Photometer and Optical Link

Purpose
You will design and build a photometer (optical detector) based on a silicon photodiode and a current-to-voltage amplifier whose output is proportional to the intensity of incident light. Then you will set up and investigate an optical communication link in which the transmitter is a light emitting diode (LED) and the receiver is your photodiode detector.

Introduction
Experiment 6 demonstrates the use of the photodiode, a special p-n junction in reverse bias used as a detector of light. The incoming radiation energy excites electrons across the silicon band gap, producing a current or a pulse of charge proportional to the incident energy deposited in the detector.

In this experiment we will introduce a number of "photometric" quantities that are widely used in opto-electronics

Readings
Mostly the detailed information you need for the experiment is given below.

1. FC Chapter 4 (diodes), particularly Sections 4.18 & 4.19

2. For general background on opto-electronics, see H&H Section 9.10. For a general discussion of lock-in detection, see H&H Section 15.15.

3. Data Sheets for the PD204-6C silicon photodiode and the MV5752 GaAsP light emitting diode are available at the course web site.

New Apparatus and Methods
PHOTODIODE
The BPW24R photodiode used in this experiment is a p-intrinsic-n (PIN) silicon diode operated in reverse bias. A sketch of the photodiode structure is shown in Figure 6.1. The very thin p-type conducting layer acts as a window to admit light into the crystal. The reverse bias voltage maintains a strong electric field throughout the intrinsic region forming an extended depletion layer.
The depletion layer should be thicker than the absorption length for photons in silicon in order to maximize the efficiency. Any incident photon whose energy exceeds the band-gap energy is absorbed to produce an electron-hole pair by photoelectric excitation of a valence electron into the conduction band. The charge carriers are swept out of the crystal by the internal electric field to appear as a photocurrent at the terminals. The photocurrent is proportional to light intensity over a range of more than 6 orders of magnitude.

![Diagram of photodiode](image)

Figure 6.1 Structure of the photodiode.

LIGHT EMITTING DIODE

The MV5752 light emitting diode acts electrically just like any diode. It emits light when forward-biased due to direct radiative recombination of electrons and holes. The forward voltage drop is about 1.7 V rather than 0.6 V because the LED is made of GaAsP instead of silicon.

Theory

CURRENT-TO-VOLTAGE AMPLIFIER

In an ordinary inverting amplifier (Exp. 4, Figure 4.3) the input voltage is applied to a resistor, and the amplifier generates an output voltage in response to the current that flows through the input resistor to the virtual ground at the negative op-amp input. A current-to-voltage amplifier (Figure 6.2) is an inverting amplifier with the input current I_{in} applied directly to the negative op-amp input. Since no current flows into the op-amp input, the output voltage must be $V_{out} = -I_{in}R_F$. The ideal low-frequency gain of a current-to-voltage amplifier is
This gain has the units of impedance, and it is often called a trans-impedance. The current-to-voltage amplifier is sometimes called a trans-impedance amplifier.

\[G = \frac{V_{out}}{I_{in}} = -R_F. \]

(1)

PHOTODIODE SENSITIVITY

The photodiode sensitivity \(S_\lambda \) (in units of \(\mu A/(mW/cm^2) \)) is defined as the photocurrent per unit light intensity incident on the photodiode. It is a function of the light wavelength \(\lambda \). Thus for light intensity \(N \) (in mW/cm\(^2\)) the photocurrent \(I \) (in \(\mu A \)) is given by

\[I = S_\lambda N. \]

(2)

The sensitivity at any wavelength \(\lambda \) is given on the data sheet in terms of the peak sensitivity at 940 nm times a correction factor called the relative spectral sensitivity, or RSR:
To describe the output of a light source like our photodiode, it is helpful to introduce the notion of solid angle. Consider a transparent sphere of radius \(r \), and suppose that an area \(A \) on the surface of the sphere is painted black. We then say that the blacked out region subtends a solid angle of \(\Omega \) steradians (str), where \(\Omega = \frac{A}{r^2} \). According to this definition the whole sphere subtends a solid angle of \(4\pi \) str. One steradian is an area of \(r^2 \), just as one radian is an arc of length \(r \).

