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1. INTRODUCTION

Rock mechanics, being an interdisciplinary field, borrows many concepts from the field of
continuum mechanics and mechanics of materials, and in particular, the concepts of stress and strain.
Stress is of importance to geologists and geophysicists in order to understand the formation of
geological structures such as folds, faults, intrusions, etc...It is also of importance to civil, mining
and petroleum engineers who are interested in the stability and performance of man-made structures
(tunnels, caverns, mines, surface excavations, etc..), or the stability of boreholes. A list of activities
requiring knowledge of stresses is given in Table 1. Stress terminology is shown in Figure 1.

Unlike man-made materials such as concrete or steel, natural materials such as rocks (and soils) are
initially stressed in their natural state. Stresses in rock can be divided into in situ stresses and induced
stresses. In situ stresses, also called natural, primitive or virgin stresses, are the stresses that exist in
the rock prior to any disturbance. On the other hand, induced stresses are associated with man-made
disturbance (excavation, drilling, pumping, loading, etc..) or are induced by changes in natural
conditions (drying, swelling, consolidation, etc..). Induced stresses depend on many parameters such
as the in situ stresses, the type of disturbance (excavation shape, borehole diameter, etc..), and the
rock mass properties.

Stress is an enigmatic quantity which, according to classical mechanics, is defined at a point in a
continuum and is independent of the constitutive behavior of the medium. The concept of stress used
in rock mechanics is consistent with that formulated by Cauchy and generalized by St. Venant in
France during the 19th century (Timoshenko, 1983). Because of its definition, rock stress is a
fictitious quantity creating chatlenges in its characterization, measurement, and application in
practice. A summary of the continuum mechanics description of stress is presented below. More
details can be found in Mase (1970).

2. STRESS ANALYSIS
2.1 Cauchy Stress Principle

Consider for instance, the continuum shown in Figure 2 occupying a region R of space and subjected
to body forces b (per unit of mass) and surface forces f, (tractions). Let x,y,z be a Cartesian
coordinate system with unit vectors e,, ,, €, parallel to the x, y, and z directions, respectively.

Consider a volume V in the continuum, an infinitesimal surface element AS located on the outer
surface S of V, a point P located on AS, and a unit vector n normal to AS at P. Under the effect of
the body and surface forces, the material within volume V interacts with the material outside of V.
Let Af and Am be respectively the resultant force and moment exerted across AS by the material
outside of V upon the material within V. The Cauchy stress principle asserts that the average force
per unit area Af/AS tends to a limit df/dS as AS tends to zero, whereas Am vanishes in the limiting
process. The limit is called the stress vector t,, i.e.
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ROCK STRESSES

/\

IN-SITU (VIRGIN) STRESSES INDUCED STRESSES

(mining, excavation, drilling, pumping,
injection, energy extraction, applied
loads, swelling, etc...)

GRAVITATIONAL TECTONIC RESIDUAL TERRESTRIAL
STRESSES STRESSES STRESSES STRESSES
(flat ground surface & - diagenesis - seasonal tp°® variations
topography effect) - metasomatism - moon pull (tidal stresses)
- metamorphism - Coriolis force
- magma cooling - diurnal stresses
- changes in pore
pressure
ACTIVE TECTONIC REMNANT TECTONIC
STRESSES \ STRESSES
Broad Scale Local Same as residual but tectonic
activity is involved such as
- Shear traction - Bending folding, faulting, jointing and
- Slab pull - [sostatic compensation boudinage
- Ridge push - Downbending of
- Trench suction lithosphere
- Membrane stress - Volcanism & heat flow

Figure 1 Stress terminology.



Civil & Mining Engineering

+ Stability of Underground Excavations
(Tunnels, Mines, Caverns, Shafts, Stopes, Haulages)
* Drilling & Blasting
* Pillar Design
* Design of Support Systems
* Prediction of Rock Bursts
* Fluid Flow & Contaminant Transport
* Dams
* Slope Stability

Energy Development

« Borehole stability & deviation
* Borehole deformation & failure
* Fracturing & fracture propagation
* Fluid flow & geothermal problems
* Reservoir production management
* Energy extraction and storage

Geology/Geophysics

« Orogeny
+ Earthquake Prediction
» Plate Tectonics
* Neotectonics
» Structural Geology
* Volcanology
* Glaciation

Table 1. Activities requiring knowledge of in-sifu stresses.



