
Cornerstone: Propbank Frameset Editor Guideline
(Version 1.3)

Jinho D. Choi
choijd@colorado.edu

Claire Bonial
bonial@colorado.edu

Martha Palmer
mpalmer@colorado.edu

Center for Computational Language and EducAtion Research
Institute of Cognitive Science

University of Colorado at Boulder

Institute of Cognitive Science
Technical Report 01-09

September 28, 2009

Abstract

This report gives a guideline of how to use a Propbank frameset editor, Cornerstone. Propbank is a
corpus where the arguments of each verb predicate are annotated with their semantic roles in relation to
the predicate. Propbank annotation also requires the choice of a sense id (also known as a frameset or
roleset id) for each predicate. Therefore, for each predicate in the Propbank, there exists a correspond-
ing frameset file that shows the predicate argument structure of all senses related to the predicate. Since
most Propbank annotations are based on the predicate argument structure defined in the frameset files,
it is important to keep the files consistent, simple to read as well as easy to update. Up to this point,
all frameset files are written in xml format, which provides a well-organized hierarchical structure, but
is difficult to edit without making mistakes. Therefore, it is necessary to develop a user-friendly editor
such as Cornerstone, that is specifically customized to view, create and edit frameset files. Cornerstone
runs platform independently, is light enough to run as an X11 application and supports multiple lan-
guages such as Arabic, Chinese, English, Hindi and Korean.

Contents

1 Introduction 3

2 Getting started 4
2.1 Install JDK . 4
2.2 Download and install Cornerstone . 4
2.3 Launch Cornerstone . 4

3 Cornerstone in multi-lemma mode 5
3.1 Overview of multi-lemma frameset . 5
3.2 Create a new frameset file . 7
3.3 Edit examples . 10
3.4 Save a frameset file . 11

4 Cornerstone in uni-lemma mode 12
4.1 Overview of uni-lemma frameset . 12
4.2 Create a new frameset file . 13
4.3 Edit examples . 15
4.4 Save a frameset file . 15

5 Summary 16

2

1 Introduction

Cornerstone is a Propbank frameset editor developed at the University of Colorado at Boulder. Propbank
is a corpus where the arguments of each verb predicate are annotated with their semantic roles in relation
to the predicate (Palmer et al., 2005). For each predicate appearing in the Propbank, there exists a
corresponding frameset file encompassing one or more senses of the predicate. For example, for a verb
predicate ‘run’, there exists a frameset file run.xml that describes each of the established senses of the
predicate (e.g., run.01, run.02). Additional senses can be added to the frameset file as they arise in the
Propbank. Note that these senses are not as fine-grained as the ones in WordNet (Fellbaum, 1998). Only
if the usage of a predicate is both semantically and syntactically unique will it constitute a new sense.
For English, in addition to senses corresponding to the main predicate lemma (e.g., ‘run’), a frameset file
may also include senses corresponding to any verb particle constructions associated with the predicate
(e.g., ‘run out’, ‘run up’).

Each sense in the frameset file, also known as roleset or frameset depending on the languages, includes a
generalized predicate argument structure of the sense as well as its annotated examples from the corpus.1
For example, a sense run.02 (‘walk quickly, a course or contest’) comes with three roles listed as numbered
arguments: ARG0 as a ‘runner’, ARG1 as a ‘course, race or distance’, and ARG2 as an ‘opponent’. Thus,
the frameset file is essential for Propbank annotation because it not only supplies semantic information
about each sense, but also defines the predicate argument structure of the sense, which gives a guideline
as to how that particular sense should be annotated. Since most Propbank annotations are based on
the frameset files, it is important to keep the files consistent, simple to read as well as easy to update.
Note that for English, the predicate argument structure illustrated in the frameset file is intended to be
compatible with the thematic roles outlined by VerbNet (Kipper et al., 2006). There are cases, however,
in which a VerbNet entry does not exist for the Propbank predicate, or the thematic roles associated
with the predicate’s VerbNet class simply do not fit with the usage found in the Propbank corpus.
Nonetheless, the sense should ideally provide information about which VerbNet class the predicate falls
into, and include mappings between each role and the corresponding VerbNet thematic role.