The concept of solid angle is essential in separating the two units in which light is customarily measured. Both the lumen and the candela originated in the 18th century when the eye was the primary detector of electromagnetic radiation.

The lumen (lm) is a measure of the total light power emitted by a source. You might then expect that there is a conversion factor between lumens and Watts, and you would be right: its value is 683 lm/Watt. However, things are a bit more complicated because this conversion factor is only used for light with a wavelength of 550 nm, the yellow-green color that our eyes are most sensitive to. For other colors the conversion factor is multiplied by a dimensionless number \(RR(\lambda) \) called the relative response of the adjusted human eye. A rough plot of \(RR(\lambda) \) is shown in Figure 6.3. The point of this is that two sources described by the same number of lumens (the same “luminous flux”) will have the same subjective brightness to a human observer, even if they are of different colors. This kind of color corrected unit is very helpful if you want to design a control panel with lots of colored lights, and you want them all to have the same perceived brightness. To summarize, if the luminous flux of your source is described as \(F \) lumens, then you convert this to Watts using this formula:

\[
F(W) = \frac{1}{683 \cdot RR(\lambda)} F(\text{lm})
\]

Notice that more Watts are required for a given luminous flux as the color gets farther and farther away from yellow-green, to make up for the declining sensitivity of the eye.

However, this is not the whole story for describing light sources, because the amount of light emitted varies with direction, and how much light we intercept in a given direction will depend upon how much solid angle our detector covers. Thus we need a measure of light power per solid angle, and this unit is called the candela, equal to one lumen/str. A light source that emits one candela in every direction emits a total of \(4 \pi \) lumen, since there are \(4 \pi \) str in the whole sphere. The quantity measured by the candela is called the “luminous intensity”. If you look at the data...
sheet for our MV5752 LED you will see that it uses the unit “mcd” or millicandela to describe the brightness. The values given are for light emitted along the axis of the LED. For other directions you multiply by the Relative Intensity given in Fig. 3 of the data sheet. By dividing Eqn. 4 above by the solid angle we can rewrite it as a relation between the luminous intensity J in mcd and the power per unit solid angle:

$$J(\text{mW/str}) = \frac{1}{683 \cdot RR(\lambda)} J(\text{mcd})$$

(5)

Suppose now we place our photodiode a distance r from the LED, and we want to find the intensity $N(\text{mW/cm}^2)$ at the photodiode. We first find J in millicandela on the LED data sheet. The data sheet gives the dependence of $J(\text{mcd})$ on the diode current and on direction. We then convert $J(\text{mcd})$ to $J(\text{mW/str})$, using Equation 5 and $RR(\lambda)$ for the appropriate wavelength. (For our LED, $RR(635 \text{ nm})=0.2$.) Finally we divide $J(\text{mW/str})$ by r^2 to get $N(\text{mW/cm}^2)$.

Figure 6.3 Relative response of adjusted human eye

![Graph showing Relative response of adjusted human eye](image)
Problems

1. *Estimate* the sensitivity S_λ (in units of μA/(mW/cm2)) of the BPW24R photodiode to the fluorescent lights in the lab. See the photodiode data sheet posted on the course web site. You will have to estimate the mean wavelength of the white fluorescent lights. See Figure 6.3, and assume that the lights do not emit much radiation that is outside the wavelength range visible to the eye and inside the wavelength range that the photodiode can sense.

2. For the current-to-voltage amplifier in Figure 6.2, choose a value for the feedback resistor R_F so that an incident white-light intensity N of 0.1 mW/cm2 produces an output voltage of 6 V. The small feedback capacitor C_F is used to suppress spontaneous oscillations.

 (A) Show that if the gain of the trans-impedance amplifier is $-Z_F$ (where Z_F is the total effective impedance in the feedback loop) that the gain rolls off at high frequency with a bandwidth of $f_B=1/(2\pi R_F C_F)$.

 (B) What is the bandwidth f_B if $C_F = 2$ pF?

3. (A). Write down the dc values of the voltages at the + and – inputs and at the output of the op-amp for zero light on the photodiode.

