How An Unfamiliar Thing Should Be Called

Patricia Baggett and Andrzej Ehrenfeucht

Institute of Cognitive Science
University of Colorado
Boulder, Colorado 80309

Personnel & Training Research Programs
Office of Naval Research (Code 458)
Arlington, VA 22217

Approved for public release; distribution unlimited.

An empirical method is described to derive good names for unfamiliar objects. Three principles were used in deriving the names: (1) The vocabulary and structure of the names should be within the user's linguistic capacities; (2) The names should be informationally efficient, namely, short, but at the same time unique; and (3) The names should form a classification system. For example, most names have a generic term and one or more modifiers.
How An Unfamiliar Thing Should Be Called

Patricia Baggett, Institute of Cognitive Science
and
Andrzej Ehrenfeucht, Department of Computer Science
University of Colorado

Send proofs to: Patricia Baggett
Psychology Department
University of Colorado
Campus Box 345
Boulder, CO 80309
ABSTRACT

How an Unfamiliar Thing Should be Called

An empirical method is described to derive good names for unfamiliar objects. Three principles were used in deriving the names: (1) The vocabulary and structure of the names should be within the user's linguistic capacities; (2) The names should be informationally efficient, namely, short, but at the same time unique; and (3) The names should form a classification system. For example, most names have a generic term and one or more modifiers. These three principles lead to the following design for creating good names: Step 1: Names are generated by a group of subjects. Step 2: From the names generated by subjects, the experimenter chooses a subset of the names according to the following criteria: (a) the modal name is chosen, namely, if a particular name is generated more often than others, it is chosen; (b) shorter names are preferred; (c) names chosen stay within the classification system provided by the subjects. Step 3: How good the names are is tested by measuring (1) how well people can match the names with the objects they describe; and (2) how well they can recall the names, given the physical objects. Steps 2 and 3 can be iterated; namely, if a given name is poorly matched or recalled, it can be replaced by another generated name and tested again. The method results in names that form a classification system and that are natural, short, well matched with their physical referents and well recalled. The method is generalizable and ought to be useful in a large variety of situations where names for unfamiliar objects are needed.
These three principles lead to the following design for creating good names:

Step 1: Names are generated by a group of subjects. **Step 2:** From the names generated by subjects, the experimenter chooses a subset of the names according to the following criteria: (a) the modal name is chosen, namely, if a particular name is generated more often than others, it is chosen; (b) shorter names are preferred; (c) names chosen stay within the classification system provided by the subjects. **Step 3:** How good the names are is tested by measuring (1) how well people can match the names with the objects they describe; and (2) how well they can recall the names, given the physical objects. Steps 2 and 3 can be iterated; namely, if a given name is poorly matched or recalled, it can be replaced by another generated name and tested again. The method results in names that form a classification system and that are natural, short, well matched with their physical referents and well recalled. The method is generalizable and ought to be useful in a large variety of situations where names for unfamiliar objects are needed.
How An Unfamiliar Thing Should Be Called

Patricia Baggett, Institute of Cognitive Science

and

Andrzej Ehrenfeucht, Department of Computer Science

University of Colorado

Institute of Cognitive Science
Technical Report #111-ONR

November, 1981
How An Unfamiliar Thing Should Be Called

An empirical method is described in this paper to derive good names for unfamiliar objects. How good the names are is measured by (1) how well people can match the names with the objects they describe; and (2) how well they can recall the names.

Previous researchers (e.g., Brown (1958), Carroll (1980, 1981), Nelson (1974, 1977)) have investigated naming, including why some names are good and others poor, but the empirical method given here for deriving good names, and for measuring how good they are, has not been presented before. The method is generalizable and has already been successfully used in other situations (e.g., Norman, personal communication) where names for unfamiliar objects are needed.

The stimulus materials to be named were pieces from an assembly kit for the construction of objects, but the method of deriving names is not restricted to these materials. The three principles used in deriving the names are: (1) the vocabulary and structure of the names should be within the users' linguistic capacities; (2) the names should be informationally efficient, namely, short, but at the same time unique; and (3) the names should form a classification system. That is, a name should contain a generic term and, when necessary, one or more modifiers. (As will be seen later, the generic terms are nouns and the modifiers are adjectives and prepositional phrases.)