All frameset files are written in Extensible Markup Language (xml) format. Xml provides a useful,
hierarchical format that is suited to the project. However, the format is somewhat complicated to read,
especially for annotators and adjudicators who are not familiar with the language. Most importantly,
it is difficult to edit xml files using some kind of text editor without making mistakes, which can cause
further ramifications on the operation of the project. Therefore, it is necessary to have a user-friendly
editor to view, create and edit frameset files without knowing much about xml. Although many xml
editors already exist, most of them require some knowledge of xml and none of them are specifically
customized for frameset files. This motivated the development of our own frameset editor, Cornerstone.

Cornerstone is developed in Java, J2SE Development Kit (Jdk) 6.0, so it runs on all kinds of platforms
(Microsoft Windows, Mac OS and Linux) as long as the right version of jdk is installed.2 It is light
enough to run as an X11 application. This aspect is important because frameset files are usually stored
in a server, and annotators are to update the files remotely (via ssh) by using their local machines. One
of the biggest advantages of using Cornerstone is that it runs on many different languages; in fact, the
tool has been used for Propbank projects in Arabic (Diab et al., 2008), Chinese (Xue and Palmer, 2009),
English (Palmer et al., 2005) and Hindi, and also has been tested in Korean (Han et al., 2002).

This report details how to setup and run Cornerstone in multi-lemma and uni-lemma modes. In multi-
lemma mode, a predicate can have multiple predicate lemmas (e.g., ‘run’ example in the first paragraph),
whereas a predicate can have only one predicate lemma in uni-lemma mode. Languages such as English
and Hindi are expected to run in multi-lemma mode using a Document Type Definition (dtd) file,
frameset.dtd, and other languages such as Arabic and Chinese are expected to run in uni-lemma mode
using verb.dtd. Although there are two different modes, the interfaces are very similar, so learning one
mode effectively teaches the other.

1The language-dependent distinction between roleset and frameset is elaborated in Section 4.1
2The current version of Cornerstone also runs on jdk 5.0 but running on jdk 6.0 is preferable for the future

updates.

3

2 Getting started

2.1 Install JDK
You first need to install jdk 6.0 or higher on your machine. To install jdk, you need to download the
installation file from http://java.sun.com/javase/downloads/, and follow the guideline provided by
the webpage.

2.2 Download and install Cornerstone
You can download Cornerstone from http://code.google.com/p/Propbank/downloads/. From the
list, download both system.tar.gz and cornerstone-version.jar in the same directory. Move to the
directory and unarchive system.tar.gz by typing the following command on the terminal.

tar -zxvf system.tar.gz

This command will create two folders: sys and config. sys contains system files required to run
Cornerstone. The followings show common systems files used across languages.

LANG : ar (Arabic) | ch (Chinese) | en (English) | hi (Hindi)
LANG.xml : XML template for LANG
LANG.n : main tags for arguments in LANG (e.g., [0..5], m)
LANG.f : function tags for modifiers in LANG (e.g., loc, tmp)

There are some other system files (e.g., en.tense, ch.src) that are language specific. The contents of
the system files are explained in the following sections. All system files are in text format, so you could
update them as needed.

The config directory is initially empty, but will be filled with configuration files named after user ids.
Each configuration file (e.g. choijd) contains a directory path that indicates the last working directory
of the user (see Section 2.3 for more details).

2.3 Launch Cornerstone
Assuming you have downloaded and installed all necessary files, you can launch Cornerstone by typing
the following command on the terminal.

java -jar cornerstone.jar <language> <user ID>

<language> can be either ar, ch, en or hi, and <user ID> is the user id you want to specify for the tool.
For example, if a user choijd wants to run Cornerstone in English mode, one needs to type

java -jar cornerstone.jar en choijd

When you launch Cornerstone, you will see a blank window. Click [File - Open] on the menu, move to
a directory containing frameset files and choose any frameset file. Cornerstone now shows the contents of
the frameset file and creates a configuration file named after <user ID> in config directory indicating
the path of the directory. This configuration file is later used to decide the default directory when you
open/save the next frameset file, and is updated whenever you open/save a new frameset file.

