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ABSTRACT

Computer based instructional systems either
direct students so modelling their actions is
tractable, or provide them with total autonomy,
but give little support to learning and problem
solving processes. Instructional principles for
empowering the student are emerging whereby
more of the responsibility of diagnosis and goal-
setting is placed on the student. Critical to this
view is providing an environment which makes
the ramifications of students' actions clear so
students can meaningfully assess their own
performance. In the domain of word algebra, the
meaning of formal expressions can be reflected in
computer animation which depicts the
corresponding situation. An unintelligent tutor --
knowing nothing of the problem being solved
and possessing no student model -- helps students
to understand problems and debug formal
expressions.

KEYWORDS: Active learning, intelligent
tutoring systems, problem comprehension,
discourse processing, mathematics instruction
cognitive psychology.

INTRODUCTION

In his keynote address at the 1980 Carnegie
Symposium on Cognition, Herbert Simon
acknowledges the long, slow, tedious task that is
human learning [22]. As arduous as the task is, it

is made more so when we as educators direct not
only what students learn but sow they must learn
it. In the field of Intelligent Tutoring System
(ITS) development, cognitive scientists are
applying information processing principles to
produce computerized environments for
instruction. The results are computer programs
which guide the student through the learning and
problem solving process.

This approach has been challenged recently on
several counts by [9], [20], [21]. Scardamalia and
others contend that ITSs do too much thinking
for the student and do not encourage the student
to develop many higher level cognitive skills and
learn with one's own pace and style [20].
Systems, they argue, must engage students,
encouraging them to use their intelligence and
knowledge, rather than using knowledge and
intelligence to merely guide learning. Computer
systems that give students total autonomy are
not the solution either. They can lead to poor
performance because the system cannot help the
student (a) learn to learn; (b) set cognitive goals;
(c) facilitate problem comprehension; and (d)
develop self-monitoring and knowledge
organization skills.

In this study we present a set of principles
derived from cognitive psychology along with
recent experimental findings which suggest that a
tutoring environment which empowers the
student will be ultimately more beneficial than
one which guides the student through a rigid
problem solving process. By "empowering
students,” we mean that the tutor gives students
the opportunity to address each task in their own
style and pace, and authorizes students to assess
their own performance. Such a tutor places more
of the responsibility of learning, goal-setting,
and diagnostics with the student than traditional
ITSs. The tutor must also provide enough



structure to facilitate good knowledge
organization and problem comprehension, and a
rich enough environment to help the student
perform self-diagnosis and correction. A tutoring
system is being tested which embodies many of
these principles. It is being used to teach students
how to understand and solve word algebra
problems. With it, students graphically construct
a formal problem model which drives a computer
animation of the perceived situation. Students
compare the resulting animation (e.g. planes
flying toward each other at different speeds) to
their own situation or mental model in order to
evaluate and, if nccessary, alter the problem
model which is then used to generate a solution.
The system has no model of the student or
knowledge of the problem being solved, yet
experimental results indicate that it provides
students with valuable cues for self-assessment of
their understanding of a problem.

TUTORING SYSTEM DESIGN AND
PRINCIPLES OF INSTRUCTION
Anderson, Boyle, Farrell, and Reiser [4] present
several principles derived from experimental
research in cognitive psychology which they
argue are central to tutoring. Many of these have
received little challenge. There is strong
agreement, for instance, on the importance of
minimizing students’ working memory loads!.
Also widely agreed upon is that making students'
goals overt, instructing them in the context of
the problem solving task, and providing support
for iterative problem solving all help the student
in task performance and skill acquisition [8].

One principle which has received a lot of
attention states that the ITS feedback for error
correction needs to be immediate. When students
get off the proper solution track, Anderson [1]
has shown that they can get hopelessly lost and
must use tremendous cognitive resources to get
back to their original goals. Episodes such as
this do little to help students learn and can
confuse the memory traces of correctly learned
behavior. The model tracing paradigm is intended
to prevent such occurrences. In this view, the
system tries to trace the cognitive states of the
student in real time, and provide immediate
feedback when the student deviates from any of
the expected (i.e. permissible) states. To support
this, ITSs employ an internal knowledge base,
the expert module [2], to classify student actions
as acceptable or unacceptable. The approach

1S cardamalia and others [20], for instance, support
practices that favor understanding and problem solving
behavior over rehearsal and memorization.

makes two important presumptions: that
designers can foresee all of the legitimate
solution paths for a set of problems in a rich
domain (such as programming); and that the ITS
can appropriately diagnose how students have
erred -- what they meant -- when solution
attempts deviate from those recognized by the

expert module?.