The three principles above lead to the following design for creating good names:

Step 1: Names are generated by a group of subjects.
Step 2: From the names generated by subjects, the experimenter chooses a subset of the names according to the following criteria: (1) the modal name is chosen, namely if a particular name is generated more often than others, it is chosen; (b) shorter names are preferred; and (c) the names chosen stay within the classification system provided by the subjects.
Step 3: How good the names are is tested by measuring, first, how well people can match the names with the objects they describe, and second, how well they can recall the names, given the physical objects.

Steps 2 and 3 can be iterated: If a given name is poorly matched or recalled, it can be replaced by another generated name and tested again.

The method results in names that form a classification system and that are natural, short, well matched with their physical referents, and well recalled. It ought to be useful in a large variety of situations where names for unfamiliar objects are needed.

Method

Subjects

114 students from introductory psychology classes at the University of Colorado participated as part of a course requirement, 14 in Part 1 and 100 in Part 2.

Materials

The items to be named were the 48 different pieces from an assembly kit, Fischertechnik 50. The kit, made in Germany, is similar to Lego. The manufacturers recommend its use by children as young as six through adults. Pieces are made of plastic or metal or rubber, colored red, grey, silver, and black. The largest piece measures 90 x 45 mm (3.54 in x 1.77 in), and the smallest is 5 mm² (.2 in²).

Procedure

The procedure is in two parts. In Part 1, subjects generate names for the pieces, and the modal name for each piece is formed. Part 2 includes an iterative technique of matching and recall of the modal names on iteration 1, followed by matching and recall of improved names on iterations 2 and 3. It also includes matching and recall of the names of the pieces given by the manufacturer.
Procedure for Part 1

Subjects were run in groups of one to four until 14 had been tested. Each was shown the Fischertechnik 50 kit, in an open box, packaged as it comes from the manufacturer and including 120 total and 48 different pieces, and actual models of a few constructions that could be made with the kit. Each subject was given a separate collection of the 48 different pieces in the kit. Subjects were instructed to name each piece. They were told that the goal of the research was to use the names generated by subjects to derive good names that could be used in assembly instructions. Each subject was given a sheet with 48 numbered blanks on which the names were to be written, and a folder containing 48 numbered color photos of the pieces. The name for the piece in photo one was to go in the first blank, etc. Subjects were encouraged to ask if they were at all unsure which piece was pictured in a given photo. Subjects were allowed to slide or snap pieces together, to determine how they could potentially be used, and they could generate names for the pieces in any order.

Results of Part 1

The names generated by subjects were analyzed for generic terms or categories, and specific modifiers. For example, generic terms included joint, plate, block, and wheel. Specific modifiers included small, grey, notched, and narrow.

The subject-generated generic terms and modifiers for each piece were formed into a composite naming diagram, a display of the words, with synonyms in columns. In order for a word to occur on the diagram, it had to be generated by at least two subjects. This restriction eliminated uncommon words such as perforated, anvil, pyramid, and canopy. Figure 1 shows an example of a composite naming diagram. The piece named in Figure 1 is shown in Figure 2.
From the composite naming diagram for each piece, the most common name was chosen. That is, from synonyms on the diagram, one was chosen, usually because the majority of subjects used it. For example, within a given category, if most people called the objects blocks, but others called them bricks or girders, the name block was chosen. An important consideration was the number of words per name. The criterion for choosing the most common name was to select a short one, preferably not longer than the average number of words generated per name for the piece.

The 48 most common names from the composite naming diagrams, called iteration 1 names, were used to begin the iterative procedure to improve names in Part 2.

Part 2 (Iterative Procedure)

The iteration 1 names were tested for matching and recall, and an iterative technique was used to improve the names.

Procedure for Part 2

The procedure was identical for four different groups. The difference was the 48 names a particular group was given. Group 1 was given iteration 1 names. Groups 2 and 3 were given improved names, in iterations 2 and 3. Group 4 was given the names from the manufacturer's instruction booklet. The procedure for Group 1 is described.

Subjects were run in groups of less than 5 until 26 had been run in Group 1. (There were 24 subjects in Group 2, 26 in Group 3, and 24 in Group 4.) Each subject was given 4 sheets with the 48 iteration 1 names, 12 per page, in random order. (The order was the same for all 26 subjects. Also, the order was identical for all 4 groups.) Each was also given a collection of the 48 actual pieces. The subject was asked to place each piece on its correct name, a matching task. Subjects were
told there was no time limit, and that they could change around the pieces until they were satisfied.

