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Ahmed AA, Ashton-Miller JA. On use of a nominal internal
model to detect a loss of balance in a maximal forward reach. J
Neurophysiol 97: 2439 –2447, 2007. First published January 24,
2007; doi:10.1152/jn.00164.2006. We hypothesize that the CNS
detects a loss of balance by comparing outputs predicted by a nominal,
forward internal model with actual sensory outputs. When the result-
ing control error signal reaches an anomalously large value, this
control error anomaly (CEA) signals a loss of balance and precedes
any observable compensatory response. To test this hypothesis, a
multi-input, multi-output internal model of a standing forward reach
task was developed that incorporated on-line model identification and
a Gaussian failure detection algorithm. Eleven healthy young women
were then asked to stand and reach forward to a target positioned from
95 to 125% of their maximum reach distance. Kinematic and kinetic
data were recorded at 100 Hz unilaterally from the upper body, leg,
and foot. Evidence of successful CEA detection was a compensatory
step between 100 ms and 2 s later. The results show that use of a
threshold, set at 3 SD from the mean, on error in the control of leg
segment acceleration detected a CEA and correctly predicted a com-
pensatory response in 92.6% of 108 trials. Leg acceleration control
error was a better predictor than upper body or foot acceleration
control error (P � 0.000). CEA detection performed more reliably
than loss of balance detection algorithms based on kinematic thresh-
olds (P � 0.000). The results support the hypothesis that a loss of
balance may be identified via the use of a nominal forward internal
model and probabilistic error monitoring.

I N T R O D U C T I O N

Falls are a leading cause of both nonfatal injuries and
injury-related death at any age, especially for adults over the
age of 65 yr; (National Center for Injury Prevention and
Control 2002; Rice and MacKenzie 1989). Every nonsyncopal
unintentional fall is preceded by a “loss of balance.” There is,
however, a lack of consensus on what a loss of balance really
is in conceptual, physical, or mechanistic terms.

In the field of postural control, a loss of balance has tradi-
tionally been held to occur when the whole-body center of
gravity passes outside its base of support, or dynamically,
when it cannot be brought to rest over the base of support (Pai
and Patton 1997). Taking this view, the CNS appears to
consider loss of balance to be a mechanical stability problem,
dependent solely on the governing physical laws. This ap-
proach, however, cannot answer the question of how we, as
humans, determine these stability limits, a priori, and plan our
control movements. From a mechanical standpoint, determin-

ing these limits would require a model with knowledge of
center of mass location, range of motion limits, and maximum
torque capacities as well as base of support limits. Even then it
would still be unable to account for our perception of environ-
mental risk, sensory predictions, and even task familiarization,
all of which have been shown to affect postural control and the
initiation of compensatory responses (Cham and Redfern 2002;
Eng et al. 1994; Pai et al. 2000). This paper addresses these
issues by developing an alternative conceptual description of
how the CNS might detect a loss of balance. Rather than focus
on system outputs, as traditional approaches do, it emphasizes
knowledge of the applied control input (efference copy) to the
system.

We have proposed that a loss of balance is the fundamental
requirement for the CNS to initiate a compensatory response
aimed at preventing a potential fall and/or subsequent injury.
Specifically, this on-demand correction is initiated when the
control error between the predicted and actual outputs, result-
ing from a known control input, reaches an unusually large or
anomalous value (Ahmed and Ashton-Miller 2004). The de-
tection of this control error anomaly (CEA) involves the
formation of a nominal, forward internal model, calculation of
control error, and stochastic decision-making based on a
Gaussian distribution. Initially, the control input is sent by the
CNS to a nominal, forward internal model and the actual plant
(Fig. 1). The nominal internal model characterizes the normal
(predicted) output of the system in response to a given input in
contrast to an internal model in the formal sense being an exact
representation of the system. The nominal internal model is
identified in real time and calculates the predicted output given
the received control input. The control error is then calculated
as the difference between the predicted and actual outputs,
sensed via feedback to the sensory systems, and analyzed by a
subcomponent of the controller called the “CEA detector.” The
CEA detector monitors the control error and compares it to the
maximum allowable limits. A CEA is detected when the error
signal exceeds a threshold set at 3 SD (3�) beyond the mean of
the baseline signal. Detection of CEA corresponds to the
detection of a loss of balance and the subsequent need for a
compensatory response. Thus once CEA is detected, any com-
pensatory response that is initiated soon afterward is confir-
matory evidence that the CNS had detected the loss of balance
and therefore the need for this response. The first test of the
CEA theory and the 3� threshold was conducted and validated
in a whole-body, 1 degree-of-freedom (df), chair-balancing
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task performed by young adults (Ahmed and Ashton-Miller
2004). In a follow-up paper (Ahmed and Ashton-Miller 2005),
it was observed that older adults responded prematurely to
CEA while performing the same chair-balancing task.

