC 6133 Comprehensive Musicianship through Performance, MUSC 6213 Measurement and Evaluation of Music Learning, and MUSC 6173 Directions of Contemporary Aesthetic Education.

The music component of the degree should assist students in developing their musical knowledge and skills to a more highly refined level. A two-hour course in bibliography and research is required. Students also must complete six hours of study in a minor area, which includes music history and literature, music theory, and performance (including conducting). One member of the graduate committee should be from the minor area, and it is assumed that at least some part of the student’s study is with that faculty member. All music studies, generally, must be at the 5000-level or above. Under special circumstances, up to 6 credit hours at the 4000-level may be approved.

The area of specialization is selected and structured by the student and his/her advisor based on the student’s interests and abilities. Students may choose to specialize in the traditional fields of general, choral, and instrumental music education, in other music areas, or in areas outside of music (e.g., related arts, education, psychology, sociology, computers, and technology). Any non-music courses applied to the M.Mus.Ed. degree must be taken at the 4000 level or above (must fall within the 6-credit-hour limit).

As a master of music education degree candidate, each student must produce a culminating paper that focuses on a topic of vital interest or importance. This paper may be developed as part of the requirements for a music education course or may take the form of a master’s thesis. Culminating papers or theses are defended during final oral examinations.

Students typically complete the degree in two academic years, one academic year plus two summers, or four summers. Degree work must be completed within four years of the semester in which the student is accepted into a degree program and begins studies. Because most master’s-level music education courses are offered in late afternoons, students who live within commuting distance can earn a significant portion of credit toward the degree while continuing to work full time.

Doctor of Musical Arts

The doctor of musical arts (D.Mus.A.) is a professional degree for creative and performing students who possess the talent as well as the breadth of knowledge, background, outlook, and scholarly capacity requisite to a doctoral program. Fields of study are composition, instrumental conducting and literature, literature and performance of choral music, performance, and performance/pedagogy. Performance and/or performance/pedagogy concentration areas are brass, guitar, harpsichord, organ, percussion, piano, string instruments, voice, and woodwinds. Outlines of specific programs may be obtained from the Office of the Associate Dean for Graduate Studies.

Prerequisites

Entrance requirements include a master’s degree in music or demonstrated equivalency comparable to that of the master of music degree at this university; submission of performance tapes or, for composers, original scores and tapes of compositions; a personal audition and interview, when possible; and evidence of writing proficiency (in English) and scholarly research, such as term papers or theses.

Program Requirements

The following program description supplements the requirements applying to all graduate students found in the Graduate School chapter and in the introductory section of Graduate Degree Programs in this College of Music chapter. Information on quality of work, credit by transfer, application for admission to candidacy, comprehensive examination, and final examination found under the Ph.D. description is applicable to the D.Mus.A. degree. D.Mus.A. degree work must be completed within six years of first registration.

Advisory Committee. Each D.Mus.A. program is directed by a five-member advisory committee headed by the major advisor, who is generally the student’s major professor. At least one member must hold the Ph.D. degree.

Residence Requirements. The minimum residence requirement shall be six semesters of scholarly work beyond the attainment of an acceptable bachelor’s degree. Two semesters of residence credit may be allowed for a master’s degree from another institution of approved standing, but at least four semesters of residence credit, two of which must be consecutive in one academic year, must be earned for course work and/or dissertation work taken at this university.

Not more than one-half semester of residence credit may be earned in a summer session. Students must be registered full time to earn residence credit. For employed students, only those with one-fourth time or less in work that does not contribute directly to their degree program may earn full residence credit.

Continuous Registration. After the residence requirements for the doctor of musical arts program have been satisfied, a student must enroll for fall and spring semesters of each year until attaining the degree. If a student has enrolled in all required dissertation courses but has still to complete the work, he or she should enroll in TMUS 8019 Precandidate for Doctor of Musical Arts Degree, or TMUS 8029 Candidate for Doctor of Musical Arts Degree, until the degree is completed.

Degree Plan. A degree plan should be presented to the associate dean for graduate studies no later than the third month of residence. The student’s major professor is responsible for helping the student formulate this plan. The plan should include proposed members of the student’s doctoral committee, projected remedial and supporting course work, suggested dissertation projects, and tentative dates for the comprehensive and final examinations.

Language Requirement. The one foreign language used to satisfy the D.Mus.A. language requirement must be approved by the student’s advisory committee. Additional language work is required for voice students. Acquisition of knowledge and skill in music technology may be approved as an alternative to the foreign language requirement. Appropriate courses and projects are prescribed by the college’s music technology faculty.

Course Requirements. Students must take a minimum of 30 hours of course work, of which at least 18 hours are dissertation projects. Two doctoral seminars, one each in musicology and music theory, are required; prerequisites include 3 hours of bibliography and 6 hours each of graduate-level musicology and music theory. Some areas require specific course work prior to or in conjunction with work on dissertation projects. In other instances students may be advised to take course work in preparation for the comprehensive examination. Applied music instruction may be elected for the duration of the residency requirement.

Dissertation. The D.Mus.A. dissertation consists of a specified number of performances, projects, and documents. The student’s permanent advisory committee assists the student in meeting degree requirements.
While dissertation outlines for the various major areas are listed below, individual instances may require the permanent advisory committee to exercise discretionary flexibility in tailoring dissertation requirements to the student’s artistic and educational advantage.

Normally, if preliminary examinations and GRE scores show satisfactory preparation for doctoral studies, the student is advised to begin work on the dissertation concurrently with preparation for the comprehensive examination.

Area Dissertation Requirements

Composition
- TMUS 8219 Dissertation Proj. 1 (composition)
- TMUS 8229 Dissertation Proj. 2 (composition)
- TMUS 8239 Dissertation Proj. 3 (computer music seminar; work results in a research document)
- TMUS 8249 Dissertation Proj. 4 (computer music project)
- TMUS 8259 Dissertation Proj. 5 (research-lecture)
- TMUS 8269 Dissertation Proj. 6 (research project)
- TMUS 8339 Major Composition

Instrumental Conducting and Literature
- TMUS 8219 Dissertation Proj. 1 (conducting practicum)
- TMUS 8229 Dissertation Proj. 2 (conducting practicum)
- TMUS 8249 Dissertation Proj. 4 (solution of problems in the crafts of arranging and editing)
- TMUS 8259 Dissertation Proj. 5 (lecture-demonstration)
- TMUS 8269 Dissertation Proj. 6 (lecture-demonstration)
- TMUS 8279 Performance Research Doc. 1
- TMUS 8289 Performance Research Doc. 2
- TMUS 8319 Repertoire Project

Literature and Performance of Choral Music
- TMUS 8219 Dissertation Proj. 1 (choral practicum)
- TMUS 8229 Dissertation Proj. 2 (choral practicum)
- TMUS 8239 Dissertation Proj. 3 (choral projects in arranging, editing, realizing basso continuo, transcribing mensural notation, conducting, and score reading)
- TMUS 8259 Dissertation Proj. 5 (research-lecture)
- TMUS 8279 Performance Research Doc. 1
- TMUS 8289 Performance Research Doc. 2
- TMUS 8329 Document

Performance: Organ, Piano, Strings
- TMUS 8219 Dissertation. Proj. 1 (solo recital)
- TMUS 8229 Dissertation. Proj. 2 (solo recital)
- TMUS 8239 Dissertation. Proj. 3 (chamber music recital)
- TMUS 8249 Dissertation. Proj. 4 (chamber music recital)
- TMUS 8259 Dissertation. Proj. 5 (research-lecture)
- TMUS 8269 Dissertation. Proj. 6 (research-lecture)
- TMUS 8279 Performance Research Doc. 1 (not required in piano)
- TMUS 8289 Performance Research Doc. 2 (not required in piano)
- TMUS 8299 Performance Research Doc. 3 (not required if TMUS 8239 is a research-lecture, and not required in piano)
- TMUS 8319 Repertoire Project
- TMUS 8329 Document/Pedagogy Project Performance and Pedagogy: Piano, Strings
- TMUS 8219 Dissertation Proj. 1 (recital)
- TMUS 8229 Dissertation Proj. 2 (recital)
- TMUS 8239 Dissertation Proj. 3 (recital; for winds can be recital or third research lecture)
- TMUS 8249 Dissertation Proj. 4 (pedagogy practicum) Woodwind majors should develop a topic from the woodwind pedagogy class (MUSC 5346) for this project.
- TMUS 8259 Dissertation Proj. 5 (research-lecture)
- TMUS 8279 Dissertation Doc. 1
- TMUS 8289 Dissertation Doc. 2
- TMUS 8299 Dissertation Doc. 3
- TMUS 8329 Major Document

Performance and Pedagogy: Voice
- TMUS 8219 Dissertation Proj. 1 (solo recital)
- TMUS 8229 Dissertation Proj. 2 (solo recital)
- TMUS 8239 Dissertation Proj. 3 (chamber music/solo recital)
- TMUS 8259 Dissertation Proj. 4 (performance document)
- TMUS 8269 Dissertation Proj. 5 (lecture-recital and document)
- TMUS 8329 Dissertation Proj. 6 (major pedagogical document)

Doctor of Philosophy
The doctor of philosophy (Ph.D.) in music degree is offered through the Graduate School for students who seek a terminal degree with emphasis on research. The two principal areas of study are music education and musicology.

Prerequisites
Students applying to the Ph.D. program should have a master’s degree or equivalent in a music field related to their intended area of study. Letters of recommendation, completed major papers, and satisfactory scores on the GRE (the general test and the subject test in music) should be part of the student’s application for the degree. Upon acceptance to the degree program, students must pass the preliminary examinations and begin working toward basic requirements. A student who is noticeably deficient in the use and spelling of the English language may not obtain an advanced degree from the University of Colorado. Satisfaction of this requirement depends not so much upon ability to pass formal tests, although these may be required, as upon the habitual use of good English in all oral and written work.

Residence Requirement
The minimum residence requirement for the Ph.D. is four semesters, including at least two consecutive semesters in one academic year.

Doctor of Philosophy/Musicology
For the musicology student, the doctor of philosophy in music degree is intended to emphasize research in music history, music literature, or some other aspect of music in culture. A minimum of 30 semester hours of course work at the 5000-level or above is required (although the minimum number is almost always exceeded). Courses taken below the 5000 level to remedy deficiencies may not count towards residence credit. The College of Music requires two foreign language proficiencies, usually in German and French, although another appropriate language may be substituted for the latter, if it is important to the student’s program of study. Normally the language requirement is met by a translation exercise individually scheduled with the chair of the musicology faculty.

Dissertation Requirements
A student must complete a total of at least 30 credit hours of dissertation credit (beyond course work), with not more than 10 of these hours in any one semester. The dissertation itself should be an original and worthwhile contribution to knowledge in the field of musicology. It is expected that the student work closely with a major professor who will serve as the first reader and critic before it is submitted to the other dissertation examination committee members.

Doctor of Philosophy/ Music Education
The doctor of philosophy degree in music, with music education as a field of specialization, is offered through the Graduate School for students who demonstrate superior commitment to the music education profession as well as scholarly promise. This degree program requires that individuals think abstractly, gen-
eralize knowledge, apply research results to areas of specialization, and communicate effectively in both oral and written forms. Course work emphasizes the study of historical, philosophical, psychological, and sociological foundations of music education; the theoretical and pedagogical principles of music teaching and learning; curriculum development; testing and assessment; and research techniques. Graduates typically pursue careers in music education at the college level or supervisory positions in elementary and secondary schools.

Course Work
A minimum of 45 semester hours of courses numbered 5000-level or above (15 of which may be transferred from the master’s degree upon approval of the music education faculty) and a minimum of 30 hours of doctoral dissertation credit are required for the Ph.D. degree.

Dissertation Requirements
A dissertation based on original investigation and demonstrating mature scholarship must be completed by each candidate. Following the successful completion of the comprehensive examination, the student designates a dissertation committee, develops a dissertation prospectus, and presents it to the committee for approval. After the dissertation has been accepted, a final oral examination on the dissertation and related topics is conducted by the student’s dissertation committee.

COURSE DESCRIPTIONS
The following courses are offered in the College of Music on the Boulder campus. This listing does not constitute a guarantee or contract that any particular course will be offered during a given year.

For current information on times, days, and instructors of courses, students should consult each semester’s Registration Handbook and Schedule of Courses.

Some courses may be open to nonmajors. Students should check for current policies.

Courses numbered in the 1000s and 2000s are intended for lower-division students and those in the 3000s and 4000s for upper-division students. Courses numbered in the 5000s are primarily for graduate students, but in some cases may be open to qualified undergraduates. Normally, courses at the 6000, 7000, and 8000 level are open to graduate students only.

Courses are organized by subject matter and are listed numerically by last digit (courses ending in the number “0” are listed before courses ending in “1,” and so on). The number after the course number indicates the semester hours of credit that can be earned in the course.

Abbreviations used in the course descriptions are as follows:

- Prereq.—Prerequisite
- Coreq.—Corequisite
- Lab.—Laboratory
- Rec.—Recitation
- Lect.—Lecture

Elective Music

EMUS 1081-3. Basic Music Theory. Introduces tools used in notation, performing, creating, and listening to music. For non-music majors only who have little or no previous schooling in the subject. Offered fall and spring.

EMUS 1115-1. Piano Class 1. Introduces the keyboard and music reading for non-music majors with no prior keyboard experience. Studies very easy classical and pop repertoire.

EMUS 1125-2. Piano Class 2. Continuation of EMUS 1115. Focuses on development of music reading. Studies technical patterns, easy classical and pop repertoire, and improvisation. For non-music majors who have had EMUS 1115, or instructor consent.

EMUS 1184-2. Voice Class. Involves basic vocal technique and easy solo repertoire taught through a group medium, for beginner and intermediate-level students.

EMUS 1832-3. Appreciation of Music. Provides a basic knowledge of music literature and development of discriminating listening habits. Offered fall and spring.

EMUS 2184-1. Voice Class. Continuation of EMUS 1184, with more advanced repertoire and vocal techniques. Prereq., EMUS 1184.

EMUS 2752-3. History of United States Folk and Popular Music. Offers a stylistic and historical examination of trends that have influenced present-day American music. Offered fall and spring.

EMUS 2762-3. Music and Drama. Explores techniques used in combining music and dramatic arts through examples from musical and dramatic literature of the West from circa 1000 to present. Offered fall only.

EMUS 2772-3. World Musics. Highlights music outside western art tradition, using current ethnomusicalical materials. Spring semester focuses on musical cultures of the Americas, Africa, and Europe; fall semester focuses on musical cultures of Asia and Oceania.

