Due Wednesday March 13

A circular tunnel of radius a is located at a depth z in a hydrostatic *in situ* stress field of magnitude γz . The tunnel lining is modeled as a ring of concrete of uniform thickness, t. The Young's modulus and Poisson's ratio of the rock are defined as E_r and v_r , and those of the concrete are defined as E_c and v_c . There is no separation between the concrete and the rock.

a) Derive the analytical expression for the tangential stress σ_{θ} on the inner surface of the concrete lining (r=a-t). That stress component is compressive but must not exceed the unconfined compressive strength of the concrete defined as σ_c . Let $SF = \sigma_c/\sigma_{\theta}$ be the safety factor against concrete failure in compression.

b) Plot the variation of t/a versus the depth z for $z \ge 100$ m and for SF = 1 and 1.5. The input data are: $\sigma_c=5,000$ psi, $E_c=3 \times 10^6$ psi, $v_c=0.2$, $E_r=1 \times 10^6$ psi (soft rock), $v_r=0.25$, and $\gamma=160$ lb/ft³.