4

3 Cornerstone in multi-lemma mode

3.1 Overview of multi-lemma frameset
Languages such as English and Hindi are expected to run in multi-lemma mode. In multi-lemma mode,
each verb can have multiple predicate lemmas (e.g., ‘run’, ‘run out’, ‘run up’). The xml structure of the
multi-lemma frameset file is defined in a dtd file, frameset.dtd.

To open an existing frameset file, click [File - Open] on the menu (Ctrl+O), move to a directory
containing frameset files and choose a frameset file you want to open by scrolling through the list. You
could also type the predicate lemma of the frameset you wish to open into the Filter box (if it exists)
with a * before and after the predicate lemma (e.g., *run*) in order to restrict the list of file choices.
Fig. 1 shows what it looks when you open the frameset file, run.xml.

Figure 1: Open run.xml frameset file

Multi-predicate mode consists of four panes: frameset pane, predicate pane, roleset pane and roles pane.
The frameset pane contains a frameset note, which should be reserved for the relatively unusual occurrence
of information that pertains to all predicates and rolesets within the frameset. Additionally, the frameset
pane contains the predicate pane.

The predicate pane contains one or more predicate tabs titled by predicate lemmas that may include
verb particle constructions (e.g., ‘run’, ‘run out’, ‘run up’). Each predicate tab contains a predicate note
for optional information that pertains to all rolesets encompassed by that predicate. Additionally, each
tab contains a roleset pane.

The roleset pane contains several roleset tabs titled by roleset ids (e.g., run.01, run.02) for the
currently selected predicate (e.g., ‘run’). Each roleset tab contains a roleset note for required information
about that roleset. This information includes, but is not limited to, the corpus that is the source of
that roleset, the VerbNet class that the predicate falls into (or a note that VerbNet does not include
the particular predicate) and the author of the roleset. Optional information may be a mention of other
predicates that were consulted in comparison to the current predicate (especially in the absence of a
VerbNet entry) or relevant FrameNet information (Collin F. Baker, 1998).3 In addition, the roleset pane
contains three attribute fields (name, vncls, and framnet) and a roles pane. The name attribute shows

3VerbNet and FrameNet information may not be provided in languages other than English.

5

a brief definition of the current roleset. The vncls shows which VerbNet class this roleset is associated
with, and framnet shows which FrameNet class this roleset is associated with.

The roles pane contains a roles note for optional information about the roles. This may include infor-
mation that will help annotators disambiguate between roles and may also include syntactic information
relevant to the roles. The roles pane also includes one or more roles, which represent arguments that
the predicate requires or commonly takes in actual usage. For example, a roleset decrease.01 has roles
representing five arguments: ARG0 as a ‘causer of decline, agent’, ARG1 as a ‘thing decreasing’, ARG2 as
an ‘amount decreased by’, ARG3 a ‘starting point’ and ARG4 as a ‘ending point’. Each role contains three
attribute fields: n is an argument number, f is a function tag and descr shows a description of the role.
The relationship between argument numbers and semantic roles are intended to be somewhat flexible
and can be changed across different predicates; thus each roleset has its own unique argument structure.
However, arguments generally correspond to the following semantic roles (Table 1).

ARG0 agent ARG3 starting point, benefactive, attribute
ARG1 patient ARG4 ending point
ARG2 instrument, benefactive, attribute ARGM modifier

Table 1: List of arguments in Propbank

The function tag, f is available for each role, but is not used often because the argument structure outlined
in the roles pane includes only high-frequency arguments, which are generally numbered arguments.
However, if the survey of a given predicate shows that a certain type of modifier, such as a locative or
temporal modifier, is commonly used with the predicate, then the author of the frame can use this tag in
place of a numbered argument to add a role labeled ARGM (standing for ’modifier’) and the appropriate
function tag (e.g., loc, tmp; see Table 2 in page 8 for the complete list of function tags). The attribute
field descr contains a description of the semantic role, which should be general enough so it can be clearly
applied to various syntactic realizations of this role (e.g., ARG0 for run.02 is a ’runner’).

