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Reduction of Metabolic Cost during Motor Learning of Arm
Reaching Dynamics
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It is often assumed that the CNS controls movements in a manner that minimizes energetic cost. While empirical evidence for actual
metabolic minimization exists in locomotion, actual metabolic cost has yet to be measured during motor learning and/or arm reaching.
Here, we measured metabolic power consumption using expired gas analysis, as humans learned novel arm reaching dynamics. We
hypothesized that (1) metabolic power would decrease with motor learning and (2) muscle activity and coactivation would parallel
changes in metabolic power. Seated subjects made horizontal planar reaching movements toward a target using a robotic arm. The novel
dynamics involved compensating for a viscous curl force field that perturbed reaching movements. Metabolic power was measured
continuously throughout the protocol. Subjects decreased movement error and learned the novel dynamics. By the end of learning, net
metabolic power decreased by �20% (�0.1 W/kg) from initial learning. Muscle activity and coactivation also decreased with motor
learning. Interestingly, distinct and significant reductions in metabolic power occurred even after muscle activity and coactivation had
stabilized and movement changes were small. These results provide the first evidence of actual metabolic reduction during motor
learning and for a reaching task. Further, they suggest that muscle activity may not explain changes in metabolic cost as completely as
previously thought. Additional mechanisms such as more subtle features of arm muscle activity, changes in activity of other muscles,
and/or more efficient neural processes may also underlie the reduction in metabolic cost during motor learning.

Introduction
It is often assumed that the CNS controls movements in a manner
that minimizes energetic cost. Indeed, using criteria that “mini-
mize energy,” mathematical models of movement can reproduce
observed gait or arm reaching patterns (Nelson, 1983; Alexander,
1997; Kuo, 2001; Alexander, 2002; Todorov and Jordan, 2002;
Emken et al., 2007; Franklin et al., 2008; Izawa et al., 2008). In
these models, “energetic cost” is a generic term that can refer to a
number of variables, including mechanical energy, motor com-
mand, effort, neural effort, muscle activity, or actual metabolic
cost. If humans are truly minimizing energetic cost, then empir-
ical studies should reveal that actual metabolic cost is minimized.

In locomotion, there are numerous experimental examples of
minimizing actual metabolic cost. Humans walk and run using
speeds (Ralston, 1958; Margaria, 1976), step lengths/frequencies
(Cotes and Meade, 1960; Zarrugh et al., 1974; Cavanagh and
Williams, 1982; Holt et al., 1991; Donelan et al., 2002), and step
widths (Donelan et al., 2001; Arellano and Kram, 2011) that all
correspond with the minimum metabolic cost. In general, walk-

ing or running with gait characteristics different from those pre-
ferred increases metabolic cost (Cotes and Meade, 1960; Zarrugh
and Radcliffe, 1978; Donelan et al., 2001; Alexander, 2002;
Arellano and Kram, 2011).

In contrast, only indirect evidence of metabolic minimization
exists for motor learning or for arm reaching tasks. For example,
when learning novel dynamics in an arm reaching task, subjects
decrease muscle coactivation and stiffness (Thoroughman and
Shadmehr, 1999; Franklin et al., 2003; Darainy and Ostry, 2008).
This learning process involves forming and updating an internal
model, a sensorimotor map of the system’s dynamics, which the
nervous system uses to predict movement dynamics and generate
anticipatory forces (Shadmehr and Mussa-Ivaldi, 1994). As the
internal model is learned, subjects can exert the specific muscle
forces or joint torques needed to counteract any perturbing
forces, and thereby, decrease muscle coactivation and “wasted
energy” (Thoroughman and Shadmehr, 1999). Because motor
learning and arm reaching studies to date have not included ac-
tual measures of metabolic cost (i.e., via expired gas analysis), we
do not know whether actual metabolic cost is truly minimized, or
even reduced, during motor learning and/or arm reaching.

The goal of this study was to measure actual metabolic
power consumption using expired gas analysis as subjects
learned novel arm reaching dynamics. We use “metabolic
cost” to refer to a generic cost, and “metabolic power” to refer
to our empirical measures of metabolic cost. We used the well
studied motor-learning paradigm of reaching in a viscous curl
force field using a robotic arm (Shadmehr and Mussa-Ivaldi,
1994). We hypothesized that metabolic power output would de-
crease as the novel dynamics were learned. This would support

Received Aug. 4, 2011; revised Dec. 9, 2011; accepted Dec. 14, 2011.
H.J.H., R.K., and A.A.A. designed research; H.J.H. performed research; H.J.H., R.K., and A.A.A. analyzed data;

H.J.H., R.K., and A.A.A. wrote the paper.
This research was supported in part by NIH Grant 5T32AG000279 to H.J.H. Thanks to Bianca Bzdel and Andrew

Kary for their help with data collections, and to members of the Neuromechanics Laboratory and Locomotion
Laboratory for discussion about the project.

