Thermodynamic Relationships

\[
\left(\frac{\partial x}{\partial y} \right)_z = \frac{1}{\left(\frac{\partial y}{\partial x} \right)_z} \quad \text{FFF1} \quad \left(\frac{\partial x}{\partial y} \right)_z \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial x} \right) = -1 \quad \text{FFF3}
\]

\[
\frac{\partial \left(\frac{\partial y}{\partial x} \right)_z}{\partial x} = \frac{\partial \left(\frac{\partial y}{\partial x} \right)_z}{\partial x} \quad \text{FFF2} \quad \frac{\partial x}{\partial y}_w = \frac{\partial x}{\partial y}_z + \left(\frac{\partial x}{\partial y}_z \right)_{y_w}
\]

Internal Energy

\[U = U(S,V,N)\]
\[dU = TdS - pdV + \mu dN\]
\[
\left(\frac{\partial U}{\partial S} \right)_{V,N} = T \quad \left(\frac{\partial U}{\partial V} \right)_{S,N} = -p \quad \left(\frac{\partial U}{\partial N} \right)_{S,V} = \mu
\]

Maxwell Relations

\[
\left(\frac{\partial T}{\partial V} \right)_{S,N} = -\left(\frac{\partial p}{\partial S} \right)_{V,N} \quad \left(\frac{\partial T}{\partial N} \right)_{S,V} = \left(\frac{\partial \mu}{\partial S} \right)_{N,V} \quad -\left(\frac{\partial p}{\partial N} \right)_{V,S} = \left(\frac{\partial \mu}{\partial N} \right)_{N,S}
\]

Equivalently: Entropy

\[S = S(U,V,N)\]
\[dS = \beta dU + \beta pdV - \beta \mu dN\]
\[
\left(\frac{\partial S}{\partial U} \right)_{V,N} = \frac{1}{k_B T} \quad \left(\frac{\partial S}{\partial V} \right)_{U,N} = \beta p \quad \left(\frac{\partial S}{\partial N} \right)_{U,V} = -\beta \mu
\]

Maxwell Relations

\[
\left(\frac{\partial \beta}{\partial V} \right)_{U,N} = \left(\frac{\partial \beta}{\partial U} \right)_{V,N} \quad \left(\frac{\partial \beta}{\partial N} \right)_{U,V} = -\left(\frac{\partial \mu}{\partial U} \right)_{N,V} \quad \left(\frac{\partial \beta}{\partial N} \right)_{V,U} = -\left(\frac{\partial \beta \mu}{\partial V} \right)_{N,U}
\]

Helmholtz Free Energy

\[F = U - TS = F(T,V,N)\]
\[dF = -SdT - pdV + \mu dN\]
\[
\left(\frac{\partial F}{\partial T} \right)_{V,N} = -S \quad \left(\frac{\partial F}{\partial V} \right)_{T,N} = -p \quad \left(\frac{\partial F}{\partial N} \right)_{T,V} = \mu
\]

Maxwell Relations

\[
\left(\frac{\partial S}{\partial T} \right)_{V,N} = \left(\frac{\partial S}{\partial T} \right)_{V,N} \quad \left(\frac{\partial S}{\partial N} \right)_{T,V} = \left(\frac{\partial \mu}{\partial T} \right)_{N,V} \quad \left(\frac{\partial \mu}{\partial T} \right)_{V,N} = -\left(\frac{\partial \mu}{\partial T} \right)_{N,T}
\]

Gibbs Free Energy

\[G = F + pV = U - TS + pV = G(T,p,N) = N\mu(T,p)\]
\[dG = -SdT + Vdp + \mu dN\]
\[
\left(\frac{\partial G}{\partial T} \right)_{p,N} = -S \quad \left(\frac{\partial G}{\partial p} \right)_{T,N} = V \quad \left(\frac{\partial G}{\partial N} \right)_{T,p} = \mu
\]
Maxwell Relations
\[
\left(\frac{\partial S}{\partial p} \right)_{T,N} = -\left(\frac{\partial V}{\partial T} \right)_{p,N} \quad \left(\frac{\partial S}{\partial N} \right)_{T,p} = -\left(\frac{\partial \mu}{\partial T} \right)_{N,p} \quad \left(\frac{\partial V}{\partial N} \right)_{p,T} = \left(\frac{\partial \mu}{\partial N} \right)_{N,T}
\]
\[d\mu = -sdT + vdp\]
\[\left(\frac{\partial \mu}{\partial T} \right)_{p,N} = -S = -\frac{S}{N} \quad \left(\frac{\partial \mu}{\partial p} \right)_{T,N} = v = \frac{V}{N}\]
Maxwell relation for \(\mu\)
\[\left(\frac{\partial s}{\partial \mu} \right)_{T} = -\left(\frac{\partial V}{\partial T} \right)_{p}\]

Thermodynamic Potential
\[\Pi = -F + \mu N = -U + TS + \mu N = \Pi(T,V,\mu) = Vp(T,\mu)\]
\[d\Pi = SdT + pdV + Nd\mu\]
\[\left(\frac{\partial \Pi}{\partial T} \right)_{V,\mu} = S \quad \left(\frac{\partial \Pi}{\partial V} \right)_{T,\mu} = p \quad \left(\frac{\partial \Pi}{\partial \mu} \right)_{T,V} = N\]
Maxwell Relations
\[\left(\frac{\partial s}{\partial V} \right)_{T,\mu} = \left(\frac{\partial p}{\partial T} \right)_{V,\mu} \quad \left(\frac{\partial S}{\partial \mu} \right)_{T,V} = \left(\frac{\partial N}{\partial T} \right)_{\mu,V} \quad \left(\frac{\partial p}{\partial \mu} \right)_{T,V} = \left(\frac{\partial N}{\partial \mu} \right)_{\mu,T}\]
\[dp = sdT + nd\mu\]
\[\left(\frac{\partial p}{\partial T} \right)_{V,\mu} = s = \frac{S}{V} \quad \left(\frac{\partial p}{\partial \mu} \right)_{T,V} = n = \frac{N}{V}\]
Maxwell Relation for \(p\)
\[\left(\frac{\partial s}{\partial \mu} \right)_{T,V} = \left(\frac{\partial n}{\partial T} \right)_{\mu,V}\]

Magnetic Free Energy
\[A = U(S,M) - TS = A(T,M,N)\]
\[dA = -SdT + HdM\]
\[\left(\frac{\partial A}{\partial T} \right)_{M} = -S \quad \left(\frac{\partial A}{\partial M} \right)_{T} = H\]
Maxwell Relations
\[\left(\frac{\partial S}{\partial M} \right)_{T} = -\left(\frac{\partial H}{\partial T} \right)_{M}\]

Magnetic Free Energy
\[F = A - HM = U - TS - HM = F(T,H)\]
\[dF = -SdT - MdH\]
\[\left(\frac{\partial F}{\partial T} \right)_{H} = -S \quad \left(\frac{\partial F}{\partial H} \right)_{T} = -M\]
Maxwell Relations
\[
\frac{\partial S}{\partial H}_T = -\frac{\partial M}{\partial T}_H
\]

Common thermodynamic second derivatives. These are all nonnegative because of the second law of thermodynamics.
Heat Capacity at constant volume
\[
C_V = T \left(\frac{\partial S}{\partial T} \right)_V = -T \left(\frac{\partial^2 F}{\partial T^2} \right)_V \geq 0
\]
All other heat capacities such
\[
C_p = T \left(\frac{\partial S}{\partial T} \right)_p \geq 0, ~ C_H = T \left(\frac{\partial S}{\partial T} \right)_H \geq 0 \quad \text{and} \quad C_M = T \left(\frac{\partial S}{\partial T} \right)_M \geq 0
\]
are also non-negative.
Isothermal Compressibility
\[
K_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T = \frac{1}{n} \left(\frac{\partial n}{\partial p} \right)_T = \frac{1}{n^2} \left(\frac{\partial n}{\partial \mu} \right)_T = \frac{1}{n^2} \left(\frac{\partial^2 p}{\partial \mu^2} \right)_T \geq 0
\]
Isothermal Susceptibility
\[
\chi_T = \left(\frac{\partial M}{\partial H} \right)_T = \frac{1}{\left(\frac{\partial H}{\partial M} \right)_T} \geq 0
\]

Microcanonical partition function
\[
\Omega(U,V,N) = \text{trace}(\Delta_{\mu}(H-U)) = \text{number of states in small energy range near } U
\]
\[
S(U,V,N) = \ln(\Omega(U,V,N))
\]
Canonical partition function
\[
Z(T,V,N) = \text{trace}(\exp(-\beta H)) = \sum_U e^{-\beta U} \Omega(U,V,N) = \frac{1}{N!h^N} \int d^N p d^N r e^{-\beta H}
\]
\[
F(T,V,N) = -k_B T \ln(Z(T,V,N))
\]

Grand canonical partition function
\[
\Xi(T,V,\mu) = \text{trace}(\exp(-\beta H + \beta \mu N)) = \sum_{N=0}^{\infty} e^{\beta \mu N} Z(T,V,N)
\]
\[
\Pi(T,V,\mu) = k_B T \ln(\Xi(T,V,\mu)) = Vp(T,\mu)
\]
\[
p(T,\mu) = \frac{k_B T}{V} \ln(\Xi(T,V,\mu))
\]

Isobaric partition function
\[
Y(T,p,N) = \text{trace}(\exp(-\beta H - \beta p V)) = \int dV e^{-\beta p V} Z(T,V,N)
\]
\[
G(T,p,N) = -k_B T \ln(Y(T,p,N)) = N\mu(T,p)
\]
\[
\mu(T,p) = -\frac{k_B T}{N} \ln(Y(T,p,N))
\]
Clausius-Clapyron Equation
\[
\frac{dp_o}{dT} = \frac{s_2 - s_1}{v_2 - v_1} = \frac{L}{T(v_2 - v_1)}
\]
where \(p_o(T) \) is the coexistence pressure curve between two phases, \(s \) is the entropy per particle of the phases, \(v \) is the volume per particle of the phases and \(L \) is the latent heat of transformation.

Statistical Relations for some common thermodynamic first derivatives
\[
U = \left(\frac{\partial \beta F}{\partial \beta} \right)_{V,N} = \frac{\text{trace}(He^{-\beta H})}{\text{trace}(e^{-\beta H})} = \langle H \rangle = \langle E \rangle \quad \text{energy}
\]
\[
n = \left(\frac{\partial p}{\partial \mu} \right)_{T,V} = \frac{\text{trace}(Ne^{-\beta H + \beta \mu N})}{\text{trace}(e^{-\beta H + \beta \mu N})} = \frac{\langle N \rangle}{V} \quad \text{density}
\]
\[
M = -\left(\frac{\partial F}{\partial H} \right)_{T,N} = \frac{\text{trace}(Me^{-\beta H})}{\text{trace}(e^{-\beta H})} = \langle M \rangle \quad \text{magnetization}
\]

Statistical Relations that relate thermodynamic second derivatives to variances
\[
C_V = T \left(\frac{\partial S}{\partial T} \right)_V = -T \left(\frac{\partial^2 F}{\partial T^2} \right)_T = \frac{\langle E^2 \rangle - \langle E \rangle^2}{k_B T^2} \geq 0
\]
\[
K_T = \frac{1}{n^2} \left(\frac{\partial n}{\partial \mu} \right)_T = \frac{1}{n^2} \left(\frac{\partial^2 p}{\partial \mu^2} \right)_T = \frac{\langle N^2 \rangle - \langle N \rangle^2}{V k_B T} = -\frac{1}{n k_B T} \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} = K_T^{\text{ideal}} \geq 0
\]
\[
\chi_T = \left(\frac{\partial M}{\partial H} \right)_T = \frac{1}{k_B T} \left(\frac{\partial^2 F}{\partial H^2} \right)_T = \frac{\langle M^2 \rangle - \langle M \rangle^2}{k_B T} \geq 0
\]