Conductors: Perfect conductance is idealization (though realizable w. superconductors) but metals \((\text{Cu, Al, etc})\) are excellent approximations!\

\(\rightarrow\) Charges are free inside: can respond (instantly \(+\text{no loss}\)) to forces. Consequences in e-static situations (¡¡)

\(\mathbf{E} = 0\) inside. See Griffiths p. 97,

but clearly if \(\mathbf{E} \neq 0\), \(\mathbf{F} = q \mathbf{E} \neq 0\), charges will move! Keep moving until \(\mathbf{E} = 0\). (That's "static", then)

\(\mathbf{p} = E_0 \nabla \cdot \mathbf{E} = 0\) inside

Excess charge must live on outside edge. See ¡¡!

\(\Delta V(\mathbf{a} \rightarrow \mathbf{b}) = -\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{L} = 0\) if \(a, \mathbf{b}\) are both in or on conductor. So \(\Rightarrow\) Equipotential throughout. (Even if charged!)

\(\mathbf{E} \perp\) surface at edges. (If there was any \(\mathbf{E}_n\), then surface charges would move.) (Or, see next page)
Consider \(\oint \mathbf{E} \cdot d\mathbf{l} \), with \(h \to 0 \). Must be 0!

So get \(\text{O inside + tiny leg} + E_{\|} \cdot L + \text{tiny leg} = 0 \).

This is a formal proof that \(E_{\|} \) (outside) = 0.

Also, consider Gauss pillbox, with tiny height \(h \).

\[
E_{\text{out}} \cdot A + E_{\text{in}} \cdot A \quad + \text{tiny walls} = \frac{Q_{\text{enc}}}{E_0} = \frac{\sigma \cdot A}{E_0}
\]

So \(E_{\text{out}} = \frac{\sigma}{E_0} \), pointing normal.

Interesting, it's not \(\frac{\sigma}{2E_0} \) like an isolated sheet of charge gives.

(There must be other charges superposing to give us this \(E \) field)

Many many consequences!

- Conductors polarize in presence of external \(\mathbf{E} \)'s.
 - Have to, to ensure \(\mathbf{E} = 0 \) inside.

- Makes it harder to solve for \(V(r) \) (or \(\mathbf{E} \)), since no longer know "a-priori" \(\rho \), it will adjust itself!

 (So e.g. \(V = \frac{1}{4\pi\epsilon_0} \int \frac{\rho}{r} \; d\mathbf{r} \) is still true... but what is \(\rho \) now?)
Cavities & "Shielding".

If conductor has hole, what's going to happen? $\vec{E} = 0$ in metal region, but what about in hole?

Gauss for dashed line says $\int \vec{E} \cdot d\vec{A} = \frac{Q_{enc}}{\varepsilon_0}$

But $\vec{E} = 0$ on dashed line! So $Q_{enc} = 0$.

- If there is a q in the hole, this says $-q$ appears at "inside edge".
- If there is no q in the hole, I claim $\vec{E} = 0$ in hole too, why?

Arg #1: Suppose you start with solid conductor. We know $E = 0$ & $\rho = 0$ throughout. Now remove hole material. Note removing any Q's so not changing \vec{E} anywhere! (It's Q's that create \vec{E}'s, after all.)

Arg #2: If $\vec{E} \neq 0$, then this loop shows $\int \vec{E} \cdot d\vec{L} = 0$

But it's 0 for any line, in either direction! No way (unless $\vec{E} = 0$ everywhere.)
Arg #3: We'll soon learn "uniqueness theorem":

Once you find a sol'n for \(V \) (or \(E \)) throughout space that is consistent with "boundary conditions", there is no other sol'n.

\(E = 0 \) is consistent, so it's unique, so that's what it is.

This is "Faraday cage" effect: Inside a conductor, \(E = 0 \), (even in cavities, even with \(Q \)'s outside, even if conductor has \(Q \).)

- What if put \(Q \) in there?
 - We know you polarize, (putting \(-Q\) on inside wall...)
 - Charge conservation puts \(+Q\) on outside wall.

\(E = 0 \) inside the cavity anymore.

