Prompt Comprehension in UNIX
Command Production

by
Stephanie Doane, Danielle S. McNamara,
Walter Kintsch, Peter Polson,
Deborah Clawson and R. Gary Dungca
Department of Psychology
University of Colorado
Boulder, CO 80309

ICS Tech Report 91-04

Doane Prompt Comprehension

3

Prompt Comprehension in UNIX Command Production

This research applies cognitive theory to an applied problem in human-
computer interaction. Modern computer-based systems make numerous cognitive
demands on users. The sheer volume of information presented is often
overwhelming, and this can be confounded by obscure human-computer interface
designs. Detailed analyses of interface designs in the context of cognitive theories
have proven fruitful. For example, Norman (1981) shed light on the trouble that
users have producing UNIX commands because they are not mnemonic, and as
such are difficult to recall. Researchers espousing theoretical approaches to human-
computer interaction recognize that there are multiple determinants to user
problems with complex systems, and that a theoretical approach is required for these
to be disentangled (e.g., Card, Moran, & Newell, 1983). Theory based approaches
seem the most profitable for providing causal analyses of the real difficulties users

have with complex systems, and have the best chance for generalizing to other

- - system interface designs. In addition, applied domains are fruitful environments’ for

the investigation of fundamental issues in cognition, and applied problems pose

unique challenges for theories of cognition to address (e.g., Polson and Lewis, 1990).

The goal of this study is to provide empirical support for assumptions about
user knowledge of UNIX and user memory processes which are proposed by the
Doane, Kintsch, & Polson (1989;1990) UNIX comprehension construction-
integration model (UNICOM) for generating complex commands in UNIX. In so
doing, we specify the role of this theory in understanding user action planning, and
we illustrate a general methodology that may be used to examine complex

knowledge and process assumptions made by other cognitive models.

In UNICOM, we model the understanding of task instructions and the
generation of appropriate action plans. van Dijk and Kintsch (1983) and Kintsch

(1988) make the point that comprehension of text that describes a problem to be

Doane Prompt Comprehension

5

file", then the file names would be printed on the line printer. The second method
requires fewer keystrokes, and as such is more streamlined. The use of pipes “I"
allows commands to be combined to produce the command “Is |1pr*. In this
example, the output from the "Is" command flows directly into the “lpr" command.
Thus, one can think of a pipe as a plumbing pipe, where information flows directly
through the pipes.

We wish to determine what kinds of knowledge are necessary to use these
advanced features (e.g., input/output redirection). Knowing the specific action (e.g.,
knowing the command "Is" lists file names) is critical to plan execution, but simply

knowing the elements is not sufficient to develop an effective action plan.

Previous empirical work involved providing UNIX users at varied levels of
expertise textual descriptions to produce legal UNIX commands requiring the
redirection of standard input and output (i.e., "composite” commands) (Doane,
Pellegrino, & Klatzky, 1990). Their findings suggest that novices and intermediates
have knowledge of the elements of the system; that is, they can successfully produce
the single and multiple commands that make up a composite. They can not,
however, put these elements together using pipes and/or other redirection symbols
to produce the composite commands. The symbols that enable input/output
redirection are fundamental design features of UNIX, and these features are taught
in elementary computer science courses, but Doane et al. (1990) demonstrate that
these features can only be used reliably after extensive experience (e.g., experts had,

on the average, 5 years of experience with UNIX).

UNICOM (Doane, Kintsch, & Polson, 1989;1990), was developed to determine
why the Doane et al. (1990) users had such difficulties generating composite
commands. To facilitate discussion of the UNICOM knowledge base, we will use
the command "nroff -ms ATT2>ATT1" as an example. This command formats the

contents of the file ATT2 using the utility nroff and the -ms macro package, and

Doane Prompt Comprehension

7

produce a successful command. For example, to produce the command that will
print the first ten alphabetically arranged lines of a file on the line printer, "sort

file | head |1pr", the model has to first select the items to be used (sort, {,1,lpr,head,
file) and then determine the order of the items. The model must also keep track of
which command is first, second, and third, and what the output of the first
command is, where its output is redirected, and so on for the remaining command
elements. Doane et al. (1989;1990) assumed that the mechanisms involved in
integrating and ordering the items to produce a composite would result in memory
load problems. In addition, it was assumed that experts possess knowledge

structures which decrease this memory load, whereas novices do not.

