2130 Learning Goals – Draft 3: 12/8/06

1. wave function and probability
 - Explain how the wave function description of matter replaces the particle description of matter.
 - Determine a potential energy diagram from a physical situation and vice versa.
 - Recognize that quantum mechanics describes the world using an energy picture rather than a force picture.
 - Predict where a particle is most likely to be, given a wave function.
 - Predict the energy that a particle is most likely to have, given a wave function.
 - Apply the definitions of amplitude, wavelength, frequency for classical and quantum waves.
 - Determine reflection and transmission coefficients for classical and quantum waves.

2. wave-particle duality
 - Recognize that matter is described by wave functions, not by particles moving along trajectories.
 - Recognize that the wave function, via the Schrodinger Equation, describes the entire dynamics of matter, but cannot be measured.
 - Recognize that light is described by electromagnetic waves.
 - Compare and contrast the behavior of electromagnetic waves and matter waves.
 - Recognize that light comes in discrete energy packets.
 - Explain how the photoelectric effect experiment proves that light comes in discrete energy packets.
 - Describe how energy quantization results from boundary conditions on wave functions or other kinds of waves.
 - Determine when to use wave picture and when to use particle picture and recognize that it is not random.
 - Describe how the wave picture of electrons leads to quantization of energy levels in atoms.
 - Recognize that “Which slit did the particle go through?” in a double slit experiment is a trick question.

3. Schrodinger Equation
 - Motivate the Schrodinger Equation from conservation of energy.
 - Solve the Schrodinger Equation for simple potentials.
 - Sketch solutions to the Schrodinger Equation for arbitrary potentials.
 - Use the Schrodinger Equation to describe tunneling and radioactive decay.
 - Calculate reflection and transmission coefficients, and determine how these change with width and height of barrier.
 - Describe how the solutions to the Schrodinger equation explain the shape of orbitals of atoms.
 - Describe how the solutions to Schrodinger explain the numbers of electrons in each shell of an atom.

4. quantization of energy/quantum numbers/unique states
 - Recognize that things can exist only in certain discrete states; not all values of energy, angular momentum, spin, etc. are possible.
• Describe how this quantization results from wave nature of matter.
• Recognize that when things exist in certain energy states, they take on certain probability distribution functions.
• Describe how quantization explains the structure of the periodic table.
• Predict occupancy of states based on the Pauli Exclusion Principle.
• Calculate the energies of photons emitted in transitions.

5. uncertainty principle
• Recognize that a particle in an energy or momentum eigenstate is spread out in space.
• Recognize that a localized particle does not have a well-defined energy or momentum.
• Recognize that the uncertainty principle describes a fundamental indeterminacy, not just something that we don’t know.
• Describe how the uncertainty principle results from probabilistic interpretation of wave function.

6. superposition
• Recognize that a system can be in superposition of eigenstates, and is not necessarily always in an eigenstate.
• Predict possible outcomes of a measurement of a superposition state.

7. operators and observables
• Predict with what probability a certain value of an observable will be measured.

8. measurement
• Determine how a quantum mechanical system changes upon measurement.
• Recognize that this behavior is NOT simply because a measurement “disturbs the system.”
• Recognize that “What was the energy before you measured it?” is a trick question.
• Recognize that a measurement is simply an interaction with something external to the system.
• Explain why and how measuring which slit the particles go through in a double slit experiment destroys the interference pattern.
• Recognize that an eigenstate is what you get when you make a measurement, not necessarily the state that things are always in.