When the subject finished this task, the experimenter checked the matches, marked the errors on the sheets by writing the photo number of the incorrectly placed piece in the blank where the subject has put it, and correctly identified each wrongly matched piece by saying its name aloud. The subject was then given a surprise recall task. A sheet with 48 numbered blanks and a folder with 48 numbered color photos of the pieces were given to the subject. The task was to write the correct name of the piece, exactly as given in the matching task, in each blank. Subjects were told there was no penalty for guessing on the recall task, and they could recall the names in any order.

When subjects were making a systematic error on matching or recall, the name of the piece(s) causing the error was changed by the experimenter for the next iteration (Group 2, and then Group 3). In scoring the matching task, the errors clearly indicated misleading names. These names were changed. Usually a new name from the composite naming diagram was selected. Sometimes, when the composite naming diagram did not suggest a new name, more subjects generated names for the piece(s), and a new name was chosen from the new composite naming diagram.

If a new name involved a change in category for a piece (as "strip" to "rail", or "plate" to "platform"), names of all other pieces in that category were changed to the new one.

Results and Discussion

Table 1 shows percentage correct on matching and recall for the names of iterations 1, 2, and 3 and the manufacturer's names, and the average number of words per name. Recall was scored as follows: When there was any deviation from the
correct name, no credit was given. Table 1 shows that in general, as iterations progressed, names became shorter and were better matched with their physical referents and better recalled. All groups with subject-derived names (iterations 1, 2, and 3) substantially out-performed the group with the manufacturer's names.

Table 2 shows percentage correct on matching and recall for three of the 48 pieces, in each of the four groups. Drawings of the three pieces are shown in

Figures 2, 3, and 4 respectively. Data from some pieces show that recall of the same name is better on a later iteration than on an earlier one. This is the case for the name of piece number two from iteration 2 to iteration 3. Recall increased from 29% to 50%. The name (smooth red wheel) became better because changes in other names from iteration 2 to iteration 3 created a more suitable or more consistent classification.

What we have derived here is a naming schema, a system of terminology. The names created are used within the conceptual context of the 48 pieces in the assembly kit. The same name might not be good in another context. For example, for a subset of the pieces subjects would drop the redundant elements. If 200 more pieces were added, the names would be inadequate and more nouns and modifiers would be needed. Also, the names derived would obviously differ for different subject populations, with a classification system still emerging. (Pilot data show that the composite name for the piece in Figure 2 from a group of 60 children aged 3 through 12 is big fence.)
The number of iterations needed to derive the names will probably vary with the items to be named. In this study, only three iterations were used because the score on the matching task on iteration three was nearly 100% and therefore could not be significantly increased. Correct recall seems to have stabilized around 50%. If some other measures of good names were used, for example, correct recall after a delay, perhaps more iterations would still improve the names according to the new measuring criteria.

Due to linguistic structure (or linguistic habit) subjects create names according to a classification system. They seem to choose a generic name for a category that is a noun, and modify it with adjectives or a prepositional phrase. The modal classification schema derived from subjects seems to be acceptable by other subjects, as measured by matching and recall.

We expect that the experimentally designed naming schema will apply in a large variety of situations, not because it worked for the pieces in an assembly kit, but because the efficient choice of names and classifications of objects into categories seems to be a universal strategy for relatively well educated people who try to verbalize their experience.
Reference Note

Norman, D. Personal communication, June 18, 1981.
References

Footnote

This research was supported by the Office of Naval Research Contract #N00014-78-C-0433 to the first author. We thank Susan Ross and Agda Bearden for helping with data collection, and Caroline Matsumoto for making the drawings for Figures 2, 3, and 4. Requests for reprints should be sent to Patricia Baggett, Psychology Department, University of Colorado, Campus Box 345, Boulder, Colorado 80309. This report is No. 111 of the Institute of Cognitive Science's Technical Report Series.
Table 1
Percentage Correct on Matching and Recall, and Average Number of Words Per Name, for Each of the Four Groups

<table>
<thead>
<tr>
<th>Group Given</th>
<th>Percentage Correct: Matching</th>
<th>Percentage Correct: Surprise Recall*</th>
<th>Average Number of Words Per Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Names From Manufacturer</td>
<td>59.89</td>
<td>27.25</td>
<td>2.94</td>
</tr>
<tr>
<td>Iteration 1 names</td>
<td>89.20</td>
<td>48.64</td>
<td>2.75</td>
</tr>
<tr>
<td>Iteration 2 names</td>
<td>93.92</td>
<td>48.60</td>
<td>2.81</td>
</tr>
<tr>
<td>Iteration 3 names</td>
<td>96.23</td>
<td>50.72</td>
<td>2.60</td>
</tr>
</tbody>
</table>