Each role can include vnrole (VerbNet role) information. There are two attribute fields for vnrole:
vncls (VerbNet class) and vntheta (VerbNet thematic role). If the predicate is a member of VerbNet,
this information should be supplied for each role that is compatible with the VerbNet information. The
VerbNet class is the larger group of verbs of which the predicate in question is a member. These classes
are numbered, and also named with a verb that is a canonical member of this class. For example, ‘run’
is a member of several VerbNet classes, including bump-18.4, carry-11.4, meander-47.7, run-51.3.2;
the earlier example run.02 is mapped only to the relevant class 51.3.2. The VerbNet mapping provided
by Cornerstone uses only the class number omitting the name. VerbNet also includes thematic roles that
should be applicable to all members of a particular class. The second attribute, vntheta gives the VerbNet
thematic role correlated with the Propbank role. For example, the ARG0 of ‘run.02’ is correlated with the
vntheta ‘agent’ (see Table 3 for a complete list of VerbNet thematic roles). As mentioned in Section 1,
certain predicates may have rolesets that arise in Propbank, but are not compatible with any VerbNet
class given for that predicate. Similarly, the Propbank argument structure may include individual roles
that are not found in the VerbNet thematic roles, or vice-versa. In these cases, the mappings between
the incompatible roleset or role and the VerbNet class or thematic role should be omitted.

6

3.2 Create a new frameset file
To create a new frameset file, click [File - New] on the menu (Ctrl+N) and type a frameset filename
you want to create. This filename should be the main predicate lemma with or without the xml extension
(.xml; the extension will be added automatically if it is not specified at this point). Figure 2 shows what
it looks when you create a frameset file temp.xml.

Figure 2: Create temp.xml frameset file

When you create a frameset file temp.xml, it generates a predicate ‘temp’ and its roleset temp.01 by
default. To add a new predicate lemma, click [Edit - Add Predicate] on the menu (Ctrl+P) and type
a new predicate lemma. Cornerstone prevents users from generating a new predicate lemma that has the
same lemma as any of the existing predicates. For example, you will not be able to add a predicate that
has a lemma ‘temp’ as long as a predicate with the same lemma already exists. Moreover, if the lemma
you added includes white spaces, it automatically converts them to underscores (‘ ’), so the lemma does
not include any white space. For example, if you type ‘temp in’ as a predicate lemma, Cornerstone will
convert it to ‘temp in’. As a new predicate is added, Cornerstone also adds its roleset with the following
roleset id (e.g., temp.02 is added for ‘temp in’ and temp.03 is added for ‘temp out’).

Figure 3: Add predicate lemma ‘temp in’ and ‘temp out’

To change the lemma of the currently selected predicate, click [Edit - Edit Predicate Lemma] on the
menu (Ctrl+Alt+P) and type the new lemma. If you alter the original predicate lemma on the first
predicate tab, the roleset ids will automatically change to reflect the updated predicate lemma. For
example, if you alter the predicate ‘temp’ to ‘temporary,’ all rolesets ids will automatically change to
temporary.01, temporary.02, etc. To remove the currently selected predicate, click [Edit - Remove
Predicate] on the menu (Ctrl+Shift+P).

To add a new roleset, click [Edit - Add Roleset] on the menu (Ctrl+R). Cornerstone automatically
generates a roleset id for the new roleset (e.g., temp.04) so you do not need to keep track of the last
roleset id you used. However, the deletion of one predicate leads to the deletion of one or more roleset
ids (e.g., deleting ‘temp in’ also deletes temp.02), so the addition of the new roleset id, temp.04, could
create gaps between roleset ids. In such situations, the selected roleset can be edited by clicking [Edit
- Edit Roleset ID] on the menu bar (Ctrl+Alt+R).4 To remove the currently selected roleset, click

4This option is not encouraged, unless you try to use an existing frameset file as a template to create a new
frameset file.