Item knowledge and ordering processes are involved not only in the
composition of UNIX commands but are also important for understanding problem
solving and skill acquisition in general. The literature on expertise and skill
acquisition (e.g., Chi, Feltovich, P. J., & Glaser, R.,1981; Larkin, 1983) suggests that
- less expert individuals may know the separate facts in a domain, but areot able to
use them productively in the sense described by Wertheimer (1982/1945).
Understanding how individuals utilize textual instructions and experience to
transform their factual knowledge into effective problem solving procedures is an

important general issue in skill acquisition.

We also note that we are analyzing the knowledge and processes required to
chain elements together in the context of a theory of comprehension that has been
used to explain algebra story problem comprehension (Kintsch, 1988), and solution
of simple computing tasks (Mannes & Kintsch, in press). Furthermore, the theory of
comprehension used here was originally developed in the context of story
comprehension (Kintsch, 1988) and has been widely applied in the context of
narration and descriptive texts. Thus, rather than developing an idiosyncratic

knowledge analysis, we are performing our research in the context of a general

Doane Prompt Comprehension

9

different amounts of the required four types of knowledge and that displaying the
prompts that help with each respective type of knowledge will impact subsequent
user performance. We hold similar assumptions about the process knowledge (i.e.,

keeping track of intermediate results).

Method

Subjects

Twenty-two computer science and electrical engineering majors with between
six months and six years experience with UNIX were paid $20 for their participation.
A preexperimental questionnaire was administered to determine the users’
experience with UNIX and other operating systems, their history of computer
training, and their self-assessment of their computer skills. Following the method
outlined in Doane, Pellegrino, & Klatzky (1990), subjects were classified into
expertise groups. Novices (N=10) had less than 1.25 years of experience with UNIX
and no operating systems courses; intermediates (N=8) had between 1.25 and 3.0
years experience with UNIX and some had operating systems courses; and experts
(N=4) had greater than three years experience with UNIX and all had taken an

operating systems course.

Apparatus and Materials

All production tasks were performed on a Macintosh II with a large-screen
monitor. The experiment was controlled by a program written in Supercard?. The
stimuli were task statements, a fixed directory of file names and a series of help
prompts, all displayed on the screen, as well as three “error cards" presented by the
experimenter. Subjects responded by typing at the keyboard a command or series of
commands to accomplish a given task and then used the mouse to "click” on a

displayed button the cause the program to evaluate their answer.

Doane Prompt Comprehension

11

syntax knowledge) required for the problem. Prompts 5 and 7 remind the user of
the complete set of items that have already been identified in previous prompts. We
assume that the latter prompts will ease memory load for items. Prompt 6 is the first
prompt that determines the order of commands and symbols for the user (providing
command redirection knowledge and help with tracking intermediate results). This
information is repeated in Prompt 8. Finally, Prompt 9 gives the user the correct
production. The prompts were displayed in order of severity of the proposed cause
of error; for example, the prompt telling the exact command names was always
presented earlier than the prompt explaining the concept of redirection. Although
the problems varied in the number of prompts that accompanied them depending
on the length of the target command sequence, all prompt series followed the same

general structure and are categorized into nine ordered prompts.

Finally, we used error cards, that described the type of error made by the
subject on an incorrect attempt. The three types were: "Illegal,” "Different: Legal but
does something other than what the problem asks for," and "Keystrokes: Legal and
does what the problem asks for but uses more than the minimum possible
keystrokes." (This last error category was intended to force subjects to use composite
commands rather than a series of commands with temporary files in order to be

correct.)
Procedure

Subjects were run individually for a single two-hour session. The experiment
was made up of three sections: a questionnaire, an orientation, and completion of

the actual UNIX problems.

