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Abstract

The prefrontal cortex has long been thought to subserve both working memory (the holding of infor-
mation online for processing) and “executive” functions (deciding how to manipulate working memory and
perform processing). Although many computational models of working memory have been developed, the
mechanistic basis of executive function remains elusive. In effect, the executive amounts to a homunculus.
This paper presents an attempt to deconstruct this homunculus through powerful learning mechanisms that
allow a computational model of the prefrontal cortex to control both itself and other brain areas in a strate-
gic, task-appropriate manner. These learning mechanisms are based on structures in the basal ganglia (NAc,
VTA, striosomes of the dorsal striatum, SNc) that can modulate learning in other basal ganglia structures
(matrisomes of the dorsal striatum, GP, thalamus), which in turn provide a dynamic gating mechanism for
controlling prefrontal working memory updating. Computationally, the learning mechanism is designed
to simultaneously solve the temporal and structural credit assignment problems. The model’s performance
compares favorably with standard backpropagation-based temporal learning mechanisms on the challenging
1-2-AX working memory task, and other benchmark working memory tasks.
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Introduction

This paper presents a computational model of
working memory based on the prefrontal cortex
and basal ganglia (the PBWM model). The model
represents a convergence of two logically separa-
ble but synergistic goals — understanding the com-
plex interactions between the basal ganglia (BG)
and prefrontal cortex (PFC) in working memory
function, and developing a computationally pow-
erful model of working memory that can learn to
perform complex temporally extended tasks. Such
tasks require learning which information to main-
tain over time (and what to forget), and how to as-
sign credit/blame to events based on their tempo-
rally delayed consequences. The model shows how
the prefrontal cortex and basal ganglia can interact
to solve these problems, by implementing a flexi-
ble working memory system with a dynamic gat-
ing mechanism. This mechanism can switch be-
tween rapid updating of new information into work-
ing memory, and robust maintenance of existing in-
formation already being maintained (Hochreiter &
Schmidhuber, 1997; O’Reilly, Braver, & Cohen,
1999; Braver & Cohen, 2000; Cohen, Braver, &
O’Reilly, 1996; O’Reilly & Munakata, 2000). It
is trained in the model using reinforcement learn-
ing mechanisms that are widely thought to be sup-
ported by the basal ganglia (e.g., Sutton, 1988;
Sutton & Barto, 1998; Schultz, Romo, Ljung-
berg, Mirenowicz, Hollerman, & Dickinson, 1995;
Houk, Adams, & Barto, 1995; Schultz, Dayan, &
Montague, 1997; Suri, Bargas, & Arbib, 2001;
Contreras-Vidal & Schultz, 1999; Joel, Niv, & Rup-
pin, 2002).

At the biological level of analysis, the PBWM
model builds on existing work describing the divi-
sion of labor between prefrontal cortex and basal
ganglia (Frank, Loughry, & O’Reilly, 2001) by
adding the critical component of learning. In this
prior work, we demonstrated that the basal gan-
glia can perform dynamic gating via the modula-
tory mechanism of disinhibition. In the present
model, reinforcement learning mechanisms situated
in the ventral (limbic) regions of the basal gan-
glia (specifically the core of the nucleus accum-
bens, NAc) control the learning of this dynamic

gating mechanism. Furthermore, the model shows
how the striosome/patch areas contained within dor-
sal striatum (e.g., Graybiel & Ragsdale, 1978) can
provide an additional reinforcement learning signal
that helps assign credit/blame to different subsets
of working memory representations. In addition to
these reinforcement learning mechanisms, the pre-
frontal cortex representations learn using both Heb-
bian and error-driven learning mechanisms as incor-
porated into the Leabra model of cortical learning,
which combines a number of well-accepted mecha-
nisms into one coherent framework (O’Reilly, 1998;
O’Reilly & Munakata, 2000).

At the computational level, the model is most
closely related to the long short term memory
(LSTM) model (Hochreiter & Schmidhuber, 1997;
Gers, Schmidhuber, & Cummins, 2000), which uses
error backpropagation to train dynamic gating sig-
nals. The impressive learning ability of the LSTM
model compared to other approaches to temporal
learning that lack dynamic gating argues for the im-
portance of this kind of mechanism. However, it
is somewhat difficult to see how LSTM itself could
actually be implemented in the brain. The PBWM
model shows how similarly powerful levels of com-
putational learning performance can be achieved us-
ing more biologically-based mechanisms.

After presenting the PBWM model and its
computational, biological, and cognitive bases,
its performance is compared with that of several
other standard temporal learning models includ-
ing LSTM, a simple recurrent network (SRN, El-
man, 1990; Jordan, 1986), and real-time recurrent
backpropagation learning (RBP, Robinson & Fall-
side, 1987; Schmidhuber, 1992; Williams & Zipser,
1992).

Working Memory Functional Demands

To contextualize and motivate the model, we can
examine a behavioral task called the 1-2-AX task
that illustrates three critical functional demands on
the working memory system: rapid updating, robust
maintenance, and selective updating. Later in the
paper, we test the ability of the PBWM model and a
variety of other comparison models to learn this task
; further, it has been run in an fMRI experiment on



Figure 1: The 1-2-AX task. Stimuli are presented one at
a time in a sequence. The participant responds by press-
ing the right key (R) to the target sequence, otherwise a
leftkey (L) is pressed. If the subject last saw a 1, then the
target sequence is an A followed by an X. If a 2 was last
seen, then the target is a B followed by a Y. Distractor
stimuli (e.g, 3, C, Z) may be presented at any point and
are to be ignored. The maintenance of the task stimuli (1
or 2) constitutes a temporal outer-loop around multiple
inner-loop memory updates required to detect the target
sequence.

human subjects(Kroger, Nystrom, O’Reilly, Noelle,
Braver, & Cohen, in preparation). The 1-2-AX
task is based on the A-X version of the continu-
ous performance task (AX-CPT), a standard work-
ing memory task that has been extensively studied
in humans (Servan-Schreiber, Cohen, & Steingard,
1997; Cohen, Barch, Carter, & Servan-Schreiber,
1999; Braver, Barch, Keys, Carter, Cohen, Kaye,
Janowsky, Taylor, Yesavage, & Mumenthaler, 2001;
Braver & Bongiolatti, 2002; Barch, Braver, Nys-
trom, Forman, Noll, & Cohen, 1997; Barch, Carter,
Braver, Sabb, MacDonald, Noll, & Cohen, 2001;
Braver & Cohen, 2001). In AX-CPT, the par-
ticipant is presented with sequential letter stimuli
(A,X,B,Y), and is asked to detect the specific se-
quence of an A followed by an X by pushing the
target (right) button. For all other combinations (A-
Y, B-X, B-Y), the participant should respond with
a non-target (left) button push. This task requires a
relatively simple form of working memory, where
the prior stimulus must be maintained over a delay
until the next stimulus appears, allowing the par-
ticipant to discriminate the target from non-target
sequences. This is the kind of activation-based
working memory that has often been observed in
electrophysiological studies of working memory in
monkeys (e.g., Fuster & Alexander, 1971; Kub-
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ota & Niki, 1971; Miyashita & Chang, 1988; Funa-
hashi, Bruce, & Goldman-Rakic, 1989; Miller, Er-
ickson, & Desimone, 1996).

In the 1-2-AX task (Figure 1), the target se-
quence varies depending on prior task demand stim-
uli (a 1 or 2). Specifically, if the subject last saw
a 1, then the target sequence is A-X. However, if
the subject last saw a 2, then the target sequence is
B-Y. Thus, the task demand stimuli define an outer
loop of active maintenance (maintenance of task de-
mands) within which there can be a number of inner
loops of active maintenance for the A-X level se-
quences. The three critical functional demands this
task imposes on the working memory system are:

Rapid updating: As each stimulus comes in, it
must be rapidly encoded in working memory.