The authors declare no competing financial interests.
Correspondence should be addressed to Dr. Alaa A. Ahmed, Neuromechanics Laboratory, Department of

Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309-0354. E-mail:
alaa.ahmed@colorado.edu.

DOI:10.1523/JNEUROSCI.4003-11.2012
Copyright © 2012 the authors 0270-6474/12/322182-09$15.00/0

2182 • The Journal of Neuroscience, February 8, 2012 • 32(6):2182–2190



the concept that the CNS reduces metabolic cost during move-
ment. Our second hypothesis was that muscle activity and coacti-
vation would parallel the decrease in metabolic power, based on
studies that suggest that decreased muscle coactivation implies a
decrease in metabolic cost (Thoroughman and Shadmehr, 1999;
Franklin et al., 2004).

Materials and Methods
Subjects. Fifteen right-handed subjects (age 23.8 � 4.7 years, mass 66.9 �
12.6 kg, 13 females, 2 males) participated in this study. All subjects were
healthy with no physical injuries or known pathologies. Subjects gave
informed consent in accordance with the University of Colorado’s Insti-
tutional Review Board.

Movement task. Subjects sat in a chair with full back support and made
horizontal planar reaching movements while grasping the handle of a
robotic arm (Interactive Motion Technologies, Shoulder-Elbow Robot 2;
Fig. 1 A). The task was to move a cursor (representing the handle posi-
tion) from a home circle to a target circle 20 cm away. The cursor, home
circle, and target circle were displayed on a computer monitor sus-
pended vertically in front of the subject at eye-level. The target and
home
circles switched positions such that trials alternated between outward
and inward movements. Visual feedback encouraged subjects to reach
the target and complete movements within 300 – 600 ms, while an
auditory metronome paced subjects to initiate movements every 2 s.
Targets were within arm’s reach of the subjects and did not require
trunk movement. Bilateral shoulder straps and a lap belt limited torso
movement.

Robot generated force fields. We used a viscous curl force field (Eq. 1) to
add novel dynamics to the arm reaching task, where b � �20 N � s/m.

�Fx

Fy
� � b� 0 1

�1 0��Vx

Vy
� . (1)

This curl force field produced a perturbing
force, F, that was perpendicular and propor-
tional to handle velocity, V, (Fig. 1 B). In addi-
tion, one in every five trials was randomly
designated as a catch trial, which applied a
force “channel” that simulated stiff walls along
the straight path between the home and target
circles (Fig. 1C). Catch trials allowed us to mea-
sure anticipatory force, defined as the force
that subjects applied into the wall of the chan-
nel that would have counteracted the perturb-
ing force. Anticipatory force was a measure of
how well subjects had learned the dynamics of
the curl force field and the accuracy of their
internal model learning.

Experimental protocol. The experiment was
organized into six blocks (Fig. 2). The experi-
ment began with 10 min of quiet sitting to es-
tablish a baseline resting metabolic power. The
10 min period allowed subjects time to become
comfortable with breathing through the
mouthpiece and allowed subjects to settle to a
steady-state resting metabolic rate. Subjects
then performed 200 null trials of reaching to
the target with no force field (Null 1). Next, the
curl force field was engaged and subjects per-
formed another 250 trials (Force 1). Subjects
were given a brief rest, �3 min, during which
they did not have to breathe through the
mouthpiece. Upon resuming the protocol,
subjects completed another 250 trials in the
curl force field (Force 2), followed by another
200 null trials to washout the learning (Null 2).
The same curl force field was used in the Force
1 and Force 2 blocks. The experiment con-
cluded with 10 min of quiet sitting.

Movement error and anticipatory force (met-
rics of motor learning). The handle position, handle velocity, and robot
generated force were recorded at 200 Hz. Movement error during a trial
was defined as the maximum magnitude of the perpendicular deviation
of the handle from a straight line path between the home and target
circles. We refer to this movement deviation as movement error, even
though subjects were not explicitly instructed to move in a straight line.
Because reductions in movement error can occur with increased muscle
coactivation and/or joint stiffness, reduced movement error does not
necessarily indicate learning of the dynamics. Anticipatory force is a
measure of internal model learning and was quantified as the maximum
magnitude of the force exerted into the walls of the channel during a
catch trial.

Metabolic power. Subjects wore a nose clip and breathed in and out of
a mouthpiece throughout the protocol so that we could measure their
rates of O2 consumption (V̇O2) and CO2 production (V̇CO2) using ex-
pired gas analysis (ParvoMedics, TrueMax2400). The metabolic system
was calibrated before each data collection using certified gas mixtures
and with a range of flow rates using a 3 L calibration syringe. The meta-
bolic system corrected all data with respect to standard temperature and
pressure, dry, and averaged data in �15 s time intervals. All subjects had
respiratory exchange ratios (RER � V̇CO2/V̇O2) �1 during the experi-
mental protocol, which indicated that predominantly aerobic metabo-
lism was involved.