7

[Edit - Remove Roleset] on the menu (Ctrl+Shift+R).

Figure 4: Add a roleset temp.04 to a predicate ‘temp’

To add a role, click [Edit - Add Role] on the menu (Ctrl+L). You can edit n and f attributes by
clicking the corresponding combo-boxes. When you click n combo-box, it gives you a list of argument
numbers such as [0..5], m for modifiers and a for secondary agent. When you click f combo-box, it gives
you a list of function tags (Table 2).5 For each role, click within the descr field to add a generalized
description of the role. To remove a role, click [remove] button on the right (Fig. 5).

Tag Description Tag Description
adv adverbial modification mod modal
cau cause neg negation
dir direction prd secondary predication
dis discourse prp purpose
dsp direct speech pnc purpose not cause
ext extent rcl relative clause link
gol goal rec recipricol (eg herself, etc)
loc location slc selectional constraint link
mnr manner tmp temporal

Table 2: List of function tags in English

Figure 5: Edit and remove role

5English frameset files used to take prepositions as function tags for the arguments of some predicates. Thus,
when viewing older frameset files, certain prepositions are listed as function tags, but these are no longer options
when you create a new frameset file in Cornerstone.

8

To add a vnrole (VerbNet role), click [Add Vnrole] button. For each role, you can add more than
one vnrole. All VerbNet roles that are appropriate to the currently selected roleset should be included.
When you click vntheta combo-box, it gives you a list of VerbNet thematic roles (Table 3). To remove
a vnrole, click [remove] button on the right (Fig. 6).

Vntheta Description
actor1,2 pseudo-agents, used for some communication classes
agent animate subject, volitional or internally controlled
asset currency, used for Build/Get/Obtain Classes

attribute changed quality of patient/theme
beneficiary entity benefitting from action

cause entity causing an action, used for psychological/body verbs
destination end point/target of motion
experiencer participant that is aware of experiencing something

extent range or degree of change
instrument objects/forces that come into contact and cause change in another object
location underspecified destination/source/place
material starting point of transformation

patient1,2 affected participants, used for some combining/attaching verbs
predicate predicative complement
product end result of transformation
recipient target of transfer
source spatial location, starting point
stimulus events/objects that elicit a response from an experiencer
theme participants in/undergoing a change of location

theme1,2 indistinct themes, used for differ/exchange classes
patient affected participants undergoing a process
time class-specific, express temporal relations
topic topic of conversation, message, used for communication verbs

proposition complement clause indicating desired/requested action, used for order class

Table 3: List of VerbNet thematic roles

Figure 6: Edit and remove vnrole (VerbNet role)

9

3.3 Edit examples
To view annotated examples of the currently selected roleset, click [Edit - Edit Examples] on the
menu (Ctrl+E), which will prompt a new window: the example frame. Figure 7 shows what it looks
when you view examples of a roleset run.02. The example frame contains several example tabs titled by
the example indices. To add a new example, click [Edit - Add Example] on the menu (Ctrl+=). To
remove the currently selected example, click [Edit - Remove Example] on the menu (Ctrl+−).

Figure 7: Example frame for run.02

Each example tab contains a note space for optional description and helpful information about the current
example. In addition, an example tab consists of four panes: attribute pane, inflection pane, text pane,
and argument pane. The attribute pane consists of three attribute fields: the name field gives a brief
identifier of the example, the type field can provide optional information about phrasal particle variants
and the src field shows the type and the title of the corpus that was the source of the example. The
inflection pane can be used to provide inflectional information about the example and consists of five
attribute fields: person, tense, aspect, voice, and form. By default, a value ns is chosen for each
attribute. When you click the inflection combo-box, it gives you a list of attributes shown in Table 4.