Robust maintenance: The task demand stimuli (1
or 2) in the outer loop must be maintained
in the face of interference from ongoing pro-
cessing of inner loop stimuli and irrelevant
distractors.

Selective updating: Only some elements of work-
ing memory should be updated at any given
time, while others are maintained. For exam-
ple, in the inner loop, A’s and X’s (etc) should
be updated while the task demand stimulus (1
or 2) is maintained.

Dynamic, Selective Gating

The first two functional demands identified
above (rapid updating and robust maintenance) are
directly in conflict with each other, when viewed
in terms of standard neural processing mecha-
nisms (Cohen et al., 1996; Braver & Cohen, 2000;
O’Reilly et al., 1999; O’Reilly & Munakata, 2000).
Specifically, rapid updating can be achieved by
making the connections between stimulus input and
working memory strong, but this directly impairs
robust maintenance, because such strong connec-
tions would allow new stimuli to interfere with
ongoing maintenance. Conversely, robust mainte-
nance is best supported by weak input connections
relative to the maintenance connections (e.g., re-
current connections among memory units), but this
impairs rapid updating of new information. If the
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Figure 2: Tllustration of active gating. When the gate is
open, sensory input can rapidly update working memory
(e.g., encoding the cue item A in the 1-2-AX task), but
when it is closed, it cannot, thereby preventing other dis-
tracting information (e.g., distractor C) from interfering
with the maintenance of previously stored information.

inter-unit weights alone determine these connection
strengths, and these vary slowly, the model could
only learn a suboptimal compromise between these
two goals.

A dynamic gating mechanism (Figure 2) avoids
these problems by rapidly and flexibly modulating
the influence of incoming stimuli on the working
memory system (see also Hochreiter & Schmidhu-
ber, 1997). When the gate is open, stimulus infor-
mation is allowed to flow strongly into the working
memory system, thereby achieving rapid updating.
When the gate is closed, stimulus information does
not strongly influence working memory, thereby al-
lowing robust maintenance in the face of ongoing
processing. This gating mechanism must also be
selective to allow some information to be robustly
maintained (e.g., the outer-loop 1,2 information in
the 1-2-AX task), while other information is rapidly
updated (e.g., the inner-loop of the 1-2-AX task).

Dynamic Gating of Frontal Maintenance
Through Basal Ganglia Disinhibition

One of the central postulates of the PBWM
model is that the basal ganglia provide a selective
dynamic gating mechanism for information main-
tained via sustained activation in the PFC (Frank
et al., 2001). The hypothesis that the PFC is crit-
ical for active maintenance in working memory is
almost universally accepted, and is supported by
a wide range of cognitive neuroscience data (e.g.,
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Figure 3: The basal ganglia (striatum, globus pal-
lidus and thalamus) are interconnected with frontal cor-
tex through a series of parallel loops. Striatal neurons
disinhibit prefrontal cortex by inhibiting tonically active
globus pallidus internal segment (GPi) (and substantia
nigra pars reticulata, SNr, not shown) neurons, releasing
thalamic neurons from inhibition. This disinhibition pro-
vides a modulatory or gating-like function.

Fuster, 1989; Goldman-Rakic, 1987; Miller et al.,
1996). The role of the basal ganglia as a gat-
ing mechanism that modulates this prefrontal active
maintenance system is also consistent with a con-
siderable amount of biological and behavioral data,
as reviewed in Frank et al. (2001). A few key exam-
ples are summarized here.

First, anatomically (with some simplification;
see Frank et al., 2001 for details), the direct path-
way through the dorsal striatum, globus pallidus
(GP), thalamus, and back to PFC provides a disin-
hibitory modulation of PFC (Figure 3). GP neurons
are tonically active and thus tonically inhibit the tha-
lamus. When a striatal neuron fires (they are usu-
ally inactive), it inhibits the GP neurons to which
it projects, thus disinhibiting the thalamus, which is
reciprocally interconnected with the PFC via exci-
tatory connections. This thalamic disinhibition thus
enables, but does not directly cause (i.e., gates), a
loop of excitation into the PFC. The effect of this ex-
citation in the model is to toggle the state of bistable
currents in the PFC neurons. Thus, when PFC neu-
rons are in the up state, they have a persistent ex-
citatory current that helps them remain active over
time, while other neurons in the down state lack this
extra excitation (Fellous, Wang, & Lisman, 1998;
Wang, 1999; Durstewitz, Kelc, & Gunturkun, 1999;
Durstewitz, Seamans, & Sejnowski, 2000a). This
intracellular maintenance is further supported by re-
current excitatory connections among PFC neurons,
and the combination provides important computa-
tional advantages (Frank et al., 2001).




In short, the firing of a direct-pathway neuron,
which we refer to as a GO signal (and the neurons
as GO neurons), toggles the maintenance of infor-
mation in PFC. To clear an existing representation
and store a different one (i.e., an update), two GO
signals are required. This toggling pattern of behav-
ior has been observed in PFC neurons in vitro (J.
Seamans, personal communication, January 2002).
There are also striatal neurons that project via an
indirect pathway, with the effect of increasing the
level of inhibition on the thalamic pathway. We re-
fer to these as the NO-GO neurons in the model —
they compete with the GO neurons and enable the
PFC to continue to maintain currently stored infor-
mation. This competition, and competition between
different possible GO signals across different basal
ganglia areas, is likely mediated within the GP and
subthalamic nucleus circuitry, not directly in stria-
tum as has been otherwise proposed (e.g., Mink,
1996; Wickens, 1993).

Critically, the basal ganglia can provide a se-
lective gating mechanism because there are paral-
lel loops of connectivity through different areas of
the basal ganglia and frontal cortex (Alexander, De-
Long, & Strick, 1986; Graybiel & Kimura, 1995;
Middleton & Strick, 2000). Thus, different regions
of PFC can be updated independently by different
regions of the basal ganglia — in the context of
the 1-2-AX task, this would predict that different
regions of PFC are used to hold the outer loop in-
formation, which needs to be maintained while the
inner loop is updated. Indeed, fMRI evidence sup-
ports this prediction in this task (Kroger et al., in
preparation), and in other tasks with an inner/outer
loop structure (e.g., Braver & Bongiolatti, 2002;
Koechlin, Corrado, & Grafman, 2000). We re-
fer to the separately updatable components of the
PFC/BG system as stripes, in reference to relatively
isolated groups of interconnected neurons in PFC
(Levitt, Lewis, Yoshioka, & Lund, 1993; Pucak,
Levitt, Lund, & Lewis, 1996). We previously es-
timated that the human frontal cortex could support
roughly 20,000 such stripes (Frank et al., 2001).

Summary and Application to the 1-2-AX Task

Figure 4 shows how the BG-mediated selective
gating mechanism can enable performance of the
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Figure 4: Illustration of how the basal ganglia gat-
ing of different PFC stripes can solve the 1-2-AX
task (light color = active; dark = not-active). a) The
1 task is gated into an anterior PFC stripe because
a corresponding striatal stripe fired. b) The distrac-
tor C fails to activate the BG so it will not be main-
tained; however, it does elicit transient PFC activity.
Note that the 1 persists because of gating-induced
robust maintenance. ¢) The A is gated in. d) A right
keypress motor action is activated (using same BG-
mediated disinhibition mechanism) based on X in-
put plus maintained PFC context.