- Outside: field \(\neq 0 \) (because \(Q_{enc} = +Q \))

Field outside is same as if had same conductor with no cavity, but no charge \(+Q\). (Again, that "uniqueness theorem".)
Forces: Consider a sheet (conductor or not) with surface charge σ. Apply an \vec{E} field… what force would a patch (area dA) feel? Well, $d\vec{F} = dq \vec{E} = (\sigma \cdot dA) \vec{E}$. But what is \vec{E}? If you're on a surface, \vec{E} is not continuous, $E_{\text{above}} - E_{\text{below}} = \frac{\sigma}{\varepsilon_0}$

Answer: Use \vec{E} from all q's except the patch, 'cause nothing exerts a force on itself.

Superposition: $\vec{E}_{\text{total}} = \vec{E}_{\text{external}} + \vec{E}_{\text{patch itself}}$

$\vec{E}_{\text{external}}$ will be continuous (!) so $\vec{E}_{\text{above}} = \vec{E}_{\text{ext}} + \frac{\sigma}{2\varepsilon_0}$

$\vec{E}_{\text{below}} = \vec{E}_{\text{ext}} - \frac{\sigma}{2\varepsilon_0}$

Thus $\vec{E}_{\text{ext}} = \frac{1}{2} (\vec{E}_{\text{above}} + \vec{E}_{\text{below}})$. Use the average real fields.

For conductor, $\vec{E}_{\text{above}} = \frac{\sigma}{\varepsilon_0}$, $\vec{E}_{\text{below}} = 0 \implies d\vec{F} = \sigma \cdot dA \cdot \frac{\vec{E}}{2\varepsilon_0}$ (our)

Thus, there is an outward pressure $\frac{d\vec{F}}{dA} = \frac{\sigma^2}{2\varepsilon_0}$ outward.
CAPACITANCE: Any pair of conductors will have a well-defined \(\Delta V \) (cause each one is an equipotential)

\[\Delta V_{bar} \]

\[\Delta V_{bar} \]

\[\Delta V \]
\[= \int \vec{E} \cdot d\vec{L} \]

\(\Delta V = -\int \vec{E} \cdot d\vec{L} \)

But Gauss' law says \(\vec{E} \propto \vec{Q} \), so \(\Delta V \propto \vec{Q} \), so

Define \(C = \frac{Q}{\Delta V} \) \[\text{[depends on objects, config, shape,]} \]

\[\text{but not on } \vec{Q} \text{ or } \Delta V! \]

\(1 \text{C} / \text{V} = 1 \text{ Farad} \)

Some situations are easy to calculate, if known \(\vec{E} \) field

Ex 1:

\[\begin{array}{c}
+Q \\
\downarrow E \\
\hline
L \\
\hline
-\alpha
\end{array} \]

\(\vec{E} = \frac{\sigma}{\varepsilon_0} \) between, 0 elsewhere

\(\Delta V = -\int \vec{E} \cdot d\vec{L} = +\frac{\sigma}{\varepsilon_0} \cdot L \)

So \(C = \frac{Q}{\Delta V} = \frac{Q}{Q/A \cdot \varepsilon_0} = \frac{\varepsilon_0 \cdot A}{L} \)

\[\text{(Do you see why it's +?)} \]
Ex 2:

Here \[E = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2}, \]

\[\Delta V = \int_a^b \mathbf{E} \cdot d\mathbf{l} = \frac{1}{4\pi \varepsilon_0} Q \cdot \frac{1}{r} \bigg|_a^b \]

and \[C = \frac{Q}{\Delta V} = 4\pi \varepsilon_0 \left(\frac{1}{a} - \frac{1}{b} \right) \]

[If \(b \to \infty \) this is \(4\pi \varepsilon_0 a \)]

Energy stored: Could compute \(\frac{E_0}{2} \int E^2 \, dV \),

but can also ask "how much external work needed" to charge it up to \(Q \)?

Each \(dq \) that gets moved takes work

\[dW_{\text{to move}} = dq \cdot \Delta V, \]

\[\int dq \text{ over } \]

\[q = Q \]

\[W_{\text{tot}} = \int \Delta V \cdot dq = \int_0^Q \frac{Q}{C} \, dq = \frac{1}{2} \frac{Q^2}{C} \]

(\(\Delta V = Q/C \) depends on \(q \) we've built up so far.)

\(q = 0 \)

(Circle, our sphere has stored energy \(\frac{1}{2} \frac{Q^2}{(4\pi \varepsilon_0 \cdot q)^2} \))