* No variation was scored as correct. For example, for the triangle joint, the name triangular joint was scored as wrong.
Table 2
Percentage Correct on Matching and Recall
For Three of the 48 Pieces

<table>
<thead>
<tr>
<th>Piece 1</th>
<th>Manufacturer's name: base plate 90 x 45</th>
<th>Percentage Correct: Matching</th>
<th>Percentage Correct: Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>(shown in Figure 2)</td>
<td>Iteration 1 name: large base plate</td>
<td>83.3</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>Iteration 2 name: large plate with holes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iteration 3 name: large platform</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>92.3</td>
<td>61.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100.0</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>92.3</td>
<td>73.1</td>
</tr>
<tr>
<td>Piece 2</td>
<td>Manufacturer's name: wheel 23</td>
<td>16.7</td>
<td>12.5</td>
</tr>
<tr>
<td>(shown in Figure 3)</td>
<td>Iteration 1 name: red wheel</td>
<td>73.1</td>
<td>26.9</td>
</tr>
<tr>
<td></td>
<td>Iteration 2 name: smooth red wheel</td>
<td>100.0</td>
<td>29.2</td>
</tr>
<tr>
<td></td>
<td>Iteration 3 name: smooth red wheel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>96.2</td>
<td>50.0</td>
</tr>
<tr>
<td>Piece 3</td>
<td>Manufacturer's name: building block 7.5</td>
<td>16.7</td>
<td>20.8</td>
</tr>
<tr>
<td>(shown in Figure 4)</td>
<td>Iteration 1 name: red H joint</td>
<td>73.1</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>Iteration 2 name: grooved H joint</td>
<td>75.0</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>Iteration 3 name: H joint</td>
<td>88.5</td>
<td>30.8</td>
</tr>
</tbody>
</table>

Note: 24 subjects participated in matching and recall of the manufacturer's names.
There were 26, 24, and 26 subjects respectively in iterations 1, 2, and 3.
Figure Captions

Figure 1. A composite naming diagram for the piece shown in Figure 2. The frequency of mentioning occurs under the word in parentheses. Data are from 14 subjects.

Average number of words per name for this object: 2.79.

Composite name chosen for iteration 1: large base plate.

Words that were used once and thus were excluded from the diagram are:

modifiers: thick, multipurpose, perforated, red, with holes.
nouns: bar, floor, fork, panel, waffle, zigzag.

Figure 2. A piece from the assembly kit. Its actual size is 90 x 45 x 5 mm (3.54 x 1.77 x .2 in). Its composite naming diagram is shown in Figure 1.

Figure 3. A piece from the assembly kit. Its actual size is 23mm (diameter) x 9.5mm (.9 in diameter x .375 in).

Figure 4. A piece from the assembly kit. Its actual size is 15 x 15 x 7.5mm (.6 x .6 x .3 in).
Figure 1

A Composite Naming Diagram For One Piece

large (10)

base (6)

long (4)

plate (6)

platform (2)
Navy

1 Dr. Ed Aiken
Navy Personnel R&D Center
San Diego, CA 92152

1 Meryl S. Baker
NPRDC
Code P309
San Diego, CA 92152

1 Dr. Robert Blanchard
Navy Personnel R&D Center
Management Support Department
San Diego, CA 92151

1 Dr. Robert Breaux
Code N-711
NAVTRAEEQUIPCEN
Orlando, FL 32813

1 CDR Mike Curran
Office of Naval Research
800 N. Quincy St.
Code 270
Arlington, VA 22217

1 DR. PAT FEDERICO
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 Dr. John Ford
Navy Personnel R&D Center
San Diego, CA 92152

1 LT Steven D. Harris, MSC, USN
Code 6021
Naval Air Development Center
Warminster, Pennsylvania 18974

1 Dr. Jim Hollan
Code 304
Navy Personnel R&D Center
San Diego, CA 92152

1 CDR Charles W. Hutchins
Naval Air Systems Command Hq
AIR-340F
Navy Department
Washington, DC 20361

Navy

1 CDR Robert S. Kennedy
Head, Human Performance Sciences
Naval Aerospace Medical Research Lab
Box 29407
New Orleans, LA 70189