Inflection Fields
person third other ns
tense present past future ns
aspect perfect progressive both ns
voice active passive ns
!form infinitive gerund participle full ns

Table 4: List of inflections

The text pane contains the actual example in text. The text examples should include the relevant indices
between traces and explicit mentions so that readers can fully understand the syntax of the example.
This may require bracketing an indexed constituent in order to convey what the constituent boundaries
are. For example, the passive sentence, “The car on the left was hit by the minivan” should be expressed
as “[The car on the left]-1 was hit *T*-1 by the minivan”.

The argument pane contains a set of arguments and the relation (or predicate). Each argument consists
of three attribute fields: n is an argument number, f is a function tag, and text contains the portion of
the example that constitutes the given argument. Similarly, each relation consists of two attribute fields:
f and text; however, only the text field is necessary to indicate the predicate. To add an argument,
choose [Edit - Add Argument] on the menu (Ctrl+9). To remove an argument/relation, click [Remove]

10

button on the right. To add the relation, choose [Edit - Add Relation] on the menu (Ctrl+0). If the
relation includes a verb particle construction, the individual words should be bracketed to indicate the
concatenation of two words into a single relation (e.g., rel: [run][up]). Examples are automatically
saved when the example window is closed. To close the example window click [File - Quit] on the
menu (Ctrl+W).

Certain arguments that include relative clause and/or reduced relative links require special notation
in the text field. For relative clauses, the relative pronoun (or placeholder 0 for gapped pronouns) with
its index is followed by *--> and the referent that the relativizer is linked to. For example, the sentence,

[The man]-1 that-1 *PRO*-1 walked

will have an argument with n:m, f:SLC and text: that-1 *--> The man to indicate that the correct
annotation includes a manually added * link between the relative pronoun and its referent. For reduced
relative constructions, the trace argument is followed by &--> and the referent of the trace. For example,
the sentence,

The man killed *none* was my friend

where the relation is ‘kill’, will have an argument with n:1, text: *none* &--> The man to indicate that
the annotation includes a manually added & link between the trace and its referent.

Each roleset should be accompanied by at least one example. Ideally, example(s) should be drawn
directly from the corpus that the roleset arose in to reflect accurate usage. However, in some cases, the
examples that arise in the corpus may not give the annotators a helpful illustration of the predicate’s
argument structure, or may not include examples of potentially confusing additional arguments. While at
least one example from the corpus should always be included, the author of the roleset may add additional
examples (either invented or through an Internet search) so that the predicate’s argument structure is
fully illustrated and understandable to the annotator.

3.4 Save a frameset file
Cornerstone automatically saves your previous work as you open or create a new frameset file. To save a
frameset file manually, click [File - Save] on the menu (Ctrl+S). To save the frameset file as a different
file, click [File - Save As] on the menu (Ctrl+Shift+S) and type the new frameset filename.

11

4 Cornerstone in uni-lemma mode

4.1 Overview of uni-lemma frameset
Languages such as Arabic and Chinese are expected to run in uni-lemma mode. Unlike multi-lemma
mode that allows a verb to have multiple predicate lemmas (e.g., ‘run’, ‘run out’, ‘run up’), uni-lemma
mode allows only one predicate lemma for a verb. The xml structure of the uni-lemma frameset file is
defined in a dtd file, verb.dtd.

To open an existing frameset file using Cornerstone, click [File - Open] on the menu (Ctrl+ O),
move to a directory containing frameset files and choose a frameset file you want to open. Fig. 8 shows
what it looks when you open an Arabic frameset file HAfaZ.xml.

Figure 8: Open HAfaZ.xml frameset file

Uni-lemma mode consists of four panes: verb pane, frameset pane, frame pane and roles pane. The verb
pane contains a verb comment for helpful information about the verb and an attribute field ID for the
predicate lemma of the verb (a lemma can be represented either in Roman alphabets or characters in
other languages). Additionally, the verb pane contains the frameset pane as its sub-pane.