1-2-AX task (see Frank et al., 2001 for a working
simulation). When a task demand stimulus is pre-
sented (e.g., 1), a BG gating signal (i.e., a GO sig-
nal) must be activated to enable a particular PFC
stripe to retain this information (panel a). A differ-
ent stripe must be gated for the subsequent cue stim-
ulus A (panel c), and no stripe (or NO-GO firing)
should be activated for a distractor such as C (panel
b). When the X stimulus is presented, the combi-
nation of this stimulus representation plus the main-
tained PFC working memory representations is suf-
ficient to trigger a target response R (panel d). Note
that this motor response is triggered using the same
disinhibitory gating mechanism as was involved in
working memory gating; it affects more posterior
frontal areas (e.g., SMA) that drive responding.
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Learning When to Gate in the Basal Ganglia

As Figure 4 makes clear, the learning problem
in the basal ganglia amounts to learning when to
fire a GO vs. NO-GO signal in a given stripe based
on the current sensory input and maintained PFC
activations. Without such a learning mechanism,
which can develop from initially random gating be-
havior into a strategic, task-appropriate pattern of
gating, our model would require some kind of in-
telligent homunculus to control gating. Thus, the
development of this learning mechanism is a key
step in banishing the homunculus from the domain
of working memory models (c.f., the “central exec-
utive” of Baddeley’s (1986) model). There are two
fundamental problems that must be solved by the
learning mechanism:

Temporal credit assignment: The benefits of hav-
ing encoded a given piece of information into
prefrontal working memory are typically only
available later in time (e.g., encoding the 1
task demand only helps later when confronted
with an A-X sequence). Thus, the problem is
to know which prior events were critical for
subsequent good (or bad) performance.

Structural credit assignment: The network must
decide which stripes should encode which
different pieces of information, and when
successful performance occurs, it must rein-
force those stripes that actually contributed to
this success. This form of credit assignment
is what neural network models are typically
very good at doing, but clearly this form of
structural credit assignment interacts with the
temporal credit assignment problem, making
it more complex.

The solutions to these problems adopted in the
PBWM model (illustrated abstractly in Figure 5 and
in biological detail in Figure 6) are inspired by two
important aspects of the basal ganglia biology. First,
we adopt the temporal differences (TD) reinforce-
ment learning mechanism (Sutton, 1988; Sutton &
Barto, 1998) as a model of the ventral striatum (nu-
cleus accumbens; NAc) and its control over the fir-
ing of ventral tegmental (VTA) and substantia ni-
gra pars compacta (SNc¢) dopamine (DA) neurons.
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Figure 5: Solution of the temporal credit assignment
and structural credit assignment problems via different
parts of the basal ganglia system. The nucleus accum-
bens (NAc) and ventral tegmental area (VTA) perform
global temporal differences learning by learning to ex-
pect rewards and computing temporal derivatives, re-
spectively. The patch regions of the striatum (striosomes)
learn the expected reward values on a per-stripe basis
(v, (t)), and modulate the temporal difference computa-
tion in the substantia nigra pars compacta (SNc) (which
is based on inputs from the NAc). The result of this mod-
ulation is that negative VTA TD values are moderated
when expected reward is high (i.e., when the network has
learned to have high confidence in a given stripe, other
stripes are blamed for errors).

The TD mechanism is designed to solve the tem-
poral credit assignment problem, and it is widely
thought to explain aspects of the firing properties
of the VTA DA neurons (e.g., Schultz et al., 1995;
Houk et al., 1995; Schultz et al., 1997; Suri et al.,
2001; Contreras-Vidal & Schultz, 1999; Joel et al.,
2002).

The basic TD mechanism is sufficient to drive
competent learning in the PBWM model, at least in
some cases (see results below). However, the basal
ganglia has considerable additional circuitry involv-
ing the striosome (patch) areas of the dorsal stria-
tum (Figure 6) that is anatomically capable of mod-
ulating the overall TD signal computed by the NAc
(e.g., Graybiel & Ragsdale, 1978). Computation-
ally, it would make sense if these areas were to pro-
vide a stripe-specific modulation of the global NAc
signal, to help solve the structural credit assign-
ment problem. After exploring a range of possible
such stripe-specific modulations, we found one (and
only one) that appears to provide reliable computa-
tional benefits. This stripe-specific signal is com-
puted from the expected reward value for a given
stripe only when that stripe has been actively main-
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Figure 6: Detailed basal ganglia/frontal cortex circuitry
represented in the model, with hypothesized computa-
tional quantities (defined in the text) associated with dif-
ferent projections. The dorsal striatum contains both
matrix and patch/striosome components, and the ma-
trix is further subdivided into GO and NO-GO units,
which project direct disinhibition or indirect inhibition
onto the thalamus, respectively. The STN (subthalamic
nucleus) provides an additional dynamic background of
inhibition (NO-GO) by exciting the GPi/SNr (globus pal-
lidus internal segment/substantia nigra pars reticulata).
The ventral striatum nucleus accumbens (NAc) drives
the VTA dopamine system and the SNc (substantia ni-
gra pars compacta); SNc is also modulated by the strio-
somes, producing a stripe-wise dopamine signal back to
the dorsal striatum. Raw expected reward values (V(t))
may be computed in the ABL (basolateral nucleus of the
amygdala), while the NAc integrates these expectations
with actual reward outcomes. The derivative of NAc
states can be computed by fast GABA-A mediated dis-
inhibition (via interneurons %) followed by slower direct
GABA-B mediated inhibition.

taining information in working memory. When a
negative global TD signal (i.e., an error) occurs,
a strong stripe-specific expected reward value pro-
tects a given stripe from this “blame” signal. In
effect, when an error occurs, the striosome/SNc
system says “blame the other stripes” because this
stripe has been very effective in producing correct
responses in the past.

This division of labor between the NAc and the
striosomes is distinct from existing TD models of
the basal ganglia, which have typically focused only
on the striosomes as the source of TD computations.
As emphasized by Joel et al. (2002), the neural con-
nections from the striosomes to the SNc¢ may not
support the temporal derivative computation neces-
sary for the TD algorithm. Our modulatory pro-
posal for the striosome/SNc system might provide
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a resolution to this problem. Further, we suggest
that the necessary temporal derivative computation
in the VTA and SNc can be performed via a com-
bination of direct inhibitory projections and indi-
rect inhibitory projections to inhibitory interneurons
within the VTA (Charara, Heilman, Levey, & Smith,
1999). Other mechanisms for this computation are
also possible, including projections via the ven-
tral pallidum (Pennartz, Groenewegen, & Lopes da
Silva, 1994). The NAc provides the primary source
of input to the VTA, and it has been strongly im-
plicated in stimulus-response motor learning of the
form supported by the TD algorithm (e.g., Her-
nandez, Sadeghian, & Kelley, 2002; Kelley, Smith-
Roe, & Holahan, 1997).

Learning Mechanism Details

The fundamental computation of the TD algo-
rithm is to predict subsequent rewards based on cur-
rent sensory inputs — it learns to find the earliest re-
liable predictors of subsequent reward. Specifically,
TD has the desired effect of moving the reward-
driven learning signal from the point where reward
is actually delivered to the earliest point where the
reward can be predicted. In the 1-2-AX task, for ex-
ample, it can learn to apply the subsequent success
associated with having encoded the 1 task demand
stimulus to the point in time when the 1 actually
appears, thereby reinforcing the firing of an appro-
priate GO unit in the matrix of the dorsal striatum
to ensure storage on later trials.

TD is defined in terms of a value function V()
that represents the sum of all future rewards r at a
given state indexed by a point in time ¢:

V= S 40 p(r) (1)
T=t+1

where 0 < v < 1 is a discounting factor that values
more distant future rewards less than more proximal
future rewards, and causes the sum to converge.

Of course, the organism never knows the V' (¢)
values directly, and instead must learn to estimate
them — this is what the TD algorithm does. It can
be derived by writing the value function sum recur-
sively:

Vit)y=rit+1)+yV(Et+1) )

R —
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and then using this recursive definition to update
estimates of the values associated with each state,
V(t). Specifically, TD trains these estimates by
making the two sides of equation 2 consistent,
which is to say, by minimizing their difference:

§(t) =[rt+ 1) +4V(E+1]-V(E) 3)

Computationally, we cannot know the future, so we
really run this computation at time ¢ with reference
to the previous point in time:

=1 =[rt) +VO -V(E-1) @&

The §(t — 1) value is the temporal differences (TD)
error between reward information at times ¢ and ¢ —
1, and minimizing this difference (by moving V(t -
1) in the direction of §(t — 1)) results in better value
function estimates V (¢).

