Physics 4810 / 7810
Teaching and Learning Physics
Fall 2004
Finkelstein

A course on how people learn and understand key concepts in physics. Readings in physics, physics education research, education, psychology and cognitive science, plus opportunities for teaching and evaluating college and K-12 students. Useful for all students, especially for those interested in physics, teaching and education research.

Nobody thinks clearly, no matter what they pretend. Thinking’s a dizzy business, a matter of catching as many of those foggy glimpses as you can and fitting them together the best you can. That’s why people hang on so tight to their opinions; because, compared to the haphazard way in which they’re arrived at, even the goofiest opinion seems wonderfully clear, sane, and self-evident. And if you let it get away from you, then you’ve got to dive back into that foggy muddle to wrangle yourself out another to take its place. --- Dashiell Hammett

As we muddle along, this class is designed to be engaging, provocative, and enjoyable. The class will largely depend upon your input. You will help create and direct the class.

Student responsibilities:
• active participation
• weekly homeworks (readings, reflections, physics problems, and fieldnotes
• final project (project of your own design)

My role, as instructor will be to facilitate your engagement with the material, provide resources for you, and give you feedback and direction. Please make use of my office hours

Official Office Hours
F1023 Gamow: Tu / Thurs 1p – 2pm
303 735 6082
noah.finkelstein@colorado.edu

Texts: E.F. Redish, Teaching and Learning Physics
Introductory Physics Text, preferably Halliday Resnick, Walker (6th ed) or Giancoli (5th) Weekly readings handed out or on e-reserve

Course Website: http://www.colorado.edu/physics/phys4810

Class Schedule:
Week 1: 8/24 Introduction
Week 2: 8/31 Identify fieldsite(s)
Week 4: 9/14 Identify area of interest for project - Turn in 1 paragraph description
Week 7: 10/5 Outline of project due
Week 13: 11/16 Rough cut of final project due
Finals week: project due.
Student Work:
There will be 3 forms of regular work in this course: (1) readings/reflections, (2) physics content/homework analysis, (3) teaching/fieldnotes.

Readings: (Tuesdays) Each week we’ll be discussing readings. The tentative schedule is on the following page. We’ll be reading both from Redish’s book *Teaching Physics with Physics Suite* and original sources that are on the course web page, electronic reserves or handed out a week in advance.

Each week you are expected to write a paragraph summary of each paper/reading, and to list out 3 questions, or points of interest that the paper brought up. These will be handed in and returned to you.

While, I will lead the first week or two of readings, it will quickly be handed over to you to lead the discussions for the class. We will have students sign up to lead the discussion once or twice over the course of the term. These weeks you should be prepared to present a 5-10 min summary of the paper, and bring in some points of discussion for the class.

Physics content: (Thursdays). We’ll be covering the introductory sequence of physics (E/M) at the same time we are reading about student learning. Our class will roughly parallel the 2nd semester of calc-based physics, 1120. (http://www.colorado.edu/physics/phys1120/). Our tentative schedule of topics is listed below. Each week you are expected to review the relevant sections in an introductory textbook, preferably from Halliday Resnick Walker or Giancoli. Each week you are expected to pick 3 problems from the CAPA assignment for 1120 (you will be given LON-CAPA access).

For the homework,
 a) write a 1 paragraph/short outline of the physics content covered for the week.
 b) Select 3 of the homework problems from the LON-CAPA set for phys 1120 and:
 i. Solve the problem
 ii. Describe the solution process you used
 iii. Describe what physics content was needed from this section/other sections
 iv. Evaluate the problem: was this a good problem, mediocre problem, or a bad problem. Consider this problem both for content and pedagogical value.

Physics homework is due Thursday in class.

Teaching/Fieldwork (your choice): You are expected to spend a minimum of 2 hrs a week teaching in, working in, or studying educational environments. Possible environments are listed later. Each week you will be expected to send in ethnographic fieldnotes describing your experience. These should be no shorter than a page or a page and a half (and no more than a few pages). The format for these notes is described below.

