New ideas and future research
Migration spatial structure

Colorado Conference on the Estimation of Migration
24 – 26 September 2004
Spatial interaction models

• Gravity model: distance function; cost function
• Entropy maximization
 – Maximize chaos; minimize structure
 – Minimize information content
• Log-linear model
 – Probability model based on probability theory
 – Statistical inference: maximum likelihood

Spatial interaction models

• Incomplete data
 – Prior information
 • Marginal totals
 • Preliminary estimates (guestimates)
 – Algorithms
 • Iterative proportional fitting; bi-proportional adjustment; RAS
 – Expectation-Maximization algorithm (EM)
Migration spatial structure
Spatial interaction models

• Risk indicators: counts, probabilities, rates
• Generation and distribution component
 – Outmigration rate: m_{i+}
 • Transition rate models
 – OR: Probability of leaving region
 – Destination probability: ξ_{ij} (direct transition; multiple destinations)
 • Logit models (multinomial) for each origin separately
Migration spatial structure
Spatial interaction models

• Proportion: survivorship proportion S_{kj}
• S_{kj} depends on covariate: region of birth
 – Native/non-Native

$$
\log \text{it}[S_{kj}] = \beta_{0kj} + \beta_{1kj} Y_k
$$

\(Y_k = 1\) if born in k

$$
\log \text{it}[S_{kj}] = \beta_{0j} + \beta_{1j} Y_1 + \beta_{2j} Y_2 + \beta_{3j} Y_3 +
\log \bar{S}_{kj}
\alpha_{kj}
\frac{i \bar{S}_{kj}}{k \bar{S}_{kj}}
\frac{\text{non-native}}{\text{native}}
\frac{\text{relative risk}}{i \alpha_{kj}}
\]
Migration spatial structure
Spatial interaction models

• Incomplete data: best use of prior information
 – Quantitative data
 • Historical migration patterns
 • Friction factors (e.g. cost, distance)
 – Qualitative data
 • Migration expectations (forecasting)
 • Expert opinions

• Bayesian modeling
Migration spatial structure
Spatial interaction models

• Basic research on spatial structure
 – What is structure?
 • A. Current spatial configuration (population distribution)
 • B. Spatial interaction: transaction, exchange, flow
 – How to model A and B?