#### The Impact of Late-Career Job Loss and Genotype on BMI

Lauren Schmitz—University of Michigan Dalton Conley—New York University

Integrating Genetics with the Social Sciences University of Colorado Boulder October 23, 2015

# Are changes in weight after a job loss moderated by genotype?

- Corrosive effects of job loss documented extensively in the social science literature
- Scarring effects for older workers are particularly severe
  - Associated with longer periods of unemployment, lower levels of income, gaps in health insurance, elevated stress levels, higher rates of depression and anxiety, and increased smoking and drinking
    - Kalil & DeLeire 2013; Stevens & Moulton 2013; Deb et al. 2011; Munnell & Sass 2009; Tu & Liebhaber 2009; Falba et al. 2005; Gallo et al. 2001
- All these factors could disrupt appetite, energy balance, and metabolic function—endophenotypes that are associated with obesity and regulated by genetic variants

#### The genetics of obesity

- Obesity is a global epidemic that is highly heritable
  - Heritability accounts for ~30%-70% of obesity risk (e.g. Maes et al. 1997; Stunkard et al. 1986)
- GWAS: 32 genome-wide significant loci explain ~ 1.45% of the individual variation in BMI (Speliotes et al. 2010)
- Lifestyle and social context fuel onset and persistence
  - Evidence of FTO by environment interactions of exercise on the attenuation of BMI (Kilpeläinen et al. 2011), possibly mediated by DNA methylation (Bell et al. 2010; Almén et al. 2012)
  - G x E effects on BMI related to lifetime SES, social norms, and institutional policies (Liu & Guo 2015; Boardman et al. 2012)

### The endogeneity problem in applied G x E research

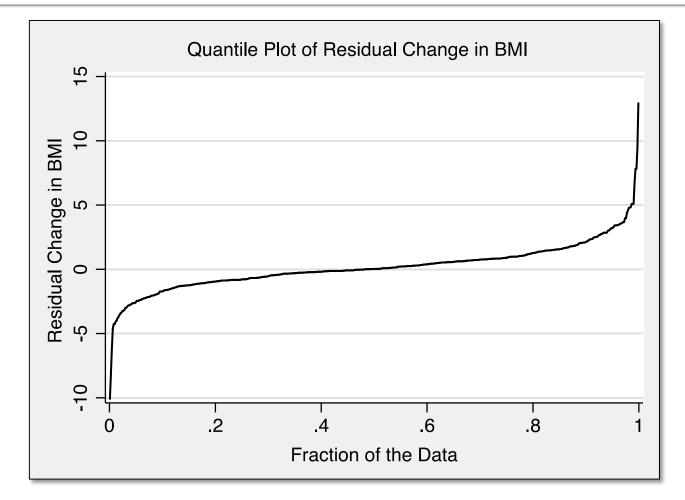
- A significant shortcoming of many G x E studies is they rely on endogenous measures of the environment, which may be correlated with unobserved genetic or environmental influences
- Outcomes of interest in the social sciences are highly polygenic risk of allelic association spread across the genome
  - Candidate gene studies may suffer from omitted variable bias
  - Studies rarely account for population stratification
- Need both "G" and "E" to be independent of each other to properly identify G x E effects
  - Schmitz & Conley 2015; Fletcher & Conley 2013; Conley 2009

### Exogenous "E": Job loss due to a business closure

- Exogenous source of stress to employee health—driven by external influences/events, whereas layoffs or firings may be linked to worker health or other unobserved characteristics
  - Deb et al. 2011; Salm 2009; Strully 2009; Sullivan & von Wachter 2009
- Using business closures, studies have been unable to identify changes in BMI at the mean (e.g. Marcus 2014; Salm 2009)
- However increases of approx. 1 kg/m<sup>2</sup> have been identified for workers who were overweight pre-job loss (Deb et al. 2011)
  - Effects of job loss especially problematic for high-risk individuals

