Consider a large parallel plate capacitor as shown, charging so that $Q = Q_0 + \beta t$ on the positively charged plate. Assuming the edges of the capacitor and the wire connections to the plates can be ignored, what is the magnitude of the magnetic field B halfway between the plates, at a radius r?
Consider a large parallel plate capacitor as shown, charging so that \(Q = Q_0 + \beta t \) on the positively charged plate. Assuming the edges of the capacitor and the wire connections to the plates can be ignored, what is the magnitude of the magnetic field \(B \) halfway between the plates, at a radius \(r \)?

\[
\frac{\mu_0 \beta}{2\pi r}
\]

A. \(\frac{\mu_0 \beta}{2\pi r} \)

B. \(\frac{\mu_0 \beta r}{2d^2} \)

C. \(\frac{\mu_0 \beta d}{2a^2} \)

D. \(\frac{\mu_0 \beta a}{2\pi r^2} \)

E. None of the above