EMUS 2842-3. American Musical Theatre. Provides an overview of the role of musical theatre in U.S. culture, emphasizing the 20th-century Broadway musical.

EMUS 2852-3. Music of the Rock Era. Examines American popular music, concentrating on music after 1950. Considers precursor styles (e.g. blues and folk) and contributions to the new rock style; discusses the evolution of rock style from 1960 through the 1990s. Offered spring only.

EMUS 2862-3. American Film Musical, 1926-1954. Examines the development of filmed musicals from the beginning of sound movies through the “Golden Age of Musicals.” Emphasizes analysis and relationships of characters, songs, and incidental music. Recommended prereq., EMUS 1832. Approved for arts and sciences core curriculum: literature and the arts.

EMUS 3203-2. Music for the Classroom Teacher. Provides an overview of children’s musical growth. Considers development of strategies to integrate music across the curriculum. Emphasizes refining personal knowledge and skills in order to become an advocate for music in children’s lives.

EMUS 3642-3. History of Jazz. Studies origins, development, and current trends. Offered fall and spring.

EMUS 3822-3. Music Literature 1. Studies music literature from choral, orchestra, chamber music, and operatic repertoire. For non-music majors only. Offered fall only.

EMUS 3832-3. Music Literature 2. Continuation of MUSC 3822. Offered spring only.

EMUS 4012-3. African Music. Studies the musics, dances, and cultures of various peoples of Africa. Includes African diaspora music and “Afro-pop.” Offered fall only.

EMUS 4892-3. Latin American Music. Explores music of cultures south of the United States—Mexico, Peru, Brazil, Cuba, and other countries having substantial musical heritage—emphasizing relationships of folk, popular, and art styles. Offered spring only.

Music Ensembles
Both large and small ensembles are offered fall and spring semesters for 1 credit each. They are open to all university students. Participation in all ensembles is by audition.

Bands: Concert Band, Court Players, Marching Band (fall only), Symphonic Band, Wind Symphony.

Choirs: Collegiate Chorale, University Choir, University Singers, Women’s Chorus, and Men’s Chorus.

Orchestras: Chamber Orchestra, Symphony Orchestra.

Ensembles: Bell, Early Music Ensemble, Electronic Music Ensemble, Guitar, Jazz, New Music, Percussion, World Music.

Chamber Music: Brass, Piano, String, Woodwind.

Opera: Opera Practicum, Opera Theatre.
Music

Theory and Composition

MUSC 1081-3. Basic Music Theory for Music Majors. Introduces tools used in notation, performing, creating, and listening to music. Open to music majors only. Offered fall only.

MUSC 1101-2. Semester 1 Theory. Introduces the fundamentals of tonal harmony and voice leading, focusing on four-voice writing and analysis of excerpts from music literature. Offered fall only.

MUSC 1111-2. Semester 2 Theory. Continuation of MUSC 1101. Covers principles of harmony and voice leading, using all common diatonic triads and 7th chords. Introduces modulation, contrapuntal chord functions, and elementary structural analysis of excerpts from music literature. Offered fall only.

MUSC 1121-1. Aural Skills Lab, Semester 1. Focuses on sight singing and dictation of diatonic melodies in major and minor keys (tenor, alto, and bass clefs). Covers identification of scale types, intervals, triads, and dominant 7th chords. Studies harmonic dictation using chords from MUSC 1101. Coreq., MUSC 1101. Offered fall only.

MUSC 2071-2. Instrumentation. Introduces and studies the instruments of the orchestra, and problems of scoring for diverse choirs and full orchestra. Prereq., MUSC 2101 and 2121. Offered spring only.

MUSC 2081-2. Preparation for the Soundcheck. Provides an overview of the recording process from the performer’s perspective, from soundcheck through final mastering. Uses recorded material from in-class sessions. Examines differing approaches to recording as well as current technologies.

MUSC 2111-2. Semester 4 Theory. Continuation of MUSC 2101. Focuses on advanced chromaticism including mixture, altered dominants, voice-leading techniques, and chromaticism in larger contexts. Also examines post-tonal theory including impressionism, neoclassicism, jazz, “motivic” music (set theory), and twelve-tone theory. Prereq., MUSC 2101. Offered spring only.

MUSC 3071-2. Jazz Improvisation. Offers assistance, guidance, necessary skills, and insights for students to achieve creative musical results. Prereq., MUSC 2101. Offered spring only.

MUSC 4011-2. 16th-Century Counterpoint. Studies the style of Palestrina and his contemporaries through analysis and written examples. Prereq., MUSC 2101. Offered spring only.

MUSC 4021-2. 18th-Century Counterpoint. Provides a stylistic study of main contrapuntal forms of the period including invention, suite, and fugue. Stresses analysis and written examples. Prereq., MUSC 2101. Offered fall only.

MUSC 4031-2. Scoring and Arranging. Practical problems, creative arranging, and scoring for various jazz, choral and instrumental groups. Prereq., MUSC 2111 and 2131. Offered spring only.

MUSC 4041-2. Orchestration. Studies advanced orchestration techniques through score analysis and student projects. Prereq., MUSC 2071. Offered fall only.

MUSC 4061-2. Analysis 1. Surveys tonal analytical techniques, covering selected works through the 18th century. Prereq., MUSC 2111 and 2131. Offered fall only.

MUSC 4071-2. Analysis 2. Introduces 20th-century analysis by looking at selected works. Prereqs., MUSC 2111 and 2131. Offered spring only.

MUSC 4081 (2-3). Introduction to Music Technology. Topics include basic synthesis, musical instrument digital interface (M.I.D.I.) sequencing, and music notation by computer. Prereq., MUSC 2111. Offered fall and spring.

MUSC 4101-2. Theory and Aural Skills Review. Reviews tonal harmony, voice leading, and essential aural skills. Includes diatonic triads and 7th chords, modulation, chromaticism, and structural analysis of representative compositions. Prepares graduate students for more advanced work in music theory. Offered fall and summer.

MUSC 4111-2. Computer Programming for Musicians. Designed for musicians with no prior programming knowledge. Covers basic and intermediate programming techniques. Students design software such as a simple M.I.D.I. sequencer, computer-aided instruction program, and interactive performance software.

MUSC 4131-2. Advanced Sound Synthesis. Explores the principal sound synthesis techniques available to contemporary musicians.

MUSC 5041-2. Advanced Orchestration. Provides an advanced study of orchestration techniques through score analysis and student projects. For graduate students.

MUSC 5061-3. Advanced Analysis 1. Surveys tonal analytical techniques. For graduate students. Offered fall only.

MUSC 5071-3. Advanced Analysis 2. Surveys analytical techniques applicable to 20th-century music. For graduate students. Offered spring only.

MUSC 5081-3. Applications in Music Technology. Presents advanced strategies for applying computer technology in several musical
disciplines. Emphasizes the use of technology in composition, music theory, and music education. Offered fall only.

MUSC 5091-3. Contemporary Jazz Theory. Studies contemporary jazz improvisation and compositional techniques, including formal jazz structures (blues, song form), harmonic practices, rhythmic devices, and melodic analysis. Prereq., MUSC 3091 or equivalent. Offered spring only.

MUSC 6041-3. Orchestration since 1940. Studies significant and distinctive orchestration techniques of the 20th century, concentrating on works written since 1940. Open to doctoral students only.

MUSC 6051-3. Pedagogy of Music Theory. Studies methods and materials for teaching freshman- and sophomore-level music theory, with particular emphasis on theory, aural skills, and analysis.

MUSC 7801-3. Doctoral Seminar in Music Theory. Provides advanced study in theory. Students present results of research on individually chosen topics or aspects of a topic central to the class. Requires a major paper or project.

Musicology

MUSC 1802-3. Introduction to Music. Introduces the study of music including bibliographic, listening, score-reading, critical reading, and writing skills; music terminology; a survey of selected music genres (symphonic and chamber music); and building of general music repertory. Offered fall only.

MUSC 3802-3, 3812-3. History of Music. Surveys western art music with stylistic analysis of representative works from all major periods.

MUSC 4112-3. Ethnomusicology. Examines the definition, scope, and methods of ethnomusicology, the discipline that focuses on approaches to the study of music theory, history, and performance practices of world cultures.

MUSC 4752-3. Women Composers. Examines the historical contributions of women composers, principally in the western tradition. Investigates the reception of women's work by historians, critics, audiences, performers, and patrons.

MUSC 4762-3. History of Choral Literature. Surveys ensemble vocal music from chant to the present. Offered fall only.

MUSC 4772-3. History of Opera. Surveys operatic literature from early Baroque to contemporary productions.

MUSC 4792-3. 20th-Century Music. Explores major trends and developments while focusing on specific compositions of significant composers.

MUSC 4812-3. Symphonic Literature. Studies literature for orchestra, band, and other symphonic ensembles, including pre-classic, classic, romantic, and 20th century.

MUSC 4822-3. Ancient and Medieval Music. Surveys music from early times to circa 1400.

MUSC 4852-3. 17th- and Early 18th-Century Music. Studies style and repertory of music from 1580 to 1750.

MUSC 4872-3. Late 18th- and 19th-Century Music. Examines music and writings about music during the Classic and Romantic eras of the western tradition, 1750–1900. Emphasizes historical and stylistic analysis and current musicological research.

MUSC 5112-3. Ethnomusicology. Examines the definition, scope, and methods of ethnomusicology, the discipline that focuses on approaches to the study of music theory, history, and performance practices of world cultures.

MUSC 5642-3. Jazz History and Literature. Studies musical trends and cultural forces influencing jazz, with analysis of scales, improvisational styles, melodic and motivic variations, transcriptions, and orchestrations from significant periods in its history. Offered fall only.

MUSC 7822-3, 7832-3. Seminar in Musicology. Required of all musicology majors before completion of comprehensive examinations. A different research area is designated each semester. Periodic reports to musicology colloquium required.

Music Education

MUSC 2103-3. Introduction to Music Education. Provides an overview of basic principles and practices of the music education profession. Explores public school music teaching through class discussions, directed observations, and a supervised field experience. Offered fall only.

MUSC 3013-1. String Class. For music education majors with choral/general emphasis. Develops basic performance skills on two or more string instruments. Addresses teaching strategies and other specialized topics related to string instruction. Offered fall only.

MUSC 3023-1. Woodwind Class. For music education majors with choral/general emphasis. Prepares music education students to teach woodwind instruments to beginning and intermediate-level students in a heterogeneous classroom. Studies techniques appropriate for successful beginning woodwind instruction in individual and school music classroom settings, including instructional planning, procedures, and materials. Students use peer teaching to practice skills and knowledge learned in the course. Offered spring only.

MUSC 3033-1. Brass Class. For music education majors with choral/general emphasis. Develops basic performance skills on two or more brass instruments. Addresses teaching strategies and other specialized topics related to brass instruction. Offered spring only.

MUSC 3113-3. Introduction to the Arts. Surveys the arts in western culture, including architecture, painting, sculpture, poetry, prose, music, dance, comedy, tragedy, and film. Includes a presentation of various teaching approaches related to the arts. Offered spring only.

MUSC 3123-3. Teaching Choral Music. Studies comprehensive choral music programs in junior and senior high school settings. Emphasizes curriculum development, teaching strategies, materials, and administrative concerns. Prereq., MUSC 2103. Offered fall only.

MUSC 3133-2. Teaching General Music I. Examines children's musical development (including curriculum design, implementation, and assessment) via model teaching experiences. Students learn appropriate techniques and materials for delivering musical instruction in general music classes. Required for all music education majors as partial fulfillment of course work leading to K–12 music licensure. Offered fall only.

MUSC 3153-2. Teaching Woodwind Instruments. For music education majors with instrumental emphasis. Develops basic performance skills on three or more woodwind instruments. Addresses teaching strategies and other specialized topics related to woodwind instruction. Offered spring only.

MUSC 3163-2. Teaching String Instruments. For music education majors with instrumental emphasis. Develops basic performance skills on three or more string instruments. Addresses teaching strategies and other specialized topics related to string instruction. Offered fall only.

MUSC 3193-2. Vocal Pedagogy and Literature for Young Voices. Provides an overview of vocal anatomy/function, care of the voice, vocal repertoire, teaching strategies, and other specialized topics related to singing instruction in both private studio and public school choral settings. Offered spring only.

MUSC 3223-2. Teaching Brass Instruments. For music education majors with instrumental emphasis. Develops basic performance skills on three or more brass instruments. Addresses teaching strategies and other specialized topics related to brass instruction. Offered spring only.

MUSC 3253-2. Jazz Techniques for the Music Educator. Prepares the music educator for successful experiences teaching jazz at the secondary level. Students gain insights into performance and rehearsal techniques for the instrumental jazz ensemble. Explores approaches for teaching jazz theory, improvisation, and selecting literature for young students. Other topics include programming, style considerations, articulation, and jazz festival participation. Own instrument required for certain classes. Offered spring only.

MUSC 3273-2. String Pedagogy and Literature. Examines instructional methods/materials and pedagogical approaches appropriate for intermediate to advanced string students in private studio, small ensemble, or large ensemble contexts. Topics may include group teaching strategies, as well as contemporary approaches including Havas, Rolland, and Suzuki. Offered spring only.

MUSC 3363-2. Marching Band Techniques. Helps develop the skills needed to administer and teach all aspects of a contemporary high school marching band. Includes drill conception and design, instruction, organization, and administration. Offered fall only.

MUSC 4103-1. Introduction to Student Teaching. Represents the first half of the professional internship year. Familiarizes students with the schools and music programs in which they plan to student teach. Music placements may consist of elementary and high school, elementary and middle school, or middle school and high school.

MUSC 4113-3. Teaching General Music 2. Studies general music teaching at all levels. Emphasizes appropriate teaching strategies and materials. Prereqs., MUSC 2103 and 3133. Offered spring only.

MUSC 4143-2. Developing Children's Choirs. Examines the musical skills, teaching techniques, and administrative procedures necessary for developing a children’s choir. Offered spring of odd-numbered years.

MUSC 4153-1. Percussion Class and Pedagogy. Required of all music education majors. Presents knowledge and skills necessary for music educators to teach young students, including a general understanding of the techniques used in playing and teaching percussion instruments in the school music program. Offered fall only.

MUSC 4193-1. Student Teaching Seminar. Required for all music student teachers. Addresses topics of concern to beginning teachers including classroom management, interpersonal skills, legal issues, job search strategies, and teaching portfolio development.

MUSC 4203-1. Music Methods Practicum. Normally taken concurrently either MUSC 4113, 4313, or 4443. Provides students with opportunities to observe and practice the use of various teaching techniques and musical materials and relate them to concepts presented in the methods course. Students consult with the appropriate instructor to determine appropriate placements in schools.