### Dataset combines socio-demographic and genotype data from the HRS

- For each respondent, we use information from two waves in the HRS (1992-2012)
  - Baseline sample: individuals 63 years old or younger who were working for pay and not self-employed
  - Two years later, treatment group comprised of individuals who report they are no longer working for their previous wave employer due to a business closure
  - In total, we identify 311 genotyped respondents of European ancestry who lost their job due to a business closure


#### "G": Polygenic score for BMI

- Construct a linear genetic risk score (GRS) for BMI based on a GWAS meta-analysis conducted across 46 studies by the GIANT consortium (Speliotes et al. 2010)
- GRS is a weighted average across the number of SNPs (n) of the number of reference alleles x (0,1 or 2) at that SNP multiplied by the score for that SNP (β):

$$GRS_i = \sum_{j=1}^n (\beta_j x_{ij})$$

- We do not use imputed data or impose a p-value threshold
- In total, 838,490 SNPs were used to construct the BMI GRS for each HRS respondent

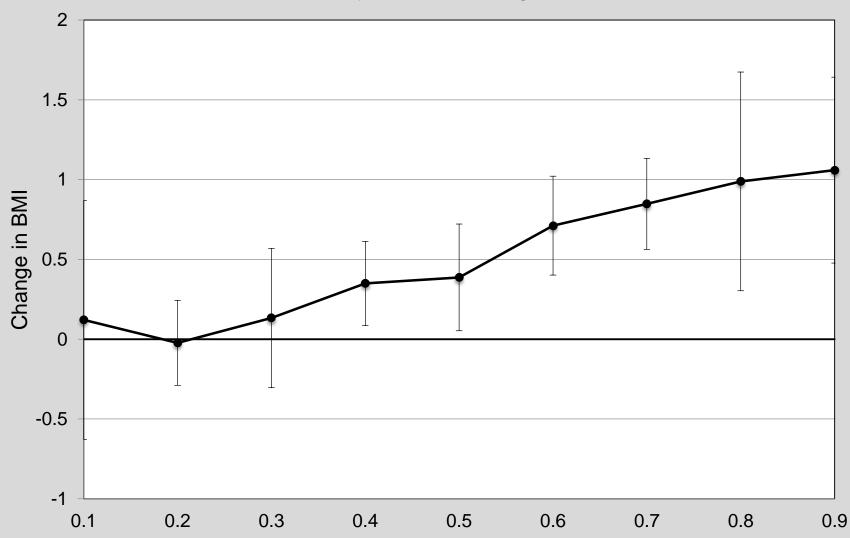
# Not all individuals respond to a job loss by gaining weight



GRS measures genetic susceptibility to obesity →Genotypic effects may play a larger role above the median

# Use a quantile DID matching strategy to estimate G x E effect

Two-step approach:


- Marcus 2014; Athey & Imbends 2006; Heckman et al. 1997
- 1. Use one-to-one nearest-neighbor propensity score matching to find control cases that are similar to treatment cases
  - → Eliminate any (observable) association between covariates and the treatment assignment
- 1. Use treatment and control groups determined from matching to estimate treatment effect by genotype at all portions of the distribution of changes in BMI:

 $Q_t \left( BMI_{it} \mid BC_{it-1}, BMI_{it-1}, G_i, X_{it-1} \right) = \partial_t BC_{it-1} + \mathcal{G}_t BMI_{it-1} + \mathcal{C}_t G_i + \mathcal{O}_t \left( BC_{it-1} \land G_i \right) + X_{it-1}^{\mathbb{C}} \mathcal{D}_t$ 