 (B). What would the voltages be if the photodiode leads were accidentally reversed to make it forward biased? Hint: is this more like an open circuit or a closed circuit?

4. (A) Assume we have an MV5752 LED being run with a current of 30 mA as in Figure 6.2. See the LED datasheet on the course website. Compute the intensity N (in units of mW/cm2) incident on a detector 10 cm away placed at the center of the transmitted beam.

 (B) Compute the expected output voltage from the optical receiver under these conditions. Remember to recalculate the sensitivity of the detector for the wavelength of light from the LED (635 nm).

5. The transmitter will generate square waves. The high-level should give 30 mA forward current in the LED, and the low level should give 0 mA. These two levels should correspond to 10 V and 0 V unloaded output from the function generator. Find the value of the series resistor R_s that gives the correct current. Look on the LED data sheet to find the LED forward voltage drop at 30 mA. Do not forget that when the unloaded output of the function generator is set to 10 V, the loaded output will be lower because of the 50 Ω output impedance.
Experiment

1. PHOTOMETER

Build the photometer circuit shown in Figure 6.2. Use a value for R_F close to what you found in Prelab problem 2, and a few pF of capacitance C_F across the feedback resistor to avoid spontaneous oscillations. Pay attention to the direction of the photodiode. (To start do not connect the function generator or the 1 MΩ resistor, but use this path if you find your photodetector circuit is not working and want to test your op amp setup.) Your circuit is working to first order if you get a positive voltage out that varies as you block and unblock your photodetector. Now block the photodetector completely with your finger or with a piece of tape, and set the (DC) output voltage of the op-amp to zero by adjusting the 25k trimpot.

Estimate the average intensity of light from the fluorescent lamps in the lab from the output of your photometer circuit. The intensity of solar radiation on a clear day is about 1 kW/m², but you will find our indoor illumination is significantly smaller than this.

2. OPTICAL COMMUNICATION LINK

Set up a light emitting diode type MV5752 as the transmitter about 5 cm away from your photodetector and drive it with the signal generator. Be sure to protect the LED with a series resistance that prevents the forward current exceeding 30 mA. Also, connect a rectifier diode in parallel with the LED but with opposite polarity. This will prevent you from accidentally running the LED with a large negative bias voltage, causing it to break down. Orient the LED transmitter and the photodiode so they point along the same axis and are still 5 cm away. This should maximize the amount of light detected, and you can check your alignment by putting your hand in the path and seeing if the red illumination is centered on your detector.

Before connecting it to the LED transmitter circuit, set up the function generator to produced 1 kHz square waves with the upper voltage level at 10V and the bottom voltage at 0V. You accomplish this by using the DC offset setting of the function generator. Now connect the function generator output to the LED transmitter circuit. Observe the input driving signal and the output of the receiver on the scope using dc coupling for both signals initially. Make sure the received signal is due to the red light by blocking the beam for a moment. The few pF of capacitance you have placed across R_F should avoid overshoot at the leading edge of the square wave.
Measure the intensity of the transmitted light and see if it approximately matches your prediction. Examine the rise time of the received square waves. Also estimate the upper 3dB bandwidth of the communication link based upon your waveform.

3. LOCK-IN AMPLIFIER

Finally, we will look at detection using a lock-in amplifier. First work with your own LED circuit that is close to your detector. Then, at the end of the lab is a common LED source; use this as a source far from your photodetector.

- What is the smallest signal you can detect on the lock-in?
- What is the smallest signal you can detect on the scope? Or if you are far away can you even detect the LED at the end of the room on the scope at all?

General lock-in instructions: For the signal input to the lock-in, choose CHANNEL A and set the adjacent switch accordingly. Trigger the lock-in by running a cable from the SYNC of your function generator (or the long sync cable from the end of the room) to the REFERENCE INPUT of the lock-in amplifier. Set the switches above this input to "f" and "positive square". Increase the lock-in SENSITIVITY as much as possible without overloading the input. Set the output expand to x1 and the pre- and post-filter time constants to 1 second. Adjust the lock-in phase setting to get maximum signal. You can change any of these settings later to see what happens. Work with the room lights on and a signal frequency of around 1 kHz.