MUSC 4443-3. Teaching Instrumental Music. Examines instrumental music curricula, instructional materials, and teaching techniques appropriate for rehearsal, class, and lesson settings. Also addresses administration strategies for instrumental music programs. Prereq., MUSC 2103. Offered spring only.

MUSC 4583-3. Inclusive Music Classroom. Surveys strategies necessary for teaching music to all students, including those with special needs. Offered fall of odd-numbered years.

MUSC 5103-3. Teaching General Music. For graduate music education majors. Studies general music teaching at all levels. Emphasizes appropriate teaching strategies and materials. Prereq., MUSC 2103. Offered spring only.

MUSC 5143-2. Developing Children's Choirs. For graduate music education majors. Examines the musical skills, teaching techniques, and administrative procedures necessary for developing a children’s choir. Offered spring of odd-numbered years.

MUSC 5183-2. Research in Music Teaching. Critically analyzes published research in music. Topics include data gathering, planning for survey and experimental studies, sampling, and common statistical analyses (both parametric
and nonparametric). Students conduct one original research study. Offered fall only.

MUSC 5443-3. Teaching Instrumental Music. For graduate music education majors. Examines instrumental music curricula, instructional materials, and teaching techniques appropriate for rehearsal, class, and lesson settings. Also addresses administrative strategies for instrumental music programs. Prereq., MUSC 2103. Offered spring only.

MUSC 6113-2. Foundations of Music Education. Surveys historical, philosophical, psychological, and sociological bases of contemporary music education. Offered fall only.

MUSC 6133-2. Comprehensive Musicianship through Performance. Surveys philosophical bases, historical developments, research studies, and curricular models associated with comprehensive musicianship. Provides application to rehearsal, studio, and classroom settings. Offered spring of even-numbered years.

MUSC 6173-2. Directions of Contemporary Aesthetic Education. Studies current philosophies in music education. Focuses on aesthetic and praxial views of music, musical behavior, and music learning. Offered fall of odd-numbered years.

MUSC 6193-1. Selected Studies in Music Education. May be repeated for additional credit. Prereq., consent of instructor and music education chair.

MUSC 6213-2. Measurement and Evaluation of Music Learning. Provides an overview of traditional and contemporary approaches to music assessment. Topics include psychometrics, standardized tests, test construction, grade reports, and student portfolios. Offered spring of odd-numbered years.

MUSC 7103-3. Historical Research in Music Education. Topics include oral history, archival collections, data verification, and critiquing/publishing research. Develops a collaborative research project. Offered spring of odd-numbered years.

MUSC 7113-3. Experimental and Descriptive Research in Music Education. Topics include questionnaire development, sampling, research design, intermediate and advanced statistics, presenting/publishing research, and research ethics. Develops a collaborative research project. Offered spring of even-numbered years.

MUSC 7138-3. Contemporary Issues in College Teaching. Examines music teaching within colleges and universities, including the evolution of university music programs, undergraduate and graduate music curricula, music professors and their work, and sociopolitical issues. Offered fall of even-numbered years.

MUSC 7203-3. Doctoral Seminar in Music Education. Provides an advanced study of topics central to the music education profession. Requires class presentations and a major paper or project.

Voice

MUSC 1544-1. Italian Diction. Students learn lyric Italian diction, the international phonetic alphabet, and its application to singing. Includes Latin. Offered fall only.

MUSC 1554-1. English Diction. Students learn English diction, the international phonetic alphabet, and its application to singing as well as various musical styles of English vocal literature. Prereq., MUSC 1544. Offered spring only.

MUSC 3444-1. French Diction. Students learn lyric French diction, the international phonetic alphabet, and its application to singing as well as various musical styles of French vocal literature. Prereqs., MUSC 1544 and 1554. Recommended prereq., MUSC 3464.

MUSC 3464-1. German Diction. Students learn lyric German diction, the international phonetic alphabet, and its application in singing, as well as various musical styles of German vocal literature. Prereqs., MUSC 1544 and 1554.

Piano

MUSC 1325-1. Piano Sight Reading. Studies techniques for improving sight-reading skills at the keyboard, with practical work in solo, ensemble, choral, and theatrical literature. Also covers score reading and transposition. Offered fall only.

MUSC 2325-2. Applied Harmony for the Keyboard. Provides an intensive study and application of the harmonic structure of music in a variety of keyboard skills: figured bass realization, chord progressions, transposition, and playing by ear. Offered spring only.

MUSC 2365-2. Introduction to Accompanying. Chamber music for pianists. Requires performance in a variety of accompanying roles to be critiqued and coached by class and instructor.

MUSC 3345-2. Piano Pedagogy 1. Discusses teaching philosophies, objectives, and procedures. Examines and evaluates methods and materials. Studies practical aspects with which the private teacher is concerned. Offered every other year.

MUSC 3355-2. Piano Pedagogy 2. Highlights learning theories, student teaching, examination and evaluation of materials for intermediate and early advanced piano students, developing artistry, approaches to technique, sight-reading, memorizing, and the service including directing from the console, modulation, accompanying, and hymn playing.

MUSC 4245-3, 4255-3. Church Music. Comprehensively studies the philosophy of church music, with an evaluation of both fixed and free liturgies. Also studies church choral literature, chanting, hymnology, and music in the church school.

MUSC 4265-2, 4275-2. Improvisation. Same as MUSC 5265, 5275.

MUSC 4285-3, 4295-3. Organ Survey. Historically surveys organ music and organ construction, studying both forms of composition and types of organ for which the music was originally written. Trips to various churches in area gives students an opportunity for firsthand observation. Same as MUSC 5285, 5295.

MUSC 5235 (2-8). Church Music Research.

MUSC 5255-2. Service Playing Techniques. Thoroughly studies music of the liturgies of Lutheran and Anglican services. Includes techniques of hymn playing, modulation, transposition, and accompanying and directing from the console.

MUSC 5265-2, 5275-2. Improvisation. Same as MUSC 4265, 4275.

MUSC 5285-3, 5295-3. Organ Survey. Same as MUSC 4285, 4295.
independent studio teacher in the business and professional world. Offered every other year.

MUSC 4325-2. Piano Literature 1. Surveys keyboard music from 1600 to 1830.

MUSC 4335-2. Piano Literature 2. Surveys keyboard music from 1830 to the present.

MUSC 4365-2. Piano Accompanying. Discusses and performs selected art songs and sonata literature, emphasizing performance and preparation procedures. Involves special projects. May be repeated for additional credit. Offered spring only.

MUSC 4405-2. Basso-Continuo Accompaniment. Studies the brief history, theory, and practice of Basso-continuo accompaniment. Provides practical instruction in realizing harmony from a given bass line (figured or unfigured), projecting affect, and creating dynamics. Emphasizes individual cognition and creativity. Also involves periodic practical experience in an ensemble. Same as MUSC 5405.

MUSC 5325-2. Piano Literature 1. Surveys keyboard music from 1600 to 1830.

MUSC 5335-2. Piano Literature 2. Surveys keyboard music from 1830 to the present.

MUSC 5345-2, 5355-2. Research: Piano Literature and Pedagogy. Looks at individual or group research related to piano pedagogy or literature for piano.

MUSC 5365-2. Piano Accompanying. Continuation of MUSC 4365. May be repeated for additional credit.

MUSC 5375-2. Opera Coaching for Pianists. Teaches skills for opera coaches and rehearsal pianists.

MUSC 5405-2. Basso-continuo Accompaniment. Same as MUSC 4405.

MUSC 6325-2. Seminar in Piano Literature. Provides an intensive study of a selected area of repertoire or history. Offered fall only.

Keyboard Musicianship

PMUS 1105-1. Keyboard Musicianship 1. Introduces the keyboard, music reading in the treble and bass clefs, basic theory and keyboard harmony, technical patterns, and improvisation. Studies easy classical and pop repertoire. Designed for non-keyboard music majors.

PMUS 1205-1. Keyboard Musicianship 2. Continuation of PMUS 1105.

Choral and Instrumental Music

MUSC 1326-1. Guitar Sight Reading. Studies 19th- and 20th-century approaches to improving sight reading, including practical applications and exercises.

MUSC 3176-2, 3186-2. Conducting 1, 2. Introduces conducting and rehearsal techniques. Coreq., performance participation in the appropriate ensemble (band, choir, or orchestra). MUSC 3176 offered in fall only; 3186 offered in spring only.

MUSC 4106-2. Guitar Literature. Analytically and historically studies guitar literature from the Middle Ages through the 20th century.

MUSC 5036-2. Brass Literature. Studies major original solo works for trumpet, horn, trombone, euphonium, and tuba, and ensemble literature including chamber and large settings.

MUSC 5106-2. Guitar Literature. Analytically and historically studies solo works, chamber music, concertos, and other music for guitar. For graduate students.

MUSC 5156-2. Symposium in Choral Music. Provides an advanced study of choral repertoire by style period. Required of all choral graduate students for a minimum of two semesters.

MUSC 5256-3. Woodwind Pedagogy. Studies the organization and administration of collegiate woodwind programs. Topics include curriculum, program philosophy, funding, teacher training, and evaluation. Prereq., MUSC 3253 or equivalent.

MUSC 5266-2. Chamber Music Literature. Woodwinds. Provides a stylistic-historical survey in various genres from Baroque era to present. Offered every other spring.

Theses and Recitals

MUSC 3997-1. Junior Recital.

MUSC 4957-1. Senior Thesis.

MUSC 4997-1. Senior Recital.

Interdepartmental Courses

MUSC 2608-1. Alexander Technique. Investigates the discoveries and writings of F.M. Alexander regarding kinesthetic perception and coordination. Applies these contexts to specific musical activities.

MUSC 2988-1. Introduction to Music Research. Introduces music research and writing skills to provide tools necessary for successful composition of formal research papers. Applies interests and curricular goals to specific topics of student choice.

MUSC 5708-2 (3). Introduction to Music Bibliography and Research. Explores basic informational sources about music and musicians and a study of bibliographic forms, research, and writing techniques employed in music research papers, theses, and dissertations. Required in all master’s degree programs.

MUSC 7138-2. Contemporary Issues in College Teaching. Examines music teaching within colleges and universities, including the evolution of university music programs, undergraduate and graduate music curricula, music professors and their work, and sociopolitical issues. Offered fall of even-numbered years.

Music Entrepreneurship

MUSC 2938-3. The Music Business 1. First of two-semester introductory course sequence in the study of the business of music from CU-Denver. Classes take place simultaneously on the Denver and Boulder campuses via the university’s fiber optic network. Familiarizes students with the various business issues associated with music as a career, including managerial, administrative, and legal aspects of the music and entertainment industries. Topics include career opportunities, contract principles, songwriting, publishing, copyright, music licensing, and other related issues.

via the university’s fiber optic network. Familiarizes students with the various business issues associated with music as a career, including managerial, administrative, and legal aspects of the music and entertainment industries. Topics include career opportunities, contract principles, songwriting, publishing, copyright, music licensing, and other related issues.

MUSC 4908 (1-3). Internship in Music Business. Gives upper-division students the opportunity to work in public or private organizations on assignments relating to their career goals, allowing them to explore the relationship between theory and practice in their major. May be repeated for a total of 6 credit hours. Prereq., instructor consent.

MUSC 4918-1. Your Music Career. Explores career options in music and development of skills to help students succeed in creating opportunities within musical arenas.

MUSC 5968-2. Graduate Studies in Music Entrepreneurship. Provides an overview of the music industry and helps prepare students to take leadership roles in existing arts organizations and/or create new music enterprises. Topics for discussion and research include current issues in the music industry, introduction to entrepreneurship, music and the law, preparing for feasibility study, the recording industry, market information for new ventures, and money sources.

Performance Music

Courses in composition and vocal or instrumental technique and interpretation may be found under the TMUS section of the Registration Handbook and Schedule of Courses. For individual applied music instruction, the equivalent of one hour of individual recitation (lesson) and one hour of literature class are required. Undergraduate performance majors carry 4 credit hours per semester; music education majors, 3 hours per semester (1 hour recitation); bachelor of arts in music majors, 2 or 4 hours per semester; minors, 2 hours per semester. Graduate performance majors normally carry 3 hours per semester (including ensemble credit if required); minors, 2 hours per semester.

The Thesis Music

TMUS 5605 through 5695 (1-3). Special Studies. Offers advanced graduate studies in specific areas or special projects in selected areas. For doctoral degree students only. See current Registration Handbook and Schedule of Courses for specific course number. May be repeated for additional credit.

TMUS 8249-3. Dissertation Project 4 (Chamber Music Recital, Choral Project, Composition Recital, Wind/Percussion Practicum).

TMUS 8269-3. Dissertation Project 6 (Research Lecture).

TMUS 8319-3. Repertoire Project.

TMUS 8329 (2-6). Document/Pedagogy Project.

TMUS 8339 (3-6). Major Composition.

FACULTY

DANIEL SHER, Dean; Professor (Piano). B.Mus., Oberlin College Conservatory of Music; M.M., Juilliard School of Music; Ed.D., Columbia University.

PHILIP AAHOLM, Professor Emeritus.

LYNEE ABBEY-LEE, Instructor (Harp). B.M., University of Michigan.

MICHAEL ALLEN, Instructor (Tuba). B.M., University of Denver.

KWASI AMPENE, Assistant Professor (Ethnomusicology). Diploma, University of Ghana; M.M., West Virginia University; Ph.D., University of Pittsburgh.

FRANK BAIRD, Professor Emeritus.

GRETCHEN HIERONYMUS BEALL, Professor Emerita.

MARGARET BERG, Assistant Professor (Music Education). B.S., Case Western Reserve University; B.M., Cleveland Institute of Music; M.Ed., University of Cincinnati; Ph.D., Northwestern University.

GIOIA BERNSTEIN, Professor Emeritus.

JAMES BRODY, Associate Professor (Oboe). B.M., Ohio State University; M.M., Indiana University.

STEVEN M. BRUNS, Associate Professor (Theory, Composition). B.M.E., Northern State College, Aberdeen, SD; M.M., Ph.D., University of Wisconsin-Madison.

STORM BULL, Professor Emeritus.

CHARLES BYERS, Professor Emeritus.

CARLO CABALLERO, Assistant Professor (Musicology). B.A., Pomona College; Ph.D., University of Pennsylvania.

ROBERT M. CARNOCHAN, Assistant Professor; Associate Director of Bands. B.A., M.Ed., Towson University; M.M., University of Colorado at Boulder; D.M.A., University of Texas at Austin.

ANDREW COOPERSTOCK, Associate Professor (Piano). B.M., University of Cincinnati; M.M., The Juilliard School; D.M.A., Peabody Conservatory of Music.