Final Project: a final project of your choosing will be due at the end of term. The format of the final project is described below

Grading: This class will not emphasize grades, but rather learning, and formative feedback. Nonetheless I am obliged to provide you with grades in addition to credit. I anticipate everyone will be able to do well. In general, I emphasize effort and learning.

30% - readings/participation 30% physics content/participation 40% final project.
Field sites:
Below are a few options where you might consider doing your fieldwork. Of course, since you are designing this course you are encouraged to work in any environment suited for your examining educational practices in physics. See me about arranging for other placements of your design.

Formal Settings:
College / University:
- **CU: 1120-** Work with TA’s / LA’s in the Tutorials
- * CU: 1140: Work in undergrad labs (either as Learning Assistants or revising materials)
- CU: 1010 – Organize / run weekly help sessions on Physics of Everyday Things
- * CU 1020 – Help build course Physics for non-science majors
- CU: 2010/20: Study student learning / help organize & run study of simulation use

High School:
- Boulder High - work with high school teacher on projects of interest
- * Evergreen High – work with high school teacher on projects of interest

Middle School:
- Casey Middle School – working with middle school science.

Elementary:
- BVSD – demonstrations / course partnerships – Kat White.

Informal:
Science Discovery – CU outreach –
- Help organize/ run afterschool classes at 30th St. campus
- Whittier Schools partnership – help revise Physics for Fun series
- Science from CU – revise / implement 1 hour traveling programs

Saturday Wizards Program – design / run outreach activities (particularly for Spring)

Fiske Planetarium programs

** - encouraged
* - existing partnerships
Fieldnotes:

Fieldnotes will serve as a key source of data for you for your final projects. In general, you will be acting as participant-observers, documenting educational environments you are engaged in. However, depending upon your projects you may simply observe environments. Both forms of observation are valid; though, it should be clear which role you are in. Your fieldnotes should be written within 24 hrs of your observation and turned in to me on a similar time-scale. Your fieldnotes should not be less than most of a page and should not be more than 3 pages (single spaced).

Heading:
Your name: J. Smith
Field Site: e.g. Problem Solving Session or Lecture
Instructor(s): who ever is lecturing or who ever is at the prob. solving session
Date: Tuesday, mm/dd/yy
Times of observations: 1pm – 2pm
Number of Students present: 25
Topics Covered: Homework #2

General Observation:
Here you are setting the scene for those who will read your notes. Describe the things you notice when you come in. Describe the general atmosphere, your state of mind (did you get stopped for speeding trying to get to site on time?), feelings expressed by others. This section describes the view from a wide angle. It should contain lots of observations about the site you enter and how you find your way in to the day’s interactions. Your early notes should describe the people and physical spaces you encounter. In later notes, you should mark changes, things that are unusual. This section is usually about one paragraph long.

Narrative Description:
Here you are zooming in to your interactions with and observations of the students and other instructors at the site. Try to describe your interactions or observation of others as accurately as you can. Be careful to report behaviors rather than imputing your interpretation of the students thought process or mental state. In this sense you are capturing information (like a video camera would) without interpreting it. For example, “The students formed in 4 groups. Two of 5 and two of 6 students. Group 1 had 5 students. Two of the students are discussing the graph in problem 3, three are quiet. One student X, sat in the corner and refused to participate with his arms crossed” This is the longest section of the field note and contains several paragraphs. It should be as long as it takes you to describe your time at site. Each week we will focus your observations on a topic or question to make this manageable to describe.

Reflection:
Here you state your thoughts and opinions about what happened in the learning environment. This is where you would add your interpretation of key points in the narrative. It will be in this section that you might start thinking about the observed activities in terms of your project scope… What data support your project hypotheses etc? What have you learned about your own understanding and others’? You can bring in your background experiences or any information that helps frame your thoughts about the interactions at site.
Sundry Information / Thoughts:

Ethics: You should not cheat in this class. Frankly it will be easier if you do not and you’ll learn more. If you cheat you’ll fail. Collaborative work is encouraged. Citing your partner’s work and sources that you draw from is necessary. Do not plagiarize. If you are concerned about what this means, speak to me. More information is at: http://www.colorado.edu/academics/honorcode/Code.html

“On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work.”

