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Nikooyan AA, Ahmed AA. Reward feedback accelerates motor
learning. J Neurophysiol 113: 633–646, 2015. First published October
29, 2014; doi:10.1152/jn.00032.2014.—Recent findings have demon-
strated that reward feedback alone can drive motor learning. However,
it is not yet clear whether reward feedback alone can lead to learning
when a perturbation is introduced abruptly, or how a reward gradient
can modulate learning. In this study, we provide reward feedback that
decays continuously with increasing error. We asked whether it is
possible to learn an abrupt visuomotor rotation by reward alone, and
if the learning process could be modulated by combining reward and
sensory feedback and/or by using different reward landscapes. We
designed a novel visuomotor learning protocol during which subjects
experienced an abruptly introduced rotational perturbation. Subjects
received either visual feedback or reward feedback, or a combination
of the two. Two different reward landscapes, where the reward
decayed either linearly or cubically with distance from the target, were
tested. Results demonstrate that it is possible to learn from reward
feedback alone and that the combination of reward and sensory
feedback accelerates learning. An analysis of the underlying mecha-
nisms reveals that although reward feedback alone does not allow for
sensorimotor remapping, it can nonetheless lead to broad generaliza-
tion, highlighting a dissociation between remapping and generaliza-
tion. Also, the combination of reward and sensory feedback acceler-
ates learning without compromising sensorimotor remapping. These
findings suggest that the use of reward feedback is a promising
approach to either supplement or substitute sensory feedback in the
development of improved neurorehabilitation techniques. More gen-
erally, they point to an important role played by reward in the motor
learning process.

reinforcement learning; dopaminergic; decision-making; sensorimotor
mapping; temporal-difference model

REWARD-BASED LEARNING has been at the forefront of advances
in many disciplines, ranging from psychology (Dydewalle
1982) to artificial intelligence and machine learning (Kaelbling
et al. 1996), robotics (Kormushev et al. 2013), and, most
recently, neuroeconomics (Glimcher et al. 2009). In contrast to
its fast-growing trend in these disciplines, reward-based learn-
ing has received less attention in the study of how the brain
learns new movements. In a sequential key-pressing task, it
was shown (Palminteri et al. 2011) that positive (monetary)
reward could improve learning in patients with Tourette syn-
drome (which is thought to be related to hyperactivity of the
dopaminergic transmission). Another study also demonstrated
that monetary reward leads to improvements in motor memory
in healthy adults during performance of a skill-learning iso-
metric force task (Abe et al. 2011).

Although these studies support a role for reward in motor
learning, its role in tasks involving motor adaptation is less

clear. Motor adaptation is a form of motor learning that is
driven by sensory prediction error and leads to an update of the
sensorimotor mapping, or forward model, between the limbs
and the environment. Adaptation tasks involve gradual im-
provement in performance over time in response to a change in
the environment (Krakauer and Mazzoni 2011). Popular para-
digms to investigate this process impose perturbations on
subjects’ reaching movements via either a visuomotor rotation
(Krakauer et al. 2000; Nikooyan and Zadpoor 2009) or a force
field (Ahmed and Wolpert 2009; Huang and Ahmed 2013;
Huang et al. 2012). These studies, however, have mostly
focused on the process of learning from sensory feedback by
quantifying the resultant changes in the sensory mapping
between the limb and the external environment.

Izawa and Shadmehr (2011) tried to distinguish between
learning from sensory and reward feedback during a visuomo-
tor rotation arm-reaching task. Despite showing greater end-
point variability, people were able to learn from reward feed-
back alone and to a level comparable to that learned from
sensory feedback. Their results also revealed that reward-based
learning was fundamentally distinct from sensory feedback-
based learning. Namely, learning from reward alone did not
lead to an update of a sensorimotor map of the relationship
between the arm and cursor position or generalization of
learning to nearby target directions, as is normally observed
when learning a visuomotor rotation. The authors proposed a
two-component additive learning process: action-selection and
the learning of a sensorimotor map, or internal model of the
relationship between arm and cursor position. Within this
framework, learning from reward feedback alone does not
allow for internal model learning, so the amount of internal
model learning will be directly related to the quality of the
sensory feedback and inversely related to the degree of action
selection.

However, there were certain details of the study that make
it difficult to extend the results and thus leave many open
questions regarding reward-based learning. First, the visuomo-
tor rotation was introduced gradually, and with limited size (up
to 8°), rather than the more canonical abrupt rotation of �30°
(Krakauer et al. 2000). Second, in their study only binary
reward was provided depending on whether the trial was
successful or not.

Recent studies have revealed that changes in the central
nervous system could depend on the manner of introducing the
perturbations. Schlerf et al. (2012) found that the level of
cerebellar inhibition would increase when the perturbation was
abruptly introduced during a visuomotor rotation task, whereas
little change was observed with a gradual perturbation. They
came to the conclusion that neural bases of learning from
abrupt perturbations and from gradual perturbations are dis-
tinct. These findings imply that reward-based learning may
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also differ in response to a gradual compared with an abrupt
perturbation.

From an ecological standpoint, many of the errors experi-
enced in daily life are typically abrupt, not gradual. We
inevitably experience large errors, not just small ones. Further-
more, reward is mostly a continuous signal that can have a
range of values and may not be limited to binary ones. Using
binary reward could also limit the experiment to only small
perturbations because of the difficulty of trying to adapt to a
larger perturbation with only yes/no feedback. There are stud-
ies that have used continuous reward feedback, rather than
binary feedback, in motor learning (Dam et al. 2013; Hoffman
et al. 2008). In those studies, the aim was to match a hidden
target/target trajectory. Reward was a continuous signal that
provided subjects with information about how closely they
could reach a hidden target (trajectory). However, these studies
did not investigate the underlying representation of learning,
and it is not clear how their findings will generalize to the type
and magnitude of error experienced in stereotypical visuomo-
tor rotation tasks.

Taking these findings together, it has yet to be determined
whether it is possible to learn in response to large errors using
reward feedback alone. This is the first question (Q1) we seek
to answer with this study. In addition to its potential role as a
substitute for sensory feedback, there is some evidence that
reward as a supplementary form of feedback can improve
learning in terms of reducing learning variability (Izawa and
Shadmehr 2011; Manley et al. 2014). As such, our second
question (Q2) is whether the learning process can be modulated
by combining both reward and sensory feedback. Moreover,
studies in the field of artificial intelligence have shown that
using alternate reward landscapes could, theoretically, accel-
erate the learning process (Mataric 1994; Niekum et al. 2011).
Thus we also seek to investigate to what extent the learning
process in human subjects can be modulated with different
reward landscapes. Finally, we hope to understand how reward
feedback influences the relative contributions of sensorimotor
remapping and action selection to the overall learning process,
thereby shedding light on the underlying neural mechanisms.