1 Dr. Norman J. Kerr
Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054

1 Dr. William L. Maloy
Principal Civilian Advisor for
Education and Training
Naval Training Command, Code 00A
Pensacola, FL 32508

1 CAPT Richard L. Martin, USN
Prospective Commanding Officer
USS Carl Vinson (CVN-70)
Newport News Shipbuilding and Drydock Co
Newport News, VA 23607

1 Dr. George Moeller
Head, Human Factors Dept.
Naval Submarine Medical Research Lab
Groton, CT 06340

1 Dr William Montague
Navy Personnel R&D Center
San Diego, CA 92152

1 Ted M. I. Yellen
Technical Information Office, Code 201
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 Library, Code P201L
Navy Personnel R&D Center
San Diego, CA 92152

1 Technical Director
Navy Personnel R&D Center
San Diego, CA 92152

1 Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20390
1 Navy

Psychologist
ONR Branch Office
Bldg 114, Section D
666 Summer Street
Boston, MA 02210

Psychologist
ONR Branch Office
536 S. Clark Street
Chicago, IL 60605

Office of Naval Research
Code 437
800 N. Quincy Street
Arlington, VA 22217

Personnel & Training Research Programs
(Code 458)
Office of Naval Research
Arlington, VA 22217

Psychologist
ONR Branch Office
1030 East Green Street
Pasadena, CA 91101

Special Asst. for Education and
Training (OP-01E)
Rm. 2705 Arlington Annex
Washington, DC 20370

Office of the Chief of Naval Operations
Research Development & Studies Branch
(OP-115)
Washington, DC 20350

LT Frank C. Petho, MSC, USN (Ph.D)
Selection and Training Research Division
Human Performance Sciences Dept.
Naval Aerospace Medical Research Laborat
Pensacola, FL 32508

Dr. Gary Pock
Operations Research Department
Code 55PK
Naval Postgraduate School
Monterey, CA 93940

Roger W. Remington, Ph.D
Code L52
NAMRL
Pensacola, FL 32508

Dr. Bernard Rimland (03B)
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Worth Scanland, Director
Research, Development, Test & Evaluation
N-5
Naval Education and Training Command
NAS, Pensacola, FL 32508

Dr. Robert G. Smith
Office of Chief of Naval Operations
OP-987H
Washington, DC 20350

Dr. Alfred F. Smode
Training Analysis & Evaluation Group
(TAEG)
Dept. of the Navy
Orlando, FL 32813

Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152

Roger Weissinger-Baylon
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93940

Dr. Robert Wisher
Code 309
Navy Personnel R&D Center
San Diego, CA 92152

Mr John H. Wolfe
Code P310
U. S. Navy Personnel Research and
Development Center
San Diego, CA 92152
1 Technical Director
U. S. Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Mr. James Baker
Systems Manning Technical Area
Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

1 Dr. Beatrice J. Farr
U. S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 DR. FRANK J. HARRIS
U. S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

1 Dr. Michael Kaplan
U. S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

1 Dr. Milton S. Katz
Training Technical Area
U. S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Harold F. O'Neil, Jr.
Attn: PERI-OK
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Robert Sasmor
U. S. Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Frederick Steinheiser
Dept. of Navy
Chief of Naval Operations
OP-113
Washington, DC 20350

1 Dr. Joseph Ward
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333
Air Force

1 U.S. Air Force Office of Scientific Research
 Life Sciences Directorate, NL
 Bolling Air Force Base
 Washington, DC 20332

1 Dr. Earl A. Alluisi
 HQ, AFHRL (AFSC)
 Brooks AFB, TX 78235

1 Dr. Alfred R. Fregly
 AFOSR/NL, Bldg. 410
 Bolling AFB
 Washington, DC 20332

1 Dr. Genevieve Haddad
 Program Manager
 Life Sciences Directorate
 AFOSR
 Bolling AFB, DC 20332

2 3700 TCHTW/TGSH Stop 32
 Sheppard AFB, TX 76311

Marines

1 H. William Greenup
 Education Advisor (E031)
 Education Center, MCDEC
 Quantico, VA 22134

1 Special Assistant for Marine Corps Matters
 Code 100M
 Office of Naval Research
 800 N. Quincy St.
 Arlington, VA 22217