Accommodations for disability:
If you qualify for accommodations because of a disability please submit to me a letter from Disability Services in a timely manner so that your needs may be addressed. Disability Services determines accommodations based on documented disabilities (303-492-8671, Willard 322, www.colorado.edu/disabilityservices).

More Ethics: Go Vote.

From Steve Pollock’s 1120 website:
I firmly believe that we can take individual actions that will make the world we live in a better place. One obvious thing YOU can do is vote. Here is a link to some information if you haven't registered (http://www.colorado.edu/physics/phys1120/phys1120_fa04/vote.html). I know it's so easy to blow this off, and yet almost equally simple to register and vote. The number of young people voting has gone down over time, but it's YOUR life and YOUR future that are impacted. Take a stand! Convince your friends to participate! I would never consider suggesting which way you should vote - but WOULD ask that you use the powers of critical thinking, reasoned argument, inference by evidence, and basic logic you learn in physics and apply them to issues of political significance. (Which means, among other things, don't just listen to your parents, or one TV channel) Dig a little, think about what matters, make rational and ethically sound decisions. Argue and discuss, groupwork helps everywhere in life, not just in physics class. And then vote, it's empowering!
Phys 4810/7810: Final Project Overview

Purpose: to have you explore in depth a topic of your choosing, relating to teaching and learning in physics. The projects should be challenging, fun, and allow you to explore an area of your interest.

Topic: I encourage you to be creative. There is no set form to these final projects. There are no set topics. Examples of reasonable final projects are: a traditional research paper, the design and write-up of some activities for your students, or a research study where you collect data on some area of physics education that interests you. Some basic guidelines are below. However, as necessary, these too are flexible. Just be certain to check with me about your project.

Length: 8-10 pages (double spaced). Your work must be typed. This may be the only inflexible rule. Don’t forget a spell checker please.

Due date: No later than Noon, December 13, 2004. In my office.

Structure: Your projects will vary, but below I give some general guides for a research study, where you might collect data from the field:

Introduction: states the problem or area of exploration
- list your research questions and hypothesis **
** (PURPOSE OF DATA COLLECTION)
- gives a summary of your paper

Background: - locates your topic in relevant literature
- gives a history of your field-site / working environment

Body: Data: - how were your data collected
- what difficulties were there in your data collection (why / when was is possible to collect data and why/when not) - were you able to prove your hypothesis?
- presentation of collected data -- e.g. fieldnote excerpts, taped conversation pre-post test data, etc. Make sure this is an orderly presentation.

For bulk data, include an appendix, rather than inserting volumes of data into the body. (e.g. if you developed sample homework problems it is okay to put one or two into the paper, but include the 50 or so used in an appendix)

Analysis/Results/Discussion:
- what results do your data suggest
- how does this prove/ disprove your hypothesis
- how does this support or refute alternative theories

Conclusion/ Summary:
- summarize your paper / work
- what future directions does this research point to --- if you were to continue the project what would you do next / recommend to others

As I mentioned in class there are many ways to approach the final project. If you have any questions feel free to contact me, I’m always eager to discuss your projects.
Tentative Schedule

Readings/ Content Coverage

This schedule will be updated as we continue through the course. You have significant say in what happens when. To begin, I propose the following:

