Voltage (= Electric Potential)

An electric charge alters the space around it. Throughout the space around every charge is a vector thing called the electric field. Also filling the space around every charge is a scalar thing, called the voltage or the electric potential. Electric fields and voltages are two different ways to describe the same thing.

(Note on terminology: The text book uses the term "electric potential", but it is easy to confuse this with "potential energy", which is something different. So I will use the term "voltage" instead.)

Qualitative description of voltage

The voltage at a point in empty space is a number (not a vector) measured in units called volts (V is the abbreviation for volts). Near a positive charge, the voltage is high. Far from a positive charge, the voltage is low. Voltage is a kind of "electrical height". Voltage is to charge like height is to mass. It takes a lot of energy to place a mass at a great height. Likewise, it takes a lot of energy to place a positive charge at a place where there voltage is high.

The electric field is related to the voltage in this way: Electric field is the rate of change of voltage with distance. E-field is measured in units of N/C, which turn out to be the same as volts per meter (V/m). E-fields points from high voltage to low voltage. Where there is a big E-field, the voltage is varying rapidly with distance.

Mathematically, we write this as $E = \frac{\Delta V}{\Delta x}$ or $|\Delta V| = E |\Delta x|$.

(This equation assumes that the E-field is along the x-axis and that $E = \text{constant}$)

The technical definition of voltage involves work and potential energy, so we review these first.

Last update 2/6/2006
Review of Work and PE

Definition of work done by a force: consider an object pulled or pushed by a force \(\vec{F} \). While the force is applied, the object moves along some axis (x-axis, say) through a displacement of magnitude \(\Delta x \).

![Diagram showing work](image)

Notice that the direction of displacement is not the same as the direction of the force, in general.

Work done by a force \(F = W \equiv F_x \cdot \Delta x = F \cos \theta \Delta x = F_{||} \Delta x \)

\(F_{||} = \) component of force along the direction of displacement

Work is not a vector, but it does have a sign (+) or (-). Work is positive, negative, or zero, depending on the angle between the force and the displacement.

\[
\begin{align*}
\theta < 90, & \quad W \text{ positive} \\
\theta = 90, & \quad W = 0 \\
\theta > 90, & \quad W \text{ negative}
\end{align*}
\]

Definition of Potential Energy PE: The change in potential energy \(\Delta PE \) of a system is equal to the work done by an external agent (assuming no friction and no change in kinetic energy)

\[
\Delta PE = W_{\text{ext}}
\]

This is best understood with an example: A book of mass \(m \) is lifted upward a height \(h \) by an "external agent" (a hand which exerts a force external to the field). In this case, the work done by the hand is \(W_{\text{ext}} = \text{force} \times \text{distance} = +mgh \). The change in the potential energy of the book is \(\Delta PE = W_{\text{ext}} = +mgh \). The work done by the external agent went into the increased

Last update 2/6/2006
gravitational potential energy of the book. (The initial and final velocities are zero, so there was no increase in kinetic energy.)

Quantitative description of voltage

We define *electrostatic potential energy* in the same way as we defined gravitational potential energy, with the relation \(\Delta \text{PE} = W_{\text{ext}} \). Consider two parallel metal plates (a capacitor) with equal and opposite charges on the plates which create a uniform electric field between the plates. The field will push a charge \(+q \) down toward the negative plate with a constant force of magnitude \(F = q E \). (The situation is much like a mass in a gravitational field, but there is no gravity in this example.) Now imagine grabbing the charge with tweezers (an external agent) and *lifting* the charge \(+q \) a distance \(\Delta y \) against the electric field toward the positive plate. By definition, the change in electrostatic potential energy of the charge is \(\Delta \text{PE} = W_{\text{ext}} = \text{force} \times \text{distance} \Rightarrow \)

\[
\Delta \text{PE} = +q E \Delta y
\]

This formula assumes that the \(E \)-field is in the \(-y \) direction. But don't try to get the signs from the equations – it's too easy to get confused. Get the sign of \(\Delta \text{PE} \) by asking whether the work done by the external agent is positive or negative and apply \(\Delta \text{PE} = W_{\text{ext}} \).

Now we are ready for the definition of voltage difference between two points in space. Notice that the increase in PE of the charge \(q \) is proportional to \(q \), so the ratio \(\Delta \text{PE}/q = E \Delta y \) is independent of \(q \). Recall that electric field is defined as the force *per* charge: \(\vec{E} \equiv \frac{\vec{F}_{\text{on q}}}{q} \).

Similarly, we define the voltage difference \(\Delta V \) as the change in PE *per* charge:

Last update 2/6/2006
We showed above that $\Delta PE = + q E \Delta y$, so $\Delta V = \frac{\Delta PE}{q} = \frac{q E \Delta y}{q} = E \Delta y$. Again, this formula assumes that the E-field is along the $-y$ direction, but don't try to get the signs from the equations – it's too easy to get confused. Instead, just remember that the E-field always points from high voltage to low voltage:

$$|\Delta V| = E |\Delta x|$$

(if E-field = constant and is along the x-axis)

To say that "the voltage at a point in space is V" means this: if a test charge q is placed at that point, the potential energy of the charge q (which is the same as the work required to place the charge there) is $PE = q V$. If the charge is moved from one place to another, the change in PE is $\Delta PE = q \Delta V$. Only changes in PE and changes in V are physically meaningful. We are free to set the zero of PE and V anywhere we like.