The frameset pane contains several frameset tabs titled by frameset ids for the verb. Note that the
frameset in uni-lemma mode is equivalent to the roleset in multi-lemma mode. Unlike multi-lemma mode
in which roleset ids are assigned with the main predicate lemma followed by sequential numbers (e.g.,
run.01, run.02), frameset ids in uni-lemma mode are assigned with f (standing for ‘frameset’) followed
by sequential numbers (e.g., f1, f2). The frameset pane also contains a frameset comment for required
information about the currently selected frameset and two attribute fields, edef and cdef, that show the
English and non-English (in this case, Arabic) definitions of the frameset, respectively. In addition, the
frameset pane contains one or more frame panes and the roles pane.

The frame pane contains a frame comment for optional information about the frame and the mapping
pane. The mapping pane contains a mapping comment that describes mappings between syntactic
and semantic arguements associated with the frameset. It also contains V (standing for ‘verb’) and a
set of mappings. V is a placeholder indicating where the verb predicate should be located among the
other arguments. The mapping shows an association between a syntactic argument, src (e.g., subject,
object) and a semantic argument, trg (e.g., agent, patient) of the frameset. The syntactic arguments are
sometimes provided in the Treebank, in which case, these mappings can be used for automatic extraction
of semantic arguments from their syntactic arguments. Table 5 (page 14) shows the full list of syntactic
arguments.

The roles pane consists of a set of arguments that the predicate requires or commonly takes in actual
usage. Each argument has two attributes fields: argnum is an argument number and argrole shows a
description of the semantic role. The list of Propbank arguments is provided in Table 1 (page 6).

12

4.2 Create a new frameset file
To create a new frameset file, click [File - New] on the menu (Ctrl+ N) and type a frameset filename
you want to create. The filename may or may not include xml extension (.xml), which will be added
automatically if it is not specified. Fig. 9 shows what it looks when you create a frameset temp.xml.

Figure 9: Create temp.xml frameset file

When you create a new frameset file, it generates a frameset f1 by default. To add a new frameset, click
[Edit - Add Frameset] on the menu (Ctrl+ F). Cornerstone automatically generates a frameset id for
the new frameset (e.g., f2) so you do not need to keep track of the last frameset id you used. To remove
the currently selected frameset, click [Edit - Remove Frameset] on the menu (Ctrl+Shift+F).

Figure 10: Add frameset f2 and f3 to temp.xml

To add a new frame, click [Edit - Add Frame] on the menu (Ctrl+R). To remove the frame, click
[Remove Frame] button on the frame (Fig. 11).

Figure 11: Add Remove a frame

To add a verb-placeholder or a mapping to the frame, click [Add V] or [Add Mapitem] button, respec-
tively. You can add more than one mapping for each frame. When you click src combo-box, it gives
you a list of syntactic arguments (Table 5). Similarly, when you click trg combo-box, it gives you a list
of semantic arguments (Table 1, page 6). To remove a verb-placeholder or a mapping, click [Remove]
button on the right (Fig. 12).

13

Argument Description Argument Description
sbj subject dir direction
npobj noun-phrase object controlip ipobj that is a control clause
ipobj inflectional-phrase object io indirect object
ext extent other other kind of syntactic argument

Table 5: List of syntactic sources

Figure 12: Add, edit and remove mappings

To add an argument, click [Add Role] on the menu (Ctrl+ L). When you click argnum combo-box, it
gives you a list of argument numbers such as [0..5] and m for modifiers. For each argument, click within
argrole field to add a generalized description of the argument. To remove an argument, click [Remove]
button on the right (Fig. 13).

Figure 13: Edit and remove an argument

14

4.3 Edit examples
To view examples of the frame, click the [Edit Examples] button (Fig. 11, page 13), which will prompt
a new window: the example frame. Fig. 14 shows how it looks when you view examples of a frameset f2
in HAfaZ.xml. The example frame contains several example tabs titled by the example indices (starting
with 0). To add a new example, click [Edit - Add Example] on the menu (Ctrl+=). To remove the
currently selected example, click [Edit - Remove Example] on the menu (Ctrl+−).