The TD error is typically used in an actor-
critic framework (Sutton & Barto, 1998). The
critic in this framework is the aforementioned sys-
tem that computes the value function estimates and
their temporal derivatives, and corresponds to the
NACc/VTA system in the PBWM model. The §(¢—1)
value computed by the critic can also be used to
modulate the learning of actor units that produce
the actions that lead to rewards (i.e., the GO/NO-
GO units in the matrix of the dorsal striatum in our
case). A simple and widely used such learning rule
is:

Awg(t —1) = 6(t — Dy;(Ozit = 1) (5)

where z;(t — 1) is the activation of a sending unit
connected with weight w;; to receiving unit with
activation y;(t). Thus, if the TD error is positive
(i.e., more reward is expected/obtained now than
was previously expected), the weights from active
sending units are increased, and if less reward is ex-
pected/obtained now than was previously expected,
weights from active sending units are decreased.
This is the learning rule employed in the basal gan-
glia units of the PBWM model.

To summarize the global TD computation in the
model, the NAc activations reflect expectations of
future rewards and experiences of actual rewards,
while the VTA computes the temporal derivative of
the NAc states (6(¢ — 1), equation 4). The VTA

dopamine neurons then project back to the NAc to
train its reward estimates (and to the cortex). The
striosomes modulate the global TD signal in cor-
responding SNc neurons based on stripe-wise ex-
pected reward values, and the DA signals from the
SNc train the working memory update signals com-
puted by the matrisomes. This general arrangement
is in good agreement with the connectivity between
these brain areas (Figure 6).

Structural Credit Assignment via - the Strio-
some/SNc System

The global TD mechanism described above
computes a single scalar value, §(¢ — 1), that is then
applied uniformly to all of the actor units in the net-
work. However, not all actor units in the system
are equally culpable for errors that are made. This
is especially true when multiple actor systems are
working in parallel, as in the PBWM model where
each stripe can be maintaining different pieces of
information relevant to the overall task. For exam-
ple, one stripe might be correctly maintaining the 1
task demand information, while another stripe fails
to maintain the A stimulus and thus produces an er-
ror. In this case, it would make sense to punish the
A stripe and not the 1 stripe. This is exactly what
we propose the striosome/SNc system achieves'.

Specifically, we assume that there are distinct
sets of striosome (patch) and matrisome (matrix)
neurons in the dorsal striatum associated with each
separately updatable stripe. The striosome units
compute expected rewards just like the NAc units,
except that their activation is modulated by the ex-
tent to which the GO neurons in the correspond-
ing matrix region have recently fired. When a GO
signal is computed by the matrix, this puts neu-
rons in the corresponding striosome into an up-
state (e.g., Plenz & Kitai, 1998; Stern, Kincaid, &
Wilson, 1997; Cowan & Wilson, 1994), enabling
them to become active and to learn reward expecta-
tions. This up-state transition signal might be medi-
ated by dopamine inputs from the SNc (Surmeier &
Kitai, 1999), or the large cholinergic interneurons
within the dorsal striatum. The striosome neurons

'This general idea of protecting representations from error
was originally suggested to the author by Clay Holroyd, per-
sonal communication, 2001.




learn to produce good estimates of expected reward,
conditional on when their corresponding stripe is
participating in maintaining information (i.e., when
they are in the up-state). The striosome projec-
tions to the SNc directly convey these stripe-wise
expected reward values, V. (t — 1), which combine
with the global TD §(¢ — 1) value computed by the
NAc (which drives the SNc neurons directly via the

1994):

8t —1)

%=1 = { 56— (1 - [Ta(t = D)) o(t~1) <

©)
where [z]1 = zif z > 0 and 0 otherwise. In short, a
positive V(¢ — 1) value will diminish the magnitude
of a negative (¢ — 1) TD value. The d5(¢) value
is used to train both the striosomes and matrisomes
of the corresponding stripe, replacing (¢ — 1) in
equation 5.

Although this formulation of the role of the strio-
some/SNc system was generally inspired by the
anatomical connectivity of these areas, the details
of equation 6 represent a prediction going beyond
available data. As demonstrated later, this role for
the striosome/SNc system provides some computa-
tional benefits, whereas a number of other alterna-
tive ideas that were explored did not. Anatomically,
this mechanism predicts stripe-selective dopamine
projections from the SNc to the dorsal striatum.
Physiologically, it predicts differential firing pat-
terns from different SNc¢ neurons associated with
different stripes, but only for negative global TD
signals (i.e., corresponding to a decrease from base-
line of the tonically firing dopamine neurons). The
protective effect of striosomal projections into SNc
could be realized via a shunting effect on the SNc
dopamine neurons. For example, if striosomes pro-
vided strong inhibitory inputs to both the SNc DA
neurons and their inhibitory interneurons, these off-
setting currents would shunt or dilute any TD inputs
from the NAc, without producing a net excitatory or
inhibitory drive. Although clearly speculative at this
point, these biological properties stand as testable
predictions of the PBWM model.
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Figure 7: Implemented model as applied to the 1-2-AX
task. There are 4 stripes in this model as indicated by
the groups of units within the PFC, Patch, Matrix, and
SNc. The left-hand column of each matrix stripe rep-
resents GO units, while the right hand are the NO-GO
units. The ImRew, NAc, and Patch units represent scalar
reward prediction values using distributed coarse-coded
representations, while the dRew, and VTA compute the
temporal derivatives of the ImRew and NAc layers, re-
spectively.

Details of the PBWM Implementation

The model, shown in Figure 7, is implemented
using the Leabra framework, described in detail
in the Appendix (O’Reilly, 1998; O’Reilly & Mu-
nakata, 2000; O’Reilly, 2001). Leabra uses point
neurons with excitatory, inhibitory, and leak con-
ductances contributing to an integrated membrane
potential, which is then thresholded and trans-
formed via an z/(z + 1) sigmoidal function to pro-
duce a rate code output communicated to other units
(discrete spiking can also be used, but produces
noisier results). Each layer uses a k-winners-take-
all (kWTA) function that computes an inhibitory
conductance that keeps roughly the & most active
units above firing threshold and keeps the rest be-
low threshold. Units learn according to a combina-
tion of Hebbian and error-driven learning, with the
latter computed using the generalized recirculation

B
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algorithm (GeneRec; O’Reilly, 1996), which com-
putes backpropagation derivatives using two phases
of activation settling as in the deterministic Boltz-
mann machine and contrastive Hebbian learning al-
gorithms (Hinton, 1989; Movellan, 1990). The mi-
nus phase represents the network’s expectation or
response in the current situation, and the plus phase
represents a subsequent outcome or result. In the
1-2-AX task, the minus phase is just the network’s
output response (L or R) and the plus phase is the
correct response. The cortical layers in the model
use standard Leabra parameters and functionality,
while the basal ganglia systems require some addi-
tional mechanisms, detailed next.

The reward prediction layers (NAc and Patch)
use a distributed, coarse-coded representation of the
scalar values they encode (V or Vs). Thus, each unit
has a preferred value with a graded Gaussian tuning
curve around it (except the first unit, which reflects
the decoded scalar value for display purposes, but
does not otherwise participate in the network com-
putation). This way of representing scalar values,
instead of the typical use of a single unit with lin-
ear activations, allows much more complex map-
pings to be learned. For example, units represent-
ing high values can have completely different pat-
terns of weights than those encoding low values,
whereas a single unit is constrained by virtue of hav-
ing one set of weights to have a monotonic mapping
onto scalar values. Although this limitation could
be remedied by having a hidden layer prior to each
scalar value unit, the coarse-coded representations
simplify the network architecture and are biologi-
cally plausible in any case.