To pursue these questions, a novel experimental protocol
was designed during which subjects experienced an abruptly
introduced visuomotor rotation of significant size and received
visual feedback alone, reward feedback alone, or a combina-
tion of both visual and reward feedback. Instead of a binary
reward, continuous reward feedback (i.e., a reward gradient)
was presented to the subjects in the form of trial score. We
tested subjects in a linear reward landscape, where the reward
decayed linearly with distance from the target, and in a cubic
landscape, where the reward decayed more steeply with dis-
tance from the target. In a second set of experiments, we
investigated the effects of reward feedback on internal model
learning and action selection by quantifying the degree of
sensorimotor remapping and generalization of learning to
nearby targets.

MATERIALS AND METHODS

Statement of Ethics

The Institutional Review Board of the University of Colorado
Boulder approved the experimental procedure. All subjects agreed to

participate by providing informed consent. Subjects reported no his-
tory of neurological or neuromuscular diseases.

Experimental Protocol

Experiment 1: setup. Subjects (n � 46, recruited through the
University of Colorado Boulder Psychology 1001 Subject Pool) were
seated in a chair with full back support and in front of a robotic
manipulandum (Interactive Motion Technologies shoulder-elbow ro-
bot 2; Fig. 1A). Trunk movement was limited by use of shoulder straps
and a lap belt (Fig. 1A). A flat-screen liquid crystal display (LCD)
monitor was mounted in front of the subjects at eye-level (Fig. 1A).
Subjects were all right-handed as assessed by the Edinburgh Hand-
edness Inventory (Oldfield 1971). While grasping the handle of the
robotic arm with their right hand, subjects were instructed to make
15-cm rapid out-and-back horizontal reaching movements to move an
on-screen cursor (r � 0.3 cm) from a home circle (r � 2 cm) near the
bottom of the monitor to a rectangular target placed on a target arc
(r � 15 cm, thickness � 0.3 cm, color: green) near the top of the
monitor and then return to the home circle (Fig. 1B). Every trial
started by repositioning the cursor within the home circle and was
completed when the cursor reached the target arc (Fig. 1B, left).
Subjects were instructed to make a rapid movement to the target, i.e.,
neither “too fast” nor “too slow.” If the outward movement took place
within the required time limit (200–600 ms), the target arc “ex-
ploded”; otherwise, it turned gray if the movement was too slow or red
if the movement was too fast. Importantly, the subjects were not
required to settle in the target arc, but merely to “hit” it. During each
trial, the position of the cursor’s x-y coordinates (Fig. 1B) was
sampled at 200 Hz. Visual feedback of the subjects’ hand was
occluded with a horizontal, opaque screen (Fig. 1B, left).

We designed an experiment that considered three reward land-
scapes (none, linear, or cubic) and two sensory feedback states (visual
feedback or no visual feedback), producing a 3 � 2 factorial design,
as illustrated in Fig. 1C. Our primary goal was to quantify the effects
of reward and sensory feedback on this learning process.

The experiment consisted of 600 trials (Fig. 1D) beginning with 50
familiarization trials in which all subjects received visual feedback of
the cursor position. Familiarization trials were followed by a baseline
block consisting of 50 trials during which subjects either received
visual feedback (Vision groups) or no visual feedback (No-Vision
groups) as per their group assignment (Fig. 1C). As the subjects made
the out-and-back movement, the motion of the cursor underwent a 30°
counterclockwise abrupt visuomotor rotational perturbation with re-
spect to the motion of the hand (�30°), requiring the subjects to learn
to compensate for this perturbation (rotation block). We used this
paradigm to examine how reward and sensory feedback interacted to
modulate learning. After 450 rotation trials, the environment returned
to a 0° rotation for the remaining 50 trials (washout block). A 30-s rest
period was provided every 200 trials (but not between different
blocks; Fig. 1D). Subjects were told that at some point during the
experiment, the task might become more difficult; no additional
information about the timing and/or the type of difficulty was
provided.

During the baseline, rotation, and washout portions of the experi-
ment, the subjects in the No-Vision groups could only rely on reward
feedback to learn the rotation (they could only see the home circle at
movement onset in each trial), whereas subjects in the Vision groups
received visual feedback. In the groups where reward feedback was
provided, it was presented as soon as the subjects reached to any point
on the target arc (regardless of the cursor being visible to them or not)
and was reported as a trial score that ranged from 0 to 1,000 (Fig. 1E).
Depending on the reward group (Linear, Cubic), the trial score (R)
depended on the following function:

R � 1, 000 � �180 � ���
180 ��

, (1)
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where � is the initial cursor reaching angle in degrees (Fig. 1B, right)
and was calculated at the time where the Euclidian distance between
the centers of the cursor and the home circle first exceeded 3 cm
(�100 ms from movement onset).

Two different reward landscapes were used: linear and cubic. In the
linear landscape, the trial score decayed linearly (� � 1) with the
initial reaching angle (Fig. 1E). In the cubic landscape, the trial score
decayed cubically (� � 3) with the initial reaching angle (Fig. 1E). In
other words, the cubic landscape penalized a given angular error much
more strongly than the linear landscape. The rationale behind choos-
ing these reward landscapes was, first, they provided a simple and
intuitive way to penalize errors differentially, and second, preliminary
modeling results suggested that these two landscapes would lead to
different and distinguishable learning performance. The value of the
obtained trial score together with its maximum possible value (equal
to 1,000) was shown to the subjects on completion of each trial. The
calculated value of the trial score (R; Eq. 1) was rounded to the closest
integer value before being shown to the subjects. For instance, with a
30° initial reaching angle (i.e., � � 30°), the trial score for the linear
landscape was shown as “833 out of 1,000,” whereas that for the cubic
landscape was given as “579 out of 1,000.” Subjects receiving reward
feedback were instructed to maximize their trial score.

Experiment 1: groups. In total, five groups were tested to investi-
gate the effect of reward and visual feedback on learning (Fig. 1C).
Each performed the experiment under a unique combination of visual
feedback (Vision, No-Vision) and reward feedback (none, Linear,
Cubic). The Vision groups are the V, V-RC, and V-RL groups, i.e., all
the groups that received visual feedback. The V group served as a
Control group that received visual feedback and no reward feedback.
Hence, this group experienced an environment analogous to that
experiment in standard visuomotor adaptation tasks. The V-RC group
received visual feedback and cubic reward feedback. The V-RL group
received visual feedback and linear reward feedback. Sometimes we refer
to the V-RL and the V-RC groups together and call them the “Vision-
Reward” groups. The No-Vision groups are the RC and RL groups, i.e.,
the groups that did not receive any visual feedback. The RC group
received cubic reward feedback and no visual feedback. The RL group
received linear reward feedback and no visual feedback. The groups
can also be classified by the reward landscape experienced. RC and
V-RC are the Cubic groups. RL and V-RL are the Linear groups.