JOHN DAVIS, Assistant Professor (Jazz Studies). B.A., Metropolitan State College; M.M., University of Denver; D. Arts, University of Northern Colorado.

GUY DUCKWORTH, Professor Emeritus.

CHARLES EAKIN, Professor Emeritus.

ERIKA ECKERT, Assistant Professor (Viola). B.M., Eastman School of Music.

OLIVER ELLSWORTH, Professor (Musicology). B.A., M.A., Ph.D., University of California, Berkeley.

ELIZABETH FARR, Assistant Professor (Organ, Harpsichord). B.M., Stetson University; M.M., The Juilliard School; D.M.A., University of Michigan-Ann Arbor.
TAKÁCS QUARTET

EDWARD DUSINBERRE, Associate Professor (Violin). Graduate, London Royal College of Music.

ANDRAS FEJER, Associate Professor (Cello). Graduate, Franz Liszt Academy of Music, Budapest.

KAROLY SCHRANZ, Associate Professor (Violin). Graduate, Franz Liszt Academy of Music, Budapest.

ROGER TAPPING, Associate Professor (Viola). B.A., Queen Mary's 6th Form College; M.A., Cambridge University; Honorary Doctorate, Nottingham University.
Birth of the Buffs

In the fall of 1934, the Silver and Gold announced a contest to pick a nickname for the varsity football team prior to the Homecoming game. Up to that point a variety of names had been used, including the Wolves and the Frontiersmen, but nothing had stuck. Entries in the contest suggested the Eagles, Elks, Moose, YellowJackets, Hornets, Greyhounds, and Sour-Doughs, to name a few. The selection committee picked Buffaloes, and students rented a buffalo calf to run up and down the field for the final game of the season. So was born one of the most majestic and popular college mascots in the United States.
CHANCELLOR’S LEADERSHIP RESIDENTIAL ACADEMIC PROGRAM

The Chancellor’s Leadership Residential Academic Program (CLRAP) was founded in 1999 to build a sense of community for high-achieving students, based on a shared interest in leadership on the campus, the community, state, nation, and the world. Students from all schools and colleges on the Boulder campus are eligible to participate in this program, which is located in Williams Village. Students not residing in Williams Village may enroll in the program by permission of the director.

The residential program is required for the first year, after which students may elect to remain in the residence hall or move off campus. A leadership certificate for students completing the necessary course work and experiences is now available.

The Chancellor’s Leadership RAP is a regular academic program of the University of Colorado at Boulder, and is overseen by the RAP Council. A retreat in the mountains of Colorado begins the community-building process, and periodic urban and other retreats are planned for participants. Regular meetings with leaders from politics, nonprofit organizations, government, business, the military, industry, engineering, medicine, religion, and the community are held for leadership participants throughout their years in the program. Faculty firesides enable students to meet faculty and staff in an informal setting, and social and arts activities are regular features of the program.

Many leadership students participate in spring breaks in Mexico, the Southwest, Washington, D.C., and international sites, and are encouraged to participate in study abroad programs during their sophomore to senior years.

Ethnic Living and Learning Community

Beginning in the fall of 2001, an Ethnic Living and Learning Community (ELLC) has been added to the Chancellor’s Leadership RAP. While all students in the ELLC are part of the CLRAP, individuals may choose to live on the ELLC floor or on one of the regular leadership floors in Williams Village. The ELLC offers an ethnically diverse and supportive living community where students of various ethnicities are understood, respected, and valued. Residents of the ELLC are committed to promoting cultural awareness as it relates to racial and ethnic identity; creating a living and learning environment that is ethnically diverse; creating a social setting comfortable for students of various ethnicities; creating a bridge between academic and social learning; improving the retention of the university’s students of color; and providing leadership development opportunities. ELLC students take a class in diversity/ethnic studies and one in leadership during their freshman year, in addition to participating in a range of retreats, social events, speaker events, service learning, and other activities.

Four-Year Academic Certificate Program

The program consists of required courses in leadership offered in the residence hall for core credit, in addition to a series of elective courses throughout the campus. Credit hours in leadership courses meet core requirements in the College of Arts and Sciences as well as graduation requirements that vary by school and college. Requirements for the certificate include the two LDSP classes and two practicum experiences, 9 hours of approved leadership courses on campus, an internship in the student’s major field, and a senior capstone course, for a total of 24 hours, 15 of which must be upper division.

Leadership skills are enhanced through a range of service-learning and internship experiences related to leadership in the community, politics, government, business, engineering, medicine, religion, and other professions. Credit towards graduation can be obtained for many of these experiences. Through academic courses, practicum experiences, and special workshops, leadership students gain skills in such areas as public speaking, time management, event planning, goal setting, resource management, networking, motivation and recruitment, ethics and values, stress management, alternative models for leading, conflict resolution, career planning, life goals, project management, media relations, civic and community organizing, grant writing, community mapping, and change strategies.

Admission and Enrollment

Students are generally admitted to the Chancellor’s Leadership RAP for their freshman year, but sophomores may also apply. Students generally are in residence in Williams Village during their first year in the program, and may elect to remain in residence if space is available during subsequent years. Only students admitted to the Chancellor’s Leadership RAP are eligible to take the leadership and core courses in the residence hall.

Interested students should indicate Williams Village as their first choice on the housing application form and return it to the Housing Reservation Center as early as possible. Students wishing to be part of the ELLC floor should indicate that preference on their housing application. In addition, students are asked to complete an application form on their leadership experiences in high school and their community. The form should be sent to the Academic Director, Chancellor’s Leadership RAP, University of Colorado at Boulder, 452 UCB, Boulder, CO 80309-0452. For further information, call 303-735-1987 or check the web page at www.colorado.edu/chancellorsrap.

Financial Information

As with all residential academic programs, there is a program fee in addition to regular tuition, fees, and room and board. In 2000-01, this fee was $650. Upon application, some scholarships to cover the fee are available to students in need of assistance.

Course Descriptions

LDSP 1000-3. The Foundations of 21st Century Leadership. Introduces students to the critical need for and approaches to the practice of creative and effective leadership. Premised on the idea that the potential for leadership is present in all of us.

LDSP 2400-3. Understanding Privilege and Oppression in Contemporary Society: Leadership in a Multicultural World. Broad-based, multicultural, multidisciplinary course. Covers the interaction of privilege and oppression in the U.S., focusing on race, socioeconomic class, sexual orientation, and physical ability, as well as leadership skills needed to function in a multicultural, global society. Same as FARR 2400.

EDUC 2910 (1-3). Field Practicum 1. Offers supervised campus and off-campus experiences tied to course work in the Chancellor’s Leadership RAP or the INVST program. May be repeated for a total of 6 credit hours.
EDUC 2920 (1-3). Field Practicum 2. Offers supervised campus and off-campus experiences tied to course work in the Chancellor’s Leadership RAP or the INVST program. May be repeated for a total of 6 credit hours.

Faculty and Staff

SUSAN HARAN, Administrative Assistant. B.S., University of California-Davis.

RICHARD J. KRAFT, Academic Director; Professor of Education. B.A., Wheaton College; M.S., Northern Illinois University; Ph.D., Michigan State University.

CAROL MIYAGISHIMA, Director of the Ethnic Living and Learning Community. B.A., Metropolitan State College; M.A., University of Colorado.

CONTINUING EDUCATION

The mission of Continuing Education is to provide quality, innovative lifelong learning opportunities to a diverse student population by extending the educational resources of the University of Colorado at Boulder. A variety of credit courses, noncredit courses, workshops, and seminars is offered through Continuing Education, which also administers CU-Boulder’s summer session. Only university-approved faculty teach Continuing Education courses, workshops, and seminars.

The office is located at 1505 University Avenue in Boulder, 303-492-5148 (or 1-800-331-2801). The fax number is 303-492-3962, and the web site is www.colorado.edu/conted.

Boulder Evening Credit Classes

Offered in conjunction with CU-Boulder’s academic departments, the Boulder Evening Program provides credit courses in the evening on the Boulder campus. These affordable, smaller-sized classes are provided through various departments including anthropology, business, communication, economics, English, film studies, fine arts, geography, mathematics, philosophy, psychology, sociology, Spanish, and theatre.

Independent Learning Program

The Independent Learning Program offers correspondence and Web-based courses, individualized instruction, and the applied music program, which features tutorial relationships between student and instructor. Courses are self-paced, allowing learning to occur at times convenient to the student.

Center for Advanced Training in Engineering and Computer Science

The Center for Advanced Training in Engineering and Computer Science (CATECS) offers graduate-level engineering and applied science courses via distance learning. Courses are delivered to over 250 job sites in Colorado, across the nation, and abroad. Master’s degree programs are available in aerospace engineering, computer science, telecommunications, electrical and computer engineering, and engineering management. Companies and individuals may also rent or purchase previous semester courses on videotape through the CATECS library.

ACCESS and High School Concurrent Programs

In conjunction with CU-Boulder departments, ACCESS (Available Credit Courses for Eligible Special Students) provides various on-campus credit courses. Colorado high school juniors and seniors who meet the “Postsecondary Enrollment Options Act” guidelines may take CU courses concurrent with their high school schedules. Students may be reimbursed tuition from their school district for the successful completion of up to two courses each fall and spring semester.

Contract Credit Program

This program enables organizations like school districts, boards of cooperative services, hospitals, and other agencies to provide academic credit courses for various professional audiences, including public school teachers interested in maintaining their certification requirements.

Personal Enrichment Program

These noncredit classes are designed to meet students’ personal enrichment and educational interests. This program provides courses in fine arts, foreign languages, writing and literature, and much more.

Center for Business Education

The Center for Business Education (CBE) is a partnership between Continuing Education and the College of Business, offering noncredit business and professional development programs. The CBE offers certificate programs in executive development and business education for nonbusiness undergraduates, including the Colorado Executive Development in Residence (CEDIR) program and the CU Business Intensive Certificate (CUBIC) program.

Computer Applications Program

Software applications and computer training are taught through lecture and hands-on instruction in PC or Mac computer lab settings. Subjects include networks, the Internet, operating systems, programming, word processing, spreadsheets, presentations, project management, databases, desktop publishing, computer graphics, computer-aided design, and multimedia. Noncredit certificates are available in computer applications, network administration, programming, and web site design.

International English Center

The International English Center (IEC) offers language learning, cultural adjustment, and academic preparation programs for international students aiming to matriculate and for members of the campus and local community with limited English proficiency. The IEC also contracts with corporate groups to provide language training and professional development courses.

Real Estate and Appraisal Program

The Real Estate and Appraisal Program (REAP) offers statewide professional development courses for individuals planning to enter the real estate and/or appraisal profession and continuing education for those already in the profession. This program provides all the courses required for real estate broker’s licenses, for all four levels of appraiser licenses, and for mandatory license renewal in each field.

Outreach

The Division of Continuing Education encourages CU-Boulder faculty, staff, and students to extend their expertise, talent, and programs to diverse constituencies throughout Colorado. The division achieves this objective by working with the vice chancellor for academic affairs, the chancellor, and the CU-Boulder outreach committee to provide funds that support off-campus presentations, performances, and exhibitions. In addition, some groups visit the Boulder campus from around the state. Sample programs include “CU This Summer,” Mr. Wizard shows, and “Science from CU.”

Summer Session and Maymester at CU-Boulder

Summer session offers over 500 campus courses and enrolls about 6,000 students in a relaxed, comfortable learning environment. Courses are available to CU-Boulder students who wish to accelerate their academic progress. Courses are also available to students visiting from other colleges, teachers, high school students, or others interested in pursuing their professional development or enrichment.

Maymester is a special three-week academic program between the end of spring semester and the beginning of summer session. It provides intense, accelerated courses for those who need academic credits in an abbreviated time period.
NORLIN SCHOLARS PROGRAM

The Norlin Scholars Program, begun in fall 1999, offers a range of educational benefits and financial incentives for outstanding students. The Norlin Program, named after a distinguished former president of the University of Colorado, will eventually include a total of 100 students.

Norlin scholars accepted as first-year students receive a four-year award, contingent upon fine academic progress. University juniors (either continuing students at CU-Boulder or transfer students) receive a two-year award.

Norlin scholars are encouraged to shape an educational experience tailored to fit their interests and goals in any of CU-Boulder’s undergraduate colleges and schools.

The program offers academic challenge, breadth of experience, and close work with the faculty. Benefits include:

• two required courses, developed exclusively for the Norlin Scholars Program, that provide a shared intellectual experience among the students and develop strength and thoughtfulness in perceptive reading as well as in critical and incisive writing;

• opportunities to participate in honors courses and other small-group experiences emphasizing critical thinking and communication, both written and oral;

• experience in original research or independent work under faculty supervision, leading to graduation with honors;

• yearly definition and assessment of the scholar’s goals and progress in conjunction with a faculty mentor;

• priority registration times throughout the program;

• opportunities for service learning, internships, and overseas experience; and

• for those who wish, admission to and full participation in the first-year Farrand Residential Academic Program, a high-demand program for 350 students located in the center of campus (standard program fee required).

Financial Information

Each Norlin Scholar receives a merit-based award of $2,000 per year. Students who need additional financial assistance should complete the FAFSA (Free Application for Federal Student Aid). The Norlin Program will then work with the Office of Financial Aid to maximize opportunities for need-based assistance.

Applying to the Program

A flexible selection system ensures that students with many different interests and talents are accepted as Norlin Scholars. The fall 2000 class was selected from more than 500 highly talented, high achieving applicants and contains an extremely broad range of students with varied backgrounds, interests, and experiences.

Students may apply either as high school seniors (to enter the program as incoming first-year students) or as second-semester sophomores in college (to enter the program as juniors). Colorado residents as well as out-of-state and foreign students are eligible.

Applicants must demonstrate exceptional achievement or creativity in their academic work or other areas.

Potential students must provide at least one letter of support from a teacher or counselor who knows them well. A second letter of reference may be from any other appropriate person. Both letters should address the issue of why the program would be right for this applicant.

All applicants should complete the special Norlin Scholars application form, write their individual essay titled “Why I want to be a Norlin Scholar,” and submit these pieces with two sealed letters of reference in a single application packet. Application forms can be downloaded directly from the web site (www.colorado.edu/norlinscholars) or requested from the Norlin Scholars Program, University of Colorado at Boulder, 40 UCB, Boulder, Colorado 80309-0040.

All materials should be submitted in a single package. The deadline for receipt of the application materials is February 1. For freshmen and transfer students, the campus’s standard application form must also be submitted separately to the Office of Admissions.