The computation of the TD algorithm takes
place over the sequence of minus and plus phases of
the GeneRec algorithm, as follows. The NAc units
are clamped in the minus phase to the prior time
step’s expected reward value (V (£ — 1)), but are free
to settle in the plus phase to compute the expected
reward value for this time step (V (£)). This value is
saved and is used for clamping the minus phase at
the next time step (i.e., it becomes V(¢ — 1) at time
t+1). Atthe end of the plus phase, the NAc value is
multiplied by the discounting factor -y and the actual
reward ‘value (r(t)) added. Thus, the plus-minus
phase difference in activations within the NAc is

the TD delta 6(¢ — 1) (equation 4), and this is what
drives learning of the NAc units (using sending acti-
vations from the prior time step, as dictated by equa-
tion 5). The VTA and SNc units directly take the
temporal minus-plus phase difference to compute
the §(t—1) value. The global VTA §(t—1) value can
be used to modulate cortical learning, as likely oc-
curs in the brain. Although this modulation was not
directly implemented for the simulations reported
here, it is likely that this VTA dopamine signal plays
an important role in the brain achieving something
like the basic GeneRec error-driven learning mech-
anisms used in the PBWM model (O’Reilly, 1996;
O’Reilly & Munakata, 2000).

The SNc §(t — 1), values (equation 6) are mod-
ulated by inputs from the patch units, which are
trained to encode V;(t) values through an interac-
tion between matrix GO-unit firing and §(¢t—1); val-
ues from the SNc (thus, the patch is self-regulating).
Specifically, when a GO unit fires (toggling PFC
maintenance on), it puts the striosomes into an up-
state whereby they can compute expected rewards
much like the NAc units (the minus phase value is
v, (t—1), and the plus phase is the settled value plus
§(t — 1)s. The up-state lasts until another GO unit
fires (toggling PFC maintenance off). The protected
TD error values §5(t—1) computed by the SNc units
are sent to the matrix (and patch) units in the corre-
sponding stripe. The matrix units use this §,(¢ — 1)
value to drive learning on their incoming connec-
tions (again using equation 5) — this is the ultimate
role of the entire set of critic units described to this
point.

The direct and indirect pathways that medi-
ate the GO/NO-GO gating effects of the matrix
units are abstracted via a function that directly tog-
gles PFC intracellular maintenance currents (i.e.,
up/down states) in response to GO-unit firing. The
GO and NO-GO units compete in the matrix via a
strong kWTA competition within each stripe, such
that generally only one GO or NO-GO unit can be
active. Thus if any GO unit within a stripe fires,
it directly toggles an intracellular excitatory ionic
conductance on or off within each of the currently
active PFC units. This excitatory ionic conduc-
tance persists until the next GO firing, and pro-
vides a bias (along with the recurrent excitatory




self-connections among PFC units) for those units
to remain active (see Frank et al., 2001 for further
discussion of this kind of maintenance mechanism,
which has been proposed by several researchers
e.g., Lewis & O’Donnell, 2000; Fellous et al., 1998;
Wang, 1999; Dilmore, Gutkin, & Ermentrout, 1999;
Gorelova & Yang, 2000; Durstewitz, Seamans, &
Sejnowski, 2000b). The only effect of NO-GO fir-
ing is to prevent GO unit firing.

To achieve a complete update of the PFC units
in one event (stimulus) presentation, a third phase
that consists of updating PFC representations must
occur after the standard minus-plus sequence. All
other units in the network remain unchanged during
this phase. This phase-wise structuring represents
a discretization of a more continuous process in the
brain, where PFC representation updates lag those
of posterior cortex. Specifically, during the minus
and plus phase, the PFC units settle like any other
units in the cortical system, and any maintenance
currents remain as they were. The PFC thus pro-
vides a stable context memory of prior information
during the processing of the current event. After
the plus phase, if a matrix GO unit has fired, then
this toggles maintenance in the PFC to the oppo-
site state. The additional phase of settling allows
PFC units that were toggled off to settle into a new
activation state that reflects the current input. If at
the end of this phase a matrix GO unit again fires,
then this new activation pattern will be maintained
through maintenance currents in the activated units.
However, if a NO-GO unit fires, the PFC representa-
tions will not be maintained, and will simply reflect
incoming sensory inputs until maintenance is again
activated on a later trial.

Application: The 1-2-AX Task

The PBWM model (Figure 7) and several com-
parison networks (various flavors of recurrent back-
propagation) were trained on the 1-2-AX task, to
evaluate how well this biologically-based mecha-
nism performs relative to simpler but biologically
implausible learning mechanisms. In addition, vari-
ants of the PBWM network were run to explore the
role of the different features of the network.

The task was trained as in Figure 1, with the
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length of the inner loop sequences randomly varied
from one to four (i.e., one to four pairs of A-X, B-
Y, etc stimuli). Specifically, each sequence of stim-
uli was generated by first randomly picking a 1 or
2, and then looping for one to four times over the
following inner-loop generation routine. Half of the
time (randomly selected), a possible target sequence
(either A-X or B-Y) was generated. The other half
of the time, a random sequence composed of an A,
B, or C followed by an X, Y, or Z was randomly gen-
erated. Thus, possible targets (A-X, B-Y) represent
at least 50% of trials, but actual targets (A-X in the 1
task, B-Y in the 2 task) appear only 25% of time on
average. The correct output was the L unit except
on the target sequences (1-A-X or 2-B-Y), where it
was an R. The PBWM network received a reward
if it produced the correct output (and received the
correct output on the output layer in the plus phase
of each trial), while the backpropagation networks
learned from the error signal computed relative to
this correct output. One epoch of training consisted
of 25 outer-loop sequences, and the training crite-
rion was O errors across one epoch. Training was
stopped after 1,000 epochs for the PBWM models
and 10,000 epochs for the backpropagation models
if the network had failed to learn by this point, and
was scored as a failure to learn (PBWM takes more
computer time per epoch of training, and typically
learns within 1,000 epochs or not at all).

Comparison with Backpropagation-Based Net-
works

The networks compared were:

e The full PBWM model with 8 stripes (30 PFC
units and 10 matrix units per stripe) and 49
hidden units.

e A simple recurrent network (SRN, Elman,
1990; Jordan, 1986) with 100 hidden units
and 100 context units, cross-entropy output
error, learning rate of .1 (no momentum), an
error tolerance of .1 (output err < .1 counts
as 0), and a hysteresis term in updating the
context layers of .5 (c;(t) = .5h;(t — 1) +
.5¢j(t — 1), where c; is the context unit for
hidden unit activation h;). Learning rate, hys-
teresis, and hidden unit size were searched for
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optimal values across this and the RBP net-
works (within plausible ranges, using round
numbers, e.g., lrates of .05, .1, .2, and .5; hys-
teresis of 0, .1, .2, .3, .5, and .7, hidden units
of 25, 36, 49, and 100). Optimal performance
was with 100 hidden units, hysteresis of .5,
and Irate of .1.

e A real-time recurrent backpropagation
learning network (RBP, Robinson & Fall-
side, 1987; Schmidhuber, 1992; Williams &
Zipser, 1992), with the same basic parameters
as the SRN, and a time constant for integrat-
ing activations and backpropagated errors
of 1, and the gap between backpropagations
and the backprop time window searched in
the set of 6, 8, 10, and 16 time steps. Two
time steps were required for activation to
propagate from the input to the output, so
the effective backpropagation time window
across discrete input events in the sequence
is half of the actual time window (e.g., 16 =8
events, which represents 2 or more outer-loop
sequences). Best performance was achieved
with the longest time window (16).

e A long short term memory (LSTM) model
(Hochreiter & Schmidhuber, 1997) with for-
get gates as specified in Gers et al. (2000),
with the same basic backpropagation param-
eters as the other networks, and 4 memory
cells.