Figure 14: Example frame for f2 in HAfaZ.xml

Each example tab contains a comment space for optional description about the current example. In
addition, an example tab consists of two panes: parse pane and argument pane. Unlike the text pane in
multi-lemma mode (Section 3.3), the parse pane contains the actual example in Treebank format.

The argument pane contains a verb-placeholder and a set of arguments. V is a placeholder indicating
where the verb should be located among the other arguments. Each argument consists of three (or
four) attribute fields: n is an argument number, f is a function tag, text shows the portion of the
example that constitutes the given argument and g shows the English translation of text filed (g field
currently exists only in Arabic frameset files). To add an verb-placeholder/argument, click [Edit -
Add Verb/Argument] on the menu (Ctrl+0/9). To remove a verb-placeholder/argument, click [Remove]
button on the right.

4.4 Save a frameset file
Cornerstone automatically saves your previous work as you open or create a new frameset file. To save
a frameset file, click [File - Save] on the menu (Ctrl+S). To save the frameset file as a different file,
click [File - Save As] on the menu (Ctrl+Shift+S) and type the new frameset filename.

15

5 Summary

For each verb predicate in Propbank, there exists a corresponding frameset file that contains information
about the senses associated with the verb, and also defines each sense’s predicate argument structure.
Since most Propbank annotations are based on the frameset files, it is important to keep the files consistant
as well as easy to update. Currently, all frameset files are written in xml format, which is difficult to
edit using a plain text editor. This motivated the development of a new tool dedicated to the creation of
frameset files, Cornerstone.

By using Cornerstone, you can view, create and edit frameset files without having any knowledge of
xml. Furthermore, the frameset files created using Cornerstone are guaranteed to be free of the errors
that commonly occur when directly manipulating xml. Cornerstone can be run in two modes, multi-
lemma mode and uni-lemma mode. Multi-lemma mode allows each verb to have multiple predicate
lemmas, whereas uni-lemma mode allows only one predicate lemma for a verb. While the two different
modes ensure flexible use of Cornerstone with a variety of different languages, the interfaces are very
similar, so learning one mode effectively teaches the other.

Developing a new tool is always challenging; yet, it is worthwhile because once we have a tool that
meets our needs, the annotation process can be made faster and more accurate. We will continue to
develop the tool by improving its functionalities through user-testing and feedback, and by applying it
to more languages.

References

John B. Lowe Collin F. Baker, Charles J. Fillmore. 1998. The berkeley framenet project. In Proceedings
of the 36th Annual Meeting of the Association for Computational Linguistics and the 17th International
Conference on Computational Linguistics (COLING-ACL’98).

Mona Diab, Aous Mansouri, Martha Palmer, Olga Babko-Malaya, Wajdi Zaghouani, Ann Bies, and Mo-
hammed Maamouri. 2008. A pilot arabic propbank. In Proceedings of the 7th International Conference
on Language Resources and Evaluation (LREC’08).

Christiane Fellbaum, editor. 1998. WordNet: An Electronic Lexical Database, volume Language, Speech
and Communications. MIT Press.

Chunghye Han, Narae Han, Eonsuk Ko, and Martha Palmer. 2002. Korean treebank: Development and
evaluation. In Proceedings of the 3rd International Conference on Language Resources and Evaluation
(LREC’02).

Karin Kipper, Anna Korhonen, Neville Ryant, and Martha Palmer. 2006. Extending verbnet with novel
verb classes. In Proceedings of the 5th International Conference on Language Resources and Evaluation
(LREC’06).

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The proposition bank: An annotated corpus
of semantic roles. Computational Linguistics, 31(1):71–106.

Nianwen Xue and Martha Palmer. 2009. Adding semantic roles to the chinese treebank. Natural Language
Engineering, 15(1):143–172.

16