<table>
<thead>
<tr>
<th>Week</th>
<th>Tues Readings</th>
<th>Thurs E/M Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) 8/24</td>
<td>Introduction: State of Affairs
McDermott I
Van Heuvelen</td>
<td>Introduction
-read the introduction / preface to your physics text: HRW: v - xxii</td>
</tr>
<tr>
<td>2) 8/31</td>
<td>Survey of Field
TP: pp 5-15
McDermott I</td>
<td>Electric charge:
HRW: pp 505-518</td>
</tr>
<tr>
<td>3) 9/7</td>
<td>Content-based research:
TP: pp 115 – 123; 146 - 152
Tutorials: McDermott II
Instructional strategies: Mazur Ch 2</td>
<td>Electric Field / Flux / Gauss’ Law
HRW: pp 521 - 557</td>
</tr>
<tr>
<td>4) 9/14</td>
<td>Constructivism:
TP: Chap 2 (over the next 4 weeks) pp 30-36 and 40-42; 124 -141
Posner: (grads)
Constructionism - Papert</td>
<td>(no class)</td>
</tr>
<tr>
<td>5) 9/21</td>
<td>Knowledge in Pieces:
TP: Chap 2 18-29 and 42-43; 142-146
Changing Minds – diSessa; <or> Knowledge in pieces</td>
<td>Elect. Potential / Capacitance
HRW: pp 565 - 604</td>
</tr>
<tr>
<td>6) 9/28</td>
<td>Situated Cognition:
TP: cont ch 2 pp 29-30 and 36-40; pp 69-80; Brown, Collins, Duguid:
Heller: Group problem solving; <or> Mestre: Problem Posing</td>
<td>(no class) – Fall Break</td>
</tr>
<tr>
<td>7) 10/5</td>
<td>Progressivism:
Dewey: Experience and Education
TP: pp. 170 – 180 (Workshop Physics)</td>
<td>Current / Resistance – Circuits
HRW: pp 611 -630</td>
</tr>
<tr>
<td>8) 10/12</td>
<td>Hidden Curriculum: Attitudes & beliefs:
TP: ch 2 43 – 50; chap 3 pp 51 – 68; Elby & Hammer (grads)
Elby</td>
<td>Voltage – Circuits
HRW: pp 633 - 653</td>
</tr>
<tr>
<td>9) 10/19</td>
<td>Problem Solving:</td>
<td>Magnets & Fields</td>
</tr>
<tr>
<td>10) 10/26</td>
<td>Context & learning</td>
<td>Magnet / Elect. Interaction</td>
</tr>
<tr>
<td>11) 11/2</td>
<td>Society and Purposeful Learning</td>
<td>Lens’ Law</td>
</tr>
<tr>
<td>12) 11/9</td>
<td>Inclusion</td>
<td>Faraday’s law</td>
</tr>
<tr>
<td>13) 11/16</td>
<td>Assessment</td>
<td></td>
</tr>
<tr>
<td>14) 11/23</td>
<td>Technology</td>
<td>(gobble gobble – No Class)</td>
</tr>
<tr>
<td>15) 11/30</td>
<td>Kids and Learning</td>
<td></td>
</tr>
<tr>
<td>16) 12/7</td>
<td>presentations</td>
<td>(party)</td>
</tr>
</tbody>
</table>

Other topics: Order-of-magnitude physics; More on any area above; Labs; Homework; Content-specific topics (e.g. student reasoning about electric fields); areas of your interest.
Reading References:
The following readings are references to those listed above, **NOT** all of the readings for a week.

Week 2:

Week 3:
McDermott II: McDermott, and Shaffer, “Research as a guide for curriculum development: an example from introductory electricity Parts I&II” AJP 60(11), (1992), 994-1013

Mazur, *Peer Instruction* Chapter 2

Week 4

http://www.papert.org/articles/SituatingConstructionism.html

Week 5:
diSessa, A.A. *Changing Minds*, MIT Press pp 89 –99 ---- or -----

Week 6:

Patricia Heller, Ronald Keith, and Scott Anderson, Teaching problem solving through cooperative grouping. Part 1: Group versus individual problem solving, AJP 60(7), 627- 644

Week 7
Dewey, J., Experience and Education, Ch’s 1, 2 & 7 Science Chapter

Week 8:
http://www2.physics.umd.edu/~elby/papers/epist_substance/Substance.html

A. Elby (2001, to appear), Helping physics students learn about learning, American Journal of Physics (Physics Education Research Supliment), 69(7SUPP1)
http://www2.physics.umd.edu/~elby/papers/epist1/epist_curric.htm
Additional Reading Resources:

A host of papers are available on the web. The university of Maryland group strives to keep an somewhat up-to-date list of papers:
http://www.physics.umd.edu/perg/perow.htm