1 DR. A.L. SLAFKOSKY
 SCIENTIFIC ADVISOR (CODE RD-1)
 HQ, U.S. MARINE CORPS
 WASHINGTON, DC 20380
Non Govt

1 Mr. Avron Barr
Department of Computer Science
Stanford University
Stanford, CA 94305

1 Dr. John Bergan
School of Education
University of Arizona
Tuscon AZ 85721

1 CDR Robert J. Biensner
Program Manager
Human Performance
Navy Medical R&D Command
Bethesda, MD 20014

1 Dr. Werner Birke
DezWPs im Streitkraefteamt
Postfach 20 50 03
D-5300 Bonn 2
WEST GERMANY

1 Liaison Scientists
Office of Naval Research,
Branch Office, London
Box 39 FPO New York 09510

1 Dr. Lyle Bourne
Department of Psychology
University of Colorado
Boulder, CO 80309

1 Dr. Robert Brennan
American College Testing Programs
P. O. Box 168
Iowa City, IA 52240

1 Dr. John S. Brown
XEROX Palo Alto Research Center
3333 Coyote Road
Palo Alto, CA 94304

1 Dr. Bruce Buchanan
Department of Computer Science
Stanford University
Stanford, CA 94305

Non Govt

1 DR. C. VICTOR BUNDERSON
WICAT INC.
UNIVERSITY PLAZA, SUITE 10
1160 SO. STATE ST.
OREM, UT 84057

1 Dr. Pat Carpenter
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

1 Dr. John B. Carroll
Psychometric Lab
Univ. of N.C.
Davie Hall 013A
Chapel Hill, NC 27514

1 Charles Myers Library
Livingstone House
Livingstone Road
Stratford
London E15 2LJ
ENGLAND

1 Dr. William Chase
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

1 Dr. Micheline Chi
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

1 Dr. William Clancey
Department of Computer Science
Stanford University
Stanford, CA 94305

1 Dr. Allan M. Collins
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138
Coast Guard

1 Chief, Psychological Research Branch
 U. S. Coast Guard (G-P-1/2/TP42)
 Washington, DC 20593

Other DoD

12 Defense Technical Information Center
 Cameron Station, Bldg 5
 Alexandria, VA 22314
 Attn: TC

1 Military Assistant for Training and Personnel Technology
 Office of the Under Secretary of Defense
 for Research & Engineering
 Room 3D129, The Pentagon
 Washington, DC 20301

1 DARPA
 1400 Wilson Blvd.
 Arlington, VA 22209
Civil Govt

1 Dr. Susan Chipman
Learning and Development
National Institute of Education
1200 19th Street NW
Washington, DC 20208

1 Dr. John Mays
National Institute of Education
1200 19th Street NW
Washington, DC 20208

1 William J. McLaurin
66610 Howie Court
Camp Springs, MD 20331

1 Dr. Arthur Melmed
National Institute of Education
1200 19th Street NW
Washington, DC 20208

1 Dr. Andrew R. Molnar
Science Education Dev.
and Research
National Science Foundation
Washington, DC 20550

1 Dr. Joseph Psotka
National Institute of Education
1200 19th St. NW
Washington, DC 20208

1 Dr. Frank Withrow
U. S. Office of Education
400 Maryland Ave. SW
Washington, DC 20202

1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

Non Govt

1 Dr. Erling B. Andersen
Department of Statistics
Studiestraede 6
1455 Copenhagen
DENMARK

1 Dr. John R. Anderson
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

1 Anderson, Thomas H., Ph.D.
Center for the Study of Reading
174 Children's Research Center
51 Gerty Drive
Champaign, IL 61820

1 Dr. John Annell
Department of Psychology
University of Warwick
Coventry CV4 7AL
ENGLAND

1 DR. MICHAEL ATWOOD
SCIENCE APPLICATIONS INSTITUTE
40 DENVER TECH. CENTER WEST
7935 E. PRENTICE AVENUE
ENGLEWOOD, CO 80110

1 1 psychological research unit
Dept. of Defense (Army Office)
Campbell Park Offices
Canberra ACT 2600, Australia

1 Dr. Alan Baddeley
Medical Research Council
Applied Psychology Unit
15 Chaucer Road
Cambridge CB2 2EF
ENGLAND

1 Dr. Jonathan Baron
Dept. of Psychology
University of Pennsylvania
3813-15 Walnut St. T-3
Philadelphia, PA 19104
Dr. Lynn A. Cooper
LRDC
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Dr. Meredith P. Crawford
American Psychological Association
1200 17th Street, N.W.
Washington, DC 20036