Orientation. To ensure that the subjects were familiar with the MAC II and
the mouse, they read the experiment's instructions on the screen, using the mouse
to click on button images in order to proceed from one page of directions to the next.

To familiarize them with the snecific nrocedures used in the composite command

Doane Prompt Comprehension
13

response. When the subject typed the required command sequence, the program

displayed a "CORRECT!" screen and then revealed the next composite task
instructions.

Results and Discussion

Scoring Correct Command Productions

Productions were scored as correct by the MAC computer (using a Super Card
program) if they matched the syntax of the idealized command (spaces were not
parsed). Thus, a subject had to produce the command that required the least number
of keystrokes (i.e., subjects could not substitute "sort>file1; head file1>file2" for the

command sort filel | head>file2").

Partitioning Productions into Groups

The data were analyzed by grouping all of the problems together, which
allowed a comparison of all relevant effects of expertise level and prompt. However,
this approach would have ignored the existence of an important learning curve.
The learning curve is influenced by two aspects of the problems; their serial
position, and the percentage of new knowledge required for solution. A fact in a
problem was considered new knowledge if it had not been used previously by the
subject in the experiment. A partial correlation predicting percent correct production
performance on the basis of the two variables was pei‘formed to determine their
unique contributions. Serial position was not a significant unique predictor of
percent correct performance (r = .008), whereas percent new knowledge was (r=.493).
Consequently, we will examine performance as a function of new knowledge. We
split the problems into three groups based on arbitrary but sensible criterion, those
requiring 0 % new knowledge (8 problems), those requiring 1-59% new knowledge

(10 problems), and those requiring 60-100 % new knowledge (3 problems).

Doane Prompt Comprehension

15

ordering information in Prompt 6. To analyze this effect we study the four types of

component knowledge demonstrated in each attempt in detail.

Scoring of Knowledge

Each of the problems given to subjects required a certain amount of the four
types of component knowledge. For example, the problem described in Table 1
requires two command syntax facts: nroff -ms as a command name, and that nroff
takes a file argument. It requires knowledge of one I/O redirection syntax fact — that
“>" redirects output from a command to a file. The conceptual I/O knowledge
required is that redirection of input and output can occur, and that I/O redirection
can occur from commands to files. The required command redirection knowledge
includes the fact that nroff output can be redirected to a file. Answers for all tasks
were scored for the percentage of each type of knowledge displayed by a subject at
each prompt level. For example, if a command requires two command syntax facts,
and the attempt at prompt 0 (before any prompts) shows evidence of only one of
these facts, then the subjects is credited for having 50% of the required command
syntax knowledge for that task. When a production was correct, all knowledge types

were at 100% levels.

Insert Figure 2 here

Knowledge Analyses

The 60-100% new knowledge problems again provide the most interesting
data. The other two problem groups show similar, but attenuated expertise effects,
and thus will not be shown. Figures 2 (a) and 2 (d) show the mean knowledge scores
for the three expertise groups at prompts 0-9 for the 60-100% new problems. The

arrow markers signal the reader what prompt first provided subjects with

Doane Prompt Comprehension

17

problem requires may be more or less difficult to use. This seems to be a function of
how new the knowledge is as evidenced by a knowledge by new interaction, F(6,114)
=11.10, MSe = .008, p < .01. Furthermore, prompts have a differential effect on
performance as a function of the percentage of new knowledge a problem requires,
F(18,342)= 28.86, MS. = .014, p < .01. Prompts are less influential on performance in
0% new knowledge problems than other problems because all groups have learned

from previous prompts.

The amount of new knowledge interacts with both the prompts and expertise,
F(36,342) = 4.91, MSe = .014, p < .01, and with the prompts and the type of component
knowledge required, F (54, 1026) = 4.78, MSe = .002, p < .01. It appears that the experts
are less influenced by the percentage of new knowledge required, perhaps because
overall this knowledge is less new to them than to the less expert groups. In a sense,
they are not being tutored in this experiment to the extent that the less expert

subjects are.

To determine the specific effects of expertise, these data were further analyzed
by planned comparisons. Novices and intermediates possess significantly different
knowledge scores than do experts. F(1,19)=5.83, MSe = .295, p <.03. The experts
possess unique amounts of knowledge across all of the tasks. The influence of
prompts on the four knowledge types is not equivalent for experts and the less
expert groups F(3,54) = 7.35, MSe = .022, p <.01. Novices and intermediates do not

show significantly different knowledge scores across problems, F <4.

The arrow markers on Figures 2(a-d) show some of the most interesting
interactions between prompts and knowledge scores, especially when compared
with the percent correct performance shown in Figure 1(a). Figure 2(a) suggests that
for all groups, presentation of Prompt 2, which helps with command syntax (see
Table 1 for an example), improves command syntax knowledge and percent correct

performance (see Figure 1(a)). However, the change in percent correct performance

Doane Prompt Comprehension

19

different changes in performance as a function of exposure to different types of

prompts, and intermediates fall somewhere between the other two groups.

It appears that novices and intermediates need help with I/0O syntax, but that this
is not a problem for the experts. Experts get help from an abstract statement of I/O
conceptual knowledge (see Table 1 for an example), while this statement is less
worthwhile to the novice and intermediate groups. This finding is in line with the
expertise literature (e.g.; Chi et al., 1981) which suggests that experts can process
more abstract information than can novices. Certainly Prompt 3 is more abstract in
the sense of providing less specific information than do Prompts 2 and 4. Experts
also successfully utilize a reminder prompt that lists all of the command and 1/0
elements together in one prompt. Novices and intermediates don't seem to utilize
this information. Experts that have not solved a problem correctly by this point
have often represented the problem with one command reversed or dropped; this
prompt reminds them that they have forgotten an element, and they can use this
information to make a correct production. The less expert subjects seem to have -
more problems at this stage than just knowing the elements, so that they cannot put
them together given just a list of the items. Their response to the ordering prompts
(see Prompts 6 & 8 in Figure 1 (a)) make this clear. These are the first prompts that
tell users what order they must use for the commands. For example, that first, nroff
-ms must be performed on ATT2, and then, that this output must be redirected to
the file ATT1, and so on. Although the experts have solved all ordering problems
before this information is presented, this ordering information helps the less expert
groups quite a bit,.

Scoring Productions for Working Memory Errors

So far, we have provided evidence suggesting that the less expert groups need
assistance with ordering. We shall now consider evidence that the less experts need

thic information hecause thev have a working memorv load problem. The work of

Doane Prompt Comprehension

21

prompt as within-subjects variables. These data show significant effects of expertise
level (deletion F(2, 19) = 4.24, MSe = 204, p < .03; substitution F(2,19) = 6.23, MSe =
427, p < .01). Novices commit the greatest number of errors, relative to the expert
and intermediate groups, as supported by planned comparisons (deletion F(1,19) =
8.04, MSe = .02, p < .01; substitution F(1,19) = 11.04, MSe = .043, p < .02). There is also
a main effect of prompt (deletion F(9,171) = 15.68, MSe = .094, p < .01; substitution
F(9,171) = 17.61, MSe = 104, p < .01). The deletion errors decrease radically for all
groups after the first command syntax prompt (Prompt 2), and substitution errors
decrease after the first ordering prompt. It is difficult to explain the rise in
substitution errors for the less expert groups following Prompt 3. Recall that this
prompt presents the abstract information about I/O concepts (see Table 1.). It is
possible that this general statement confuses the less expert groups, and they try new
commands and orderings in response. Also note the lack of a drop in substitution
errors by the novices at Prompt 5, consistent with our earlier hypothesis that they
find little use for the listing of elements. Their memory load problems are not
solved by a listing of the elements in a command. If this were the case, Prompt 5
would have an impact on their deletion and substitution errors and on their percent
correct performance. Instead they require specific ordering information to decrease
their memory load errors and improve their correct performance. Finally, the
percentage of new knowledge required influences the number of errors (deletion
F(2,38) = 13.17, MS, = .293, p < .01; substitution F(2,38) = 38.09, MS, = .35, p < .01).
Errors are highest for the 60-100% new knowledge problems. For substitutions, the

effect of new knowledge is stronger for the less expert groups than for the novices
F(1,23) =9.07, MSe = .035, p < .01.

In summary, there is evidence that the less expert groups are making more
errors that are consistent with a memory load hypothesis than are the experts. And

the extent of these errors decreases radically for all groups when they are helped

Doane Prompt Comprehension

23

novices and intermediates lack both specific syntax knowledge and more general
conceptual redirection knowledge. If prompted with specific syntax knowledge,
novices and intermediates can increase their chances of producing a correct
composite. However, novices and intermediates cannot utilize our more abstract
prompt (Prompt 3) which provides the conceptual redirection information
knowledge that they need (see Figure 2(b)) to increase their correct performance (see
Figure 1(a)). Our experts, in contrast, can use this information effectively to increase
their performance. This finding is consistent with the literature on expertise which
suggests that experts can utilize abstract information, while novices cannot (e.g., Chi

et. al, 1981).

Novices and intermediates need help retrieving the elements that go into
making a composite; but for many of them, this is not enough. They also need help
ordering the elements — or constructing a command. When they receive a prompt
that helps them order the items, their performance improves. There is evidence
that ordering the elements taxes their working memory. They delete and substitute
many more components of a composite than do experts, and these memory errors
decrease markedly once ordering information has been given. In contrast, experts

attain almost perfect performance before any ordering information is given.

Thus, the hypotheses suggested by the UNICOM construction-integration
model were supported. There appear to be separate components of knowledge above
and beyond simple command knowledge required to produce composites. Further,
retrieving the elements is only part of the problem in composing a composite. To
chain these elements together is another aspect of the problem, and this requires
relating the pieces of knowledge in an ordered fashion and tracking the

intermediate results.

Suggesting design solutions. Can our theoretical analysis contribute to system

desien? It is interesting to note that none of the new graphical user interfaces for

Doane Prompt Comprehension

25

Current theory development. Applied research can also drive a theory to

expand, and we have extended the construction-integration theory as a result of this
effort. First, we have extended the theory to another, more complex domain. The
theory has previously been applied to text comprehension and to mathematical
problem solving (Kintsch, et al., 1990; Cummins, et al., 1988), and now it has been

applied to the production of novel, complex action planning in UNIX.

Second, to build the UNICOM construction-integration model, we had to
extend the theory to include causal planning mechanisms that are found in
traditional planning systems (see also Mannes & Kintsch, in press). For text
comprehension data (e.g., Kintsch, 1988), the associative structure found in the
initial conception of the construction-integration theory is sufficient. For the UNIX
work, the causal chaining between plan elements representing components of a

composite were required.

Future theoretical work. The theory must expand further to remain fruitful

in our current efforts to account for differences in knowledge as afunction of
expertise. Kintsch (e.g.,1988) has proposed that the overlap that exists between a
network of propositions created by a text and the corresponding network of the
reader determines what propositions will be remembered and processed. This
notion can be extended in the UNIX work to suggest that the overlap between a
network of propositions resﬁlting from an incoming instruction or prompt and
that of the user will dictate their recall of syntax and concepts relevant to the task,
and to what they will attend. For example a prompt may not sufficiently overlap
with novices' knowledge to dictate their attention or processing of that material.
This would explain why, for example, the abstract prompts are not of much use to
the novices. This explanation is consistent with previous work on the construction-

integration theory, but it must be studied further to be supported.

