Model Selection and Assessment

Sam Reid
Advisor Greg Grudic

University of Colorado at Boulder
Department of Computer Science

January 23, 2008
Model Selection and Assessment

- Model Assessment: “How good is my model?”
- Model Selection: “How can I fine-tune my model?”
- Model Assessment ⇒ Model Selection
Definitions

- **Data Set**
 \[D = \{(x_1, y_1), \ldots, (x_n, y_n)\} \]

- **Model = Classifier/Regression Model**
 \[\hat{y}(x) = f(x), x \in \mathbb{R}^d \]

- **Model is characterized by internal parameters**

- **Machine Learning Algorithm = Inducer**
 \[I(D|\Phi) = \hat{y}(x) \]

- **\(\Phi \) are tuning parameters/hyperparameters**
Classifier Examples

- Linear Model, e.g. $\hat{y}(x) = 3x + 2$
- Polynomial Model e.g. $\hat{y}(x) = 3x^2 + 2x^9 + 3 + 7x_0$
- K-Nearest Neighbor Model (regression), e.g. $\hat{y}(x) = \text{avg}_y(\text{nearest}3(a, b, c, d, e))$
- Fourier Series
- Neural Network
- Decision Tree
- Support Vector Machine
Example Dataset (1-dimensional regression problem):

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>
Linear Fit
4th Degree Polynomial
Quadratic
Cubic

Figure showing a cubic fit to data points.
1-Nearest Neighbor

![Graph showing a fit to a data set with 1-nearest neighbor model.](image)

- Sam Reid (CU Boulder)
- Model Selection and Assessment
- January 23, 2008
Piecewise Linear
How can we choose a model?

- Two Techniques:
 1. The data generating model is known. (e.g. \(x = x_0 + v \cdot t + \epsilon \))
 2. Make assumptions about the data.

- For our purposes, the data generating model is unknown.

 ... a learner that makes no a priori assumptions regarding the identity of the target concept has no rational basis for classifying any unseen instances.

-Mitchell, 1997
How can we choose a model? - II

- Bayesian: mathematically optimal, based on probability theory, difficult to implement for real-world problems
- Frequentist: Sampling techniques, direct estimate of desired quantity
 - Re-use training set
 - Hold-out test set
 - Bootstrap sampling
 - Cross-Validation
Problems with Occam’s Razor

- Occam’s Razor: Choose the simplest hypothesis that explains the data.
- Problem: How to quantify “simplest”?
- Problem: Should it explain the data exactly?
No Free Lunch

- All classification algorithms have identical performance, when averaged over all data sets.
Practical Issues

- Stratification
- Standardization
Hypothesis Testing

- Null Hypothesis: Hypothesis that two treatments/classifiers are the same
- Type I Error: Identifying a difference between two treatments/classifiers when there is none
- Type II Error: Identifying that two treatments/classifiers are different when they actually are the same
- Power: Ability to detect a difference between two treatments/classifiers
Hypothesis Testing-II

- Fit the given data to a known distribution (e.g. Gaussian or t-distribution)
- Compute the confidence that the distribution has certain properties.
Summary: Things you need to know

- How to compute mean-squared error
- The difference between a classifier and a classification algorithm.
- Why can’t the training set be used to perform model assessment?
- The relationship between model selection and model assessment
- The difference between parameters and hyperparameters
- How to implement k-fold cross-validation.
- What the no-free lunch theorem says, and its relevance.
- The difference between bias and variance
- What is a loss function?
- What is stratification?