Dr. Kenneth B. Cross
Anacapa Sciences, Inc.
P.O. Drawer Q
Santa Barbara, CA 93102

Dr. Diane Damos
Arizona State University
Tempe, AZ 85281

Dr. Ronna Dillon
Department of Guidance and Educational Psychology
Southern Illinois University
Carbondale, IL 62901

LCOL J. C. Eggenberger
DIRECTORATE OF PERSONNEL APPLIED RESEARCH
NATIONAL DEFENCE HQ
101 Colonel By Drive
OTTAWA, CANADA K1A 0K2

Dr. Ed Feigenbaum
Department of Computer Science
Stanford University
Stanford, CA 94305

Dr. Richard L. Ferguson
The American College Testing Program
P.O. Box 168
Iowa City, IA 52240

Mr. Wallace Feurzeig
Bolt Beranek & Newman, Inc.
50 Moulton St.
Cambridge, MA 02138

Dr. Victor Fields
Dept. of Psychology
Montgomery College
Rockville, MD 20850

Univ. Prof. Dr. Gerhard Fischer
Liebiggasse 5/3
A 1010 Vienna
AUSTRIA

DR. JOHN D. FOLLEY JR.
APPLIED SCIENCES ASSOCIATES INC
VALENCIA, PA 16059

Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

Dr. Alinda Friedman
Department of Psychology
University of Alberta
Edmonton, Alberta
CANADA T6G 2E9

DR. ROBERT GLASER
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

Dr. Marvin D. Glock
217 Stone Hall
Cornell University
Ithaca, NY 14853

Dr. Daniel Gopher
Industrial & Management Engineering
Technion-Israel Institute of Technology
Haifa
ISRAEL

DR. JAMES G. GREENO
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213
1 Dr. Ron Hambleton
School of Education
University of Massachusetts
Amherst, MA 01002

1 Dr. Harold Hawkins
Department of Psychology
University of Oregon
Eugene OR 97403

1 Dr. Barbara Hayes-Roth
The Rand Corporation
1700 Main Street
Santa Monica, CA 90406

1 Dr. Frederick Hayes-Roth
The Rand Corporation
1700 Main Street
Santa Monica, CA 90406

1 Dr. James R. Hoffman
Department of Psychology
University of Delaware
Newark, DE 19711

1 Dr. Kristina Hooper
Clark Kerr Hall
University of California
Santa Cruz, CA 95060

1 Glenda Greenwald, Ed.
"Human Intelligence Newsletter"
P. O. Box 1163
Birmingham, MI 48012

1 Dr. Earl Hunt
Dept. of Psychology
University of Washington
Seattle, WA 98105

1 Dr. Ed Hutchins
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Steven W. Keele
Dept. of Psychology
University of Oregon
Eugene, OR 97403

1 Dr. Walter Kintsch
Department of Psychology
University of Colorado
Boulder, CO 80302

1 Dr. David Kieras
Department of Psychology
University of Arizona
Tuscon, AZ 85721

1 Dr. Kenneth A. Klivington
Program Officer
Alfred P. Sloan Foundation
630 Fifth Avenue
New York, NY 10111

1 Dr. Stephen Kosslyn
Harvard University
Department of Psychology
33 Kirkland Street
Cambridge, MA 02138

1 Dr. Marcy Lansman
Department of Psychology, NI 25
University of Washington
Seattle, WA 98195

1 Dr. Jill Larkin
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

1 Dr. Alan Lesgold
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

1 Dr. Michael Levine
Department of Educational Psychology
210 Education Bldg.
University of Illinois
Champaign, IL 61801

1 Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801
Non Govt

1. Dr. Erik McWilliams
Science Education Dev. and Research
National Science Foundation
Washington, DC 20550

1. Dr. Mark Miller
TI Computer Science Lab
C/O 2824 Winterplace Circle
Plano, TX 75075

1. Dr. Allen Munro
Behavioral Technology Laboratories
1845 Elena Ave., Fourth Floor
Redondo Beach, CA 90277

1. Dr. Donald A. Norman
Dept. of Psychology C-009
Univ. of California, San Diego
La Jolla, CA 92093

1. Committee on Human Factors
JH 811
2101 Constitution Ave. NW
Washington, DC 20418

1. Dr. Jesse Orlansky
Institute for Defense Analyses
400 Army Navy Drive
Arlington, VA 22202

1. Dr. Seymour A. Papert
Massachusetts Institute of Technology
Artificial Intelligence Lab
545 Technology Square
Cambridge, MA 02139