Experiment 1: data analysis. To quantify the effects of reward and
sensory feedback on the learning process, we compared learning
between the five groups on the basis of three metrics: error, learning
rate, and variability.

ERROR. Error on a given trial was taken to be the initial cursor
reaching angle (�; Fig. 1B). Error was averaged over bins of five trials
and then averaged over all subjects in that group. Based on the initial
reaching angle, the trial score (R) was also calculated from Eq. 1 and
averaged over each bin. The first 5 trials (i.e., the first bin) and the last
10 trials (i.e., the last 2 bins) at each experimental block (including
baseline, rotation, and washout) were defined as the early and the late
phases of that block, respectively.

To assess learning in different experimental groups, mean error at
the early and the late baseline, learning (rotation), and washout phases
was compared across all groups. To this end, a three-way ANOVA
(3 � 2 � 6) was carried out where the main effects and interactions
of reward landscape, visual feedback, and phase were evaluated. Here,
reward landscape and visual feedback are between-subjects factors
and phase is a within-subjects factor. A separate analysis was also
carried out to compare mean trial score at the early and late learning
phases for subjects in the No-Vision and the Vision-Reward groups.

LEARNING RATE. Previous studies have shown that error in the
early phase of learning a visuomotor rotation can be characterized
well with a single-rate exponential function (Zarahn et al. 2008). Thus
the rate constant (c) of an exponential function (f) fit to the error data
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Fig. 1. Experiment 1: description. A: robotic arm and monitor (opaque screen
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and typical reaching trajectory (in the x-y plane) in the presence of a counter-
clockwise rotational perturbation (right). C: design of experimental groups for
experiment 1. Vision groups received visual feedback with no reward (V;
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groups had no visual feedback but received cubic (RC) or linear (RL) reward.
D: timeline of experimental blocks for experiment 1. E: visual representation
of the linear and cubic reward landscapes. R, trial score; �, reaching angle.
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was used as a measure for between-group comparisons of learning
rate:

f�x� � a � be�cx, (2)

Based on the observed trend in our experimental data, we fit the first
50 trials of the learning block, similar to the first 30 trials used by
Zarahn et al. (2008). Unconstrained nonlinear optimization algorithm
was applied to find the exponential fit to the individual subject data as
well as the mean error data for each group. A custom MATLAB
(version R2013a; The MathWorks, Natick, MA) code was developed
in which the “fminsearch” algorithm was applied for optimization. For
the individual subject fits, parameters were compared using indepen-
dent t-tests. For the fits to the average data, the statistics were
computed differently: first, 95% confidence intervals for the nonlinear
fit parameters were calculated using the “nlparci” MATLAB algo-
rithm. Separately for each coefficient (including a, b, and c in Eq. 2),
the confidence intervals were then compared between the fits to
average data in each group. Nonoverlapping confidence intervals
would necessarily indicate a significant difference, whereas for over-
lapping confidence intervals we used the following equation (Wolfe
and Hanley 2002) to determine significance:

�meanA � meanB� 	 2��SEA
2 � SEB

2� , (3)

where SE is the standard error of the mean. The difference between
the two means with overlapping confidence intervals is significant
only if the above inequality holds true.

When an exponential fit was not appropriate, we used an alternative
method to evaluate the learning rate. For those groups, we compared
the learning rate on the basis of the mean error value (at the interval
of interest), where the smaller error would indicate a faster learning
rate. Three different intervals within the rotation block were consid-
ered for comparison: the 1st interval comprised the 1st 50 trials, the
2nd interval was from trial 51 to 200, and the 3rd interval was from
trial 201 to 450. Separately at each defined interval, mean errors
across all subjects in each group were compared with each other.

To compare learning from reward feedback alone to learning with
visual feedback alone, the No-Vision groups were compared with the
Control group, V. To quantify the effect of different reward land-
scapes when no visual feedback was provided, the No-Vision groups
were compared with each other. To quantify the effect of pairing
reward feedback with visual feedback on learning rate, we calculated
the combined learning rate in the Vision-Reward (i.e., V-RC and
V-RL) groups and compared it with that in the Control group (V).
Additionally, we compared learning rates in the V-RC and V-RL

groups to determine the effect of reward landscape when visual
feedback was present.

VARIABILITY. Reach variability in the first 100 trials (early learning
variability) and the last 100 trials (late learning variability) in the
rotation block was also calculated for each subject and compared
between groups. The standard deviation of the error across 100 trials
was taken as a measure of variability at each stage. Error decreases
more rapidly early in adaptation; this faster drop could inflate the
standard deviation. Therefore, we detrended the data to remove the
mean using the “detrend” function in MATLAB. Variability was then
calculated as the standard deviation of the detrended error data at each
stage. A three-way ANOVA (3 � 2 � 2) was carried out where the
main effects and interactions of reward landscape, visual feedback,
and phase were evaluated.

Experiment 2: setup. This experiment was designed to examine the
underlying mechanisms of learning from different forms of feedback
via the addition of localization and generalization probe trials. The
experimental apparatus and protocol were the same as in experiment
1 (Fig. 1A). Experiment 2 consisted of 875 trials (Fig. 2A) beginning
with 70 familiarization trials during which all subjects received visual
feedback of cursor position and reached to different targets randomly
positioned at 30°, 45°, 60°, 75°, 90°, 105°, 120°, 135°, and 150° (Fig.
2B). A baseline block consisting of 50 trials, similar to the baseline block
in experiment 1, followed familiarization trials. The baseline block was
followed by a prelocalization block and a pregeneralization block. Next,
the subjects experienced a rotation block of 400 trials, where a 30°
counterclockwise abrupt visuomotor rotational perturbation was ap-
plied. The rotation block was followed by postlocalization and post-
generalization blocks. The environment then returned to a 0° rotation
for the final 50 trials (washout block).

LOCALIZATION BLOCKS. In both the prelocalization and postlocal-
ization blocks (50 trials each), subjects performed four reaching trials
with the same feedback provided as in the baseline block. They were
then asked to hold the robotic arm with their left hand on the fifth
(localization) trial and locate where on the target arc (Fig. 1B) their
right hand crossed in the immediately preceding trial (i.e., the 4th
trial). This was repeated 10 times in each block for a total of 10
prelocalization trials and 10 postlocalization trials. Regardless of the
type of feedback they received during the four trials, subjects in all
groups could see the cursor on the localization trials.