Course Descriptions

NRLN 3020-3. Writing Argument, Composing Knowledge. Focuses on reading, analysis, and writing about major ideas and events. Emphasizes close, careful reading, thoughtful analysis, and student writing. Counts for upper-division writing credit in the core requirements. Provides a high-level academic course that enhances reading, writing, and thinking skills.

NR LN 4001-3. Water in the U.S. West. A thematically oriented course for the Norlin Scholars designed to encompass many perspectives such as history, environmental science, mathematics, music, engineering, etc. Counts for upper-division critical thinking requirement.

Faculty

MICHAEL C. GRANT, Professor, B.A., M.A., Texas Tech University; Ph.D., Duke University.

ELISSA SCHAGRIN GURALNICK, Professor, A.B., A.M., University of Pennsylvania; M.Phil., Ph.D., Yale University.

PATRICIA NELSON LIMERICK, Professor. B.A., University of California, Santa Cruz; M.A., M.Phil., Ph.D., Yale University.

MARJORIE K. McINTOSH, Professor. A.B., Radcliffe College; M.A., Ph.D., Harvard University.

ROLF NORGAARD, Senior Instructor. B.A., Wesleyan University; M.A., Ph.D., Stanford University.

PREPROFESSIONAL PROGRAMS

Preprofessional programs have been developed at CU-Boulder to prepare undergraduate students and previously graduated students for later study at professional schools. None of Boulder’s preprofessional programs offers an undergraduate degree; completion of any of the programs does not guarantee later admission to a professional school. However, these programs are linked to professional schools within Colorado, and completion of a preprofessional program can prepare a student well for later professional study.

Prehealth Programs

Students can prepare to enter undergraduate professional health science programs at the University of Colorado Health Sciences Center in Denver in the areas of dental hygiene, nursing, pharmacy, and physician assistant by taking classes on the Boulder campus.

Students whose goals include entering the medical, dentistry, or physical therapy schools at the University of Colorado Health Sciences Center in Denver, or the veterinary medicine program at Colorado State University in Fort Collins, can complete any undergraduate major at CU-Boulder. In most cases, these students are required to complete a baccalaureate degree before entering professional school. In fact, a baccalaureate degree is recommended for most health professions.

At the time of application to a professional school, students are judged on several factors, including performance in undergraduate courses. For this reason, no required course may be taken on a pass/fail basis. Some fields require specific preprofessional examinations before application. For most fields, interviews are an essential part of the application process.

In all cases, admission committees are concerned with students’ compassion, coping, and decision-making abilities, intellectual capabilities, realistic self-appraisal, sensitivity in interpersonal relations, and staying power (physical and motivational). In addition to formal course work, students should have ex-
perience in people-related activities (especially those related to their field of choice), so they can be more certain of their motivation for health careers. Also, health-related activities expose premed and other health science hopefuls to various patients and illnesses. The health professions require, or strongly recommend, such prerequisite experience.

Some of the professional programs at the University of Colorado Health Sciences Center give preference to Colorado residents and residents of WICHE (Western Interstate Commission on Higher Education) states; interested students should check with individual programs for specific policies. Students from other states usually can obtain at CU-Boulder the preprofessional courses required by their state schools, but should check with those schools in advance. Students are encouraged to apply to their state school as well as to other public and private professional schools to increase their chances of gaining acceptance to the professional program of their choice.

During the preprofessional years, personal intellectual development leads many students to change professional goals. Since there are usually more applicants for these programs than there are spaces available, many students need to pursue alternative goals. Under these circumstances, students should plan college programs to give themselves the greatest flexibility in considering other vocations.

A summary of current preprofessional health science requirements follows, although the requirements are subject to change without notice. For current information, keep in contact with the prehealth advisor.

Advising for preprofessional study in the health sciences is conducted through the Preprofessional Advising Office in Old Main 1B-90. Students should contact the office for information about course requirements, test deadlines, and other concerns about professional study. For more information, refer to the Office of Academic Advising.

For information about other health-related fields not available at the University of Colorado, check with the prehealth advisor or career services office.

Dental Hygiene

The two-year professional program at the University of Colorado Health Sciences Center leads to a bachelor of science degree in dental hygiene.

Students normally apply during the first semester of their sophomore year. A minimum of 60 semester hours is required for acceptance. ACT scores also are required.

Required Prehealth Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Semesters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry, with laboratory (CHEM 1111 and 1131)</td>
<td>2 semesters</td>
</tr>
<tr>
<td>English composition (ENGL 1191 and 2021 or 2051 or 3152)</td>
<td>2 semesters</td>
</tr>
<tr>
<td>Speech–public speaking</td>
<td>1 semester</td>
</tr>
<tr>
<td>SOCY 1001</td>
<td>1 semester</td>
</tr>
<tr>
<td>PSYC 1001</td>
<td>1 semester</td>
</tr>
</tbody>
</table>

Curriculum Note

1. MCDB 1150 and 2150 provide a strong foundation for advanced MCD biology courses, but do not cover all of “general biology.” Students who require this information for the Dental Admission Test, the Medical College Admission Test, or other reasons should consider taking EPOB 1210–1240 as electives.

Dentistry

The University of Colorado Health Sciences Center offers a four-year program leading to the doctor of dental surgery (D.D.S.).

Students may apply during their junior and senior years for entry into the dentistry program, or after they have earned their bachelor’s degree. Most applicants have the baccalaureate degree. The Dental Admission Test (DAT) is required for admission.

Required Prehealth Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Semesters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology, general, with lab (EPOB 1210 and 2150, 1220 and 1240, or MCDB 1150 and 1151, 2150 and 2151)</td>
<td>2 semesters</td>
</tr>
<tr>
<td>Chemistry, general, with lab (CHEM 1111 and 1131, or CHEM 1151 and 1171)</td>
<td>2 semesters</td>
</tr>
<tr>
<td>Chemistry, organic, with lab (CHEM 3311 and 3321, 3331 and 3341, or CHEM 3351 and 3361, 3371 and 3381)</td>
<td>2 semesters</td>
</tr>
<tr>
<td>Physics, general, with lab</td>
<td>2 semesters</td>
</tr>
<tr>
<td>English literature or humanities</td>
<td>2 semesters</td>
</tr>
<tr>
<td>English composition (UWRP 1150 or 3020)</td>
<td>1 semester</td>
</tr>
</tbody>
</table>

Curriculum Note

1. MCDB 1150 and 2150 provide a strong foundation for advanced MCDB courses, but do not cover all of “general biology.” Students who require this information for the Dental Admission Test, the Medical College Admission Test, or other reasons should consider taking EPOB 1210–1240 as electives.

Nursing

The two-year program (including one summer session) at the University of Colorado Health Sciences Center leads to the bachelor of science degree in nursing.

A minimum of 60 semester hours is required for admission (CU-Boulder hours may exceed minimum requirements shown). A B.A. degree is often completed before entering nursing school.

Students should check periodically for possible changes in requirements.

Required Prehealth Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Semesters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology (EPOB 1210 and 1230, 1220 and 1240, or MCDB 1150 and 1151, 2150 and 2151)</td>
<td>2 semesters</td>
</tr>
<tr>
<td>Chemistry, general, with lab (CHEM 1111 and 1131, or CHEM 1151 and 1171)</td>
<td>2 semesters</td>
</tr>
<tr>
<td>Chemistry, organic, with lab (CHEM 3311 and 3321, 3331 and 3341, or CHEM 3351 and 3361, 3371 and 3381)</td>
<td>2 semesters</td>
</tr>
<tr>
<td>Human anatomy (EPOB 3420)</td>
<td>1 semester</td>
</tr>
</tbody>
</table>

Curriculum Note

1. The following classes in microbiology, human anatomy, and human physiology all require two semesters of general biology (Note 1).

Note: The following classes in microbiology, human anatomy, and human physiology all require two semesters of general biology (Note 1).

Microbiology (EPOB 3400) | 1 semester
Human anatomy (EPOB 3420) | 1 semester
Human physiology (EPOB 3430) | 1 semester
Sociology (SOCY 1001) | 1 semester
General psychology (PSYC 1001) | 1 semester
Developmental psychology (PSYC 2643 and 2303) or child and adolescent psychology and gerontology (PSYC 4684 and 4212) | 2 semesters
Cultural-based anthropology or any multicultural studies course (not including literature) ..1 semester
English composition ..1 semester
Statistics ..1 semester
Creative art (literature, fine art, music, dance, photography, or theatre)1 semester
Philosophy ...1 semester
Nutrition (KAPH 3420 or PSYC 2062) ..1 semester
Required elective (political science, history, or macroeconomics)1 semester
Algebra (MATH 1000, 1010, and 1020)1 semester

Other courses may be selected from any academic discipline with the exception of commercial and vocational courses and doctrinal courses in religion. Because of the number of science prerequisite courses, the beginning prenursing student has two choices: take both chemistry and biology during the freshman year, or take one of these courses, preferably biology, during the summer session either preceding or following the freshman year.

Curriculum Note
1. MCDB 1150 and 2150 provide a strong foundation for advanced MCD biology courses, but do not cover all of “general biology.” Students who require this information for the Dental Admission Test, the Medical College Admission Test, or other reasons should consider taking EPOB 1210–1240 as electives.

Pharmacy
The four-year program at the University of Colorado Health Sciences Center leads to a degree in advanced practice as a clinical pharmacy specialist.

A minimum of 60 completed semester hours is required for admission. A substantial number of students obtain the B.A. degree before entering the four-year Pharm.D. program.

The following required courses are effective for admission to the School of Pharmacy fall 1999 and thereafter.

Required Prehealth Courses Semesters
Chemistry, general, with lab2 semesters
Chemistry, organic, with lab2 semesters
Biology, general, with lab (Note 1)2 semesters
Microbiology with lab1 semester
Anatomy or anatomy and physiology1 semester
Physics, algebra- or calculus-based1 semester
Calculus (for math/science majors)1 semester
English composition2 semesters
Public speaking1 semester
Economics (macro or micro)1 semester
Social sciences (cultural anthropology, history, psychology, or sociology)1 semester
General education (does not include vocational, arts and crafts, or physical education courses)10-14 credit hours

Curriculum Note
1. MCDB 1150 and 2150 provide a strong foundation for advanced MCD biology courses, but do not cover all of “general biology.” Students who require this information for the Dental Admission Test, the Medical College Admission Test, or other reasons should consider taking EPOB 1210–1240 as electives.

Physical Therapy
The program at the University of Colorado Health Sciences Center leads to a master of science degree in physical therapy.

A baccalaureate degree is required (CU-Boulder hours may exceed minimum requirements shown). The minimum GPA is 3.00, and the Graduate Record Examination (GRE) is required. CPR certification is also required.

The program also requires that a student have 45 hours of paid or volunteer field experience with a licensed physical therapist. See the prehealth advisor for current information.

All science courses must be for science majors. In addition, science courses have a seven-year limit (students who are returning to complete their program after seven years must retake the following science courses to remain up-to-date with new information).

Required Prehealth Courses Semesters
The following courses must be completed within the last seven years:

- Biology (recommended courses include college biology with labs, microbiology with labs, cell biology with labs, or zoology or embryology with labs)2 semesters (8 hrs.)
- Chemistry (recommended courses include college chemistry with labs, biochemistry with labs, or organic chemistry with labs)2 semesters (8 hrs.)
- Physics (recommended courses include calculus- or algebra-based college physics with labs, human or vertebrate)2 semesters (8 hrs.)
- Anatomy, human or vertebrate1 semester (4 hrs.)
- Physiology, human or vertebrate (offered through a biology or zoology department)1 semester (4 hrs.)
- Exercise physiology1 semester (2-3 hrs.)
- Statistics ...1 semester (2-3 hrs.)
- The following courses hold no time limit:
 - Psychology, developmental1 semester
 - Psychology, abnormal1 semester
 - Technical/scientific writing or English composition1 semester
 - Mechanical kinesiology or biomechanics1 semester
- It is recommended that students be proficient in the following skills: computer, e-mail, Internet, and office automated systems.
- Course work is recommended in mechanical kinesiology or biomechanics and embryology.

Child Health Associate/Physician Assistant
The professional program at the University of Colorado Health Sciences Center requires three years of study. A B.S. degree may be obtained at the end of the first year of professional study. At that time students may apply for acceptance into the M.S. degree program, which can be completed by the end of the third professional year.

A minimum of 90 semester hours is required for admission as well as completion of the Graduate Record Examination (GRE) within the last five years prior to application. Many applicants have more than these minimal requirements; many already have their bachelor’s degree. For the classes that begin after June 2002, a bachelor’s degree will be required.

Required Prehealth Courses Semesters
Chemistry, general (for science majors) with laboratory2 semesters
Biological science, general (for science majors) with laboratory (Note 1)2 semesters
Psychology ...2 semesters
Humanities ...4 semesters
Statistics (taken within five years of application)1 semester
Genetics ..1 semester
Upper-division science, including human physiology (taken within five years of application)2 semesters
Total upper-division course work18 credit hrs.

Curriculum Note
1. MCDB 1150 and 2150 provide a strong foundation for advanced MCD biology courses, but do not cover all of “general biology.” Students who require this information for the Dental Admission Test, the Medical College Admission Test, or other reasons should consider taking EPOB 1210–1240 as electives.

Veterinary Medicine
The Colorado State University (CSU) School of Veterinary Medicine offers a four-year program leading to the doctor of veterinary medicine (D.V.M.) CSU requires that all applicants take the Graduate Record Examination (GRE), morning tests only. Scores must be received by October 1 of the year in which they apply. Additional information can be obtained from the CSU web site at www.cvmbs.colostate.edu.

Receiving Advanced Placement (AP) credit for any of the required courses normally requires taking a higher-level course in the same subject area. In some cases this can be waived; check with the CSU Veterinary School for specifics.

Colorado residents are eligible to apply for entry into veterinary schools other than CSU. These schools usually have requirements other than those listed below.
Preprofessional Programs

Prejournalism

A specific prejournalism and mass communication major is offered at CU-Boulder in the College of Arts and Sciences. Students complete two specific courses while working toward arts and sciences core curriculum requirements. See the School of Journalism and Mass Communication for more specific information.

Prelaw

Students who plan to apply to law school upon completing their baccalaureate degree do not have to complete any specific requirements for admission to law school. Instead, they should major in the discipline that best suits their intellectual interests and talents. Prelaw students should seek a rigorous and broad-based education that will ensure them a fundamental understanding of American society and its institutions. Students should become familiar with mathematical analysis and scientific reasoning, and develop excellent oral and written communication skills.

Prelaw advising is available in the Preprofessional Advising Center. In addition, there are faculty members who have special interest and expertise in the theoretical and practical aspects of the law and judicial systems. These faculty advisors are available for consultation with students on the CU-Boulder campus.

Contact the Preprofessional Advising Center for more information.

Presidents Leadership Class

The Presidents Leadership Class (PLC) is a specially designed academic curriculum that focuses on leadership development, personal development, and community service initiatives. Skills are developed in an interdisciplinary, experiential environment through exposure to government, education, the humanities, business, and science. Students from all of the schools and colleges participate in the Presidents Leadership Class curriculum as a part of their regular course work.

The Presidents Leadership Class is a program of the Student Leadership Institute and is overseen by a 35-member Board of Trustees representing the Colorado business, educational, and governmental communities.

Admission and Enrollment

Admission to the Presidents Leadership Class is considered one of the highest honors awarded to incoming University of Colorado at Boulder students. Presidents Leadership Class scholars are admitted prior to the beginning of their first year. Selection criteria include academic excellence, a demonstrated commitment to community service, demonstrated leadership potential, and unique contribution to their community. Each year, 60 first-year scholars are enrolled, comprising 50 Colorado residents and 10 out-of-state students. A separate admission application must be obtained from the Student Leadership Institute Office and returned prior to February 1. Applications may be obtained by calling the PLC office at 303-492-8342, or by visiting the web site at www.slinstitute.org.

Only students who are accepted into the Presidents Leadership Class are eligible to enroll in PRLC courses. Students receive arts and sciences core credit in ideas and values for PRLC 1810 Ethical Leadership, and core credit in contemporary societies for PRLC 1820 Community Issues in Leadership. Additional credits may vary by school or college.

Academic Program

The Presidents Leadership Class is a rigorous academic and experiential program that focuses on leadership development at personal, organizational, community, and global levels. The curriculum is centered on empowerment of others, open-mindedness, a bias toward action, service to the broader good, the ability to balance reason and intuition, the ability to recognize and work with interconnectedness, ethical considerations, and the capacity to inspire a shared vision.

Fundamental intellectual skills are developed in the program, including effective research ability, speaking, and writing, multicultural and gender communication, critical thinking, ethical thinking, interdisciplinary thinking, introspection and self-awareness, facilitation of group processes, and basic teaching skills.

First-year courses focus on leadership theory and its application, and ethical and community issues in leadership. Experiential programs include Outward Bound activities, a weekly speaker series, off-campus seminars, a student-run high school leadership conference, and other community service projects.

Sophomore-year courses focus on global issues in leadership and change (such as environmental issues, economics, and politics) and multilevel analyses of leadership areas (issues originating at the organizational level that carry community and global implications). Experiential programs include Outward Bound activities, a monthly lecture workshop series, and individual contract learning.

An important experience is the “walkabout,” a semester-long internship with business and civic leaders from Colorado. Students also have the opportunity to participate in a self-developed “leadership quest” in their junior year. A senior-level capstone course culminates scholars’ PLC experience.

Upper-division scholars (juniors and seniors) can also participate in PLC as class advisors or as administrative staff members. Staff members continue to receive merit-based scholarships during their tenure in the Presidents Leadership Class. Additional courses for juniors and seniors may also be available.
Scholarship Programs and Opportunities

First-year and sophomore scholars receive a merit-based scholarship of $4,000 to $9,000 (minimum of $1,000 each semester of participation). Scholars must enroll in PRLC course work to maintain their scholarship.

Scholars are also eligible to be selected for a variety of other merit-based scholarship programs, including the FirstBank Colorado Scholarship Fund ($6,000 over four years), the Alvin G. Flanagan Scholarship Fund (annual $1,000 minimum awards), and the Michael Lee Hoelscher Memorial Scholarship (annual $2,000 award).

Course Descriptions

PRLC 1820-3. Community Issues in Leadership. Explores challenges to leadership at the community level such as drug abuse, poverty, decline of infrastructure, care of the aged, etc. Gives particular attention to the development of effective leadership responses to community challenges at university, city, state, and national levels. Approved for arts and sciences core curriculum: contemporary societies.

PRLC 2810-3. Global Issues in Leadership. Examines the challenges of leadership posed by change and major global issues affecting everyone. Explores issues such as human rights, hunger, disease, large-scale collective violence, and environmental deterioration with a special emphasis on effective, long-term leadership strategies.

PRLC 2820-3. Multilevel Issues in Leadership. Studies multilevel issues that originate in organizational settings but carry community and global implications. Encourages students to fully explore the complexity and interrelatedness of issues with a special emphasis on leadership and ethical implications.

Faculty

RONALD G. BILLINGSLEY, Academic Director; Associate Professor of English. A.B., University of Redlands; M.A., Ph.D., University of Oregon.

JENNIFER J. FRIEDMAN, Director. B.A.; M.B.A., University of Colorado.

ADAM J. GOODMAN, Executive Director. B.S., M.P.A., Ph.D., University of Colorado.

RESERVE OFFICERS TRAINING CORPS

Enrollment in Reserve Officers Training Corps (ROTC) programs is open to both men and women, and ROTC courses are open to all students whether or not they are enrolled in ROTC programs.

All services provide undergraduate and selected graduate students with the opportunity to combine academic study with a military officer’s educational program. The three services conduct courses in their respective areas leading to a regular or reserve commission upon graduation. The Navy also offers a program leading to a regular or reserve commission in the Marine Corps.

Air Force Aerospace Studies

U.S. Air Force ROTC offers several programs leading to a commission in the U.S. Air Force upon receipt of at least a baccalaureate degree.

Standard Four-Year Program

This standard program is designed for incoming freshmen, or any student with four years remaining until degree completion. It consists of three parts: the general military course (GMC) for lower-division (normally freshman and sophomore) students; the professional officer course (POC) for upper-division students (normally juniors and seniors); and the leadership laboratory (LLAB) attended by all cadets. Completion of a four-week summer training course is required prior to commissioning.

Modified Two-Year Program

All undergraduate and graduate students are eligible for this program. It is offered to full-time, regularly enrolled degree students and requires at least two years of full-time college work (undergraduate or graduate level, or a combination). Those selected for this program must complete a five-week field training program during the summer months as a prerequisite for entry into the professional officer course the following fall semester.

Leadership Lab

All AFROTC cadets must attend leadership lab (one and one-half hours per week). The laboratory involves a study of Air Force customs and courtesies, drill and ceremonies, career opportunities, and the life and work of an Air Force junior officer.

Other Air Force ROTC Programs

Other programs are frequently available based on current Air Force needs. Any AFROTC staff member in Boulder (303-492-8351) can discuss the best alternatives. Interested students should make initial contact as early as possible to create the best selection opportunity, as selection is on a competitive basis. There is no obligation until a formal contract is entered.

Air Force College Scholarship Program

Normally a scholarship board is held at the end of each semester for students who have at least one semester of full-time college credit. Prior participation in AFROTC is not required to compete for these scholarships. Students can compete for scholarships in most academic majors. There is a current demand for students who can graduate by May 2003 in chemistry, computer science, mathematics, physics, meteorology, foreign area studies, foreign language, and most engineering programs. Students selected for this program receive scholarships that pay up to $15,000 in tuition, a book allowance, nonrefundable educational fees, and subsistence of $200 per month, tax-free. All cadets enrolled in the professional officer course receive $200 per month subsistence during the regular academic year. These scholarships are available in all academic disciplines and are two to three years in length.

USAF Medical Programs

Qualified premied or nursing students can compete for medical or nursing scholarships. These scholarships can lead to a career as an Air Force officer, serving as a doctor or nurse. The prehealth scholarship pays for an undergraduate degree and medical school.

Air Force ROTC Course Credit

AFROTC credit for graduation varies with each college. Students should contact the appropriate college for credit determination.

Registration

CU-Boulder students who wish to register for AFROTC classes sign up for them through the normal course registration process.

Military Science (U.S. Army)

The Department of Military Science offers programs leading to an officer’s commission in the active Army, Army Reserve, or National Guard in conjunction with an undergraduate or graduate degree. Military science courses are designed to supplement a regular degree program by offering practical leadership and management experience.

Four-Year Program

The four-year program consists of two phases: the basic course (freshman and sophomore years) and the advanced course (junior and senior years). The basic course
offers a 2- or 3-credit course each semester, covering Army history and organization as well as military leadership and management. Laboratory sessions provide the opportunity to apply leadership skills while learning basic military skills. Enrollment in the basic course incurs no military obligation except for Army scholarship recipients.

The advanced course covers leadership, tactics and unit operations, training techniques, military law, and professional ethics, and includes a leadership practicum each semester. A 35-day summer advanced camp at Fort Lewis, Washington, provides challenging leadership training, and is a prerequisite for commissioning.

Two-Year Program

The two-year program consists of the advanced course, preceded by a six-week summer ROTC basic camp. Veterans or students who have participated in Junior ROTC, Civil Air Patrol, or similar organizations may be eligible to enroll in the advanced course without attendance at basic camp or completion of the basic course. Inquiries on advanced placement should be directed to the Department of Military Science.

Scholarship Programs

Four-year college scholarships are available to high school seniors, who should apply before November 15 of their senior year. Competition for two- and three-year scholarships is open to all University of Colorado students, regardless of academic major and whether or not they are currently enrolled in ROTC. Scholarship students receive tuition assistance, laboratory fees, a book allowance, and an allowance of $200 per month during the academic year. Students interested in the scholarship program should contact the scholarship officer no later than the beginning of the spring semester to apply for the following academic year.

Simultaneous Membership Program

Students entering the advanced phase of instruction may participate with a Reserve or National Guard unit as an officer trainee. Students participating in this program earn $222 monthly pay from the Reserve or National Guard in addition to the $200 per month cadet allowance.

Professional Military Education

The Army ROTC course curriculum cuts across traditional subject boundaries. It involves elements of various disciplines and encourages students to integrate academic training with the problem-solving and decision-making challenges they will encounter as junior officers in the Army of the 21st century. Additionally, the formal curriculum is supplemented by field trips, guest speakers, and specialized military training. Prior to their commissioning, cadets are also required to take non-ROTC university courses in written communications, military history, and computer literacy.

Leadership Laboratories. These 90-minute periods provide cadets with practical leadership experience and performance-oriented instruction outside the classroom. Diagnostic evaluations of cadets in leadership roles are frequently administered. Leadership labs are compulsory for enrolled cadets.

Preprofessional Programs. Students pursuing medical or nursing degrees may enroll in military science and may be eligible for specially funded programs in these disciplines.

Naval Science

Naval science course work is offered in the fall and spring semesters only. All naval science students enroll in NAVR 1010, 2020, 4010, and 4020. Those desiring commissions in the U.S. Navy enroll in NAVR 3020, 3030, 3040, and 4030 for upper-division work. Those desiring commissions in the U.S. Marine Corps enroll in NAVR 3101 and 4101 for upper-division work.

Scholarship Programs

NROTC offers two-, three-, and four-year scholarship programs, and two-year and four-year college (non-scholarship) programs. Navy scholarships may be earned while students are enrolled in the college program. Scholarship students receive tuition and fees, books, and a $200 per month subsistence allowance. College program students receive a $200 per month subsistence allowance during their last two years in the program.

Naval science scholarship students must complete one year of calculus, physics, and English, and one semester of American military history or national security policy, and computer science. Students should check with their naval science instructor to determine specific course offerings that fulfill the above requirements.

Degree Credits

The number of NROTC semester hours of credit that may count toward degree requirements is determined by the individual colleges. Students should therefore consider their college’s policy when formulating their degree plan.

Commissioned Service

Opportunities for commissioned service are presently available in the unrestricted line (surface, subsurface, aviation, special warfare, and special operations) and staff corps (nursing) in the U.S. Navy. Opportunities in ground and aviation specialties are available in the U.S. Marine Corps. Students interested in other programs leading to commissions in either the U.S. Navy or U.S. Marine Corps are encouraged to contact the NROTC unit on campus. All commissioning programs require that the student be working toward, and receive, a college degree.

Course Descriptions

The following courses are offered in the ROTC programs on the Boulder campus. This listing does not constitute a guarantee or contract that any particular course will be offered during a given year.

For current information on times, days, and instructors of courses, students should consult the Registration Handbook and Schedule of Courses issued at the beginning of each semester.

Courses are organized numerically by ROTC unit. The number after the course number indicates the semester hours of credit that can be earned in the course.

Abbreviations used in the course descriptions are as follows:

- Prereq.—Prerequisite
- Coreq.—Corequisite
- Lab.—Laboratory
- Rec.—Recitation
- Lect.—Lecture

Air Force Aerospace Studies

AIRR 1010-1. The Air Force Today 1. One 1-hour lecture and one ½-hour lab per week. Introduces students to the U.S. Air Force and the USAF officer profession. Uses instructor lectures, films and videos, and group activities to examine Air Force issues, officer qualities, and military customs and courtesies. Emphasizes the communication skills necessary for an Air Force officer.

AIRR 2010-1. Development of Air Power 1. One 1-hour lecture and one ½-hour lab per week. Studies air power from balloons and dirigibles through the jet age and historically reviews air power employment in military and nonmilitary operations in support of national objectives. Looks at the evolution of air power concepts and doctrine and introduces the development of communicative skills.

AIRR 3010-3. Air Force Management and Leadership 1. Two 1 ½-hour seminars plus one 1 ½-hour lab per week. Provides an integrated management course emphasizing concepts and skills required by the successful
manager and leader. Includes individual motivational and behavioral processes, leadership, communication, and group dynamics while providing foundation for the development of the junior officer’s professional skills (officership). Emphasizes decision making and use of analytic aids in planning, organizing, and controlling in a changing environment. Discusses organizational and personal values (ethics), management of change, organizational power, politics, managerial strategy, and tactics within the context of military organization. Uses actual Air Force case studies throughout the course to enhance the learning and communication process.

AIRR 4010-3. National Security Forces in communicative skills. Continues to emphasize the development of while employing group discussions, case studies, and role playing as learning devices. Continues to emphasize the development of communicative skills.

MILR 4082-3. Officer Leadership and Development 2. A continuation of the MILR 4072 study of management and leadership concepts and techniques, providing practical leadership experiences in the classroom and during multiple cadet-run activities. Also examines varied topics such as theory and practice of military justice system, law of war, military-media relations, support mechanisms for soldiers and their families, operational security considerations, and historical case studies in military leadership in the context of 21st-century land warfare. Includes a $35 lab fee.

NAVR 3020-3. Naval Operations and Marine Affairs. Studies the importance of seapower in history including naval, maritime, and other commercial uses of the sea. Emphasizes significant milestones in the history of the U.S. Navy and Marine Corps and their role in the national strategies and policies of the United States.

NAVR 3030-3. Naval Operations and Maritime Law. Examines the Inland and International Rules of the Nautical Road, including court interpretations, principles of relative motion and vector analysis with the maneuvering board, ship handling procedures, weather, communications, tactical operations, and maritime law.

NAVR 3040-3. Weapons and Systems Analysis. Introduces theoretical concepts upon which modern naval weapons systems are designed and constructed. Specific areas of study include physics of underwater sound propagation, pulse
radar theory, automatic tracking principles, and fundamentals of missile guidance.

NAVR 3101-3. Evolution of Warfare. Traces the development of warfare, focusing on the impact of military theorists and technical developments. Assists students to acquire a sense of strategy, develop an understanding of military alternatives, and see the impact of historical precedent on military actions.

NAVR 4010-3. Leadership and Management
1. Comprehensively studies organizational leadership. Emphasizes motivation, communication, empowerment, and needs of subordinates. Studies the role of professional and personal ethics in organizational leadership.

NAVR 4020-3. Leadership and Management
2. Studies the ethics and laws of armed conflict, analyzing the leadership responsibilities of officers in conflict. Studies the military justice system and Naval legal administrative procedures, comparing military law with civil practice system and Naval legal administrative conflicts, analyzing the leadership responsibilities of junior officers within the military justice system.

NAVR 4101-3. Amphibious Warfare. Surveys the development of amphibious doctrine. Emphasizes the evolution of amphibious warfare in the 20th century. Explores present-day potential and limitations on amphibious operations, including the rapid force deployment concept.

Faculty

Aerospace Studies

CAMERON M. CRAWFORD, Colonel, USAF; Professor of Aerospace Studies. B.A., M.B.A., University of Colorado.

JOHN W. MEADOR (BILL), Major, USAF; Assistant Professor of Aerospace Studies. B.A., University of California at Santa Barbara; M.A., Texas Christian University.

KARA K.J. NEUSE, Captain, USAF; Assistant Professor of Aerospace Studies. B.A., Tulane University; M.A., Troy State University.

PETER M. POLLOCK, Captain, USAF; Assistant Professor of Aerospace Studies. B.Ed., University of Hawaii; M.A., University of Nebraska.

STEVE G. WHITE, Captain, USAF; Assistant Professor of Aerospace Studies. B.S., Texas A&M University; M.B.A., Embry-Riddle Aeronautical University.

Military Science (U.S. Army)

WAYNE L. MEEUSEN, Lieutenant Colonel, U.S. Army; Assistant Professor of Military Science. B.S., Grand Valley State University; M.S.B.A., Boston University.

MICHAEL R. NIFONG, Lieutenant Colonel, U.S. Army; Professor of Military Science. B.A., M.A., University of North Carolina at Chapel Hill.

ROBERT W. REDDING, Major, U.S. Army; Assistant Professor of Military Science. B.S., M.A., Texas A&M University.

Naval Science

DARIN S. CLINE, Lieutenant, USN; Assistant Professor. B.S., U.S. Naval Academy; M.S., Southern Methodist University.

WILLIAM G. CUSHMAN, Lieutenant, USN; Instructor. B.S., U.S. Naval Academy.

WILLIAM B. GARRETT, Colonel, USMC; Professor of Naval Science. B.A., Davidson College; M.S., Naval War College.

JOHN L. HOWREY, Lieutenant, USN; Assistant Professor. B.S., Iowa State University.

STEVEN A. McLAUGHLIN, Commander, USN; Assistant Professor. B.S., University of Oregon; PSC, Royal Naval College.

CHRIS NELSON, Lieutenant, USN; Instructor. B.A., University of Colorado.

MARK L. RANEY, Captain, USMC; Assistant Professor. B.S., Washburn University.

TECHNOLOGY, ARTS, AND MEDIA CERTIFICATE PROGRAM

We are in the midst of an information system and communication revolution. New multimedia technologies and networked communications have swiftly created a demand for citizens who understand the multidisciplinary nature of today’s information technologies, business and other applications, and society. The Technology, Arts, and Media (TAM) certificate provides this preparation. The program, which is open to students from every school and department at CU-Boulder, teaches students from a broad range of disciplines how to use each others’ tools and speak each others’ languages. The certificate provides a flexible structure for students to question and analyze the convergence of technology, arts, and media across disciplines. It exposes students to new worlds of knowledge, introducing them to the possibilities that disciplines other than their own can offer them. The combined effect is to enable students to develop the practical and critical thinking skills required for effective participation in the digital world and in a variety of new career paths.

The certificate encourages humanities students to explore the potential of new information technologies and artistic design to revolutionize their fields of study. TAM allows design students to explore how such subjects as narration, cognitive sciences, communicative theory, or computer programming might reshape their area of expertise. For science and engineering students, the TAM certificate provides the opportunity to mix technical knowledge with creative perspectives from the arts and humanities. Through its project courses, the certificate program emphasizes multidisciplinary collaboration, communication, and teamwork. In sum, the TAM certificate encourages all students to discover new technological possibilities as well as artistic and informational media and to appreciate the social and historical implications of those media.

Program Requirements

The certificate program comprises six courses, offered for a total of 18 credits.

An introductory course, the Future of Technology, Arts, and Media, offers to entry-level students an overview of the breadth and range of the information technology, arts, and media-related fields open to them. This course outlines the various skills that certificate students acquire during their tenure at CU-Boulder. Students meet and exchange ideas with CU faculty from a broad range of disciplines, and with outside guests from local and national industry, government, and arts institutions. By the end of the course, students have acquired some basic technical skills, such as e-mailing, web-browsing, and basic web page creation; they will be aware of the rapid expansion of new technology, arts, and media fields open to them and of the skills necessary for success in each field; and they will have begun to think critically about the implications and impacts of new information technologies, media, and artistic forms. This course requires no prior technical knowledge.

Two projects courses are required, one introductory and one capstone, in which students from a variety of backgrounds and disciplines engage in applied multimedia projects. The courses encourage collaboration, invention, and problem solving throughout by
students of specific technical, artistic, and ana-
lytical skills developed during the course of the
semester. Students produce several multime-
dia works, both as individuals and in interdis-
ciplinary groups, and demonstrate a critical
appreciation of the social, communicative,
and technical implications of these products.
By the end of the capstone course, students
have portfolios that demonstrate their develop-
ment and potential as well as written
analyses of their work during the certificate
program. Additionally, the capstone projects
course involves some degree of production for
real-world clients, largely outside of the uni-
versity. During the next year TAM will
increase the number of projects courses to
between two and three per semester.
From a list of courses offered campuswide,
students take three core courses, one in each
of the following categories: the history and
social implications of technology, arts, and
media; theories and foundations of technol-
gy, arts, and media; and invention and prac-
tice in technology, arts, and media. Students
may not take more than one core course
within a single academic department. The
purpose of the core is to provide students with
a broad perspective on technology, arts, and
media; to encourage students to take courses
in a variety of disciplines and to experience
the environments and problem-solving tech-
niques in other fields of specialization; and
to learn to apply new skills to their own aca-
demic endeavors.
For more information, see the web site
at www.colorado.edu/ATLAS.

Faculty

ROBERT B. SCHNABEL, Director; Professor,
Department of Computer Science. B.A., Dart-
mouth College; M.S., Ph.D., Cornell University.

DIANE E. SIEBER, Faculty Associate Director;
Associate Professor, Department of Spanish and
Portuguese. B.A., University of Virginia; M.A.,
Ph.D., Princeton University.
A
Academic advising, 7; in architecture and planning, 49; arts and sciences, 62; business, 302; education, 324, 325; engineering, 343; journalism, 419; preprofessional, 468
Academic Advising Center, 8
Academic affairs, 7
Academic calendar, 2
Academic excellence: in architecture and planning, 46; arts and sciences, 60; business, 299; education, 323; engineering, 338; graduate school, 400; journalism, 417; law, 426; music, 444
Academic Excellence Program, 38
Academic integrity, 40. See also Ethics.
Academic programs: CU-Boulder, 6; Colorado Springs, 6; Denver, 6; Health Sciences Center, 6; in residence halls, 25; discontinuance of, 40
Academic progress, 18; in engineering, 338
Academic records, 17
Academic standards: in architecture and planning, 47; arts and sciences, 60; business, 299; education, 323; engineering, 338; graduate school, 400; journalism, 418; law, 428; music, 444
Accounting, 303; courses, 309
Accreditation, 5; in business, 297; in education, 323; engineering, 335; journalism, 417; law, 327; music, 443; Wardenburg, 39
ACT tests, 11
Actuarial Studies, 72
Adding and dropping courses, 26
Administration of the university, 5
Administrative officers, 5
Admission: undergraduate students, 8; freshman students, 10; transfer students, 11; international students, 15; nondegree students, 16; graduate students, 400; in architecture and planning, 47; business, 300; education, 323; engineering, 339; graduate school, 400; journalism, 418; law, 428; music, 445; PLC, 470
Admission to candidacy, in graduate school, 400, 404
Advanced Placement (AP) program, 11; credit, 13; in architecture and planning, 48; arts and sciences, 61; business, 301; engineering, 341
Advertising, 420; courses, 423
Advising, See Academic advising.
Aerospace Engineering Sciences, 347; courses, 365; graduate laboratories, 413
Affirmative action, 2
Afroamerican Studies courses, 183. See also Ethnic Studies.
Air Force Aerospace Studies, 183. See also Ethnic Studies.
Air Force Aerospace Studies, ROTC, 471; courses, 472
Alcohol policy, 40
Alliance for Technology, Learning, and Society, 30, 474
Alumni Association, 30
American Chemical Society Certification, 79
American Indian Studies courses, 184. See also Ethnic Studies.
American Sign Language, courses, 264
American Studies, 72; courses, 137
Anderson Language Technology Center, 28
Animal use policy, 116; and human research, 402
Anthropology, 73; courses, 137
Appeals. See Petitions.
Appellate advocacy clinic, 428
Applicants not granted admission, 11
Application and admission notification, 10
Application deadlines, 10
Application procedures for admission, 11; in education, 324; graduate school, 400; law, 429
Applied Behavioral Science, 405
Applied Mathematics, 73, 349; courses, 142, 368
Architectural Engineering, 351; courses, 370
Architecture and Planning, College of, 6, 45; courses, 51; faculty, 54
Architecture emphasis in architecture and planning, 49
Arctic and Alpine Research, Institute of (INSTAAR), 411
Areas of application, in business, 305
Areas of emphasis, business, 303
Areas of interest, arts and sciences, 71
Army. See ROTC; Military Science.
Art galleries and collections, 30, 98
Art History, 97; courses, 191
Articulation agreements, in arts and sciences, 62
Artist Series, 29. See Macky Auditorium Concert Hall
Arts and Sciences, College of, 6, 57; courses, 137; faculty, 274
Arts and Sciences, general courses, 145
Arts and Sciences Honors Program, 32, 57
Asian American Studies, 184. See also Ethnic Studies.
Asian Studies, 75; courses, 146
Assistantships, in education, 327; graduate school, 402
Assured transfer opportunities, 12
Astrophysical and Planetary Sciences, 75; courses, 146; research facilities, 413
Astrophysics/physics track, 76
Atmospheric and Space Astronomy, Center for (CASA), 412
Athletics, intercollegiate, 32
Atmospheric and Oceanic Sciences, Program in (PAOS), 77, 78; courses, 149; graduate program, 405
Atmospheric and Space Physics, Laboratory for (LASP), 412
Attendance regulations: in architecture and planning, 48; arts and sciences, 60; business, 300; engineering, 341; journalism, 418; law, 430; music, 445
Auditing classes, 23
Auditions, music, 445
Available Credit Courses for Eligible Special Students (ACCESS) program, 466
Biochemistry, 79
Bioengineering, 348
Biological sciences. See Environmental, Population, and Organismic Biology, and Molecular, Cellular, and Developmental Biology.
Biotechnology, graduate program, 406
Black Studies. See Ethnic Studies.
Board of Regents, 5
Boulder campus, 5
British Studies, 78; Center for, 413
Broadcast News, 420; courses, 424
Broadcast Production Management, 420; courses, 424
Buff OneCards, 38
Bureau of Business Research, 297
Business Administration, graduate degree programs, 306; courses, 311
Business and Administration, College of, 7, 297; areas of emphasis, 303; areas of application, 305; courses, 309; faculty, 320
Business Board, 299
Business Core, requirements, 302; courses, 311
Business Economics courses, 312
Business Law courses, 312
Business Policy and Strategic Management courses, 312
Business Research Division, 297, 412
B
Council on Academic Programs in the Residence Halls (CAPRH), 25
Counseling and Psychological Services: A Multicultural Center, 36
Course descriptions. See individual college and school sections.
Course equivalencies, system, in engineering, 340
Course fees, 21
Course load: undergraduate, 17; graduate, 17; in business, 301; education graduate study, 325; law, 430; music, 446
Creative Writing, 90
Credentials for admission, 10
Credit by examination, 15, 19; in arts and sciences, 61; in business, 301
Credit for military service and schooling, 15. See also Reserve Officers Training Corps.
Credit/no credit, 27; arts and sciences, 61; engineering, 342; graduate school, 400
Credit policies: in architecture and planning, 48; arts and sciences, 60; business, 301; engineering, 342; graduate school, 400; journalism, 418; music, 446
Credit taken outside arts and sciences, 61
Critical thinking, requirement in arts and sciences, 65
Cross-listed courses, 61
CU Business Advancement Center, 298, 412
CU Heritage Center, 29
Cultural and gender diversity, requirement in arts and sciences, 66
Cultural Unity Center, 36

D

Dance, 133; courses, 268
Day-care center, 35
Dean’s list: in arts and sciences, 60; business, 299; engineering, 338
Deferred payment of tuition, 22
Degree requirements. See Bachelor’s degree requirements, Master’s degrees, Doctoral degrees, and individual departmental sections
Dental Hygiene, 468
Dentistry, 468
Denver campus: colleges and schools: 7; architecture and planning, 48; engineering, 343
Design and Manufacturing, 410
Design studies emphasis in architecture and planning, 46, 51
Diplomas, 28
Disability Services, 37
Dismissal, in arts and sciences, 60
Dissemination credit and requirements. See Doctoral degrees.
Dissemination defense, 404
Distributed Studies Program, 83
Diversity, 9; in business, 300
Doctor of Musical Arts, 454
Doctor of Philosophy, 403; in business, 308; education, 326; engineering, 346; journalism, 421; music, 455
Doctoral candidate tuition, 22
Doctoral degrees: list of, 399; requirements for, 403; in business, 308; education, 326; engineering, 346; journalism, 421; music, 454. See also individual degree programs and departmental sections.
Double-degree programs: in architecture and planning, 51; arts and sciences, 71; business, 303; engineering, 345; journalism, 419; law, 433
Double majors, in arts and sciences, 71
Drop/add policies, 26; in engineering, 343; law, 430; music, 446
Drug policy, 40
Drug conviction, 24
Dual-degree programs, in law, 433
Dual master’s program, 85