Using V̇O2 and V̇CO2, we calculated metabolic power in watts using
the Brockway equation (Brockway, 1987). We also normalized by body
mass to obtain metabolic power in units of W/kg. The metabolic mea-
suring system averaged data for an integral number of breaths, so for
consistency, we computed the time-weighted mean of the metabolic
power for the last 2 min of each block. We used the last 2 min of each
block to compare steady-state metabolic power for steady-state move-
ment patterns. Averaging during the last 1–3 min of a task is the standard
approach for analyzing metabolic data (Brooks et al., 1996; Donelan et

Figure 1. Experiment setup and force fields: A, Subjects made horizontal planar reaching movements using a robotic arm, while
breathing through a mouthpiece to measure rates of oxygen consumption and carbon dioxide production. The subject’s arm was
supported in a cradle attached to the robot handle. Odd numbered trials involved reaching outwards to the target while even trials
involved reaching inwards. An auditory metronome paced subjects to start movements at 2 s intervals. B, Schematic of the viscous
curl force field. On outward movements, the force field applied a perturbation to the left (�x) and for inward movements, the
perturbation was to the right (�x). C, Schematic of the force channel used during the catch trials to measure the anticipatory force
subjects planned to use to counter the perturbing force of the curl force field.
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al., 2001; Gottschall and Kram, 2003; Grabowski et al., 2005; Houdijk et
al., 2009; Arellano and Kram, 2011; Farris and Sawicki, 2011; Snyder and
Farley, 2011). We also estimated metabolic power early within a block by
averaging metabolic power for minutes �2– 4 of the block. We did not
include the first �2 min of the block to account for time delays in the
measurement system. We calculated the net metabolic power by sub-
tracting the baseline resting metabolic power from the metabolic power
data during the reaching blocks (Null 1, Force 1, Force 2, and Null 2).

Electromyography and muscle coactivation. In 7 subjects, we also col-
lected surface electromyographic (EMG) data (Delsys Trigno) from six
upper limb muscles: pectoralis major, posterior deltoid, biceps brachii,
triceps long head, triceps lateral head, and the brachioradialis. These arm
muscles are the predominant muscles used during force field reaching
(Thoroughman and Shadmehr, 1999; Franklin et al., 2003; Darainy and
Ostry, 2008; Franklin et al., 2008). We placed electrodes according to
published guidelines (www.seniam.org; Cram and Kasman, 1998). For
each muscle belly surface, we shaved and cleaned the skin area with
alcohol. The EMG data were sampled at 2000 Hz and hardware band-
pass filtered (20 – 450 Hz). We used a signal sent out from the robot
system to trigger the start and stop of each EMG recording for a trial.
Because the electromyography system required time to reset before it
could be triggered again and because we wanted subjects to initiate
movements every 2 s, we only collected EMG data for every other trial
(i.e., odd trials, outward movements). To smooth the EMG data, signals
were digitally high-pass filtered using a fourth order zero-lag Butter-
worth filter (MathWorks, Inc., MATLAB) with a cutoff of 20 Hz, full
wave rectified, and then low-pass filtered with a cutoff of 50 Hz.

To normalize the EMG data, we calculated the root-mean-square
(RMS) amplitudes for each muscle for the last 25 noncatch EMG trials in
Null 1 and then used the maximum RMS among these trials as the nor-
malization value. We used this task-based normalization method instead
of a maximum voluntary contraction-based normalization method to
reduce intersubject variability (Yang and Winter, 1984; Burden, 2010).

For each muscle, we quantified the RMS amplitude of the normalized
electromyogram (RMS EMG) for the time after the cursor left the home
circle until the time the cursor reached the target circle in each EMG trial.
We also calculated RMS coactivation amplitudes for three muscle pairs:
pectoralis major-posterior deltoid pair, biceps brachii-triceps long head
pair, and brachioradialis-triceps lateral head pair. For each time point of
the EMG data, we identified the minimum normalized EMG activity level

of the muscle pair to obtain a coactivation profile for the EMG trial. This
coactivation profile represented the “wasted contraction” (Thorough-
man and Shadmehr, 1999; Gribble et al., 2003). We then calculated the
RMS of the coactivation profile to get a RMS coactivation per EMG trial.
For this first study, we analyzed muscle activity amplitudes and coacti-
vation amplitudes, similar to previous force field reaching studies that
measured surface electromyography (Thoroughman and Shadmehr,
1999; Franklin et al., 2003, 2008).

