Problem 1

What is the loss function for the Netflix Prize?

Problem 2

What algorithm is used in the highest-scoring Netflix Prize submission? Give a high-level description; answer in 50 words or less.

Problem 3

A machine learning researcher gives you a classifier for a particular problem that you evaluate to have 97% accuracy over unseen data. How much better is it possible to do on this problem?

Problem 4

a) Implement stratified data set partitioning for binary classification data in Matlab®. This function should have the following signature:

function partitions=partition(fullDataset,partitionSizes)

where:

- fullDataset is the entire data set to be partitioned. The data set is a matrix in which a data point is a row, and the target class (0 or 1) is in the rightmost column.
- partitionSizes is a list (row matrix) of partition sizes
- partitions is a cell array of data sets.

b) Implement the K-Nearest Neighbor algorithm for binary classification. This can be a modified version of your homework submission from last week. The signature should be the following:

function [knnData functionHandle]=buildKNNModel(trainSet,k)

HW2-1
where

- \textit{trainSet} is the training set matrix, where each row is a data point and the class value (0 or 1) is in the last column.
- \(k \) is the hyperparamater “k” for the KNN algorithm; the number of neighbors to use.
- \textit{knnData} is any data KNN needs during classification.
- \textit{functionHandle} is the function used to evaluate the trained KNN model, as in last week’s homework. This function should take the knnData and unlabeled points and return their labels.

c) Write a cross-validation algorithm in Matlab®. The signature should be the following:

\begin{verbatim}
function crossValidationLosses=crossValidate(dataset,algorithms,hyperparameters,numFoldsCV)
\end{verbatim}

where:

- \textit{dataset} is a matrix in which each row is a data point and class values are in the rightmost column.
- \textit{algorithms} is a list (row matrix) of function handles for classification algorithms, as in last week’s homework.
- \textit{hyperparameters} is a list (row matrix) of hyperparameters one for each classification algorithm.
- \textit{numFoldsCV} is the number of folds to be used for cross validation.
- \textit{crossValidationLosses} is a list (row matrix) of the cross-validation scores (loss function averaged over all folds), one for each algorithm.

Notes:

1. Partition the dataset into stratified cross-validation folds.
2. Use the Zero-One loss function \(L = \frac{1}{N} \sum_{i=1}^{N} 1 - \delta(y_i - \hat{y}_i) \)
3. Each model should be cross-validated on the same partitions.
4. Please see main.m on the website for sample usage of these functions.

For formatting and submission instructions, please see the webpage at: http://www.colorado.edu/physics/pion/csci5622-spring08/