The basic results for number of epochs required
to reach a criterion training level of O errors across
one epoch of 25 outer-loop sequences are shown in
Figure 8. These results show that the PBWM model
learns the task somewhat faster than the compari-
son backpropagation networks. However, the main
point is not in comparing the quantitative rates of
learning (it is possible that other parameters could
be found to make the comparison networks per-
form better). Rather, these results simply demon-
strate that the biologically-based PBWM model is
in the same league as existing powerful computa-
tional learning mechanisms.

Furthermore, the exploration of parameters for
the backpropagation networks demonstrate that

1-2-AX Task Training Time
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Figure 8: Training time to reach criterion (0 er-
rors in one epoch of 25 outer-loop sequences)
on the 1-2-AX task for the PBWM model
and three backpropagation-based comparison algo-
rithms. LSTM = long short-term memory model,
RBP = recurrent backpropagation (real time recur-
rent learning), SRN = simple recurrent network.

a) Hidden layer sizes for SRN (Irate = .1, hyst = .5):

hiddens: 25 36 49 100
Failures 60% 4% 0% 0%
Avg Epochs | 4,228 2,849 1,926 1,104

b) Hysteresis for SRN (100 hiddens, Irate = .1):

hyst: 1 2 3 S 7
Failures 100%  66% 0% 0% 0%
Avg Epochs n/a 5,135 2,207 1,104 1,187

¢) Learning rates for SRN (100 hiddens, hyst = .5):

Irate: .05 1 2
Failures 0% 0% 0%
Avg Epochs | 1,380 1,104 1,231

Table 1: Effects of various parameters on learning per-
formance in the SRN. Failures is number of networks
(out of 50) that failed to learn to criterion (O errors for
an epoch) within 10,000 epochs, and Avg Epochs is av-
erage number of epochs to reach criterion for success-
ful networks. The optimal performance is with 100 hid-
den units, learning rate .1, and hysteresis .5. Sufficiently
large values for the hidden units and hysteresis param-
eters are critical for successful learning, indicating the
strong working memory demands of this task.



a) Time window for RBP (Irate = .1, 100 hiddens):
window: 6 8 10 16

Failures 68% 2% 0% 0%
Avg Epochs | 1,311 503 384 322

b) Hidden layer size for RBP (Irate = .1, window =

16):
hiddens: 25 36 49 100
Failures 0% 0% 0% 0%

Avg Epochs | 720 592 428 322

Table 2: Effects of various parameters on learning per-
formance in the RBP network. The optimal performance
is with 100 hidden units, time window = 16. As with the
SRN, the relatively large size of the network and long
time windows required indicate the strong working mem-
ory demands of the task.

the 1-2-AX task represents a challenging working
memory task, requiring large numbers of hidden
units and long temporal-integration parameters for
successful learning. For example, the SRN network
started to show learning failures (within 10,000
epochs) with 36 hidden units or less, and with hys-
teresis parameters (which determines the window
of temporal integration of the context units) below
.3 (Table 1). Optimal parameters for the SRN ap-
peared to be 100 hidden units, hysteresis of .5, and
a learning rate of .1. For the RBP network, the
number of hidden units and the time window for
backpropagation exhibited similar results (Table 2).
Specifically, time windows of eight or fewer time
steps resulted in failures to learn, and best results
were achieved with the most hidden units and the
longest backpropagation time window.

Testing the Patch/SNc System in the PBWM
Model

The contribution of the striosome (patch)/SNc
error-protection mechanism in the PBWM model
was tested by comparing models lacking this feature
to the full model. The results (Figure 9, Interleaved
Training) suggest that this mechanism plays some
role, but it was not particularly dramatic, amounting
to a single failed network out of 50 (2%). Overall
differences in number of epochs to criterion, even
when including the 1,000 epoch score for the failed
network, were not statistically significant, although
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Figure 9: Proportion of networks failing to learn to 0 er-
ror criterion (out of 50 runs), for the full PBWM network
as compared to a version without the Patch/SNc system.
The Interleaved Training results are for the 1-2-AX task
as normally trained, while the Shaped Training results
are the “shaped” version of the 1-2-AX task where the
network is initially trained to respond to the X, then A
followed by X, then only A-X when preceded by a 1,
etc.

the patch/SNc model did have a lower overall mean
training time (138.4 vs. 157.98).

To provide a stronger test of the value of the
error-protection mechanism, networks were trained
using a “shaping” schedule of piece-wise introduc-
tion of task elements, instead of presenting the full
task at the beginning. The error-protection mecha-
nism was predicted to be especially important with
this schedule, for preserving the already-learned as-
pects of the task as new task elements are intro-
duced. This proved to be the case.

Specifically, we trained the networks in five
stages, designed so that stimuli that would later be-
come task-relevant were not first introduced in a
task-irrelevant fashion. First, networks were trained
to respond R for X and L for non-X (only X and
Z were presented). Then, the R target was only X
when preceded by an A (only A-X, A-Z, C-X, C-Z
sequences were presented). Then R responses were
expanded to also include Y targets. Next, R was
either an A-X or B-Y sequence. Finally, the full 1-
2-AX task was trained. Importantly, as each new
element of the task is introduced, the network needs
to retain the successful actions from prior learning,
and apply the error and reward feedback to shaping
new actions. This is exactly what the striosome/SNc
mechanism is designed to do, and the results (Fig-
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ure 9, Shaped Training) show that indeed this in-
creased the failure rate of the model lacking the
striosome/SNc¢ mechanism by more than a factor of
two.

It may appear ironic that using the shaping actu-
ally impairs performance, but this is consistent with
a wide range of computational modeling results sug-
gesting that learning of tasks is better when all ele-
ments are interleaved from the beginning (e.g., Mc-
Clelland, McNaughton, & O’Reilly, 1995). In the
real animal, shaping is critical for motivational pur-
poses, and such motivational factors have yet to be
included in the present model. Therefore, the ex-
tra benefits of the striosome/SNc mechanism in the
shaping context may be particularly important as
such elements are also introduced into the model,
and training is performed in a highly incremental,
temporally extended manner (as in human develop-
ment).

Application: The SIR Task

The PBWM and comparison backpropagation
algorithms were also tested on a more commonly-
used type of task for testing the ability of a dynamic
gating function to maintain information over long
time delays. In this task, called the store ignore re-
call (SIR) task, the network must store an arbitrary
input pattern for a recall test that occurs after a vari-
able number of intervening ignore trials. Stimuli are
presented during the ignore trials, and must be iden-
tified (output) by the network, but do not need to
be maintained. Tasks with this same basic struc-
ture were the focus of the original Hochreiter and
Schmidhuber (1997) work on the LSTM algorithm,
where they demonstrated that the dynamic gating
mechanism was able to gate in the to-be-stored stim-
ulus, maintain it in the face of an essentially ar-
bitrary number of intervening trials by having the
gate turned off, and then recall the maintained stim-
ulus. The SIR version of this task can be considered
a paradigmatic example of a working memory task
(O’Reilly & Munakata, 2000).