Doane Prompt Comprehension

27

much in common with the command “head filelwc", which counts the number of
words in the first ten lines of a file. However, structurally, these commands are
similar in that they both use a pipe in the middle, and require the output of the first
command being redirected as input to the second command. While linking these
together on the basis of structural aspects is simple computationally, we would like
the links to fall naturally out of the cognitive architecture as a function of user
knowledge, and for the theory to predict what links of this type will exist. For
example, experts may see this structural similarity because of their knowledge of

piped commands, whereas novices may not.

Thus, we have made contributions to the theory by researching a complex
applied problem, and to the applied problem our theoretical analyses have proposed
solutions. We are optimistic about the continued contributions resulting from the

interaction between this theory and our applied work in the future.

Doane Prompt Comprehension

29

Mannes, S. M. & Kintsch, W. (in press). Routine computing tasks; Planning as

understanding. Cognitive Science.

Murdock, B. B. (1974). Human memory: Theory and data. Lawrence Erlbaum

Associates.
Norman, D. A. (1981, November). The trouble with UNIX. Datamation, 139-150.
Newell, A. (1987). Unified theories of cognition. The 1987 William James Lectures.

Polson, P. G. & Lewis, C. H. (1990). Theory-based design for easily learned interfaces.

Human-Computer Interaction, 5, 191-220.

van Dijk, T. A. & Kintsch, W. (1983). Strategies of discourse comprehension. New

York: Academic Press.

Wertheimer, M. (1982/1945). Productive thinking. Chicago, IL: University of

Chicago Press.

Doane Prompt Comprehension

31

Footnotes

1 UNIX is a registered trademark of AT&T.
2 Supercard is a trademark of Silicon Beach Software.

3 The component knowledge shown is higher than the percent correct scores shown
in Figure 1. This is because a subject attempt can show high, but not perfect
component knowledge, and component knowledge must be perfect for an attempt

to be entered as correct in Figure 1.

Doane

Table 2.

Production answers for complete problem set.

edit JOB1<STAT2 |1lpr

nroff -ms APON |sort{head>ANAL.C
sort PROP1 | tail>PROP2

Istsortlhead

edit OLD1<STAT2 | sort | head>PROP1
Is lhead>EMPT2

edit OLD3<OLDDT

sort STATI I nroff -ms

cmp CHORE CHORY I sort

cat OLD1 OLD2 llpr

nroff -ms APON |[head |sort>ATT1
cmp BOLD1 BOLD2 | we -c>EMPT1

cat BOLDER1 BOLDER2>>BOLD1 &
nroff -ms ATT2> ATTI1

sort WRITE | head | wc -¢

edit JOB1.P<STAT2 | sort>PROP2
Istwce

cmp REJECT1 REJECT2 | sort | Ipr

edit JOB1.P<STATI Inroff -ms>JOB.P
Is lEMPT1

nroff -ms OLD3 | sort>OLDDT

User Action Planning

33

Correct

Mean Percent

Correct

Mean Percent

Correct

Mean Percent

100 -

60 -
50 A

60% TO 100% NEW KNOWLEDGE

Novice
—e— Intermediate
—a—— Expert

100 -
90
80 -
70 -
60 -
50 -
40
30 4
20 -
10

0 1 2 3 4 5 6 7 8 9
Prompt

1% TO 59% NEW KNOWLEDGE

50
40 -
30
20 4
10 -

-
—

T 1 1 i i i
0 1 2 3 4 5
Prompt

[
~
©
[fe]

0% NEW KNOWLEDGE

-
-
-
-

Ordering

e
B
‘&

R

A\

Reminder

170 Syntax

Command Syntax /O Concept

Parsing

suofjonpodd 1981409 jusdled Ui ebueyy (euojuodoid

Information Presented In Prompt