A necessary precondition to building a tutor’s
expert module is a thorough task analysis of the
legal transformations that can be performed on
problems in a variety of representational forms.
A system which omits from this analysis an
unusual or highly stylized solution method is
one which will fail to acknowledge valid
solutions as legitimate. The source of students’
errors can also be misjudged. Cummins, Kintsch,
Reusser, and Weimer [6] have shown that errors
made by first graders solving word arithmetic
problems can be traced to misunderstanding the
language of the problem. Behavior classified as
the application of an inappropriate strategy was
in some cases shown to be the correct strategy to
a misunderstood problem. Feedback and
remediation directed at the use of arithmetic
strategies in this instance would be improper.
The correct action is to help the student to better
decipher the wording of the problem.

Learning By Erring

The model tracing paradigm also presumes that
students are not capable of identifying and
correcting their own errors. People can and do
learn from their own actions. However, people
can also not learn from their errors. It is this
finding rather than the former that is the more
pervasive in the human-computer interaction
literature (e.g. [5], [10], [15]) and which supports
the immediate feedback view.

It may be possible to provide people with an
environment that helps them to diagnose their
problem solving errors and put themselves "back
on track” without impairing their learning. In his
study of how users explain the actions of
fictitious computer systems, Lewis [11] showed
that a small but powerful set of causal reasoning
heuristics can go a long way toward describing
user behavior. When confronted with unfamiliar
procedures, these heuristics seem to play a crucial
role in organizing examples in memory and in
generalizing from a small set of instances.

2When discussing the underlying assumptions of the
CMU LISP Tutor, Anderson [3] assumes that "when
we interrupt students we correctly understand their
internal states."




Educational programs which help students
perform their own causal reasoning for diagnosis
by exploiting these and other heuristics allow the
student to take charge of the learning process and
provide the tutoring system designer with a
helpful ally in error diagnosis.

Two recent studies which manipulated tutor
feedback seem to challenge the immediate
feedback approach. Both studies suggest that
withholding feedback from the student may
engage the student more in the learning process
and so lead to greater performance and transfer to
novel situations. In a recent study [21], subjects
in a LISP learning task received either no tutor
(and so learned by exploration), a selective tutor
(which intervened when two consecutive errors
occurred), or a constant tutor. Subjects interacted
with a set of examples in the LISP environment
until they felt capable of solving related
problems. Although post-test scores did not differ
significantly, tutored subjects required
significantly less time to solve test problems
F(2,14)=4.6, MSE=47.3, p<.05. Furthermore,
subjects in the selective tutor condition spent
less time exploring examples and produced the
fewest erroneous inputs, suggesting that learning
is most efficient with selective tutoring. The
authors concluded that tutor help, even in the
form of correct solutions, interrupt students’
thought processes and can therefore alter the
entire memory trace (cf. [7]). Students, they
suggest, learn most efficiently when they can see
the effect of their errors and must reason causally
about the source and meaning of error messages
and unexpected system responses [21].

Lee [9] constructed a tutor for the domain of
genetics which followed all of the instructional
principles of Anderson and others [4] except
feedback, which was either immediate or delayed.
Subjects built diagrams on the computer to solve
pedigree problems. Delayed feedback subjects had
to produce complete diagrams before any errors
were reported. They then had to rebuild some or
all of it to correct any errors. Lee [9] found that
the learning time was fastest for the immediate
feedback group, F(1,19)=31.95, p<.01, which is
consistent with many earlier findings (e.g. [13]).
The post test revealed that delayed feedback
students performed better overall than immediate
feedback students F(1,19)=9.13, p<.01, primarily
because of their performance on hard and novel
problems. Lee concludes that immediate feedback
subjects appear to employ a guessing strategy
which interferes with learning: They construct a
diagram and at certain points guess what to do
next with confidence that if it is wrong the tutor

will tell them how to correct it. Delayed feedback
subjects had more at stake if the diagram was
flawed since they would have to reconstruct all
parts following the error. Consequently, delayed
feedback subjects used more independent checks
and considered their actions more carefully. They
learn error detection and correction skills better
than immediate feedback subjects who never have
the opportunity to apply them (cf. [13]).

ANIMATE: AN UNINTELLIGENT
TUTORING SYSTEM

A word algebra tutor has been developed which
encourages active problem solving by the
student. The tutor, ANIMATE, is an interactive
computer system that runs on the Apple (R)
Macintosh. It is intended to facilitate compre-
hension of a story problem by helping the
student to construct both an animated situation
model and an accompanying formal problem
schema. Normally the problem schema is an
implicit, intermediate mental structure in a long
line of such structures generated from the initial
stages of reading a problem to the eventual
production of a solution {19]. By making this
structure and its relation to the problem situation
explicit, we hope to give the student a more
concrete understanding of the conceptual relations
in a problem and the cognitive tasks that need to
be addressed to solve it.

Problem Schemata

ANIMATE uses a graphical arrangement of nodes
and arcs to organize the information in word
algebra problems (see Figure 1). Nodes serve as
placeholders for numbers and unspecified values
(variables) extracted from the problem statement.
Arcs indicate the relations (constraints) among
nodes (e.g. +, -, X, /, =). An uninterrupted
horizontal or vertical sequence of nodes and
connecting arcs forms an equation. Weaver and
Kintsch [24] demonstrated the psychological
reality of a problem schema level, similar to the
network above, as intermediate to the cover story
and underlying equations. They showed that
subjects unfamiliar with the technique of first
organizing the problem information into a
problem schema, rated problem pairs
significantly more similar when similarity was
based on underlying schema structure, than when
based on underlying equations, F(1,17) = 26.6,
p<.01. When subjects were trained in the
problem schema method, that difference increased
significantly, F(1,34) = 98.2, p<.01.



Figure 1: Organizing information of a
typical collision problem (Problem 1) with
the network problem schema.

Using ANIMATE

The student reads a problem such as Problem 1
below, and forms a semantic representation and
situation model as is done with any text [23].

Problem 1. A plane travels east toward
Denver, which is twenty four hundred miles
away, at four hundred mph. One hour later
another plane travels from Denver on a
collision course at six hundred mph. How
much time will the air traffic controller have
to avert an accident?

Students use ANIMATE to develop problem
schemata and an animation by constructing and
filling in an algebraic network. From the
network they then extract the algebraic equations,
as shown below.

D1 =400xT1 (Eqn. 1)
D2 =600 x T2

D1 + D2 = 2400

TiI=T2+1

Consider the following problem.

Problem 2. A supertrain leaves Boston
headed cross-country at arate of two hundred
and fifty mph. If an airplane leaves the same
city two hours later on a parallel course,
how many miles outside of Boston will the
plane overtake the train?

A student understands the situation as a plane and
a train traveling at different rates. The plane
leaves later and eventually overtakes the train.

The student must infer that "overtake" means
formally, "when the distances are equal.” When
equations are the only means to express these
relations and no provisions for feedback are made,
novice algebra students have tremendous
difficulty [12].

The student may specify all of the information
for the network of one character before building
the network for the second (e.g. depth-first, as
shown in Figure 2), or may interchangeably
specify the network for both planes. Order is
unimportant. Nodes, or "bubbles," and link
operators are mouse sensitive and values and
operators may be changed at any time. When a
student selects a node or link, a calculator pops
up indicatingt the student must enter a value. The
animation will not run with an empty network;
partial specification of an icon (such as the rate)
is necessary. The RUN command starts the
animation. The icons move and value gauges
stop at the specified time or distance. The
addition of a second character allows the student
to compare relative rates of travel and build in
congtraints such as delays between icons.

ANIMATE provides the student with two ways
to check his or her work. Syntactic (i.e.
algebraic) checks are made by the system when
the animation starts. Algebraically incorrect
expressions are highlighted (Figure 2). The
student must acknowledge the error and has the
option to correct it then, or run the animation
described by the incorrect problem model.
Semantic checks are made by the student when
assessing the animation which represents the
situation model depicted in the network. Errors in
conceptualizing the problem schema, such as
interpreting lateness to mean "minus the delay”
for the plane, result in animation which is
counter to the student's expectations, such as the
plane leaving before the train, as depicted in
Figure 3. Mathematically the network may be
correct; that is, algebraically consistent. Since
the slower train can never catch up in this
problem model, the net is situationally
erroneous, however. Mismatches between the
animation and the student's own situation mode!
suggest how to correct the problem network. In
the instance depicted in Figure 3, altering the
delay operator will produce the intended display,
so the plane leaves later and eventually passes the
train, as shown in Figure 4.
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Figure 2: A partial problem schema for
Problem 2. ANIMATE highlights syntactic-
ally incorrect expressions which the student
may alter or ignore. At this point the student
could be describing either a collision or an
overtake problem situation. From [18].

It is largely the student who controls the
interaction and the problem solving process.
ANIMATE is incapable of assessing how well
the animation matches the problem or the
student's own internal situation model. It knows
nothing of the specific problem being addressed,
only whether or not the network is consistent.
Evaluating the animation is simple for the
student since it involves applying knowledge
about common situations.

Experimental Findings

Twenty-four subjects from the University of
Colorado Psychology 100 pool were randomly
assigned to one of three groups: Equation,
Network or Animation. The Animation group
learned how the network method is used to
construct animation on the computer. All
subjects received three tasks. Task 1 presented a
travel word problem and then three possible
solutions, represented as either sets of equations
(for the Equation group) or networks (the
Network and Animation groups). Subjects used
equations, networks, or the computer system to
select from among the three choices the most
appropriate formalism for the problem given.
This measured subjects’ ability to recognize a
legitimate formulation of a solution. Task 3
resembled Task 1, except subjects were given a
solution to a problem and told to select the
appropriate problem passage being solved by the
given solution. This task was further distin-
guished in that there were two correct solutions
(choices A and B) which accounted for the given
solution. It was predicted that Animation
subjects may form a situational bias causing

108=250*2 is not correct. —

them to select choice B, which paralleled the
situation given on the screen of two planes on a
collision path, over A, describing two planes
leaving the same place and travelling in opposite
directions. A and B were both mathematically
legitimate choices. Task 2 showed a formal
solution that contained flaws. Subjects were to
correct the formalism so the solution properly
reflected the problem statement given.

Statistical analyses show that overall the
Animation group performed superior to the other
two groups. The Network method didn't lead to
better problem solving performance than the
equation method (with 30 min of tutoring) which
is consistent with an earlier study {16]. The
results of Task 1 -- which primarily tested
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Figure 3: A (situationally) incorrect expres-
sion in the T (time) row for the schema of
Problem 2. With the delay negated from T2,
the animation (top) shows the (faster) plane
leaving first, while the (slower) train waits.
Overtake never occurs. From {18].

solution recognition -- show no group differences
and a possible "ceiling effect” for this easy
problem. Results from Task 2 show that the
Animation group performed best in error
detection and correction overall, F(1,14)=6.7,
p<.01. This is not surprising considering this is
the only group to receive feedback. A subsequent
study which compared a computer version of the
Network condition with syntactic (i.e., equation
or network level) feedback but no animation, to
the Animation condition [17] suggests that it is
the situationally relevant feedback and not simply
any feedback which helps subjects to find and
correct errors in the network formalism.

When we look specifically at the two flaws in
Task 2 we find that those operating with the



equations performed as well as the Animation
group in correcting the "distance-equals” omis-
sion3. We speculate that equation users have
learned to employ certain "checks" on their work,
such as making sure the number of variables
equals the number of (independent) equations. It
is also possible that subjects simply remembered
to include this from past episodes. Earlier epi-
sodes or rules may have been muddled for the
Network group who used a novel approach.

The correction needed for the "delay” flaw
involved recognizing that the minus sign in the
equation must be a plus for the equation to
faithfully represent the situation. Formally, this
is a subtle error and is further hampered by the
misleading use of the term "later" which to some
suggests "minus” (cf. [14]). Situationally,
however, this flaw is quite salient, depicting the
fast plane leaving first trailed by the slower one.
Not surprisingly, those in the two groups
receiving no animation feedback performed
significantly below the level of the Animation
group, F(1,14)=6.76, p<.01.

The third task tested for a situational bias on the
part of the Animation group using a problem
pretested to be very easy. All of the subjects (as
expected) selected a correct answer. Of greater
interest is which correct answer subjects chose.
Those in the Equation group were perfectly split,
50-50, on choosing either the statement
describing a collision and one describing two
planes flying apart, showing no preference for
one situation over the other. In direct contrast, a
full 100% in the Animation group chose the
"collision"” passage, passing up the "parting"
story, choice A, as the problem best described by
the given solution. This points to the power of
situational reasoning on problem perception. The
Network group fell in between, with 90%
choosing the collision scenario, leaning toward
the Animation group. Earlicr work (e.g. [16])
suggests that subjects using the network
formalism develop a stronger bias for situation
model based reasoning about story problems than
do those working with equations. The equation
formalism, which is isomorphic to the network,
did not demonstrate this same effect.

System Evaluation

3Inthe given problem, the formalism omitted the
relation that the distances of the two planes were to be
equal at the point of overtake. This is corrected in the
network formalism by connecting the two distance
ovals with an "equals” link, and by introducing the
equation "D1 = D2" in the equation formalism.

In comparison to users receiving only syntactic
feedback in the network technique and subjects
using the traditional equation based approach,
ANIMATE seems to help students to recognize
and understand the formal expressions needed for
word problem solving. ANIMATE does this in
such a way as to empower the student, providing
great flexibility in how problems are solved. It
provides students with meaningful feedback that
supports diagnosis and correction even though it
has no stored knowledge base of the problems at
hand or of its users.

ANIMATE addresses many of the principles of
active learning and we are currently testing the
role that each of them plays in problem solving
and learning. It provides a way to organize
problem information and keep track of one's
goals. This frees up a student's cognitive
resources for such activities as planning and
causal reasoning about feedback. The system
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Figure 4: The T (time) row of the problem
schema for Figure 3 is corrected so the train
leaves first in the animation (top). The plane
Ieaves after a two hour delay and catches up
at the 1,000 mile point. From [18].

promotes use of varied knowledge representations
since students are encouraged to reason situa-
tionally as well as formally. ANIMATE also
allows for partial solutions which students
iteratively refine, letting them focus on the
different aspects of the problem as their own
learning demands.

ANIMATE fails in a number of ways to promote
active learning and address other recent concerns
in computerized instruction. There is no "Help"
facility for students. If they do get lost and either
do not understand the system operation or the
problem, students are left to flounder or seek out
an instructor. An on-demand help facility would




likely lead to improved performance and lessen
the burden of learning the computer interface.
The tutor also does not provide selective or
delayed feedback. Given the empirical findings
cited above, such feedback for the student seems
valuable. Students are also not provided with an
environment that supports arbitrary representa-
tion building. Currently, network construction is
subject to limitations, as is animation construc-
tion. A more general "construction kit" approach
which retains the structure needed for self-
diagnosis deserves greater consideration.

DISCUSSION

A number of questions arise regarding principles
of instruction. How readily can one apply such
principles to the design of tutoring systems?
How do these principles interact with each other
and with the domain? Which principles deserve
the most weight? It may be evident when evalu-
ating a system whether or not a set of principles
has been adhered to. Yet is often unclear how to
incorporate these principles into a particular
system, since the principles themselves do not
sufficiently constrain the system design. Only
through experimentation can one determine the
relative effects of individual principles on the
learning and problem solving process.

In this paper we have addressed some theoretical
issues of computer based instruction and
examined them in reference to a tutor ignorant of
the problems being solved by a student. The
system operates in a domain that is outside of the
current focus of intelligent tutoring research --
word problems -- since, to be intelligent, such a
tutor must possess knowledge of students'
interpretations and mis-interpretations of the
language of word problems. We avoid the issue
of "correct” or "allowable" solutions by placing
the burden of assessment on the student. In this
way the student's rich store of situations and skill
in language understanding is exploited.

The system design regards problem solving as an
active process to which students can bring to bear
all of their cognitive and experiential resources.
Its view of the student is as a diagnostician and
explainer as well as a problem solver. The merits
of empowering the student and the possible role
one plays in assessing one's own problem
solving behavior needs further attention. It is not
simply by relying on findings from cognitive
psychology but by application of these principles
to such areas as computer based tutoring, that we
can hone our theories of instruction.
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