The Hochreiter and Schmidhuber (1997) version
of this basic task may have provided a bit of a crutch
for the gating network, in that the critical item to be
stored was always the first in a sequence, and the
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Figure 10: An example sequence of trials in the SIR
task, showing what is input, what should be maintained,
and the target output. I = Ignore unit active, S = Store unit
active, R = Recall unit active. The functional meaning
of these “task control” inputs must be discovered by the
network, and differentiated from the otherwise identical
A-D stimulus inputs, through learning.

network activations were initialized after each se-
quence. Thus, the network only needed to learn to
open the gate for the first item in the sequence, and
to keep the gate off at all other times. Given the
highly distinctive differences in activation patterns
present at the start of the sequence (i.e., everything
off) compared to subsequent trials, this may have
been relatively easy to learn. In the present ver-
sion of this task, by contrast, stimuli are presented
in a continuous stream with no activation initializa-
tion, and input units are activated to indicate when
to store, ignore, and recall. Thus, the network has
to learn the significance of these inputs (which are
otherwise identical to the other stimulus inputs) in
order to solve the task. In summary, the networks
had 7 input units, 3 of which were the control inputs
(S,LR) and the remaining 4 were stimulus items (A-
D). The durations between store and recall trials
(i.e., maintenance durations) were randomly sam-
pled from a uniform distribution between ! and a
maximum value of 4, 8, or 16. The number of ig-
nore trials between recall and store trials was ran-
domly chosen between 0 and 2. A typical sequence
of inputs and target outputs is shown in Figure 10.
As Figure 11 indicates, the two algorithms
with dynamic gating mechanisms (the PBWM and
LSTM models) are only slightly affected by in-
creases in the maximum maintenance duration be-
tween store and recall trials, while the other net-
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Figure 11: Resuits (epochs to criterion and, in parenthe-
ses above each data point, percent failures to learn within
20,000 epochs) for all algorithms on the SIR (store ig-
nore recall) task, as a function of maximum maintenance
duration between storage and recall. Note the logarith-
mic plot of the Y axis. The algorithms with dynamic gat-
ing (PBWM, LSTM) are only slightly affected by main-
tenance duration, while the other networks suffer dramat-
ically.

works lacking this mechanism start to fail as the
maintenance duration increases. This replicates
the basic findings of Hochreiter and Schmidhu-
ber (1997), and reinforces the importance of dy-
namic gating mechanisms for robust working mem-
ory maintenance. Furthermore, it generalizes the
results from the 1-2-AX task on a more standard
benchmark task, again showing that the PBWM
algorithm is capable of rapid learning of work-
ing memory maintenance strategies. This task also
showed some very modest benefits for the strio-
some/SNc system in the PBWM model, with the
model lacking this mechanism exhibiting a 2% fail-
ure rate on the 8 max maintenance duration prob-
lem.

Discussion

The PBWM model presented here demonstrates
powerful learning abilities on demonstrably com-
plex and difficult working memory tasks. We
have also tested it informally on a wider range of
tasks with similarly good results. This may be
the first time that a biologically-based mechanism
for controlling working memory has been demon-
strated to compare favorably with the learning abil-
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Figure 12: The simple recurrent network (SRN) as a
gating network. When processing of each input event re-
quires multiple cycles of settling, the context layer must
be held constant over these cycles (i.e., its gate is closed,
panel a). After processing an event, the gate is opened
to allow updating of the context (copying of hidden ac-
tivities to the context, panel b). This new context is then
protected from updating during the processing of the next
event, etc (panel ¢). In comparison, the PBWM model al-
lows more flexible, dynamic control of the gating signal
(instead of automatic gating each time step), with multi-
ple context layers (stripes) that can each learn their own
representations (instead of being a simple copy).

ities of more abstract and biologically-implausible
backpropagation-based temporal learning mecha-
nisms. Other existing simulations of learning in the
basal ganglia tend to focus on relatively simple se-
quencing tasks that do not require complex work-
ing memory maintenance and updating. Neverthe-
less, the central ideas behind the PBWM model are
consistent with a number of these existing models
(e.g., Schultz et al., 1995; Houk et al., 1995; Schultz
et al., 1997; Suri et al., 2001; Contreras-Vidal &
Schultz, 1999; Joel et al., 2002), thereby demon-
strating that an emerging “consensus” view of basal
ganglia learning mechanisms can be applied to more
complex cognitive functions. '

The central functional properties of the PBWM
model can be summarized by comparison with the
widely-used SRN backpropagation network, which
is arguably the simplest form of a gated working
memory model. The gating aspect of the SRN be-
comes more obvious when the network is updated
iteratively for each input event (i.e., multiple cy-
cles of updating are used per event, as in an inter-
active network, or to achieve reaction times from
a feed forward network). In this case, it is clear
that the context layer must be held constant and pro-
tected from updating during these cycles of updat-
ing (settling), and then it must be rapidly updated
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at the end of settling (Figure 12). Although the
SRN achieves this alternating maintenance and up-
dating by fiat, in a biological network it would al-
most certainly require some kind of gating mecha-
nism. Once one recognizes the gating mechanism
hidden in the SRN, it is natural to consider gener-
alizing such a mechanism to achieve a more pow-
erful, flexible type of gating. This is exactly what
the PBWM model provides, by adding the following
degrees of freedom to the gating signal: a) gating is
dynamic, such that information can be maintained
over a variable number of trials instead of automat-
ically gating every trial; b) the context representa-
tions are learned, instead of simply being copies of
the hidden layer, allowing them to develop in ways
that reflect the unique demands of working memory
representations (e.g., Rougier & O‘Reilly, 2002); c)
there can be multiple context layers (i.e., stripes),
each with its own set of representations and gat-
ing signals. Although some researchers have used a
spectrum of hysteresis variables to achieve some of
this additional flexibility within the SRN, it should
be clear that the PBWM model affords considerably
more flexibility in the maintenance and updating of
working memory information.

Although the PBWM model was designed to in-
clude many central aspects of the biology of the
PFC/BG system, it also goes beyond what is cur-
rently known. For example, the specific role as-
cribed to the patch/striosome and SNc circuits pro-
vides testable hypotheses about the biology and
function of these systems in the brain. We tested
a large number of potential ideas about the function
of this system in the context of an overall TD com-
putation from the VTA system, and this was the only
such idea that yielded computational improvements
in performance. Therefore, it will be interesting to
see if this idea stands up to further biological inves-
tigations.

Because the PBWM model represents a level of
modeling intermediate between detailed biological
models and powerful, abstract cognitive and com-
putational models, it has the potential to build im-
portant bridges between these disparate levels of
analysis. For example, the abstract ACT-R cogni-
tive architecture has recently been mapped onto bi-
ological substrates including the BG and PFC (An-

derson, Bothell, D., & Lebiere, submitted; Ander-
son & Lebiere, 1998), with the specific role as-
cribed to the BG sharing some central aspects of its
role in the PBWM model. On the other end of the
spectrum, biologically-based models have tradition-
ally been incapable of simulating complex cogni-
tive functions such as problem solving and abstract
reasoning, which make extensive use of dynamic
working memory updating and maintenance mech-
anisms to exhibit controlled processing over a time
scale from seconds to minutes. The PBWM model
should in principle allow models of these phenom-
ena to be developed, and their behavior compared
with more abstract models such as those developed
in ACT-R. To meet this promise, more varied and
rigorous tests of PBWM, combined with integration
of relevant new biological data, will need to be un-
dertaken.

Appendix: Implementational Details

The model was implemented using the Leabra
framework, which is described in detail in O’Reilly
and Munakata (2000) and O’Reilly (2001), and
summarized here. See Table 3 for a listing of pa-
rameter values, nearly all of which are at their de-
fault settings. These same parameters and equations
have been used to simulate over 40 different mod-
els in O’Reilly and Munakata (2000), and a number
of other research models. Thus, the model can be
viewed as an instantiation of a systematic modeling
framework using standardized mechanisms, instead
of constructing new mechanisms for each model.
The model can be obtained by emailing the author
atoreilly@psych.colorado.edu.

Pseudocode

The pseudocode for Leabra is given here, show-
ing exactly how the pieces of the algorithm de-
scribed in more detail in the subsequent sections fit
together.