1. Dr. James A. Paulson
Portland State University
P.O. Box 751
Portland, OR 97207

1. Dr. James W. Pellegrino
University of California,
Santa Barbara
Dept. of Psychology
Santa Barabara, CA 93106

Non Govt

1. MR. LUIGI PETRULLO
2431 N. EDGEOO STREET
ARLINGTON, VA 22207

1. Dr. Richard A. Pollak
Director, Special Projects
Minnesota Educational Computing Consoriti
2520 Broadway Drive
St. Paul, MN 55113

1. Dr. Martha Polson
Department of Psychology
Campus Box 346
University of Colorado
Boulder, CO 80309

1. DR. PETER POLSON
DEPT. OF PSYCHOLOGY
UNIVERSITY OF COLORADO
BOULDER, CO 80309

1. Dr. Steven E. Poltrock
Department of Psychology
University of Denver
Denver, CO 80208

1. Dr. Mike Posner
Department of Psychology
University of Oregon
Eugene, OR 97403

1. MINRAT M. L. RAUCH
P II 4
BUNDESMINISTERIUM DER VERTEIDIGUNG
POSTFACH 1328
D-53 BONN 1, GERMANY

1. Dr. Fred Reif
SESAME
c/o Physics Department
University of California
Berkely, CA 94720

1. Dr. Lauren Resnick
LRDC
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213
1 Mary Riley
LRDC
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

1 Dr. Andrew M. Rose
American Institutes for Research
1055 Thomas Jefferson St. NW
Washington, DC 20007

1 Dr. Ernst Z. Rothkopf
Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

1 Dr. David Rumelhart
Center for Human Information Processing
Univ. of California, San Diego
La Jolla, CA 92093

1 DR. WALTER SCHNEIDER
DEPT. OF PSYCHOLOGY
UNIVERSITY OF ILLINOIS
CHAMPAIGN, IL 61820

1 Dr. Alan Schoenfeld
Department of Mathematics
Hamilton College
Clinton, NY 13323

1 DR. ROBERT J. SEIDEL
INSTRUCTIONAL TECHNOLOGY GROUP
HUMRRO
300 N. WASHINGTON ST.
ALEXANDRIA, VA 22314

1 Committee on Cognitive Research
% Dr. Lonnie R. Sherrod
Social Science Research Council
605 Third Avenue
New York, NY 10016

1 Dr. Alexander W. Siegel
Department of Psychology
SR-1
University of Houston
Houston, TX 77004

1 Robert S. Siegler
Associate Professor
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213

1 Dr. Edward E. Smith
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

1 Dr. Robert Smith
Department of Computer Science
Rutgers University
New Brunswick, NJ 08903

1 Dr. Richard Snow
School of Education
Stanford University
Stanford, CA 94305

1 Dr. Robert Sternberg
Dept. of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520

1 DR. ALBERT STEVENS
BOLT BERANEK & NEUMANN, INC.
50 MOULTON STREET
CAMBRIDGE, MA 02138

1 Dr. Thomas G. Sticht
Director, Basic Skills Division
HUMRRO
300 N. Washington Street
Alexandria, VA 22314

1 David E. Stone, Ph.D.
Hazeltine Corporation
7680 Old Springhouse Road
McLean, VA 22102

1 DR. PATRICK SUPPES
INSTITUTE FOR MATHEMATICAL STUDIES IN
THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305
Non Govt

1 Dr. Kikumi Tatsuoka
Computer Based Education Research Laboratory
252 Engineering Research Laboratory
University of Illinois
Urbana, IL 61801

1 Dr. John Thomas
IBM Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

1 Dr. Douglas Towne
Univ. of So. California
Behavioral Technology Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277

1 Dr. J. Uhlner
Perceptronics, Inc.
6271 Variel Avenue
Woodland Hills, CA 91364

1 DR. GERSHON WELTMAN
PERCEPTRONICS INC.
6271 VARIEL AVE.
WOODLAND HILLS, CA 91367

1 Dr. Keith T. Wescourt
Information Sciences Dept.
The Rand Corporation
1700 Main St.
Santa Monica, CA 90406

1 DR. SUSAN E. WHITELY
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS