Energy: Recall, we invented \(V(r) \) = "Voltage"

\[
V(r) = - \int_{\text{origin where } r=0}^{r} \mathbf{E} \cdot d\mathbf{l} \tag{1-2)(-36)}
\]

\[\leftarrow \text{So, given } \mathbf{E}, \text{ can always compute } V.\]

Then we showed, mathematically \(\mathbf{E} \) with Maxwell's help

\[
V(r) = \frac{1}{4\pi\varepsilon_0} \int_{\text{vol}} \rho(r') d\mathbf{r'} \tag{1-2)(-36)}
\]

\[\leftarrow \text{So, given } \rho, \text{ can always compute } V.\]

\[
\mathbf{E} = - \nabla V \leftarrow \text{So, once have } V, \text{ you know } \mathbf{E}. \tag{1-2)(-36)}
\]

\[
\nabla^2 V = - \frac{\rho}{\varepsilon_0} \leftarrow \text{So, } \ "\ " " " \ " " \ " \ \rho. \tag{1-2)(-36)}
\]

But what is it? What does it mean?

Think of moving a tiny rest charge \(q \) through \(\mathbf{E} \) fields from \(a \) to \(b \). "Electric force \(= q \mathbf{E} \), so \(\mathbf{F}_{\text{electric}} = -q \mathbf{E} \) to "fight the field."

To go from \(a \) to \(b \), you do \(\mathbb{W}_{\text{ext}} = \int_{a}^{b} \mathbf{F}_{\text{you}} \cdot d\mathbf{l} \)

\[
= -q \int_{a}^{b} \mathbf{E} \cdot d\mathbf{l} \tag{1-2)(-36)}
\]

Look up \(\Delta \rho \),

\[
\mathbb{W}_{\text{ext}} = q \Delta V_{ab} = q \left(V(b) - V(a) \right) \tag{1-2)(-36)}
\]

\[\text{So voltage carries info about work/energy!} \]
In III0, if you do work, can talk about stored potential energy. Here, \[PE = q V \] (from prev. page)

(Note, always ambiguity, can define \(PE = 0 \) anywhere)

so \(V(\vec{r}) = \frac{PE}{q} = \text{the potential energy per unit charge} \)

\[\text{could call this } p.e. = U(\vec{r}) = q V(\vec{r}) \]

Griffiths calls it \(W \), it's work needed by you to get \(q \) to this point.

That's "\(PE \) of a charge \(q \) in presence of others". But what about work to get others together?! Start from scratch, build up any given distribution of \(q \)'s, how much work?

That will tell us "stored electrostatic energy of system"

So let's bring in, one at a time, \(q_1, q_2, q_3 \ldots \) and figure out total work.
Bring in g_1. No other g's \implies no work.

Bring in g_2. g_1 is there, producing field.

So $W_2 = g_2 \cdot V_{\text{caused by } g_1} = g_2 \cdot \left(\frac{1}{\mu \varepsilon_0} \cdot \frac{g_1}{R_{12}} \right)

Now bring in g_3.

$W_3 = g_3 \cdot V_{\text{caused by } g_1, g_2} = g_3 \cdot \frac{1}{\mu \varepsilon_0} \left(\frac{g_1}{R_{13}} + \frac{g_2}{R_{23}} \right)

Total so far is $W_1 + W_2 + W_3$

$W_{\text{system}} = \frac{1}{\mu \varepsilon_0} \left(\frac{g_1 g_2}{R_{12}} + \frac{g_1 g_3}{R_{13}} + \frac{g_2 g_3}{R_{23}} \right)$

See pattern? Extends to any #.

Add all pairs $\frac{g_i g_j}{R_{ij}}$ but don't compute "self energy" $i=j$

Add all pairs $\frac{g_i g_j}{R_{ij}}$ and don't double count.

or, do double count and then divide by 2!!

So $W_{\text{system}} = \frac{1}{2 \cdot \mu \varepsilon_0} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \frac{g_i g_j}{R_{ij}}$

Note: Could be negative!
Can reorganize this

\[W_{\text{sys}} = \frac{1}{2} \sum_{i=1}^{n} q_i \left(\sum_{j \neq i}^{\infty} \frac{q_j}{4\pi \epsilon_0 r_{ij}} \right) \]

What's in parens? It looks like \(\tilde{V}(\vec{r}_i) \)

The voltage you get at point "i" due to all the other charges at all points \(j \neq i \), (Being careful not to include "self energies")

So \(W_{\text{sys}} = \frac{1}{2} \sum_{i=1}^{n} q_i \tilde{V}(\vec{r}_i) \)

\[W_{\text{sys}} = \frac{1}{2} \int dq \cdot \tilde{V}(\vec{r}) = \frac{1}{2} \int \tilde{V}(\vec{r}) \rho(r') \, dr' \]

Here \(\tilde{V}(\vec{r}) \) = the potential at point \(\vec{r} \) due to all \(\rho \) except right at \(\vec{r} \), but this is irrelevant issue for \(\rho(1) \)

There is no charge in an infinitesimal volume...
\[W_{\text{sys}} = \frac{1}{2} \int \rho(r) V(r) \, d^3r \equiv \text{Total Energy of a system.} \]

where is it located? In the \(E \) fields! Let's see how...

\[\rho = \epsilon_0 \nabla \cdot \vec{E} \], so \(W_{\text{sys}} = \frac{\epsilon_0}{2} \int_{\text{vol}} (\nabla \cdot \vec{E}) \cdot \vec{V} \, d^3r \]

But \(\int u \, dv = uv - \int v \, du \), or in 3-D see eq'n 1.59

\[W_{\text{sys}} = \frac{\epsilon_0}{2} \left[\left(\int_{\text{vol}} \vec{V} \cdot \nabla \cdot \vec{E} \, d^3r \right) - \int_{\text{vol}} \vec{E} \cdot \nabla \vec{V} \, d^3r \right] \]

If volume is "all space", \(\vec{V} \to 0 \) far away!

So, as long as all charges are localized (no good for "infinite sheet", e.g.)

\[W_{\text{sys}} = \frac{\epsilon_0}{2} \int_{\text{vol}} \vec{E} \cdot \nabla \vec{V} \, d^3r \]

But \(\nabla \vec{V} = -\vec{E} \), so

\[W_{\text{sys}} = \frac{1}{2} \epsilon_0 \int_{\text{vol}} E^2 \, d^3r \]

Cool. It's \(E \) that stores the energy,

\[\frac{1}{2} \epsilon_0 E^2 \] tells you "stored energy/m^3".

[But, should really only use this with continuous \(\rho \)'s.]

[If have discrete point charges, go back to the sum formula.]