E

East Asian Languages and Civilizations, 83; courses, 163
Economics, 85; courses, 167
Education, School of, 7, 323; courses, 327; faculty, 332. See also Graduate School.
Electrical and Computer Engineering, 359; courses, 382; research equipment and facilities, 414
Electrical Engineering, 359
Electronics Packaging certificate program, 410
Emancipation, 20
Embedded Systems, certificate program, 410
Employees, tuition rates, 22
Employment, student, 25
Engineering and Applied Science, College of, 7, 355; courses, 364; faculty, 393. See also Graduate School.
Engineering and Science Residential Program, 25
Engineering, general courses, 387
Engineering Management, certificate program, 410; courses, 386
Engineering, Master of, 346
Engineering Physics, 361
English, 90; courses, 172
English as a Second Language courses, 224. See also Linguistics.
Enrollment and graduation rates, undergraduate, 6
Enrollment deposit, 20, 26
Ensembles, music, 445
Entrepreneurship and Small Business Management, 305; courses, 312
Entrepreneurship Center, in music, 444
Environmental Design courses, 373; research laboratories, 414
Environmental Engineering, 362
Environmental Geoscience, 104
Environmental Health and Safety, 37
Environmental Policy: graduate program, 406; certificate program in law, 433
Environmental, Population, and Organismic Biology, 91; courses, 176
Environmental Studies, 93; courses, 181
Equal opportunity/affirmative action, 2, in engineering, 335
Ethics: in architecture and planning, 47; arts and sciences, 60; business, 299; engineering, 338; graduate school, 400; music, 444
Ethnic Studies, 94; courses, 182
Events Center, Coors, 28
Expenses, 20; for law students, 430
Extern program, law, 428

F

Facilities on campus, 28; in architecture and planning, 45; business, 297; engineering, 335; journalism, 417; law, 427; music, 443
Faculty. See individual college and school sections.
Faculty member admission, to graduate school, 401
Faculty/staff registration, 28; fees, 22
Faculty/staff health services, 39
Faculty Teaching Excellence Program, 31
Fall Freshman Experience Success Teams (FallFEST), 57
Family Educational Rights and Privacy Act (FERPA), 19
Family housing, 26
Farrand Residential Academic Program, 25, 59; courses, 186
Federal Direct Stafford Loan, 24
Federal Perkins Loan, 24
Federal PLUS Loan, 24
Federal PLUS (Parent) Loan, 24
Fees, 21; for Wardenburg, 39
Fellowships and scholarships, graduate, 400. See also Financial aid and Scholarships, awards, and prizes.
Film Studies, 95; courses, 186
Final examination policy, 41. See also individual colleges and schools.
Finance, 304; courses, 312
Financial aid, 23: for graduate students, 312; journalism, 418; law, 430; music, 444, 453
Fine Arts, 97; courses, 188
Fiske Planetary and Science Center, 28
Foreign language requirement: in arts and sciences, 64; graduate school, 403, 404
Foreign Student and Scholar Services, 33
Former student admission, 16; in education, 324; engineering, 341; graduate school, 401
Four-year graduation guarantee: in arts and sciences, 63; engineering, 344
Fraternities and sororities, 32
French and Italian, 100; courses, 193
Freshman admissions, admission of, 10; in business, 300; engineering, 339

G
General astronomy track, 76
General education requirements: in architecture and planning, 49; arts and sciences, 64; business, 302; education, 324; engineering, 344; journalism, 419; music, 446
General Engineering, courses, 387
General Music emphasis, 451
Geography, 102; courses, 197
Geological Sciences, 103; courses, 202
Geophysics, 77, 104; graduate program, 407
Germanic and Slavic Languages and Literatures, 105; courses, 206
Golden Buffalo student health insurance, 22
German degree, 107
Grade point average, 18; requirements in architecture and planning, 47; arts and sciences, 60; business, 302; engineering, 330; graduate school, 400; journalism, 418; law (numerical average), 428; music, 445
Graduate degrees: list of, 6, 399; in architecture and planning, 45; business, 306; education, 325; engineering, 346; journalism, 420; music, 452. See also Doctoral degrees; Law, School of; Master’s degrees; and individual departmental sections.
Graduate Part-Time Instructors (GPTIs), 402
Graduate School, 399
Graduate Teacher Program, 402
Graduation: in arts and sciences, 60, 72; business, 299; engineering, 345; journalism, 419; law, 431
Graduation deadlines, arts and sciences, 72
Graduation rates, undergraduate enrollment and, 6
Grants, 24
Greek, 80; courses, 158
Guaranteed admission for Colorado resident freshmen, 11
Guitar Performance concentration, 448

H
Hallet Diversity Program, 25
Health Center, Wardenburg, 39
Health insurance, 22
Health Sciences Center, schools, 7
Herbar Program of Humanities, 337
Heritage Center, CU, 29
High Altitude Observatory (HAO), 415
High school, concurrent enrollment, 14
Historical context, requirement in arts and sciences, 66
History, 107; courses, 211
History of the university, 5
Honor code, 3. See also Academic Integrity.
Honor societies, 32; in arts and sciences, 62; business, 299; education, 323; engineering, 337; journalism, 417; law, 428; music, 444
Honor system, law, 428
Honors at graduation: architecture and planning, 47; arts and sciences, 60; business, 299; engineering, 338; journalism, 417; law, 428; music, 444
Honors Program, in arts and sciences, 34, 57; courses, 219
Housing, 25; application for, 26; family, 26
Housing security deposit, 21
Human Language Technology, 407
Human resources track, in management, 304
Humanities, 82; courses, 161. See also Comparative Literature and Humanities.
Humanities in Engineering, courses, 388

I
ID cards, 38
Ideals and values, requirement in arts and sciences, 70
Incomplete grades, 18; in architecture and planning, 48; business, 301; engineering, 342
Independent study, 34; in architecture and planning, 48; arts and sciences, 61; business, 301
Indian Law Clinic, 428
Information Systems, 304; courses, 313
Information Technology Services, 35
In-state students, classification of, 20
Institute for Behavioral Genetics (IBG), 411
Institute of Arctic and Alpine Research (INSTAAR), 411
Institute of Behavioral Science (IBS), 411
Institute of Cognitive Science (ICS), 411
Instrumental Music emphasis, 452
Insurance, student health, 22
Integrated Marketing Communications, 420
Intercampus transfer, student admission in engineering, 339
Intercollegiate athletics, 32
Interdisciplinary Arts, 99
Interdisciplinary programs, graduate, 405
International Affairs, 108; courses, 219. See also Political Science.
International and National Voluntary Service Training (INVST), 110; courses, 220
International baccalaureate examinations, 15, 61
International Business, 305; courses, 314
International Education, Office of, 32
International English Center, 33
International Relations, Center for, 413
International Spanish for the Professions, 129
International student admission, 15; law, 429
Internships, 35; in arts and sciences, 61; journalism, 417
Interpreter Education in American Sign Language, certificate program, 410
Intrauniversity transfer (IUT) admission, 15; in architecture and planning, 48; business, 300; engineering, 341; journalism, 418
Italian, 101; courses, 196

J
Japanese, 84; courses, 165
Jazz studies, certificate program, 452
JILA, 411
Jewelry and Mass Communication, School of, 7, 417; courses, 421; faculty, 424. See also Graduate School.
Judicial Affairs, Office of, 42
Juris Doctor, requirements, 431
Juris Doctor/MBA degree, 307

K
Kinesiology and Applied Physiology, 110; courses, 220
Kittredge Honors Program, 25, 59

L
Labs and special equipment, graduate, 413
Laboratory for Atmospheric and Space Physics (LASP), 412
Landscape architecture option in architecture and planning, 46
Language requirement: in arts and sciences, 64; for master’s students, 403; for Ph.D. students, 404. See also individual departments.
Language Technology Center, 28
Late registration fee, 21
Latin, 80; courses, 158
Latin American Studies, 112
Law, School of, 7, 427; courses, 433; faculty, 440
Lecture program in architecture and planning, 46
Lectureships, law, 427
Legal Aid and Defender Program, 427
Lesbian, Gay, Bisexual, and Transgender Studies, 112; courses, 222
Libraries, 29; career, 35; law, 427
Linguistics, 112; courses, 222
Literature and the arts, requirement in arts and sciences, 68
Loans, 24. See also Financial Aid.

M
Macky Auditorium Concert Hall, 29
Major requirements, arts and sciences, 71
Management, 304; courses, 314
Map, 476
Marketing, 305; courses, 315
Mass Communication Research, 421
Master of Arts, 402. See also individual departments and entire Graduate School section.

Master of Arts in education, 325

Master of Business Administration, 306, 308; courses, 317

Master of Business Administration/Master of Telecommunications, 307

Master of Engineering, 346, 407

Master of Music, 453

Master of Music Education, 453

Master of Science, 402. See also individual departments and entire Graduate School section.

Master of Science in Business Administration, 308

Master’s degrees: list of, 399; requirements for, 402; in business, 306; education, 325; engineering, 346; journalism, 420; music, 452. See also individual departmental sections.

Mathematics, 114; courses, 224

Matriculation fee, 21

McGuire Center for International Economics, 413

Mechanical Engineering, 363; courses, 388; research laboratories, 414

Mechatronics Laboratory, 414

Media and Communication, 408

Media Arts, 98

Media Studies, 420

Medical center, 467. See also Health Sciences Center.

Medicine, 468

Medieval and Early Modern Studies, 115; courses, 229

MEMS Research and Development Laboratory, 414

Mid-America Manufacturing and Technology Center, 298, 412

Military Science, U.S. Army, 471; courses, 473

Military service, credit for, 15

Minimum Academic Preparation Standards (MAPS), 11, 14, 17

Minor requirements: in arts and sciences, 71; business, 303; engineering, 345. See also individual departments.

Minority Arts and Sciences Program, 58

Mission statement, 5

Molecular Biophysics, 408

Molecular, Cellular, and Developmental Biology, 116; courses, 229

Moot court competitions, 428

Mountain Research Station, 411

Multicultural Access and Community Affairs (MACA), 9

Multicultural Engineering Program, 337

Multiple degrees: list of, 399; requirements for, 402; in business, 306; education, 325; engineering, 346; journalism, 420; music, 452. See also individual departmental sections.

Music, general emphasis, 446

Music technology, certificate in, 452

Musical Arts, Doctor of, 454

Musical Theatre, 132

Musicology concentration, 448

N

National and institutional testing, 35

Natural Resource Litigation Clinic, 428

Natural Science requirement in arts and sciences, 68

Naval Science, ROTC, 472; courses, 473

Neuroscience and Behavior, graduate program, 409

Neurosciences and Behavior Studies, 117

News-Editorial sequence, 420; courses, 422

No credit: in business, 301; in engineering, 342; graduate school, 400

Nondegree student admission, 16; tuition rates, 22; in graduate school, 401; music, 445

Nondegree student credit, 61, 401

Nonlinear phenomena, 74

Norlin Scholars Program, 25, 58, 467

Nuclear Physics Laboratory, 414

Nursing, 468

Observatory, Sommers-Bausch, 30

Off-Campus Student Services, 26

Ombuds Office, 37

Open option: in arts and sciences, 71; engineering, 336

Operations management, track in business, 305

Optical Sciences and Engineering, 409

Order of the Coif, 428

Organ Performance concentration, 448

Organization Management, courses, 319

Oriental Languages and Literatures, See East Asian Languages and Civilizations.

Orientation, Office of, 8; in architecture and planning, 49; arts and sciences, 62

Other academic programs, 465

Out-of-state students, classification of, 20

P

Parking and Transit Services, 37

Part-time employment, for law students, 430

Pass/fail: procedure, 27; in architecture and planning, 48; arts and sciences, 61; business, 301; engineering, 342; graduate school, 400; journalism, 418; law, 428; music, 446

Payment, tuition and fees, 22

Peace and Conflict Studies, 117; courses, 234

Performative tendency, 452

Personal check policy, 23

Personal safety on campus, 41

Personnel/Human Resource Management, courses, 319. See also Management

Petitions, appeals: in arts and sciences, 60; engineering, 339; music, 445

Pharmacy, 469

Phil Beta Kappa, 60

Philosophy, 118; courses, 234

Photo ID cards, 38

Physical Applied Mathematics, 72

Physical Therapy, 469

Physics, 119; courses, 237

Piano Performance concentration, 449

Placement services, for law students, 427

Plagiarism, 40

Planetarium, Fiske, 28

Planetary Sciences, 77

Planning, Budget, and Analysis, Office of, 38

Planning emphasis in architecture and planning, 46, 50

PLUS loan, 24

Polish, courses, 209

Political Science, 121; courses, 240

Population Studies, graduate program, 409

Portuguese, 130; courses, 262

Postbaccalaureate students seeking admission, in education, 324

Preheath Sciences, 467

Prejudicial and Mass Communication, 418, 470

Prelaw, 428, 470

Preliminary examination, doctoral study, 404; in music, 452

Premedical option in engineering, 345

Preprofessional advising, 468. See also Academic Advising Center.

Preprofessional programs, 10, 467

President’s Leadership Class (PLC), 470; courses, 471

President’s Teaching Scholars Program, 31

Probability and statistics, 72

Probation: in architecture and planning, 47; arts and sciences, 60; business, 300; education, 299; engineering, 338; graduate school, 400; journalism, 418; music, 445

Professional certificate programs, 410

Professional programs, 467

Professional registration, engineering, 336

Program in Atmospheric and Oceanic Sciences (PAOS), 77, 78; courses, 149; graduate program, 405

Provisional degree students, graduate, 401; in music, 445

Psychology, 125; courses, 248

Public Policy (Political Science), 123

R

Readmission: of former undergraduate students, 16; of former and suspended students, in graduate school, 401

Real Estate, 306; courses, 319

Real Estate Center, 298

Reasonable academic progress, 18, 24; in law, 430

Reciprocal Exchange Agreement Program, 402

Recitals, music, 445

Recognition of scholarship, in architecture and planning, 46

Records, academic, 17

Recreation Center, 29

Recreation program. See Tourism Management.

Refunds and withdrawal charges, 23

Regents, 5

Registration, 26; late, 28; faculty and staff, 28; business, 300; engineering, 343; graduate school, 401. See also Academic calendar.

Religious Studies, 126; courses, 252

Remote Sensing, graduate program, 409

Repeated courses: in architecture and planning, 48; arts and sciences, 61; engineering, 343; graduate school, 400