Units of voltage = [V] = \frac{\text{energy}}{\text{charge}} = \frac{\text{joule}}{\text{coulomb}} = \text{volt (V)}. \quad 1 \text{ V} = 1 \text{ J/C}

Voltage near a point charge

(This is hard to compute, since E = constant. Need calculus. See appendix for math details.)

$$V = \frac{kQ}{r}$$

Answer: $V(r) = \frac{kQ}{r}$

Notice that this formula gives $V = 0$ at $r = \infty$. When dealing with point charges, we always set the zero of voltage at $r = \infty$.
What does a graph of voltage vs. position look like?

![Graph of voltage vs. position](image)

- **V near (+) charge is large and positive.**
- **V near (–) charge is large and negative.**

If we have several charges \(Q_1, Q_2, Q_3, \ldots \), the voltage at a point near the charges is

\[
V_{\text{tot}} = V_1 + V_2 + V_3 + \ldots
\]

(from \(\Delta P E_{\text{tot}} = W_{\text{tot}} = W_1 + W_2 + \ldots \))

Voltages add like numbers, not like vectors.

What good is voltage?

- Much easier to work with V's (scalars) than with \(\vec{E} \)'s (vectors).
- Easy way to compute PE.

Voltage example: Two identical positive charges are some distance \(d \) apart. What is the voltage at point \(x \) midway between the charges? What is the E-field midway between the charges? How much work is required to place a charge \(+q \) at \(x \)?

\[
V_{\text{tot}} = V_1 + V_2 = \frac{kQ}{(d/2)} + \frac{kQ}{(d/2)} = \frac{2kQ}{d}
\]

The E-field is zero between the charges (Since \(\vec{E}_{\text{tot}} = \vec{E}_1 + \vec{E}_2 = 0 \). Draw a picture to see this!)
The work required to bring a test charge +q from far away to the point x is positive, since it is hard to put a (+) charge near two other (+) charges. You have to push to get the +q in place. The work done is

\[W_{ext} = \Delta PE = +q \Delta V, \quad \text{where} \quad \Delta V = V_{\text{final}} - V_{\text{initial}} = V(x) - V(\infty) = \frac{4kQ}{d} \]

Units of electron-volts (eV)

The SI units of energy is the joule (J). 1 joule = 1 newton-meter. Another, non-SI unit of energy is the electron-volt (eV), often used by chemists. The eV is a very convenient unit of energy to use when working with the energies of electrons or protons.

From the relation \(\Delta PE = q \Delta V \), we see that energy has the units of charge \(\times \) voltage. If the charge \(q = 1 \text{ e} = |\text{charge of the electron}| \) and \(\Delta V = 1 \text{ volt} \), then \(\Delta PE = q \Delta V = 1 \text{ e} \times 1\text{ V} = \) a unit of energy called an "eV". Notice that the name "eV" reminds you what the unit is: it's an "e" times a "V" = 1 e \(\times \) 1 volt.

How many joules in an eV? 1 eV = 1 e \(\times \) 1V = \((1.6 \times 10^{-19} \text{ C})(1 \text{ V}) = 1.6 \times 10^{-19} \text{ J}\)

If \(q = e \) (or a multiple of e), it is easier to use units of eV instead of joules when computing \(\text{(work done)} = \text{(change in PE)} \).

Example of use of eV. A proton, starting at rest, "falls" from the positive plate to the negative plate on a capacitor. The voltage difference between the plates is \(\Delta V = 1000 \text{ V} \). What is the final KE of the proton (just before it hits the negative plate)?

As the proton falls, it loses PE and gains KE.

\[|\Delta KE| = |\Delta PE| = |q \Delta V| = 1\text{e} \times 1000 \text{ V} = 1000 \text{ eV} \]
"Equipotential Lines" = constant voltage lines

For a constant E-field, we showed before that $|\Delta V| = E |\Delta x|$, but this is only true if the E-field is parallel (or anti-parallel) to the displacement $\Delta \mathbf{x}$. If we move in a direction perpendicular to the E-field, the voltage does not change: if $\Delta \mathbf{x} \perp \mathbf{E}$, then $\Delta V = 0$. Why? Recall the definition

$$\Delta V \equiv \frac{\Delta \text{PE}_{\text{of } q}}{q} = \frac{W_{\text{ext}}}{q} = \frac{F_x \Delta x}{q} = -\frac{q E_x \Delta x}{q} = -E_x \Delta x,$$

where $E_x = E_{\parallel}$ is the component of the E-field along the movement, which we call the x-direction. If the signs confuse you, remember "the hi-voltage people look down their electric field noses at the low-voltage people". Anyway $|\Delta V| = |E_x| |\Delta x|$. Only the component of the E-field along the displacement involves non-zero work and produces a change in voltage.

Equipotential (constant voltage) lines are always at right angles to the electric field.

![Diagram of equipotential lines and electric field](image-url)