The components of the proposed CEA theory, a nominal
internal model, control error, and stochastic decision-making,
build on ideas in biomechanics, postural control, cognitive,
behavioral and computational neuroscience and the motor
control fields. A critical assumption is that the detection of loss
of balance, and the accompanying response, are mediated by
higher centers in the CNS. There is evidence of cortical
involvement in the execution and possibly the initiation of
balance responses, as well as the maintenance of standing
posture (Maki et al. 2001a,b; McIlroy et al. 1999; Ouchi et al.
1999). Moreover, forward internal models in the CNS have
become familiar notions in the contemporary motor control
literature with neuro-imaging and behavioral results suggesting
they may reside in the cerebellum (Blakemore et al. 1998,
2001, 2003; Diedrichsen et al. 2005; Muller and Dichgans
1994). Such models have also been implicated in postural
control (Loram et al. 2004; van der Kooij et al. 1999, 2001).
There are also findings that support the idea in CEA theory that
humans monitor how well they are controlling their move-
ments (Hohwy and Frith 2004; Kerns et al. 2004). Finally,
there is both behavioral and neurophysiological evidence to
support the calculation, detection, and monitoring of conflict
and error by the CNS (Botvinick et al. 2004; Kandel et al.
2000; Marr 1969). Based on these results, it seems reasonable
to assume that the CNS calculates the error between predicted
and actual sensory outcomes, monitors it, and may even alter
control strategies based on it. With regard to stochastic deci-
sion making, there are at least two studies indicating that the
CNS uses stochastic parameters to plan, control and adapt
movements (Kording and Wolpert 2004; Lungu et al. 2004).

In the present paper, we extend CEA theory to include
multiple body segments and then test its efficacy in detecting a
loss of balance in a multi-degree of freedom forward reaching
task. Reaching was selected because it is an activity of daily
living involving the control of multiple body segments. The

farther one has to reach, the more challenging the balancing
task becomes and the greater the risk of a loss of balance.
Perhaps partly for these reasons, the elderly consider reaching
forward as one of the three most challenging activities of daily
living (Powell and Myers 1995; Tinetti et al. 1990). Indeed,
“functional reach” has been used as a potential test of postural
stability for the elderly and as an indicator of fall risk (Duncan
et al. 1990). Here, functional reach is defined as the maximal
distance one can reach forward beyond arm’s length in upright
stance while maintaining a fixed base of support. In their initial
study, Duncan et al. (1990) found that functional reach corre-
lated positively with maximal center of pressure excursion, an
established test of dynamic balance, and negatively with age.

By applying the CEA theory to the forward reach task,
which involves the coordination of multiple body segments, we
can examine its ability to generalize to a system with multiple
inputs, multiple outputs, and multiple error signals (Fig. 1). In
contrast to the single control error monitored in the single df
chair task studied by Ahmed and Ashton-Miller (2004), the
simplest sagittally symmetric model of the bimanual forward
reach task would involve monitoring three control error sig-
nals, each corresponding to a degree of freedom (for example,
rotation about the hip, ankle, and toe). The occurrence of a
forward compensatory step is then an unambiguous and ob-
servable demonstration of an attempt to recover from a loss of
balance.

In this paper, we test the primary hypothesis that a CEA can
reliably predict an impending compensatory response once any
error signal reaches a 3� threshold in healthy young women
asked to perform the maximal forward-reach task. Physical
confirmation of the compensatory response is the execution of
a compensatory step by the subject. A successfully predicted
response is required to lag the instant of CEA by �100 ms but
lead the compensatory response by no more than 2 s to ensure
its specificity. The 100 ms value is based on the fastest
measured volitional human response times (Mero and Komi
1990), whereas the 2 s value was kept the same as that used by
Ahmed and Ashton-Miller (2004) for purposes of comparison.
We also investigate the relative importance and sensitivity of
each error signal, and the optimal threshold level, for detecting
CEA. Finally, we compare the efficacy of the CEA approach
for detecting a loss of balance with that of traditional methods
involving kinematic thresholds or the position of the center of
gravity relative to the base of support.

M E T H O D S

CEA theory development and implementation

SAGITTALLY SYMMETRIC MODEL AND EQUATIONS OF MOTION OF

THE FORWARD-REACH TASK. Theory development. To apply CEA
theory to this task, and predict any compensatory step, the control
error signals must be determined (i.e., errors in joint or segment
position, velocity, or acceleration). Figure 1 demonstrates that the
CEA detector needs two types of signals to calculate the error: the
actual outputs and the internal model-predicted outputs. The actual
outputs of the system are determined by the plant dynamics, which are
defined by the corresponding equations of motion. Similarly, the
predicted outputs are determined by the internal model, which is also
based on the plant dynamics’ equations of motion. Thus the model of
the plant dynamics in this task will determine both the actual and
predicted outputs, and hence, the control error signals.

FIG. 1. Block diagram of multi-input, multi-output model and algorithm
components: 3 predicted output signals (gray lines), 3 output signals (black), 3
input signals (dashed). The internal model calculates the predicted outputs
based on the control inputs received from the central controller. Error between
the predicted and actual outputs is calculated by the control error anomaly
(CEA) detector. When the error reaches an anomalously large value, a CEA is
detected and triggers an adaptive response in the central controller.
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Theory implementation. The reaching activity was modeled in the
sagittal plane, as a three-link inverted pendulum (Kozak 1999; Kozak
et al. 2003). The three rigid links represent the head, arms, and torso
(HAT), both legs (LEG), and both feet (FOOT). The head, arms, and
torso were treated as one segment due to the minimal relative motion
observed between these segments in another forward reaching task
(Kozak 1999; Kozak et al. 2003). This three-link kinematic chain was
considered to pivot about the hip, ankle and metatarsal (toe) joints.
The control inputs of interest obtainable from this analysis were the
torques acting on the HAT, LEG, and FOOT segments. The outputs of
interest were the angular accelerations of the individual body seg-
ments: HAT, LEG, and FOOT (Fig. 2).

The torques acting on each segment were computed using the
equations of motion for this system and an inverse dynamics analysis.
Kane’s method produced the following equations of motion in the
generalized coordinates �(t) � {�HAT(t) �LEG(t) �FOOT(t)}, and their
derivatives

M(�)�̈ � �T � V(�,�̇) (1)

and in expanded form,

� m11 m12 m13

m21 m22 m23

m31 m32 m33

� � �̈HAT

�̈LEG

�̈FOOT

�� � � t1

t2

t3

�� � v1

v2

v3

� (2)

The inertia matrix and torque and potential vectors are denoted by
M, T, and V, respectively. T is the vector of torques relating to the
generalized coordinates. V is in terms of anthropometric measures, �
and �̇. M is a function of anthropometric measures (segment masses,
lengths, center of mass locations, and moments of inertia) and �. The
generalized coordinates and their derivatives were obtained from the
experimentally observed segment angles, angular velocities and
accelerations.

NOMINAL FORWARD INTERNAL MODEL. Theory development. CEA
theory assumes that the CNS is uncertain of the exact limits of
stability in this task. One way to determine those limits is to identify
an internal model of normal (or desired) system responsiveness to an
input, and detect any deviations from this nominal level. These
deviations, the errors between the actual and model-predicted outputs,
are the signals of primary interest in this study (Fig. 1). Thus our goal
is to obtain the model and corresponding matrix terms that character-
ize the system’s nominal responsiveness to a given input. We further
propose that this model may be self-identified on-line from experi-
mental data.

Theory implementation. The mathematical structure of the model
needed to predict the expected outputs, body segment angular accel-
erations, was already defined by the equations of motion

�̈ � M�1(�T � V) (3)

and in expanded form,

� �̈HAT

�̈LEG

�̈FOOT

� � � m11 m12 m13

m21 m22 m23

m31 m32 m33

��1�� � t1

t2

t3

�� � v1

v2

v3

�� (4)

Because the inputs, T, and outputs, �̈, were known, the approxi-
mations to matrices M and V may be identified in terms of constant
coefficients using least-squares multiple linear regression. To identify
the nominal internal model, however, a significant modification was
made. To reliably predict the output signal, regression analysis was
only applied to the frequency range of the input signal that provided
the best characterization of the system response. The system’s accel-
eration output was, compared with the torque inputs, primarily com-
posed of higher-frequency harmonics. This can be explained by the
dynamic response of the triple-inverted pendulum, where the lower-
frequency torque inputs function to compensate for the destabilizing
effect of gravity. Thus the resultant acceleration output was due to the
higher-frequency torque inputs.

To quantify the internal model for the nominal response, the input
torques were de-trended with a high-pass, no-lag filter at 0.6 Hz.
Multiple linear regression was then employed to obtain the constant
matrices M̃, and Ṽ, using the actual outputs and de-trended inputs, T̃
as regressors over a time period of 2 s early in each trial (see Eq. 5).
The de-trending frequency of 0.6 Hz approximates the �3 dB point of
the linearized system’s frequency response when the amplitude of the
output response to the input has been reduced by 3 dB. Post hoc
analysis confirmed that 95, 91, and 94% of the FOOT, LEG, and
HAT acceleration power, respectively, were contained in frequencies
�0.6 Hz.

Once the internal model parameters were identified, the predicted
accelerations, �̂̈ (t) � {�̂̈ HAT(t) �̂̈ LEG(t) �̂̈ FOOT(t)} were calculated
using forward dynamics

�̂̈ � M̃�1(�T̃ � Ṽ)

� �̂̈HAT

�̂̈LEG

�̂̈FOOT
� � � m̃11 m̃12 m̃13

m̃21 m̃22 m̃23

m̃32 m̃32 m̃33 �
�1

�� � t̃1

t̃2

t̃3 �� � ṽ1

ṽ2

ṽ3 �� (5)

The vector of error signals, e(t) � {eHAT(t) eLEG(t) eFOOT(t)}, was
obtained for all points in time by calculating the difference between
the actual and predicted accelerations

e � �̈ � �̂̈

� eHAT

eLEG

eFOOT �� � �̈HAT

�̈LEG

�̈FOOT �� � �̂̈HAT

�̂̈LEG

�̂̈FOOT
� (6)

One complication was that the internal model for the reach task
could not be identified from the start of the trial. The task begins with
a rapid forward movement of the body. Pilot studies showed that an
internal model that accurately predicted motion throughout the trial
could not be identified during this phase. We considered this initial
movement to be feedforward in nature and that it was implemented by
a different control strategy than the remainder of the trial. To avoid

FIG. 2. Illustration of a subject performing a forward reach with raised
heels (left), and the corresponding rigid-link model (right).
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poor internal model identification during this portion, a limit was
therefore placed on the angular velocity and acceleration of the HAT
segment. Self-identification commenced at the earliest time point in
the trial when the HAT angular velocity in the forward direction was
�0.1 rad/s and remained �0.2 rad/s for the following 1 s. Addition-
ally, the angular acceleration of the HAT segment at this time point
was required to be greater than zero.

CEA DETECTION. Theory development. A failure detection algorithm
detects a CEA when one of the error signals, e, crosses a moving
threshold set at 3 SD (3�) above or below the mean of the baseline
performance data.

Theory implementation. The error signal and the upper and lower
thresholds from a representative reach trial are shown in Fig. 3. Also
included in Fig. 3 are the following details. The internal model was
identified using data in the 2 s window a. The performance data were
obtained from b, a 4 s forward-moving trailing window, which lagged
the current time instant, t, by 100 ms. The mean, �b, and SD, �b,
obtained from this window were then used to calculate the threshold,
ethresh, at time t, 100 ms later (see Eq. 8). Calculation of the moving
threshold commenced at “Start,” initially using the 2 s of data prior as
baseline data, with a 100 ms delay (�) to allow for neural processing
(van der Kooij et al. 1999). As time elapsed, the 2 s window expanded
until a 4 s duration was obtained. This moving 4 s window, b,
continued to move through the trial, calculating the threshold 100 ms
later. A CEA was detected after the threshold had been crossed
continuously for 100 ms, i.e.,

e(t) � �b � 3�b continuously for past 100 ms (7a)

or

e(t) � �b � 3�b continuously for past 100 ms (7b)

where

ethresh(t) � �b � 3�b (8)

and �b was the mean, and �b was the SD of the trailing window

b � e�t � 4.1 s� � e�t � 0.1 s�

In other words, given a CEA at time t, ethresh must have been exceeded
from (t � 0.2 s) to (t � 0.1s).

Experiment design

Eleven healthy young women, aged 18–30 yr and with a mean
height of 1.67 � 0.07 (SD) m and mass of 60.72 � 7.13 (SD) kg,
volunteered for this experiment. The present study focused on women
because gender differences in CEA detection were not observed in
previous studies (Ahmed and Ashton-Miller 2004; 2005). All subjects
gave written informed consent as approved by the institutional Inter-
nal Review Board.

Subjects stood bipedally, barefoot, in a sagittally symmetric, up-
right posture, with their arms extended horizontally (Fig. 2). Hands
were placed together, with palms touching. Feet were oriented in the
sagittal plane a comfortable distance apart. Subjects were asked to
reach forward as far as they could with both hands. To precipitate a
loss of balance in young adults, the task was designed to be more
challenging than the functional reach test. To this end, subjects were
allowed to lift their heels off the ground. However, they were asked
not to bend their knees or separate their hands as they performed the
task.

Two preliminary trials were recorded in which the subjects were
asked to reach as far as they could pushing a circular target forward
with their finger tips. They were asked to hold that maximal position
for 5 s and then return to their original starting position. The maxi-
mum of these two reaches was defined as their maximum reach. For
the subsequent trials, the circular target was randomly positioned at

varying percentages of this maximum reach distance (95, 100, 105,
110, 115, 120, or 125%). In these trials, the subjects were instructed
to attempt to reach the target and hold the position for as long as they
could. After 10 s, they were asked to relax. The circular target was still
free to slide, preventing the subjects from using it for support. If the
subject managed to hold the position for 10 s, at a reach distance
greater than her recorded maximum, this new reach distance was
considered the new maximum reach and subsequent percentages were
taken of it for placement of the target. Each subject performed trials
until ten trials were recorded where a compensatory forward step had
occurred. A spotter stood beside the subject to catch her in the event
of a fall.

Data acquisition

Body segment orientation and location in three-dimensional space
were measured at 100 Hz using infrared light-emitting diode (LED)
markers and an Optotrak 3020 system (Northern Digital, Waterloo,
Canada). Eight markers were placed on bony landmarks up the right
side of the body, obtaining the kinematics of the foot, shank, thigh,
torso and head (Fig. 2, left). One marker was placed on the left foot
for step validation. Subjects stood with each foot on a separate
six-channel forceplate (Model OR6-1000, AMTI, Watertown, MA).
Three-dimensional ground reaction forces and moments were also
recorded at 100 Hz.

The kinematic and force data were low-pass filtered with a cutoff
frequency of 4 Hz using a fourth-order Butterworth filter (MATLAB,
The MathWorks, Natick, MA). The angular position, velocity, and

FIG. 3. Schematic of 3 control error signals: eLEG, eHAT, and eFOOT (black)
and 3� thresholds (shaded). The 3� algorithm is described on eLEG (top).
Internal model identification takes place in the 2 s window, a. This is followed,
after 100 ms (�), with the “Start” of the moving threshold calculation. The
threshold at any time, t, is based on data in the moving, 4 s window, b. CEA
is detected when the error signal crosses the 3� threshold. For successful
detection, a step must be initiated within the 2 s window, c, that follows CEA
after a 100 ms delay (�).
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acceleration of the HAT, LEG, and FOOT were calculated from the
individual marker kinematic data. The filtered kinematics were
differentiated using a five-point differentiation algorithm to obtain
velocity and acceleration. All high- and low-pass filtering routines
were employed forward and backward to minimize phase shift
artifact.

Height, weight, and body segment lengths were measured for each
subject. Segment inertial parameters were obtained using the tables
provided in de Leva (1996).

Data analysis

STEP DETECTION. The occurrence of a step was defined as a com-
pensatory response and evidence of CEA perception. Response time
(RT) was calculated as the latency of this response following CEA. A
step was defined to have been initiated when the absolute rate of
change of the center of pressure in the frontal plane exceeded 10 cm/s
and resulted in a step confirmed by visual examination.

SEGMENT KINEMATICS AND CONTROL ERRORS. Within-trial root-
mean-squared (rms) and SD values of each segment’s angular velocity
and acceleration were calculated from the algorithm starting time to
the time of step detection. The mean value of both measures were
calculated for each subject and then compared across segments using
a paired, two-sided, t-test (P � 0.05). Segment control error was
compared using the same method.

CEA DETECTION FUNCTIONS. The 3� algorithm, an algorithm that
uses a moving, relative stochastic threshold set at 3 SD above the
mean, was applied to all trials in which a compensatory step occurred.
Because there were multiple error signals involved, we investigated
the reliability of CEA using four alternative detection functions that
specified which error signal, or combination thereof, was required to
cross the threshold to trigger a detection. The FIRST function detected
CEA when the first of the three segment acceleration control error
signals reached the 3� threshold. The remaining three functions,
HAT, LEG, and FOOT, monitored only one acceleration control error
signal (eHAT, eLEG, or eFOOT, respectively) and detected a CEA
when that specific error exceeded the 3� threshold. Loss of balance
was confirmed by the initiation of a step within 0.1–2 s of CEA
detection. For comparison, the time from loss of balance to impact

with the ground in a fall has been estimated at 0.7–1.0 s (Hsaio and
Robinovitch 1998).

CANDIDATE KINEMATIC SIGNALS FOR USE IN THE DETECTION FUNC-

TIONS. We also wanted to examine whether the control error signal
was unique in its ability to detect a loss of balance and predict a
compensatory response. Potential signals that may also indicate a loss
of balance and precipitate a change in control strategy are kinematic
signals such as body position, velocity, and acceleration. We therefore
applied the 3� algorithm to the individual body segment angular
velocity and acceleration signals, using the same four detection
functions utilized in the CEA analysis: FIRST, HAT, LEG, and
FOOT. For comparison, an absolute, fixed threshold was also applied
to the body segment velocity and acceleration signals as has been used
by Wu (2000). If the signal reached a predefined fixed value, a loss of
balance was detected. The detection approaches, defined by the type
of signal monitored and threshold implemented, are summarized in
the first four columns of Table 1, along with the corresponding
detection functions.

Finally, a third candidate kinematic signal, whole-body center of
mass (COM) position, was monitored. This approach detected a loss
of balance when the center of mass exceeded the limits of the base of
support defined by both feet (see, for example, Pai et al. 2000). The
base of support limits were calculated as a percentage of foot length.
Three values for the limits were implemented, corresponding to 0, 10,
and 35% of each subject’s foot length measured posteriorly from the
tip of the longest toe. The 35% value was obtained from the literature
and reflects the fact that the anterior margin of the functional base of
support does not extend to the tips of the toes and is correlated with
toe flexor strength (Endo et al. 2002). To determine the optimal value,
the intermediate limit of 10% was also investigated. Algorithm start-
ing times were consistent for all detection approaches,

SENSITIVITY AND STATISTICAL ANALYSES. A sensitivity analysis
was performed on all detection approaches and functions to determine
the optimal relative (�) and absolute (Abs) threshold level for suc-
cessful response prediction. In the FIRST detection, where three
signals are monitored, the threshold level was consistent for all
signals. A �2 statistical test compared the success rates of the various
detection functions, approaches and algorithm parameters with P �
0.05 considered statistically significant.

TABLE 1. Loss of balance detection approaches: optimal threshold level, success rate at optimal threshold level, and mean response time (RT)

Name Signal Threshold Function Optimal Level Success, % RT, ms

Control error anomaly Control error Relative (�) FIRST 3� 89.8 967 (555)
LEG 3� 92.6 796 (532)
HAT 2.7� 74.1 947 (559)
FOOT 2.4� 77.8 803 (519)

�Velocity Velocity Relative (�) FIRST 2.7� 74.1 665 (541)
LEG 2.1� 79.6 659 (534)
HAT 1.5� 50.0 856 (553)
FOOT 1� 46.3 953 (515)

�Acceleration Acceleration Relative (�) FIRST 1.9� 58.3 713 (533)
LEG 1.6� 59.3 646 (528)
HAT 0.5� 48.1 1011 (552)
FOOT 1.1� 45.4 958 (566)

Absolute Velocity Velocity Absolute (Abs) FIRST 0.1 rad/s 65.7 899 (517)
LEG 0.05 rad/s 64.8 448 (403)
HAT 0.05 rad/s 25.0 909 (500)
FOOT 0.1 rad/s 30.6 893 (523)

Abs. Acceleration Acceleration Absolute (Abs) FIRST 0.65 rad/s2 29.6 989 (548)
LEG 0.25 rad/s2 26.9 618 (510)
HAT 0.45 rad/s2 14.8 763 (526)
FOOT 0.65 rad/s2 6.4 1007 (531)

Center of Mass Center of Mass position Absolute (Abs) n.a 10% foot length 51.9 839 (510)

Response time values are means � SD.
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R E S U L T S

A total of 110 stepping trials were recorded (10/subject).
Two trials were discarded for technical reasons. Averaged
segment kinematics are presented in Fig. 4. The leg segment
exhibited significantly less rms angular velocity and accelera-
tion than the HAT or FOOT segments (P � 0.001). The
mean � SD rms angular velocities of the LEG, HAT, and
FOOT segments were 0.036 � 0.017, 0.069 � 0.020, and

0.122 � 0.044 rad/s, respectively. Variability in the LEG
segment kinematics was also significantly less than that of the
HAT or FOOT segments (P � 0.001). LEG rms control error
was lower than that of the HAT or FOOT segments (P �
0.001). No differences were observed in control error variabil-
ity between segments.

Loss of balance was successfully detected by CEA with a 3�
algorithm, using the FIRST function, in 89.8% of 108 trials, as
evidenced by a compensatory response in the form of a forward
step, with a response time (RT) between 100 ms and 2 s. On
average, subjects stepped 7.54 � 3.41 s after the trial began,
and the mean duration between the start of CEA detection and
the time of step initiation was 4.91 � 3.16 s.

CEA proved to be more sensitive to certain error signals than
other error signals. The application of the 3� threshold to the
LEG control error signal provided the highest success rate
(92.6%) although not significantly greater than FIRST (P �
0.427). This difference was due to the false positive detections
in the first function by the HAT and FOOT control errors. The
LEG success rate of 92.6%, however, was greater than that
provided by monitoring the HAT or FOOT control error
signals (P � 0.000; Fig. 5).

Trials with a loss of balance successfully detected by CEA
using the LEG function, had an average RT of 796.4 � 532
(SD) ms. The response time distribution was skewed toward
100 ms with �50% of the trials exhibiting a response time of
�700 ms (Fig. 6). In the remaining eight trials where CEA was
not detected successfully, three of these failures were a result
of a false positive detection error. The algorithm falsely de-
tected a CEA much earlier, �2 s, before the actual step was
initiated. Steps in five trials were detected too late. In compar-
ison, the HAT and FOOT detection functions had 25 and 30
false negative detections, respectively. This result shows that a
detection function that required all three error signals to cross
the threshold for CEA detection would have had �30 false
negative detections.

A threshold value of 3� provided the optimal success rate
using the LEG and FIRST detection functions. Threshold
values above or below this led to decreased sensitivity and
specificity, respectively, of CEA detection (Fig. 7). The opti-
mal thresholds values for the HAT and FOOT functions were
slightly lower.

FIG. 5. Algorithm success rates for 3� CEA, Velocity, and Center of mass (COM)
detection approaches. (*: �2 probability, P, relative to 3� CEA LEG �0.01).

FIG. 4. Plots of LEG, HAT, and FOOT angles (top), angular velocities
(middle), and angular accelerations (bottom) vs. normalized trial time, aver-
aged across all stepping trials and all subjects. Trial time ends at the instant of
step initiation. Shaded regions represent upper and lower 1 SD limits. A
negative velocity reflects a forward angular velocity in the sagittal plane. The
black arrow in the HAT angular velocity trace denotes the average time
internal model identification commenced.
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The results of both CEA and kinematic detection approaches
are presented in Table 1. A sensitivity analysis was conducted
on both the relative (�) and absolute (Abs) threshold level and
the values reported are those obtained at the optimal threshold
levels for predicting a compensatory response. All candidate
kinematic detection approach/function combinations predicted
a compensatory step significantly less reliably than CEA using
either LEG or FIRST detection functions (P � 0.000, P �
0.03, respectively). Nine approach/function combinations per-
formed similarly to either the HAT or FOOT CEA detection
functions (P � 0.05).

D I S C U S S I O N

The present results show that a self-identified, internal,
on-line model of the nominal interaction of the body with its
environment can be used to detect a loss of balance. It is novel
that the loss of balance was detectable without knowledge of
the whole body center of gravity location relative to its base of
support. Because all the input and output parameters monitored
are typically available to the CNS, which is hypothesized to
use internal models in other contexts (see INTRODUCTION), the
results suggest that the CNS may use a scheme involving a
nominal forward internal model and CEA to detect a loss of
balance and trigger the compensatory response.

The optimal threshold value for CEA detection was 3� in
this multi-degree-of-freedom, forward reach task. This was
true when using the LEG and FIRST CEA detection functions,
the two functions that were most reliable in predicting a
compensatory response. This implies that it is the anomalous
value of the error signal that triggers the compensatory re-
sponse. From the subject’s point of view, a lower threshold
would have increased the available response time but resulted
in unnecessary responses. Conversely, a higher threshold
would make it more difficult to recover balance by reducing the
available time for a response that was guaranteed to be man-
datory. Thus the existence of an optimal threshold also may
represent the tradeoff that exists between increased caution and
increased risk-taking on the part of the subject.

Effect of control error detection functions on CEA

Successful detection of loss of balance by CEA was not
dependent on all of the control error signals crossing the
threshold. In fact, by monitoring only one of the control errors,
better detection reliability could be obtained. It was surprising
that error in the control of the HAT acceleration appeared
relatively unimportant, despite it containing 	60% of the
body’s mass as well as the vestibular system with its position,
rate, and acceleration detectors. On the other hand, error in the
control of LEG angular acceleration had great importance in
the successful detection of CEA. There are at least three
possible explanations for this result. First the CNS may indeed
preferentially control LEG segment angular acceleration. This
is supported by the minimal within-trial rms value and vari-
ability of the angular velocity and acceleration of the LEG
segment, whereas the HAT and FOOT segments exhibited
significantly greater values (Fig. 4). Furthermore, LEG control
error was less than HAT and exhibited a trend toward lower
error than the FOOT. These results may indicate an effort by
the CNS to control the LEG segment. Functionally, this may be
explained by the stabilizing role the LEG segment plays to
counteract the dynamics induced by the goal-directed forward
movement of both the HAT and FOOT. A second explanation
is that the lower velocity of the LEG segment may also allow
the identification of an internal model with less modeling error,
resulting in lower control error signals and greater success
rates. The greater reliability of the LEG segment in detecting a
loss of balance may be the result of a more accurate model. A
third possibility is that LEG control error appears important
simply because it is the first indicator of a loss of balance.
Indeed, the FIRST detection function performed as well as the
LEG detection function. This is because the LEG was usually
the first function to detect a CEA, ahead of the HAT or FOOT
functions. This is further supported by results of the LEG
velocity detection function in that LEG velocity was a better
predictor of loss of balance than HAT or FOOT velocity.
Future work might further investigate the significance of the
LEG segment, in addition to combinations of error signals, in
the initiation of a compensatory response.

FIG. 6. Response time distribution for 3� CEA LEG successfully predicted
responses.

FIG. 7. Sensitivity of CEA algorithm to relative threshold level (�). - - -,
3�, the optimal threshold for FIRST and LEG detection functions.
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Comparison of CEA with kinematic loss of balance
detection approaches

The CEA algorithm was a better loss of balance detector and
step predictor than any of the traditional kinematic signals that
have been used to detect a loss of balance hitherto, including
center of gravity location relative to the base of support (Pai
and Patton 1997; Wu 2000). Monitoring velocity of the LEG
segment with a relative threshold of 2.1� also performed
reasonably well, although significantly less reliably than a 3�
threshold on LEG control error. In addition, although 3� has
been successfully applied to both a reach and chair balance
tasks, the 2.1� threshold on segment velocity does not gener-
alize to both tasks due to their different characteristic velocity
profiles. Moreover, the relatively high step prediction success
obtained by monitoring LEG velocity may be a consequence of
the quasi-static nature of the reach task, especially that of the
LEG segment.

Is segment acceleration sensation available to the CNS?

In the 1 df chair-balancing task studied by Ahmed and
Ashton-Miller (2004), the acceleration signal monitored was
directly available to the CNS by way of vestibular afference.
On the other hand, although segmental velocity and position
are available from muscle spindle afference in the reach task,
there appears to be no physiological sensor specific to segment
angular acceleration. It is possible, however, that angular
acceleration could be derived from muscle forces sensed by the
Golgi tendon organs or by differentiation of the velocity
information provided by the muscle spindles. Thus it is con-
ceivable that the CNS has access to segmental acceleration. A
number of computational studies on internal models and pos-
tural control have made similar assumptions and provide evi-
dence of acceleration predictions by forward internal models
(for example, Flanagan and Lolley 2001; McIntyre et al. 2001).
It is also important to note that the CEA theory is not restricted
to acceleration control error in that it can be implemented using
velocity or position control error. Acceleration control error
was used in this task because it facilitated the identification of
an accurate internal model using a structure based on the
equations of motion. We believe that the CEA theory may have
been more successful than traditional approaches in predicting
stepping because it incorporated control inputs in decision
making.

Significance of a nominal internal model

Clearly the use of an exact internal model of the system in
this analysis would have been inadequate because it would
simply calculate the natural progression of fall kinematics with
no resultant error signal. CEA theory is based on the predicted
outputs of a model of the system in a nominal operating state,
thus any deviation from this state will be detected. As a result,
the internal model identified is local to this operating region.
This idea has been supported by a number of studies showing
that learned internal models only show limited generalization
across the workspace (Gandolfo et al. 1996; Shadmehr 2004).

The method for identifying the nominal model, including the
focus on high-frequency input/output dynamics is a subject of
ongoing research. The performance of models that focus on the
low-frequency dynamics, models with parameters that are

continuously updated and models that incorporate trailing
observers that are dependent on past states are also under
investigation.

Limitations

Limitations include the fact that an internal model could not
be accurately identified for rapid or ballistic movements as well
as for movements over large ranges of motion. The ability to
predict the segment accelerations at the start of each trial,
where there is a ballistic movement, was therefore poor; the
system needed to reach and maintain a steady state. If the
subject did not slow down, the control error would be artifi-
cially large. Further limiting the analysis was our identification
and use of a single internal model as opposed to multiple
models. It has been suggested that the CNS maintains multiple
internal models and uses them to identify the current context
and plan its movements appropriately (Wolpert and Kawato
1998). Accordingly, a more general application of the CEA
theory would not solely detect a loss of balance in the context
of a fall. In the presence of multiple internal models, CEA
would detect a loss of control of the current internal model and
would trigger a change in control strategy to regain control of
the system.

A limitation of the experimental protocol was that if subjects
successfully reached the target and held it for 	10 s without a
loss of balance, they returned to their initial position even if the
data collection period had not yet elapsed. These successful
trials should have been ideal for analyzing the reliability of
CEA in not predicting a step when there was no step as well as
step prediction if there was a step. Unfortunately, for these
no-step trials, we cannot be sure of the exact instant when
subjects changed their control strategy and started to return to
their initial configuration. Thus a CEA could have been de-
tected in the absence of a step due to the subject’s initiation of
a new motor program. A future study should ensure that
successful trials that do not exhibit a loss of balance are carried
out for the duration of the data collection period, eliminating
the possibility of a novel motor program being initiated.

Finally, our ability to validate the criterion used to detect a
loss of balance is limited by the variability in the subsequent
response time, which can result from a number of factors. The
longer response times observed may have been a result of
subject habituation. Although a step was required to recover
from a loss of balance, once the subjects became familiar with
the task, they realized that the response need not be immediate.
They may also be a result of lower velocities and accelerations.
For example, Nashner et al. found an inverse relationship
between response times and postural sway rate and observed
response times on the order of 1.4 s (Nashner 1971). Another
possibility is that the increased response times may reflect a
choice reaction time, which increases with the number of
choices available (Kandel et al. 2000). The use of the 2-s
criterion on successful step prediction, which was based on a
previously analyzed task, may also have affected the accuracy
with which some compensatory responses could be predicted.

Conclusions

The present results support the hypothesis that a loss of
balance is a loss of effective control of balance as evidenced by
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a probabilistically unusual error between predicted and actual
sensory consequences of a movement. A scheme involving a
self-identified, nominal internal model, monitoring of control
input and error, and stochastic decision making can be used to
detect a loss of balance and predict a compensatory response in
a complex, multiple-input, multiple-output task.
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