## G x E effect significant at 75<sup>th</sup> percentile of weight gain

|                          | OLS      | OLS      | Q25      | Q50      | Q75      |
|--------------------------|----------|----------|----------|----------|----------|
|                          | (No GRS) | OLS      | QZS      | QJU      | Q75      |
| Business closure         | 0.201    | 0.470*** | 0.0834   | 0.267**  | 0.603*** |
|                          | (0.134)  | (0.140)  | (0.135)  | (0.111)  | (0.142)  |
| Business closure*GRS     |          | 0.0579   | -0.114   | 0.120    | 0.320**  |
|                          |          | (0.156)  | (0.137)  | (0.110)  | (0.144)  |
| GRS                      |          | -0.0469  | 0.0358   | -0.0740  | -0.191** |
|                          |          | (0.0970) | (0.104)  | (0.0678) | (0.0846) |
| BMI <i>(t-1)</i>         | 0.935*** | 0.928*** | 0.910*** | 0.952*** | 0.975*** |
|                          | (0.0289) | (0.0269) | (0.0195) | (0.012)  | (0.0186) |
| Ν                        | 622      | 622      | 622      | 622      | 622      |
| R2 or Pseudo-R2          | 0.876    | 0.880    | 0.655    | 0.692    | 0.704    |
| Treatment Effect (GRS=1) |          | 0.528**  | -0.0301  | 0.387**  | 0.924*** |
|                          |          | (0.219)  | (0.175)  | (0.170)  | (0.237)  |
|                          |          |          |          |          |          |

Notes: Regressions include controls for baseline age, gender, marital status, (log) income, wealth, education, part-time status, industry, smoking, exercise behavior and the first four principal components. Robust standard errors are in parenthesis.



### Endogenous job losers gained less weight

|                          | OLS<br>(No GRS) | OLS       | Q25       | Q50      | Q75      |
|--------------------------|-----------------|-----------|-----------|----------|----------|
| Job loss                 | 0.279***        | 0.257***  | 0.169     | 0.279*** | 0.272    |
|                          | (0.0517)        | (0.0518)  | (0.194)   | (0.0423) | (0.401)  |
| Job loss*GRS             |                 | -0.216*** | -0.193*** | -0.197*  | -0.232** |
|                          |                 | (0.0521)  | (0.0743)  | (0.105)  | (0.111)  |
| GRS                      |                 | 0.280***  | 0.249     | 0.282*   | 0.292**  |
|                          |                 | (0.0294)  | (0.175)   | (0.155)  | (0.122)  |
| BMI <i>(t-1)</i>         |                 | 0.932***  | 0.888***  | 0.963*** | 1.004*** |
|                          |                 | (0.00956) | (0.0312)  | (0.0120) | (0.0534) |
| Ν                        | 5340            | 5340      | 5340      | 5340     | 5340     |
| R2 or Pseudo-R2          | 0.874           | 0.876     | 0.674     | 0.692    | 0.706    |
| Treatment Effect (GRS=1) |                 | 0.0411    | -0.0239   | 0.0814   | 0.0397   |
|                          |                 | (0.0761)  | (0.203)   | (0.135)  | (0.486)  |

Notes: Regressions include controls for baseline age, gender, marital status, (log) income, wealth, education, part-time status, industry, smoking, exercise behavior and the first four principal components. Robust standard errors are in parenthesis.

#### Discussion

- We find evidence that the effects of job loss from a business closure on BMI are moderated by genotype
- Genotypic effects are significant at higher percentiles of weight gain only
  - Older workers at high genetic risk for weight gain (GRS=1) who lost their job gained approximately 0.39-0.92 kg/m<sup>2</sup> more than comparable workers who did not lose their job
  - Equivalent to a 4-7 lb. weight gain for a man who is 5'10" tall and weighs 180 lbs. at baseline
  - Stress related to job loss may amplify polygenic risk for weight gain

#### **Summary & Implications**

- Preliminary results show importance of using plausibly exogenous sources of environmental variation to identify G x E effects
  - G x E results from endogenous job loss indicate that workers who lost their job for personal or health reasons gained less weight on average than workers who did not lose their job
  - No detectable effect on high-risk genotypes (GRS=1)

#### **Future Work**

- Overall, further robustness checks and alternative specifications are needed to confirm our results
  - Placebo GREML of job loss (endogenous and exogenous)
  - Placebo Bivariate GREML of job loss and BMI (and  $\Delta$  BMI)
  - Rosenbaum bounds analysis of  $\gamma$  for unobservable joint correlation between exogenous job loss and  $\Delta$  BMI
- Further analysis on differential impacts by education and health behaviors
- Cross-country G x E analysis → determine if different welfare regimes further mediate polygenic risk and the accumulation of health advantage

#### **THANKS!**

• Questions?