Time course analysis using batches. To examine the time course of the
motor learning metrics and of the metabolic power during the experi-
ment and across subjects, we analyzed data in batches of 5 trials (900
trials/5 trials � 180 batches). This was necessary because we wanted to
align the metabolic data, which were recorded approximately every 15 s,
with respect to motor learning trial data, which occurred approximately
every 2 s. By grouping trials into batches of 5 trials, we could average the
trial data for each batch, yielding batch data with time periods of 10 –12 s,
which were more similar to the �15 s time periods for the metabolic data.
To calculate the metabolic power during each batch, we interpolated the
metabolic data at the average time for each batch. Within each batch, one
trial was a catch trial that was excluded when calculating the average
movement error for each batch (i.e., average of the 4 noncatch trials). The
anticipatory force for each batch was the value of the anticipatory force in
the catch trial of that batch. Because we only collected EMG data for every
odd numbered trial, we analyzed RMS EMG and RMS coactivation data
in groups of 5 EMG trials.

Overall motor learning comparisons. To quantify changes of overall
motor learning, we compared all metrics at the following time points of
the protocol: early Null 1, late Null 1 (baseline), early Force 1, late Force
1, early Force 2, late Force 2, early Null 2, and late Null 2. For movement
error, “early” consisted of the first trial in the block, whereas “late” con-
sisted of the average of the last 8 noncatch trials. For anticipatory force,
“early” consisted of the first catch trial in the block, whereas “late” con-
sisted of the average of the last 2 catch trials. For net metabolic power,
“early” was estimated using the net metabolic power for minutes �2– 4
of the block whereas “late” was the net metabolic power during the last 2
min of the block. Last, for RMS EMG and RMS coactivation, “early” was
the first 10 noncatch EMG trials, whereas “late” was the last 25 noncatch
EMG trials in the block. More EMG trials were included in early and late
time points because of greater trial-to-trial variability in RMS EMG and
RMS coactivation.
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Figure 2. Experimental protocol and example of data hierarchy. There were 6 blocks: baseline resting (light gray), Null 1 (gray), Force 1 (bold gray), Force 2 (bold black), Null 2 (gray), and post
resting (light gray). Colors are used in other figures to associate data with specific blocks. During the Force 1 and Force 2 blocks, subjects made reaching movements in the curl force field. All metrics
were calculated early and late in each reaching block (Null 1, Force 1, Force 2, and Null 2). Pmet, metabolic power. Trial attributes for late Force 1 are provided as an example of the data hierarchy. A
batch consisted of five trials. One trial within each batch was a catch trial. Electromyographic data (EMG) were collected for every odd numbered trial.
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To quantify the initial effects of the novel dynamics of the curl force
field, we examined the transition from late Null 1 to early Force 1. We
expected large movement errors and small magnitudes of anticipa-
tory force at early Force 1 compared with late Null 1. We also expected
greater net metabolic power for early Force 1 compared with late Null
1, which would establish that initial reaching movements in the curl
force field required greater metabolic expenditure. To examine our first
hypothesis that metabolic power would decrease during motor learning,
we compared movement error, anticipatory force, and net metabolic
power for early Force 1 versus late Force 2, which spanned the entire
learning period. A reduction in movement error and an increase in an-
ticipatory force would indicate that subjects learned the novel dynamics,
and a corresponding reduction in metabolic power would indicate that
the nervous system was attempting to reduce metabolic expenditure dur-
ing motor learning. To examine our second hypothesis that muscle co-
activation would parallel the decrease in metabolic power, we compared
RMS EMG and RMS coactivation for early Force 1 versus late Force 2. A
corresponding decrease in RMS EMG and RMS coactivation would sug-
gest that muscle activity and/or coactivation paralleled, and could ex-
plain the reduction of metabolic power during motor learning. We also
compared all metrics for late Force 2 versus early Null 2 to quantify
after-effects, another indicator that the dynamics were learned.

Fast motor learning comparisons. Because we expected movement pat-
terns to change substantially during initial learning, we compared all
variables for early Force 1 versus late Force 1. We refer to early Force 1 to
late Force 1 as fast motor learning.

Slow motor learning comparisons. Even when movement patterns are
just being fine-tuned, the CNS could still be attempting to reduce meta-
bolic expenditure and learning to move more efficiently. To determine
whether our data supported this idea, we compared movement error and
anticipatory force for late Force 1 versus late Force 2 to assess whether the
novel dynamics were still being learned. We refer to late Force 1 to late

Force 2 as slow motor learning. We then com-
pared net metabolic power for late Force 1 ver-
sus late Force 2 to determine whether
metabolic power was being reduced. Last, we
compared RMS EMG and RMS coactivation
for late Force 1 versus late Force 2 to examine
again whether muscle activity and/or coactiva-
tion paralleled and could explain reductions in
metabolic power.

Statistics. To assess statistical significance in
motor learning, we used a repeated-measures
ANOVA on all metrics to determine whether
there was a main effect of time (i.e., early and
late within each block). We then performed
paired t tests on all metrics for the following
planned comparisons: (1) early Force 1 versus
late Force 2 (overall motor learning), (2) early
Force 1 versus late Force 1 (fast motor learn-
ing), and (3) late Force 1 versus late Force 2
(slow motor learning). Because we expected
movement error to decrease with motor learn-
ing and anticipatory force to increase with mo-
tor learning, we used one-tailed paired t tests
for movement error and anticipatory force. We
used two-tailed paired t tests for metabolic
power and EMG data. To determine whether
there were significant differences in the transi-
tions between blocks, we also performed paired
t tests on all metrics for the following planned
comparisons: (1) late Null 1 versus early Force
1, and (2) late Force 2 versus early Null 2. The
level of significance was set at � � 0.05. Exact p
values are reported for values greater than p �
0.0001.

Results
Overview
We first present results related specifically

to overall motor learning, which spans the entire learning period
from early Force 1 to late Force 2. We then present results specific
to fast motor learning, from early Force 1 to late Force 1, when
movements were changing substantially. Last, we present results
from the slow motor learning period, from late Force 1 to late
Force 2, when movements were being fine-tuned.

The time course of movement error, anticipatory force, mus-
cle activity, muscle coactivation, and net metabolic power reveal
the trends for each of these metrics during the different blocks of
the entire protocol (Fig. 3). Throughout the protocol and across
subjects, movement times were similar, 449 � 10 ms (mean �
SEM). In Null 1, all metrics quickly stabilized around baseline
levels (late Null 1). Initial movements in the curl force field had
large movement errors, increased muscle activity, increased mus-
cle coactivation, and low anticipatory forces (early Force 1). Sub-
jects rapidly reduced movement error, muscle activity, and
muscle coactivation and rapidly increased anticipatory force as
learning progressed. From late Force 1 to late Force 2, further
improvements occurred but were small in magnitude, indicating
movements were stabilizing and being fine-tuned. When the curl
force field was removed (early Null 2), there was a large move-
ment error after-effect and subjects continued to produce antic-
ipatory force, expecting to encounter the curl force field. These
data indicate that subjects had learned the novel dynamics of the
curl force field. Subjects then quickly decreased movement error,
anticipatory force, muscle activity, muscle coactivation, and net
metabolic power in Null 2. In each block, net metabolic power
decreased after reaching an initial peak early in the block.
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Figure 3. Time courses of movement error (A), anticipatory force (B), net metabolic power (C), and RMS EMG and RMS
coactivation (D) by batches throughout the protocol. Lines are group means, and shaded areas depict �SEM. The dotted vertical
lines in A outline that the overall learning period spans from early Force 1 to late Force 2, that fast learning occurs from early Force
1 to late Force 1, and that slow learning occurs from late Force 1 to late Force 2. The dark gray horizontal thin line in net metabolic
power (C) represents the average for the last 2 min of Force 1. This highlights that net metabolic power output during late Force 2
was less than during late Force 1. Muscles and muscle pairs had similar time courses so only the shoulder muscle pair (pectoralis
major and posterior deltoid) is shown. N � 7 for EMG data and N � 15 for all other measures. EMG and coactivation data were
normalized by task to late Null 1 and are reported as arbitrary units (a.u.).
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Repeated-measures ANOVA indicated
that time (i.e., early and late of each block)
had a main effect on movement error, an-
ticipatory force, and net metabolic power
(all p values �0.0001). Time also had a
main effect on the biceps brachii (p �
0.0189), brachioradialis (p � 0.0074), tri-
ceps lateral head (p � 0.0221), pectoralis
major (p � 0.0006), posterior deltoid
(p � 0.0016), but not for the triceps long
head (p � 0.2066). Time had a main effect
on all of the coactivation muscle pairs, the
biceps brachii-triceps long head pair (p �
0.0391), brachioradialis-triceps lateral
head pair (p � 0.0206), and pectoralis
major-posterior deltoid pair (p �
0.0001).

Overall motor learning
Movement traces and muscle
activity profiles
During early Force 1, upon initial expo-
sure to the curl force field, movement
paths had large perpendicular errors com-
pared with the relatively straight line path
at late Force 2 (Fig. 4A). Peak y-velocity
and anticipatory force were also greater by
the end of learning (Fig. 4B,C). Muscle
activity patterns revealed that extensor
muscles initiated outward movements
and flexor muscles decelerated the arm.
During early Force 1, subjects typically
used greater muscle activity and coactiva-
tion in response to the novel curl force
field but learned to decrease muscle ac-
tivity and coactivation by late Force 2
(Fig. 4 D).

Movement error
Group-averaged movement error during early Force 1 was
8.78 � 0.51 cm (Fig. 5A). By late Force 2, subjects reduced
movement error to 1.36 � 0.11 cm ( p � 0.0001). When the
curl force field was removed, errors increased significantly to
7.96 � 0.54 cm ( p � 0.0001) but then quickly decreased to
1.04 � 0.06 cm ( p � 0.0001).

Anticipatory force
Anticipatory forces at late Null 1, 4.53 � 0.52 N, and early Force
1, 5.43 � 0.40 N, were small and not significantly different (p �
0.1213, Fig. 5B). While reaching in the curl force field, subjects
increased anticipatory force by 182% from 5.43 � 0.40 N in early
Force 1 to 15.29 � 0.95 N by late Force 2 (p � 0.0001). When the
curl force field was removed at early Null 2, subjects initially
continued to generate anticipatory forces, 15.92 � 1.91 N, but
quickly reduced anticipatory forces to 3.91 � 0.29 N by late Null
2 (p � 0.0001).

Metabolic power
The average resting baseline metabolic power was 1.29 � 0.04
W/kg. Net metabolic power consumption increased by 42% from
0.38 � 0.05 W/kg for late Null 1 to 0.54 � 0.06 W/kg for early
Force 1 (p � 0.0008), indicating that reaching in the curl force
field required significantly greater metabolic power. Net meta-
bolic power then decreased by 20% from 0.54 � 0.06 W/kg for

early Force 1 to 0.43 � 0.05 W/kg for late Force 2 (p � 0.0183,
Fig. 5C), indicating that subjects reduced metabolic cost by 0.11
W/kg (�0.32 ml of O2/kg/min) during overall motor learning.

Muscle activity and coactivation
During the outward movements for which we recorded EMG
data, significant reductions in muscle activity of the posterior
deltoid (p � 0.0098), biceps brachii (p � 0.0242), and brachio-
radialis (p � 0.0329) occurred over the span of the entire learning
period, from early Force 1 to late Force 2 (Fig. 5D). Additionally,
overall motor learning also corresponded with significant reduc-
tions in coactivation of the pectoralis major-posterior deltoid
pair (p � 0.0327) and the biceps brachii-triceps long head pair
(p � 0.0480).

Fast motor learning
During fast motor learning, from early Force 1 to late Force 1,
movement error decreased from 8.78 � 0.51 to 1.71 � 0.09 cm
(p � 0.0001, Fig. 5A) and anticipatory force increased from
5.43 � 0.40 to 13.19 � 0.76 N (p � 0.0001, Fig. 5B). During that
time, net metabolic power decreased by 8%, from 0.54 � 0.06
W/kg at early Force 1 to 0.50 � 0.05 W/kg at late Force 1 (p �
0.1822, Fig. 5C). Additionally, there were also significant re-
ductions in muscle activity for the pectoralis major ( p �
0.0190), posterior deltoid ( p � 0.0122), and biceps brachii
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motor learning occurred from early Force 1 (gray) to late Force 2 (black). Traces are the mean for the odd numbered trials (outward
movements) in early Force 1 and late Force 2. A, The movement path at early Force 1 had a large movement error compared with
the straight line path at late Force 2. B, The y-velocity profile at early Force 1 was biphasic compared with the bell-shaped profile
at late Force 2. C, Anticipatory force increased from early Force 1 to late Force 2. D, Muscle activity and coactivation was greater at
early Force 1 compared with late Force 2. EMG and coactivation data were normalized by task to late Null 1 and are reported as
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( p � 0.0230) and for the pectoralis major-posterior deltoid
coactivation pair ( p � 0.0223; Fig. 5D).

Slow motor learning
Movement traces and muscle activity profiles
Movement paths in late Force 1 and late Force 2 were typically
relatively straight line paths and similar to baseline, late Null 1
(Fig. 6A). Y-velocity profiles were also similar, having compara-
ble magnitudes and bell-shaped profiles (Fig. 6B). However, peak
anticipatory force of late Force 2 was greater than late Force 1
(Fig. 6C). Muscle activity and coactivation profiles at late Force 1
and late Force 2 were similar to late Null 1 (Fig. 6D).

All metrics
Additional improvements in movement patterns during the lat-
ter half of learning were small in magnitude and demonstrate
fine-tuning of movements. Reductions in movement error were
significant (0.35 � 0.09 cm; p � 0.0011) and increases in antici-
patory force were also significant (2.10 � 1.04 N; p � 0.0317)
from late Force 1 to late Force 2 (Fig. 5A,B). Interestingly, net
metabolic power decreased by 14% from 0.50 � 0.05 W/kg for
late Force 1 to 0.43 � 0.05 W/kg for late Force 2 (p � 0.0064, Fig.
5C). This decrease was evident in 13 of the 15 subjects, indicating
that this decrease in net metabolic power was consistent among
subjects (Fig. 7). However, there were no significant differences

in muscle activity from late Force 1 to late Force 2 for the biceps
brachii (p � 0.9297), brachioradialis (p � 0.7900), pectoralis
major (p � 0.2593), posterior deltoid (p � 0.6664), triceps lat-
eral head (p � 0.5210), and triceps long head (p � 0.3476). There
were also no significant differences in coactivation, biceps
brachii-triceps long head (p � 0.6459), brachioradialis-triceps
lateral head (p � 0.7213), and pectoralis major-posterior deltoid
(p � 0.6226). Even though changes in muscle activity and muscle
coactivation were small and not statistically significant from late
Force 1 to late Force 2, the significant improvements in move-
ment error and anticipatory force suggest that motor learning
was still ongoing and being fine-tuned. The concomitant reduc-
tion in metabolic power during this period indicates that meta-
bolic power was reduced during motor learning.

Discussion
This is the first demonstration that net metabolic power de-
creases with motor learning (early Force 1 to late Force 2) in an
arm reaching task, supporting our first hypothesis that metabolic
power output would decrease as the novel dynamics were
learned. Interestingly, metabolic power reductions continued to
occur late in motor learning (late Force 1 to late Force 2) whereas
muscle activity decreases were only detected during initial motor
learning (early Force 1 to late Force 1). The differing time scales
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deltoid pair decreased significantly and anticipatory force also increased significantly. During fast motor learning, early Force 1 to late Force 1, all metrics except net metabolic power had significant
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and disproportionate changes in meta-
bolic power and muscle activity reduc-
tions do not support our second
hypothesis that muscle activity and co-
activation would parallel the decrease in
metabolic power.

The most intriguing finding was that
net metabolic power continued to de-
crease consistently among subjects even
when movements were being fine-tuned
and EMG patterns had stabilized. Ini-
tially, during fast motor learning when
there were significant changes in move-
ment error, anticipatory force, muscle ac-
tivity, and muscle coactivation, the
reduction in net metabolic power was not
statistically significant (�0.04 W/kg; p �
0.1822). However, during slow motor
learning, when there were only small but
significant improvements in movement
error and anticipatory force, metabolic
power decreased further (�0.07 W/kg;
p � 0.0064). In contrast to metabolic
power, muscle activity and coactivation
were not observed to decrease. Therefore,
observed changes in muscle activity were
not proportional to changes in metabolic
power and did not parallel the reduction
of metabolic power during motor learn-
ing. This challenges the widely held as-
sumption that muscle activity entirely
explains changes in metabolic cost. Other
mechanisms in addition to the reduction
of muscle activity and coactivation appear
to underlie the decrease in metabolic cost
later in motor learning.

Our results provide the first evidence of
actual metabolic reduction during motor
learning and during reaching. Previously,
decreases in muscle coactivation and stiff-
ness were used to suggest that metabolic cost
must also decrease (Thoroughman and
Shadmehr, 1999; Franklin et al., 2003, 2004,
2008; Darainy and Ostry, 2008). Our muscle activity and coactiva-
tion data also decrease rapidly with learning, within 50–100 trials,
and then settled around an asymptotic level (Thoroughman and
Shadmehr, 1999; Franklin et al., 2003; Darainy and Ostry, 2008).
However, because we measured actual metabolic cost, we found that
the rapid decreases in muscle activity and coactivation did not cor-
respond with rapid decreases in metabolic power. Rather, greater
metabolic power reductions occurred when muscle activity and co-
activation had reached asymptotic levels.

We have demonstrated that the metabolic cost of reaching is
measurable and is not insignificant. Although arm reaching seems
metabolically inexpensive, the gross metabolic power expenditure
for seated reaching during our protocol was �1.68 W/kg. For refer-
ence, the gross metabolic power during standing is �1.5 W/kg
(Grabowski et al., 2005; Houdijk et al., 2009; Snyder and Farley,
2011). The net metabolic power for normal walking (at 1.25 m/s) is
�3 W/kg (Gottschall and Kram, 2003; Grabowski et al., 2005; Col-
lins et al., 2009; Farris and Sawicki, 2011). Therefore, reaching itself is
equivalent to �13% of the cost of normal walking and reaching in
the curl force field increased to �18% of the cost of normal walking.

Consequently, there is an incentive to reduce metabolic power dur-
ing reaching.

Indeed, the CNS is sensitive to small differences in metabolic
power. Over the entire learning period, net metabolic power de-
creased by �3.5% the cost of normal walking. During slow motor
learning, net metabolic power decreased by �2% the cost of nor-
mal walking, which may reflect the sensitivity of the CNS to met-
abolic cost. Additionally, metabolic power decreased in 77% of
the subjects from early to late within a block [46 reductions/(15
subjects*4 blocks)], indicating a general tendency to decrease
metabolic cost. Even when subjects were just reaching from early
to late Null 1, net metabolic power decreased by �0.10 W/kg
(p � 0.0043). The CNS seems to reduce metabolic expenditure in
general during learning and movement.

Practice over multiple sessions can reduce metabolic expen-
diture. When learning to arm cycle (Sparrow et al., 2005; Galna
and Sparrow, 2006), leg cycle (Lay et al., 2005), row (Lay et al.,
2002), and walk with ankle-foot orthoses (Sawicki and Ferris,
2008), metabolic expenditure decreased with repeated practice.
Similarly, subjects can learn to walk backwards at faster speeds with
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Figure 6. Fine-tuning of movements and electromyography during slow motor learning in a representative subject. Slow motor
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Traces are the mean for the odd numbered trials (outward movements) in late Null 1, late Force 1, and late Force 2. A, Movement
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learning was still occurring. An anticipatory force profile for Null 1 was not included because anticipatory forces during Null 1 were
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the same metabolic rate, indicating improved metabolic economy
(Childs et al., 2002). Interestingly, significant reductions in meta-
bolic expenditure occurred later, when coordination patterns had
stabilized (Childs et al., 2002; Sparrow et al., 2005; Galna and Spar-
row, 2006). We also observed further metabolic reductions when
reaching movements were being fine-tuned. However, our meta-
bolic reductions occurred within a single session of only �20 min, in
contrast to multiple sessions.

Other studies have attempted to determine whether reaching tra-
jectories are chosen to minimize metabolic cost, but have not un-
equivocally established a causal link. Training subjects to use
nonpreferred trajectories is difficult and hinders the ability to exper-
imentally test whether movement trajectories are chosen to mini-
mize metabolic cost (Alexander, 1997). In a recent study, subjects
continued to move in a relatively straight line path to the target,
even though it required greater end-point work than a curved
movement path that was designed to be the minimum end-point
work path (Kistemaker et al., 2010). They concluded that the
CNS does not minimize metabolic cost. Without measuring ac-
tual metabolic expenditure, it is unknown whether their curved
movement path actually required less metabolic power. Our data
also demonstrate that subjects could exert greater end-point
force (�2 N) while consuming less metabolic power.

The fact that metabolic power reductions were not propor-
tional to observed changes in muscle activity suggests that other
mechanisms may also underlie metabolic reductions. Our results
indicate that when learning novel dynamics, movement patterns
adapted rapidly, corresponding with rapid changes in muscle
activity. With further learning, movement patterns were fine-
tuned while observed muscle activity amplitudes were asymp-
totic, suggesting that other features of muscle activity were being
fine-tuned. During this fine-tuning, standard metabolic mea-
surements (i.e., average of late Force 1, average of late Force 2)
revealed a significant metabolic reduction. Fine-tuning of arm
muscle activity features when amplitudes were asymptotic may
underlie this reduction in metabolic power. Further, decreased

activity of other muscles (i.e., postural
muscles) may also contribute to the met-
abolic reduction. Another possibility is
that improved neural efficiency, such as
using less brain activity and/or optimizing
motor unit recruitment, could reduce
metabolic cost. Efficient neuronal signal-
ing in the brain has been shown to corre-
spond with energy minimization (Attwell
and Laughlin, 2001; Hasenstaub et al.,
2010). Information processing and neu-
ronal signaling patterns also consume a
large portion of the total energy used by
the brain (Attwell and Laughlin, 2001;
Magistretti, 2009). This suggests that ulti-
mately, efficient movements involve both
efficient biomechanics and efficient neu-
ral processes (i.e., muscle activation and
thinking).

A limitation of this study is that the
precise time delays between changes in
movement and expired gases and between
changes in expired gases and measured
metabolic rate are unknown. For this rea-
son, we did not include the first 2 min in a
block when estimating metabolic power
early within the block. Further, these esti-

mates may not have captured the actual peak initial cost, partic-
ularly for early Force 1. We used 2 min when averaging metabolic
power because it was less variable than 1 min but also short
enough to detect differences early and late within a block. Our
conclusions would have been the same whether we used 1 or 3
min, while durations longer than 4 min did not detect significant
reductions. Nevertheless, the unknown time delays may affect the
interpretation of the time course of metabolic power in relation
to the time courses of the other variables. Another limitation is
that surface electromyography of the selected arm muscles may
not have been able to detect changes in muscle activity during
slow motor learning. In-dwelling electromyography, measure-
ment of other muscles, and other analyses of muscle activity may
have been able to detect differences that surface electromyogra-
phy and amplitude metrics did not.

Measuring actual metabolic cost may be a useful tool for fu-
ture motor learning studies. We have shown that metabolic
power can be measured continuously and interpreted with re-
spect to changes in movement patterns. Additionally, small dif-
ferences in metabolic power can be measured consistently.
Importantly, these results highlight that end-point force, end-
point work, and/or electromyography do not necessarily reflect
changes in metabolic cost. Thus, actual metabolic cost can and
should be measured when investigating hypotheses related to
metabolic cost. An important question for future research is how
does actual metabolic cost trade-off with task performance and
motor learning in clinical populations. Future studies could also
examine the relationships among brain activity, metabolic cost,
and motor learning.

In summary, we have demonstrated that (1) net metabolic
power decreased during overall motor learning, and (2) re-
ductions in metabolic power occurred later during motor
learning, when movements were being fine-tuned. These find-
ings suggest that during motor learning, the CNS reduces met-
abolic expenditure and may also optimize neural activity to
become more efficient.
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