A solution to the wave equation is:
\[f(z,t) = A \cos(kz – \omega t + \delta) \]

What is the speed of this wave?
Which way is it moving?
If \(\delta \) is small (and >0), is this wave “delayed” or “advanced”?
What is the frequency?
The angular frequency?
The wavelength?
The wave number?
A solution to the wave equation is:
\[f(z,t) = \text{Re}[A \ e^{(kz - \omega t + \delta)}] \]

What is the speed of this wave?
Which way is it moving?
If \(\delta \) is small (and >0), is this wave “delayed” or “advanced”?
What is the frequency?
The angular frequency?
The wavelength?
The wave number?
A complex solution to the wave equation in 3D is:

\[\tilde{f}(\mathbf{r}, t) = \tilde{A} e^{i (\mathbf{k} \cdot \mathbf{r} - \omega t)} \]

What is the speed of this wave?
Which way is it moving?
Why is there no \(\delta \)?

What is the frequency?
The angular frequency?
The wavelength?
The wave number?