GENERALIZATION BLOCKS. The pre- and postlocalization blocks
were followed by pre- and postgeneralization blocks, respectively. In
both the pre- and postgeneralization blocks (96 trials each), subjects
reached to targets randomly positioned at 30°, 45°, 60°, 75°, 90°,
105°, 120°, 135°, and 150° (Fig. 2B). The frequencies of the target
appearing at 90° and the target appearing at any other direction were,
respectively, 32/96 and 8/96. Feedback was only provided when the
subject reached to the central target at 90° and matched the feedback
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the subject had received during the baseline block. No feedback was
provided in any of the groups when subjects reached to targets other
than the central target at 90° (i.e., targets positioned at 30°, 45°, 60°,
75°, 105°, 120°, 135°, and 150°).

Experiment 2: groups. Subjects (n � 17) were divided into three
groups (Fig. 2C), including a Control group (V2; n � 5) that received
only visual and no reward feedback, a group that received visual
feedback and cubic reward feedback (VR2; n � 6), and a group that
received only cubic reward feedback (R2; n � 6).

Experiment 2: data analysis. In experiment 2 we used the error and
learning rate metrics to assess learning. We also introduced two
additional metrics to quantify sensorimotor remapping (localization
index, LI) and generalization (generalization index, GI) for experi-
ment 2.

LOCALIZATION INDEX. At each localization trial, LI was defined as
the angle between the lines connecting home to the points on the
target arc where the left and the right hands crossed the target arc in
two consecutive trials. Similar to the definition used to calculate error
in experiment 1, a clockwise direction was taken as positive. This
means that if the perceived hand position on the target arc at a
localization trial was located on the right side of the actual crossing
point in the trial right before, the LI should be positive. For each
subject, LI was calculated on each localization trial and then averaged
across all 10 localization trials separately for the pre- and postlocal-
ization blocks. To assess sensorimotor remapping in different exper-
imental groups, LI at the pre- and postlocalization blocks were
compared across all groups. To this end, a three-way ANOVA (2 �
2 � 2) was carried out where the main effects and interactions of
reward landscape, visual feedback, and block were evaluated (reward
and visual feedback as between-subjects factors and block as a
within-subjects factor).

GENERALIZATION INDEX. For each target direction, GI was defined
as the change in the initial reaching angle from the pre- to the
postgeneralization block. The line connecting home to the target
position was used as the reference to calculate the initial reaching
angle for each target direction. Clockwise directions were taken as
positive. For each subject, GI was calculated at each target direction
and was then averaged across all trials in which that target appeared
and separately at the pre- and postgeneralization blocks. To compare
generalization across groups, a four-way ANOVA (2 � 2 � 9 � 2)
was carried out where the main effects and interactions of reward
feedback, visual feedback, target direction, and block on GI were
evaluated (reward and visual feedback, and target direction as be-
tween-subjects factors and block as a within-subjects factor).

Model Predictions

A temporal difference (TD) learning model (Sutton and Barto
1998) was also used to determine the feasibility of learning an abrupt
visuomotor rotation by reward feedback alone and to investigate the
mechanisms underlying learning in the different reward landscapes.
The TD modeling framework has been very successful in approxi-
mating reward-based learning in the brain (Schultz 2013). There is,
however, no consensus about which TD modeling architecture best
represents reward-based learning. The controversy essentially re-
volves around whether the brain learns the policy (O’Doherty 2004)
or the Q values (Roesch et al. 2007). In this study we decided to use
a standard Q-learning modeling architecture with a softmax as the
action-selection algorithm. The action-value function, Q(s,a), was
updated at each trial using the following formulation:

Q�s, a� ← Q�s, a� � ��
 � 
 maxaQ�s ' , a� � Q�s, a�� , (4)

where � and 
 are, respectively, the learning and the discount rate.
The second term on the right side of Eq. 4 is the reward prediction
error. For each selected action a at state s, the value of reward was
calculated using Eq. 1, with � having the same value as a. Only two

states were considered: the initial (s) and the terminal (s=) states (there
were no intermediate states). The action a was defined to be the initial
reaching angle selected by the subject at the initial state s. For
modeling purpose, the action space A was discretized into angles from
�90° to 90° with a step size of 0.1° (in total, 1,801 possible actions).
By choosing action a at each trial, the policy � was updated using the
Gibbs softmax function as follows:

��s, a� ←
eQ�s,a�⁄�

	b�1
A�s� eQ�s,a�⁄�

, (5)

where � is constant and called the “temperature.” Similar to the
experimental protocol (Fig. 1D), the rotational perturbation was
abruptly introduced after the 50th trial and was suddenly removed
after the 500th trial. Because the general trends predicted by the model
were not sensitive to the selected values for parameters and the initial
conditions, arbitrary values were used for modeling simulations (n �
2,000).

The early and the late phases were defined as the first 10 and the
last 10 trials in each test block. For each reward landscape, error at the
early learning (EL) and early washout (EW) phases was compared
with that at, respectively, the late learning (LL) and late washout
(LW) phases using paired t-tests. Confidence intervals for the mean
error were used to compare the learning rate (in the rotation block)
between the two reward landscapes. Three different intervals for
comparison were defined as for the experimental data.

Statistical Analysis

Unless otherwise noted, SPSS (version 22; IBM SPSS Statistics)
was used for statistical analyses. The threshold of statistical signifi-
cance was set at � � 0.05. Post hoc tests applied a Bonferroni
correction. Whenever the assumption of sphericity was violated, we
applied a Greenhouse-Geisser correction on the degrees of freedom.
For all statistical comparisons, P values are reported up to three
significant digits, except for P values �0.001. Whenever mean values
are given, SE is also presented (means � SE).

RESULTS

Experiment 1

Reward alone can produce visuomotor learning. We first
examined the question of whether it was possible to learn to
compensate for an abrupt visuomotor perturbation without
visual feedback and by using only reward feedback. Perfor-
mance of the two groups that received only reward feedback
(RL and RC) is shown in Fig. 3, A and C. Despite the fact that
the reward landscape was positive definite, and therefore am-
biguous with respect to the direction of error, the subjects in
the RL and RC groups were able to compensate for the pertur-
bation about as well as the subjects that received visual
feedback (V group). The ANOVA revealed a main effect of
phase on error [F(2.969,121.718) � 319.569, P � 0.001]. All
groups significantly reduced error (P � 0.001; Fig. 3, A and B)
and increased trial score R (P � 0.001; Fig. 3, C and D) from
the EL to the LL phase. Learning was also quickly washed out
in all groups in that there was a significant drop in error (P �
0.001) from the EW phase to the LW phase (Fig. 3, A and B).
Furthermore, the lack of visual feedback in the No-Vision
groups did not affect the extent of error reduction. Whereas the
ANOVA showed a main effect of visual feedback [F(1,41) �
7.251, P � 0.010], all groups exhibited comparable error at the
start of learning (EL phase, P � 0.498) and learned the task to
a similar extent (LL phase, P � 0.451). There was a visual
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feedback � phase interaction effect that resulted from error in
the EW phase being significantly larger for the RC group
compared with the V (P � 0.008), V-RL (P � 0.024), and
V-RC (P � 0.003) groups [F(2.969,121.718) � 5.518, P �
0.001]. The variability results paint a similar picture. Whereas
there was a main effect of visual feedback [F(1,41) � 11.552,
P � 0.002], no significant differences were found between the
No-Vision groups and the Control group (P � 0.324 and P �
0.560 for RL and RC, respectively; Fig. 4). Additionally, the
choice of the reward landscape did not affect error or variabil-

ity, because the ANOVAs revealed no main effects of reward
[error: F(2,41) � 0.050, P � 0.952; variability: F(2,41) �
0.751, P � 0.478].

Although subjects learned to a similar extent without vision,
they learned more slowly (Fig. 3A). There was a high degree of
variance across subjects (Fig. 5). Subjects roughly fell into one
of three categories: fast-, slow-, and medium-latency learners.
One of each is shown in Fig. 5 for the RL and RC groups.
Because of this variability, the learning curves for the No-
Vision groups were not well described by an exponential
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function. Therefore, we compared the mean error to estimate
learning rates at different intervals. Regardless of the selected
interval for comparison, mean error for the No-Vision groups
was significantly greater than for the Control group, indicating
a significantly faster learning rate in the Control group [1st
interval (first 50 trials): �17.370 � 0.420 vs. �12.160 �
0.6530 (No-Vision vs. Control); 2nd interval (trials 51–200):
�10.907 � 0.205 vs. �6.809 � 0.227; 3rd interval (trials
201–450): �4.884 � 0.166 vs. �3.294 � 0.183; P � 0.001
for all 3 comparisons].

Interestingly, the reward landscape seemed to affect learning
rate, and the effect was dependent on the phase of learning.

Initially, learning was significantly faster for the cubic reward
landscape (1st interval, RC: �15.676 � 0.576, RL: �19.059 �
0.415, P � 0.001), but later, learning was significantly faster
for the linear reward landscape (2nd interval, RC: �12.460 �
0.215, RL: �9.353 � 0.298, P � 0.001). Incorporating the
later trials into the comparison demonstrated that learning was
again faster for the cubic reward landscape (3rd interval: RC:
�3.876 � 0.237, RL: �5.515 � 0.166, P � 0.001).

Similar to the experimental findings for the No-Vision
groups, model predictions (Fig. 6) showed learning with re-
ward feedback alone in that there was a significant decrease in
error from EL to LL and also from EW to LW (paired t-test,
P � 0.001). Also corroborating the experimental results, the
two reward landscapes yielded the same learning level, be-
cause the mean errors at the LL phase are numerically close
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(�1.7° for RC vs. �3.4° for RL). However, the model did not
explain the experimentally observed learning rates. The model
predicted a faster learning rate for the cubic reward landscape,
throughout the rotation block, regardless of the selected inter-
val for comparison. This was comparable to the experimental
results only for the 1st interval and 3rd interval, but not for the
2nd interval, where the Linear group outperformed the Cubic
group.

Reward accelerates learning when paired with visual
feedback. We found that learning was faster when both
reward and sensory feedback were provided, compared with
only sensory feedback (Fig. 7). Although the extent of error
reduction was similar, the average learning rate obtained in
the Vision-Reward groups was significantly faster than the

learning rate in the Control group (c � 0.457 � 0.063 and
c � 0.212 � 0.063, respectively, P � 0.047; Fig. 7B). To
provide further confirmation of these results, we also fit
exponential curves to the average error curves in each group
across the first 50 learning trials. Here, as well, the learning
rates for two groups that received both visual and reward
feedback (V-RL: c � 0.451 � 0.103, V-RC: c � 0.287 �
0.051) were significantly faster than the learning rate for the
Control group (V: c � 0.117 � 0.044, 95% confidence
interval; Fig. 7D).

The exponential fits to the learning curves of individual
subjects confirmed that there was no difference between groups
in a (P � 0.700) and b (P � 0.132) parameters, which together
represent the initial and final learning levels for the 50-trial
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epoch. Thus any differences in the learning rate (c; Eq. 2)
would be sufficient to demonstrate differences between groups.
Similarly, the confidence interval analysis performed on the fits
to the average error curves indicated there were no significant
differences in the value of coefficients a and b between the
three groups.

Combining reward and visual feedback also led to greater
reductions in variability. Variability significantly decreased
with learning only for the groups that received both visual and
reward feedback (V-RL: P � 0.013, V-RC: P � 0.002; Fig. 4).
By late learning, variability in these two groups was signifi-
cantly less than when reward was the only source of feedback
(RL vs. V-RL: P � 0.001, RL vs. V-RC: P � 0.002, RC vs.
V-RL: P � 0.003, RC vs. V-RC: P � 0.005).

Possible Learning Mechanisms

In experiment 2, subjects also performed generalization and
localization trials, with which we could examine the underly-
ing learning mechanisms. Results of experiment 2 generally
reproduce the findings of experiment 1.

Reward alone can produce visuomotor learning. Similar to
experiment 1, subjects in the experiment 2 Reward (R2) group
were able to compensate for the perturbation as well as the
subjects that received visual feedback (V2 and VR2 groups).
The ANOVA revealed a main effect of phase on error
[F(3.590,50.258) � 182.685, P � 0.001]. All groups signifi-
cantly reduced error (P � 0.001; Fig. 8A) and increased trial
score R (P � 0.001) from the EL to the LL phase. Learning
was quickly washed out in all groups in that there was a
significant drop in error (V2: P � 0.001, VR2: P � 0.009, R:
P � 0.001) from the EW phase to the LW phase (Fig. 8A). The

ANOVA showed no main effect of either visual feedback
[F(1,14) � 2.179, P � 0.162] or reward landscape [F(1,14) �
0.185, P � 0.673] on error. All groups learned the task to a
similar extent (LL phase, P � 0.158). There was a visual
feedback � phase interaction effect [F(3.590,50.285) � 4.030,
P � 0.008] that resulted from error in the EL phase being
significantly larger (P � 0.018) for the R2 group compared
with the V2 group.

Reward accelerates learning when paired with visual
feedback. Similar to experiment 1, results from experiment 2
also showed that combining reward and sensory feedback
resulted in faster learning. To quantify learning rate, we first fit
exponential curves to the average error curves in each group
across the first 50 learning trials (Fig. 8B). However, with the
use of the method presented in Eq. 3, there was a significant
difference in parameter a (Eq. 2) between the Control (V2:
a � �11.599 � 0.435) and either the Reward (R2: a �
�3.140 � 1.768) or the Vision-Reward (VR2: a �
�3.447 � 0.708) groups. Since parameter c could not be
directly used to compare learning rate between the Control and
the other two groups, we turned to the alternative method of
comparing mean error (Fig. 8B). This comparison revealed a
significantly larger (P � 0.001) error for the Control group
(V2: �12.045 � 0.473) compared with the Vision-Reward
group (VR2: �5.683 � 0.851), indicating a faster learning rate
for the latter. Additionally, both the exponential fit (VR2: c �
0.213 � 0.053, R2: c � 0.067 � 0.019) and comparison of
mean error (Fig. 8B) confirmed a significantly faster learning
rate for the Vision-Reward (VR2) group compared with the
Reward (R2) group.
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Combining reward and sensory feedback does not compro-
mise sensorimotor remapping. Subjects’ accuracy in the esti-
mation of hand position (Fig. 9A) significantly decreased from
the pre- to postlocalization block for the groups who received
visual feedback of the cursor (V2: P � 0.001, VR2: P �
0.001), indicating that learning led to a similar degree of
remapping in both groups. However, it did not significantly
change in the Reward (R2) group (P � 0.163). The ANOVA
revealed a main effect of block [F(1,14) � 85.882, P � 0.001],
visual feedback [F(1,14) � 26.295, P � 0.001], and a block �
visual feedback interaction [F(1,14) � 14.578, P � 0.002] on
LI. Regarding the reward feedback, neither a main effect of
reward on LI [F(1,14) � 0.946, P � 0.347] nor a block �
reward interaction [F(1,14) � 0.656, P � 0.432] was observed.
Although no significant difference in LI was observed between
Vision groups at any of the pre- and/or postlocalization blocks,
both groups (V2 and VR2) showed a significant difference
from the Reward (R2) group at both the prelocalization (V2 vs.
R: P � 0.029, VR2 vs R2: P � 0.046) and post- localization
blocks (V2 vs R: P � 0.001, VR2 vs. R2: P � 0.001).

Learning generalizes to nearby targets in all groups. An
interesting observation in experiment 2 was that all subjects,
including the ones who received only reward feedback, could
generalize learning to untrained, nearby targets (Fig. 9B). The
ANOVA revealed a main effect of block on GI [F(1,126) �
425.376, P � 0.001]. Initial reaching angle increased from the
pre- to the postgeneralization block (Fig. 9B), but no main
effect of visual feedback [F(1,126) � 1.073, P � 0.302] or
reward feedback [F(1,126) � 0.694, P � 0.406] was observed.
Post hoc analyses revealed that the change in angle was
significant in all cases except for R2 group reaching to target
angle 105° (P � 0.117) and for V2 group reaching to target
angles 135° (P � 0.253) and 150° (P � 0.311). A main effect
of target direction on GI [F(8,126) � 20.580, P � 0.001] and
a block � target direction interaction [F(8,126) � 4.056, P �
0.001] was also observed. Post hoc analysis showed that the
mean difference between the two extreme target angles on the
opposite ends of the rotational perturbation and the center
target were significant (30° vs. 90°: P � 0.001; 45° vs. 90°:

P � 0.001; 60° vs. 90°: P � 0.001; 105° vs. 90°: P � 0.001;
120° vs. 90°: P � 0.001), but not those in the same direction
as the rotation (135° vs. 90°: P � 1.000; 150° vs. 90°: P �
1.000).

DISCUSSION

In this study we sought to examine the role of reward in
motor learning. We asked whether it is possible to learn an
abrupt visuomotor rotation with reward feedback alone (Q1)
and whether the learning process can be modulated by com-
bining both reward and sensory feedback (Q2). Together our
findings indicate that it is possible to learn an abrupt visuomo-
tor rotation using reward feedback alone and that the combi-
nation of reward and sensory feedback accelerates learning
compared with either form of feedback alone.

All groups, but most importantly, even the groups that
received only reward feedback, were able to learn the abrupt
visuomotor rotation task as the error significantly decreased at
the end of the learning block compared with the error at the
movement onset. Subjects who received only reward feedback
could also learn the task to the same extent as those who
received either visual feedback alone or a combination of
reward and error feedback. This means that not only can
healthy adults learn from binary reward when perturbations
were small and introduced gradually, as was shown by Izawa
and Shadmehr (2011), but they also are able to learn from
continuous reward feedback alone when perturbations are large
and introduced abruptly in a visuomotor rotation task.

The breadth of the reward landscapes in our experiment was
an important feature that could possibly explain the success of
learning from reward alone in the presence of abrupt pertur-
bation. Whereas the reward landscapes in this study could
cover the regions far beyond 30°, the region that yielded binary
reward in the study by Izawa and Shadmehr (2011) was small
and limited to angles around the target. They applied a gradual
perturbation in their experiment to make sure that the subject
could receive some reward at least some of the time. A reward
landscape that is not only continuous but also broad could
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provide subjects with informative feedback even in the early
adaptation when the errors are large. The reward gradient may
also explain why we observed a broad generalization pattern
for the Reward group (similar to the Vision groups), whereas
others have not (Izawa and Shadmehr 2011). Thus it appears
that a gradient of reward feedback presents a happy informa-
tion medium between binary reward and visual feedback.

Despite the fact that it was possible to learn the visuomotor
rotation task with reward alone, there were significant differ-
ences with this form of learning compared with the condition
in which visual feedback was also present. Notably, the learn-
ing rate was slower. In some sense, this is surprising, since
error and reward were strongly correlated as long as subjects
did not overshoot the target. Early in the learning block,
subjects rarely overshot the target in any of the groups. Yet
even early in the learning block, learning proceeded at a slower
rate in the No-Vision groups. Learning was slower likely due
to the reduced amount of information provided. In the Vision
groups, the signed error provided them with a clear indication
of how to correct on the next movement. In contrast, in the
No-Vision groups, error was unsigned, so the direction in
which they should correct was not clear based on the feedback
provided in the previous trial.

Adding the reward feedback on top of the visual feedback
accelerated the learning rate. Endpoint variability was signifi-
cantly reduced with learning only for subjects receiving both
reward and visual feedback, even though subjects in other
groups started to learn the task with comparable variability.
The endpoint variability was also smaller for the Vision-
Reward groups compared with the No-Vision groups. Com-
bining the reward and the sensory feedback significantly ac-
celerated learning and decreased the endpoint reach variability
compared with the vision- or reward-alone conditions, likely
because it is more informative than vision or reward feedback
alone.

Learning Mechanisms

An important question at this junction is, what representa-
tional change is occurring as learning progresses in the No-
Vision groups and the Vision-Reward groups, and how does it
compare to the Control group? Although subjects in the No-
Vision groups could learn the task to the same extent, they
learned it more slowly and exhibited more variability on
completion of the learning block. Similarly, although the Vi-
sion-Reward groups also learned the task to same extent, they
learned it faster and with less final variability than the Control
group. In the following paragraph, we discuss potential learn-
ing mechanisms that may be contributing individually or in
combination to learning in one or more of the groups. One
possibility is that subjects learned an explicit aiming strategy,
i.e., “aim 30° clockwise to compensate for the 30° counter-
clockwise rotation.” In studies where subjects have been ver-
bally instructed by the experimenters to use an explicit aiming
strategy, error will gradually drift in the opposite direction, due
to an aiming error (Mazzoni and Krakauer 2006). However, it
was recently shown that explicit strategies contribute to the
learning process even in the absence of experimenter instruc-
tions (Taylor et al. 2014). This is also analogous to the proposal
of Izawa and Shadmehr (2011) that subjects are updating
action selection on the basis of the reward prediction error, the

difference between the reward predicted and that realized.
Taking all the above together, an explicit strategy or action
selection may be driving all or a portion of the learning
observed. A second alternative is that, as in traditional visuo-
motor rotation tasks where visual feedback is provided, sub-
jects are updating a sensorimotor map describing the relation-
ship between hand and cursor location. An impressive body of
literature has demonstrated that this process is driven by
sensory prediction errors and is cerebellum dependent. Finally,
the presence of a reward gradient allows for a third option. It
is possible that the subjects learned a new representation of the
reward structure, i.e., a mapping describing the relationship
between arm movement and reward. This alternative would fall
somewhere between the first and second options mentioned
above. A reward structure is more complex than action selec-
tion yet does not require a change in the sensorimotor mapping
between the hand and the cursor.

Izawa and Shadmehr (2011) used both generalization and
localization experiments to distinguish between an update of a
sensorimotor mapping and an action policy (first and second
options above). Specifically, learning from reward should lead
to an update of an action policy, and therefore learning is local
and does not generalize to nearby targets. This process does not
alter the sensorimotor mapping as assessed with a localization
task. In contrast, learning from sensory prediction error updates
the sensorimotor representation, which thus leads to both
generalization of learning to nearby targets and improved
performance in the localization task.

Our localization results provide strong evidence that learn-
ing from reward feedback does not lead to an update of the
sensorimotor map of the relationship between hand and cursor
location. Subjects in the No-Vision groups were amazingly
accurate when asked to localize the position of their hand on
the previous trial, as accurate as they were prior to exposure to
the perturbation. If the presence of a reward gradient leads to
updating of a representation of the reward structure (third
option above), then we would predict that learning will gener-
alize to nearby targets but will not affect localization. This
third option, i.e., learning a mapping between arm movement
and reward, is strongly supported by our findings. Subjects in
the No-Vision groups could generalize to nearby targets and
could generalize to the same extent as those in the Control and
Vision-Reward groups.

Using this approach, we can also attempt to understand the
mechanisms underlying the increased rate of learning when
sensory and reward feedback are combined in the Vision-
Reward groups. One question, for example, is whether the
superposition of reward changes the learning rate of the sen-
sorimotor mapping directly (i.e., multiplicative combination)
or modifies a reward-based learning component that is com-
bined additively. Izawa and Shadmehr (2011) developed a
learning model that additively combined the changes dictated
by the reward and sensory prediction error, but they did not
explicitly compare learning rates across groups. It is also
difficult to relate their findings to the present study, since they
introduced the perturbation gradually and provided only binary
reward feedback. Recently, Taylor et al. (2014) demonstrated,
in an experiment where the visuomotor rotation was introduced
abruptly, that the quality of visual feedback alters the relative
contributions of explicit and implicit strategies but not their
time course. If the superposition of reward and error led to an
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increased contribution of explicit processes compared with
error alone, then we would expect this to compromise senso-
rimotor remapping and we would see a reduction in sensori-
motor remapping (i.e., a reduction in implicit learning). In
contrast, our localization results demonstrate that the degree of
remapping was similar between the Vision-Reward and Con-
trol groups. This suggests that the superposition of reward and
error alters the learning rate of the sensorimotor mapping
directly. A potential mechanism for the faster rate of internal
model learning comes from the predictions of models that rely
on Bayesian inference to modulate the learning rate. These
models predict that the rate of internal model learning will be
reduced when the uncertainty of the sensory feedback is
increased, and their predictions have been experimentally con-
firmed (Burge et al. 2008; Wei and Kording 2010). Conversely,
these models also predict that a reduction in the uncertainty of
sensory feedback will increase the rate of learning, but there
has been no experimental confirmation. One hypothesis is that
the superposition of reward on the visual feedback of the error
increases one’s certainty in the sensory feedback, and thus
increases the internal model learning rate. However, an alter-
native explanation is that the explicit and implicit processes are
not additive and interact in a complex manner. Ultimately, we
must wait for future research to determine the answer.

In recent years, evidence has emerged that provides support
for the hypothesis we put forward regarding the update of an
internal representation of the reward structure. Reinforcement
learning theory has proven a powerful framework to under-
stand the myriad of processes underlying reward-based learn-
ing. It has gained much traction within the neuroscience
community because the behavior of dopaminergic neurons
during reward-based learning tasks closely approximates re-
ward prediction error. Reward prediction error is a critical
learning signal in one of the most successful forms of reward-
based learning models, temporal difference (TD) models (see
Schultz 2013 for review). Usually, a simple TD learning rule is
applied that updates action policies on the basis of momentary
events. However, the community has recently begun to appre-
ciate the importance of the underlying reward structure (Na-
kahara and Hikosaka 2012). Here, we use the word “structure”
to describe the general context of the task or state representa-
tion that may include, among other things, a history of past
events. Structural reinforcement learning models do a good job
approximating human performance in a multi-armed bandit
task, a reward-based learning task (Acuña and Schrater 2010).
Perhaps most importantly, neurophysiological data confirm
that dopaminergic activity more closely approximates the
learning signal in a TD model that has knowledge of the reward
structure, better than a traditional TD model with no knowl-
edge of the reward structure (Nakahara et al. 2004). In the
present experiment, subjects may construct a representation of
the reward structure over multiple trials and use that informa-
tion to improve reward prediction and action selection.

Effects of Different Reward Landscapes

The experimental results (Fig. 3, A and C) reveal a faster
learning rate in the Cubic group at movement onset, which is
surpassed by the linear reward landscape for the next 150 trials,
until the Cubic group again prevails by the end of the learning
block. Despite these differences, one should be cautious in an

interpretation between the two landscapes because of the high
degree of variance across subjects. No significant difference in
terms of adaptation-error correlation was also found between
the two landscapes. However, if there are indeed differences,
one possible explanation for the faster rate of learning in the
cubic reward landscape is the “anchoring effect (Furnham and
Boo 2011). According to the anchoring effect, decisions can be
biased toward a reference, an initially presented value to the
subject. It is likely that our subjects were biased toward the
maximum value of reward (R � 1,000). With abrupt applica-
tion of the rotational perturbation, the starting value of reward
(R � 870) presented to the Linear group was not considerably
different from the reference value, whereas it was noticeably
smaller (R � 650) than the reference value in the Cubic group.
Subjects in the Cubic group thus could have had high motiva-
tion to explore and quickly increase their gain at movement
onset (the first 50 trials). The same reason may explain why the
learning rate was suddenly decreased after about 50 trials;
subjects seemed to be satisfied with their performance (R �
750, much better than R � 650 on initial exposure). There is no
clear explanation why it took about 150 trials for the subjects
in the Cubic group to start to explore the environment again
and maximize their reward. It would be interesting to examine
to what extent cognitive biases are responsible for this quasi-
stepwise behavior.

In the Vision-Reward groups, we could not discern any
differences between the two reward landscapes. This may be
attributable to the overwhelming influence of sensory feedback
in driving the learning process. Indeed, the shape of the
learning curves are well fit initially with a single-rate expo-
nential, similar to the data reported in multiple standard visuo-
motor rotation tasks. The single target task may have also been
too easy; multiple targets may slow the rate of adaptation and
elucidate difference therein. It would be useful to develop a
model for combined reward and sensory feedback that would
allow us to further investigate, in a principled manner, whether
manipulating the structure of the reward landscape can modu-
late the time course of the motor learning process.

Reinforcement Learning Model

The model used in this study provided basic proof-of-
concept of learning from reward feedback alone and motivated
the choice of reward landscape. However, the model and the
experiment yield different conclusions regarding which reward
landscape can lead to a faster learning rate throughout the
learning block. Initially, because of the high degree of variance
across different subjects (Fig. 5), the average learning curve
may not be reflective of the individual learning behavior and
thus may not be compared with the model estimation. If we
assume that averaging can reflect the general behavior of the
reward-based learning, the differences between the model and
experiment could be explained in different ways. First, no
intermediate state was considered in our model despite there
being an infinite number of intermediate states in the experi-
ment. This modeling assumption was made by considering that
the reward given to the subjects depended only on the action
selected at the first (or a few early) state(s) of the movement.
The trial score (reward), however, provided no explicit infor-
mation about “where” during the movement the subject may
have been rewarded. Considering such uncertainty in the mod-
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eling process may fill some gaps between the model prediction
and the experimental observation. Another possible reason for
the difference could be related to the mechanism underlying
learning from reward feedback alone. Our choice of TD model
is based on the assumption that such learning follows a model-
free reinforcement learning process (Glaescher et al. 2010),
i.e., learning from reward prediction error without the need of
building a model of the environment. A model-based mecha-
nism would, on the other hand, need to acquire a thorough
knowledge about the environment. Future research is needed to
examine possible computational mechanisms underlying re-
ward-based learning.

Advocating for Reward in Motor Adaptation

We believe our results point to a fundamental role played by
reward in the motor adaptation process. Great strides have been
made in recent years in our understanding of the motor adap-
tation process, one of the foundational findings being that it is
cerebellum dependent and is driven by sensory prediction
error. A study by Shmuelof et al. (2012) suggests that although
adaptation happens through a sensory error-based learning
process, using (binary auditory) reward feedback during the
asymptotic phase of adaptation can lead to long-term retention
of the learned movement. Abe et al. (2011) also found that
presence of reward enhances learning of a skill task. However,
a number of studies have demonstrated that adaptation is
disproportionately sensitive to error statistics and error size
(Marko et al. 2012; Wei and Kording 2009). Significant ad-
vances have also been made in the last decade in decision
neuroscience, which have led to a new appreciation of the
influence of reward and their valuation on decision making.
Movement also represents a decision-making process, influ-
enced by rewards and penalties (Wolpert and Landy 2012).
Previous findings from our laboratory support the idea that
adaptation can be influenced by the error magnitude as well as
its subjective value. Specifically, the cost or threat associated
with an error can lead to a reduction in adaptation (Manista and
Ahmed 2012; Trent and Ahmed 2013). Point rewards and
penalties may represent an additional means with which to
modulate subjective value, and ultimately the adaptation pro-
cess.

Clinical Implications

Our results showed that a combination of reward and sen-
sory feedback considerably improved motor learning in terms
of learning rate in healthy adults. It is likely that both sensory
and reward feedback drive learning when the two are com-
bined. Reward-related learning is impaired in patients with
neurodegenerative diseases that are associated with the mal-
functioned dopamine transmission such as Parkinson’s disease
(Shohamy et al. 2005), Schizophrenia (Lau et al. 2013), and
Huntington’s disease (Chen et al. 2013). People with these
same neurological disorders have shown little difficulty in
motor adaptation to novel arm dynamics (Agostino et al. 1996;
Smith and Shadmehr 2005) and to a visuomotor rotation
(Bédard and Sanes 2011; Marinelli et al. 2009). On the other
hand, patients with cerebral damage show deficits in motor
adaptation from sensory feedback (Gibo et al. 2013). An
interesting question for the future is whether both mechanisms
participate in the learning process when the two types of

feedback are combined. If so, to what extent and at which
stages of learning would any of these mechanisms be in charge
in healthy adults and in patients with neurodegenerative dis-
eases?

Conclusions

We have shown that by abruptly introducing perturbations
of significant size in a visuomotor learning task, it is
possible to learn from reward feedback alone. We also have
found that the combination of reward and sensory feedback
accelerates learning and improves final performance. Learn-
ing from reward feedback could rely on the formation of a
mapping between arm position and reward structure, because
this type of learning does not alter the sensorimotor remapping
but generalizes to the nearby targets. This study suggests that
reward is a powerful tool that may be used either as a substitute
or as a supplement to sensory feedback during motor learning,
with the potential to improve current neurorehabilitation ap-
proaches.
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