Outer loop: Iterate over events (trials) within an
epoch. For each event:

1. Iterate over minus and plus phases of settling
for each event.
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(@) At start of settling, for all units: Parameter Value | Parameter Value
i. Initialize all state variables (activa- ? 0.15 9 0.10
tion, v_m, etc). i 0.15 17 L0
. . E, 1.00 | 7. 1.0
ii. Apply external patterns (clamp in- v 0.15 o 025
t in minus, input & output in rest . )
p{‘ ’ T 02 |4 600
plus). k In/Out 1 k Hidden
(b) During each cycle of settling, for all k PFC 4 k Matrix 1
non-clamped units: k ImRew, NAc, Patch 3
: : : k .01 € 01
1. Compute excitatory netinput (g, (t) hebb :
orny, eq 9). t0 PFC kpep 001* | toPFCe  .001%

ii. Compute kWTA inhibition for each Table 3: Parameters for the simulation (see equations
layer, based on gz-@ (eq 13): in text for explanations of parameters). All are standard
A. Sort units into two groups  default parameter values except for those with an *. The
based on ng: top k and remain- slower learn'ing ratf: of PFC. conne(?tions produceq better
ing k + 1 to . ?esults, and is c.on51stent with a variety of converging ev-
idence suggesting that the PFC learns more slowly than
B. If basic, find & and k + 1th  he rest of cortex (Morton & Munakata, 2002).

highest; if avg-based, compute

avgofl 2 k& k+1—n.
C. Set inhibitory conductance g;
from g9 and 99,1 (eq 12). Leabra uses a point neuron activation function
iii. Compute point-neuron activation that models the Qect@physiglogica? properties of
combining excitatory input and in- rea% neuron§, whlle' mmphfymg' their geomeFry to
hibition (eq 7). a single point. This function is nearly as simple
computationally as the standard sigmoidal activa-
tion function, but the more biologically-based im-
i. Record final settling activations as  plementation makes it considerably easier to model
either minus or plus phase (y; or  inhibitory competition, as described below. Further,
y]'f). using this function enables cognitive models to be
more easily related to more physiologically detailed
2. After both phases update the weights (based  simulations, thereby facilitating bridge-building be-

on linear current weight values), for all con-  tween biology and cognition.

Point Neuron Activation Function

(c) After settling, for all units:

nections: The membrane potential V;, is updated as a

' ‘ function of ionic conductances g with reversal (driv-
(@) Compute error-driven weight changes ing) potentials E as follows:
(eq 15) with soft weight bounding

(eq 16). AVin(t) = 73 9e()Fe(Be = V(1) (D)
(b) Compute Hebbian weight changes from ¢
plus-phase activations (eq 14). with 3 channels () corresponding to: e excitatory

(¢) Compute net weight change as weighted input; ! leak current; and % inhibitory input. Fol-
sum of error-driven and Hebbian lOWing electrophysiological convention, the over-
(eq 17). ) all conductance is decomposed into a time-varying

component g(t) computed as a function of the dy-

namic state of the network, and a constant Ge that
controls the relative influence of the different con-
ductances. The equilibrium potential can be written
in a simplified form by setting the excitatory driv-

(d) Increment the weights according to net
weight change.
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ing potential (E,) to 1 and the leak and inhibitory
driving potentials (£; and E;) of O:

Vip = Sl ®)
9eGe + G191 + 9iGi

which shows that the neuron is computing a balance
between excitation and the opposing forces of leak
and inhibition. This equilibrium form of the equa-
tion can be understood in terms of a Bayesian de-
cision making framework (O’Reilly & Munakata,
2000).

The excitatory net input/conductance g.(t) or n;
is computed as the proportion of open excitatory
channels as a function of sending activations times
the weight values:

Z TiWij 9

The inhibitory conductance is computed via the
kWTA function described in the next section, and
leak is a constant.

N = Ge (t) = xzwz]

Activation communicated to other cells (y;) is
a thresholded (©) sigmoidal function of the mem-
brane potential with gain parameter +y:

1
(1 + svri=ers )

where [z]4 is a threshold function that returns 0 if
z < 0and z if X > 0. Note that if it returns 0, we
assume y/; () = 0, to avoid dividing by 0. As it is,
this function has a very sharp threshold, which in-
terferes with graded learning learning mechanisms
(e.g., gradient descent). To produce a less discontin-
uous deterministic function with a softer threshold,
the function is convolved with a Gaussian noise ker-
nel (u = 0, o = .005), which reflects the intrinsic
processing noise of biological neurons:

where « represents the [V;,(t) — O]y value, and
y;(z) is the noise-convolved activation for that
value. In the simulation, this function is imple-
mented using a numerical lookup table.

(10)

y;(t) =

L2 2
27rc7 #/(20 )yj(z —z)dz (11)

k-Winners-Take-All Inhibition

Leabra uses a kWTA (k-Winners-Take-All)
function to achieve inhibitory competition among
units within a layer (area). The kWTA function
computes a uniform level of inhibitory current for
all units in the layer, such that the & + 1th most
excited unit within a layer is generally below its
firing threshold, while the kth is typically above
threshold. Activation dynamics similar to those pro-
duced by the kWTA function have been shown to
result from simulated inhibitory interneurons that
project both feedforward and feedback inhibition
(O’Reilly & Munakata, 2000). Thus, although the
kWTA function is somewhat biologically implau-
sible in its implementation (e.g., requiring global
information about activation states and using sort-
ing mechanisms), it provides a computationally ef-
fective approximation to biologically plausible in-
hibitory dynamics.

kWTA is computed via a uniform level of in-
hibitory current for all units in the layer as follows:

~ gir1) (12)

where 0 < ¢ < 1 (.25 default used here) is a pa-
rameter for setting the inhibition between the upper
bound of g and the lower bound of 9241 These
boundary inhibition values are computed as a func-
tion of the level of inhibition necessary to keep a
unit right at threshold:

gQ — 9oGe(Ee — ©) + g1g1(E; — 0)
¢ ® - E;

where g} is the excitatory net input without the bias
weight contribution — this allows the bias weights
to override the kWTA constraint.

In the basic version of the kWTA function,
which is relatively rigid about the kWTA constraint
and is therefore used for output layers, g,? and 91?+1
are set to the threshold inhibition value for the kth
and k + 1th most excited units, respectively. Thus,
the inhibition is placed exactly to allow & units to be
above threshold, and the remainder below threshold.
For this version, the g parameter is almost always
.25, allowing the kth unit to be sufficiently above
the inhibitory threshold.

In the average-based kWTA version, g,(? is the
average gf) value for the top & most excited units,

9i = gir1 +algf

13)




and g, , is the average of g for the remaining n —
k units, This version allows for more flexibility in
the actual number of units active depending on the
nature of the activation distribution in the layer and
the value of the ¢ parameter (which is typically .6),
and is therefore used for hidden layers.

Hebbian and Error-Driven Learning

For learning, Leabra uses a combination of
error-driven and Hebbian learning. The error-driven
component is the symmetric midpoint version of the
GeneRec algorithm (O’Reilly, 1996), which is func-
tionally equivalent to the deterministic Boltzmann
machine and contrastive Hebbian learning (CHL).
The network settles in two phases, an expectation
(minus) phase where the network’s actual output is
produced, and an outcome (plus) phase where the
target output is experienced, and then computes a
simple difference of a pre and postsynaptic activa-
tion product across these two phases. For Hebbian
learning, Leabra uses essentially the same learn-
ing rule used in competitive learning or mixtures-
of-Gaussians which can be seen as a variant of the
Oja normalization (Oja, 1982). The error-driven and
Hebbian learning components are combined addi-
tively at each connection to produce a net weight
change.

The equation for the Hebbian weight change is:

Anenpwis = & yf =y wij =y (¢ —wiy) (14)

and for error-driven learning using CHL:
Aerrwij = (xj_yj) - (’Tz_yj_) (15)

which is subject to a soft-weight bounding to keep
within the 0 — 1 range:

Asberrwij = [Aerr]+(1 - 'wij) + [Aerr]—wij (16)

The two terms are then combined additively with a
normalized mixing constant kpepp:

Awij = €[kness(Dneww) + (1 — Knetw) (Asperr)]
a7
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