

Era	System/Period		Series/Epoch		Age (Ma
CENOZOIC	Quaternary		Holocene		0.0117
				U/L	-0.136
			Pleisto-	Middle	0.701
			Cerre	L/E	- 0./81
		Neogene	Pliocene		- 2.300 E 23 + 0/
	Tertiary		Miocene		- 5.33 ± 0.0
		Paleogene	Oligocene		- 23.0 ± 0.
			Eocene		$-33.9 \pm 0.$
			Paleocene		$-55.8 \pm 0.$
	Cretaceous		Upper/Late		-65.96 ± 0
22			Lower/Early		-99.6 ± 0.
2	Jurassic		Upper/Late		-145.5 ±4
O N			Middle		-161.2±4
MESO			Lower/Early		-1/5.0±4
	Triassic		Upper/Late		- 199.6 ± (
			Middle		- 228.0 ± 4
			Lower/Early		-245.0±1
	Permian		Upper/Late		- 251 ± 0.4
			Middle		- 200.4 ± 0
			Lower/Early		2/0.0 ± 0
	Carboniferous	Pennsyl- vanian	Upper/Late		- 299.0 ± 0
			Middle		- 307.2 ±
			Lower/Early		-318.1 ± 1
DIOZO		Missis- sippian	Upper/Late		-3283+1
			Middle		-3453+3
			Lower/Early		-359.2 + 2
Ĭ			Upper/Late		- 385.3 ± 2
PAL	Devonian		Middle		- 397.5 + 2
			Lower/Early		-416.0 ± 2
	Silurian Ordovician		Upper/Late		-422.9 ± 2
			Lower/Early		-443.7 ± 1
			Upper/Late		-460.9 ± 1
			Middle		-471.8 ± 1
			Lower/Early		-488.3 ± 1
	Cambrian		Opper/Late		- 501.0 ± 2
			Middle		-513.0±2
			Lower/Early		- 542.0 ± 1
PRECAMBRIAN	Eonthem/Eon		Erathem/Era		
	Proterozoic		Neoproterozoic		-1.000
			Mesoproterozoic		-1.600
			Paleoproterozoic		-2.500
	Archean		Neoarchean		-2,800
			Mesoarchean		-3,200
			Paleoarchean		-3,600
			Eoarchean		-~4.000

http://coloradogeologicalsurvey.org /colorado-geology/timescale/

Construction Aggregates

"Construction aggregate, or simply "<u>aggregate</u>", is a broad category of coarse particulate material used in <u>construction</u>, including <u>sand</u>, <u>gravel</u>, <u>crushed stone</u>, slag, recycled concrete and geosynthetic aggregates. Aggregates are the most mined materials in the world. Aggregates are a component of composite materials such as <u>concrete</u> and <u>asphalt concrete</u>; the aggregate serves as reinforcement to add strength to the overall composite material. Due to the relatively high hydraulic conductivity value as compared to most soils, aggregates are widely used in drainage applications such as foundation and <u>French drains</u>, septic drain fields, retaining wall drains, and road side edge drains. Aggregates are also used as base material under foundations, roads, and <u>railroads</u>. In other words, aggregates are used as a stable foundation or road/rail base with predictable, uniform properties (e.g. to help prevent differential settling under the road or building), or as a low-cost extender that binds with more expensive cement or asphalt to form concrete."

(Wikipedia, 2016)

Concrete Aggregates

- The <u>American Society for Testing</u> and <u>Materials</u> (ASTM) publishes an exhaustive listing of specifications including ASTM D 692 and ASTM D 1073
- <u>http://www.engr.psu.edu/ce/co</u> <u>urses/ce584/concrete/library/m</u> <u>aterials/Aggregate/Aggregatesmai</u> <u>n.htm</u>
- <u>http://www.ce.memphis.edu/11</u>
 <u>01/notes/concrete/PCA_manual</u>
 <u>/Chap05.pdf</u>
- <u>http://www.concretenetwork.co</u> <u>m/aggregate/</u>

Concrete aggregate: Sclection criteria

criteria for concrete aggregate, as follows:

3

- Materials containing chert, shale, limestones, or sandstones are unacceptable because these are susceptible to damage by frost and salt crystallization
- Limited moisture adsorption is required, since high adsorption is an index for unsound aggregates subject to volume changes that deteriorate concrete
 - Materials finer than #200 sieve are unacceptable because fines rob water from the cement reaction and reduce workability
- The aggregate must contain less than 3% clay lumps and no friable particles because these reduce workability and abrasion resistance
- Gypsum and other sulfates are unacceptable, as they reduce durability
- Rounded particles are preferred over angular ones because rounded particles require less cement paste to achieve workability
- Particles with rough surface texture are preferred to those with smooth textures to assure strong physical bonds between cement pastes and aggregates
- The aggregate materials should be resistant to abrasion
- The aggregate materials should be resistant to freezing and thawing
- Moderate compressive and flexural strength are desirable

Igneous Rocks

Adapted from Brunkel (2012)

Two Types of Igneous Rocks

• Extrusive, or Volcanic rocks Rocks formed from *lava* that crystallizes at the surface

Vulcan – god of fire

• Intrusive, or Plutonic rocks Rocks formed from *magma* that crystallizes at depth *Pluto – god of the underworld*

Types of Lava

Rhyolite

- Felsic lava
- 800°-1000°C
- Lower temp and higher silica = more viscous

Types of Lava

- Types of Basalt Mafic Magma
- Flood
- Pahoehoe
- Aa
- Pillow

Types of Lava

Andesitic

Intermediate between basalt and rhyolite

Figure 6.6 Mineral composition of basic, intermediate, and acidic rocks; the relative line weights indicate the relative abundances of the different rock types in the crust. (From U.S. Geological Survey.)

Igneous Textures

- Factors affecting crystal size & texture:
 - Rate of cooling
 - Fast rate forms many small crystals
 - Very fast rate forms glass
 - Amount of silica (SiO₂) present
 - Amount of dissolved gases (volatiles)

Types of Igneous Texture

Definite <u>Extrusive</u> textures:

Glassy Aphanitic – Fine Grained Vesicular - Holey Pyroclastic – Fragments Porphyritic – Fine & Coarse Grained

Definite <u>Intrusive</u> textures:

Phaneritic – Coarse Grained Pegmatitic – Very Coarse Grained Porphyritic – Fine & Coarse Grained

Divergent Boundaries

 Newest crust material being formed

Continent-Ocean convergence

Global Pattern of Volcanism

Extrusive Igneous

• Volcanic

- Erupts at the surface of the Earth
- Magma/lava cools very *RAPIDLY*, crystals do not have time to form, very fine grained crystal structure

Aphanitic texture (Fine Grained)

Rapid rate of cooling of lava or shallow magma

Very small crystals

May contain vesicles (holes from gas bubbles)

Extrusive Igneous

• <u>Basalt</u> is the most common example, dark, black, dense, no mineral grains- iron rich, olivine, dark minerals

Glassy texture

Very rapid cooling of molten rock at

surface

Unordered ions are "frozen" before they can organize as crystals

Resulting rock is called obsidian

Vesicular Texture

Type of aphanitic texture

Bubbles from volatile gas

How to make Andesite

Pyroclastic Texture Composed of fragments ejected during violent volcanic eruption

Anatomy of a Volcano

Conduit, Pipe, Vent, Crater, Caldera, Parasitic cone, Fumeroles

Materials Extruded During an Eruption

Pyroclastic materials – "Fire fragments"

Classified based on particle size: Ash and dust - fine, glassy fragments **Pumice** - porous rock from "frothy" lava **Cinders** - pea-sized material Lapilli - walnut-sized material **Particles larger than lapilli Blocks** - hardened or cooled lava **Bombs** - ejected as hot lava

Pyroclastic flows

 Hot ash, dust, and gases ejected from the volcano that rolls down the slope as a glowing avalanche

Pyroclastics

volcanic bombejected as hot lava, streamlined

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Bomb is approximately 10 cm long

Intrusive Igneous

- Magma/lava cools very *SLOWLY*, crystals do have time to form, coarse grained crystal structure
- Three major rocks:
 - Granite: from sialic magma
 - Diorite: from intermediate magma
 - Gabbro: from mafic magma

Intrusive Igneous

Figure 6.1 Shield regions of the world. (From Blyth and de Freitas, 1984, Fig. 2.5 17.) Reproduced by permission of Edward Arnold (publishers) Ltd.

Sheet Joints

• Exfoliation, or sheet joints, are common in massive plutonic rocks, like this Sierra granite. These are likely produced by a combination of mechanisms, not simply load removal.

 The spacings between sheet joints tend to increase with depth and confinement (overburden), as shown in this Yosemite granite quarry

Spheroidal Granite

Weathering

Figure 6.18 Development of weathering profiles on gentle slopes in granite, Hong Kong. (After Ruxton and Berry, 1957, Fig. 6, p. 1272.)

Engineering with Igneous

Parker Dam, AZ (pg. 279)

Engineering with Igneous

Weathering products of volcanic rocks

- Depth of weathering inverse with joint spacing which can be highly variable
- Basalt deposits include minerals more readily weathered than those of granite
 - However they tend to look fresh because they are geologically young
 - In areas of older deposits basalt goes to montmorillonite clay

Engineering with Igneous

- Highly variable
- Multiple layers of different material
 - Interbeds of impervious material
- Deposits follow pre eruption topography
 - Inverted topography
- Welded vs. non-welded deposits