Figure 2. Material Continuum subjected to body and surface forces.
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The stress vector has three components in the x,y,z coordinate system which are expressed in units
of force per unit area (MPa, psi, psf...). It is noteworthy that the components of the stress tensor
depend on the orientation of the surface element AS which is defined by the coordinates of its
normal unit vector n.

The stress vector t,at point P in Figure 2 is associated with the action of the material outside of V
upon the material within V. Let t, be the stress vector at point P corresponding to the action across
AS of the material within V upon the material outside of V. By Newton's law of action and reaction

w* lm = 0 ()

Equation (2) implies that the stress vectors acting on opposite sides of a same surface are equal in
magnitude but opposite in direction.

2.2 State of Stress at a Point

The state of stress at point P in Figure 2 can be defined by using equation (1) for all possible
infinitesimal surfaces AS having point P as an interior point. An alternative is to consider the stress
VeCtors t,), t.y), and t, acting on three orthogonal planes normal to the x-, y- and z-axes and with
normal unit vectors ey, €;, and e,, respectively. The three planes form an infinitesimal stress element
around point P (Figures 3a and 3b).

The nine components of vectors ), .., and t;, form the components of a second-order Cartesian
tensor also known as the stress tensor 0;; (i,j=1-3). The components O,,, 0,, and O;; represent the
three normal stresses 0,, G, and O, acting in the X, y, and z directions, respectively. The components
0, (1#)) represent six shear stresses T,y, Ty Ty Tpo Ty, and T, acting in the xy, xz and yz planes.
Two sign conventions are considered below:

Engineering mechanics sign convention

Tensile normal stresses are treated as positive and the direction of positive shear stresses is as shown
in Figure 3a. The stress vectors {), t, and t,;, have the following expressions
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Figure 3. Direction of positive normal and shear stresses. (a) Engineering mechanics convention;
(b) Rock Mechanics convention.



t(d) = oxel+1:xye2+1:xze3
t{eZ) = ‘l:yxel+0ye2+1:}ze3 3)

t(e3) = T, +1:zye2+oze3

Rock mechanics sign convention

Compressive normal stresses are treated as positive and the direction of positive shear stresses is as
shown in Figure 3b. The stress vectors t,), t.,, and t.;, have the following expressions

lep = ~0.8-T, €,-T e
ey = ~T,,€,70,6,-T € 4)
lesy = ~T81 T, 0.0

2.3 State of Stress on an Inclined Plane

Knowing the components of the stress tensor representing the state of stress at a point P, the
components of the stress vector on any plane passing by P, and of known orientation with respect
to the x-, y-, and z-axes, can be determined.

Consider again point P of Figure 2 and let G;; be the stress tensor representing the state of stress at
that point. The components of the stress vector t,,,, acting on an inclined plane passing through P can
be expressed in terms of the 0, components and the orientation of the plane using a limiting process
similar to that used to introduce the stress vector concept. As shown in Figure 4, consider a plane
ABC of area dS parallel to the plane of interest passing through P. Let r be the normal to the plane
with components n,, n,, and n,. The force equilibrium of the PABC tetrahedron leads to the
following relation between the average stress vectors acting on its faces

t(n)dS‘ +

(‘91

)nldS'+t(_e ?)nzdS + es)n3d5'=0 (5)

where n,dS, n,dS and n,dS are respectively the areas of faces CPB, CPA and APB of the tetrahedron.
Using equation (2), t,, can be expressed as follows

o=l Hle gt Ei 3 (©6)

CVEN 5768 - Lecture Notes 3 Page 4
© B. Amadei



Y

Figure 4. State of stress on an inclined plane passing through point P.



The stress acting on plane ABC will approach the stress on the parallel plane passing through P as
the tetrahedron in Figure 4 is made infinitesimal. In that limiting process, the contribution of any
body force acting in the PABC tetrahedron vanishes.

Equation (6) can also be expressed in terms of the normal and shear stress components at point P.

Let t,, t, and t, be the x, y, z components of the stress vector t,,. When using the engineering
mechanics sign convention, combining equations (3) and (6) yields

fx
L=ty 9, T,||m (7a)
tz

On the other hand, for the rock mechanics sign convention, combining equations (4) and (6) yields

g T T

tx * A nl
-t = % 9, Ty|i% (7b)
L t_ 1. o |lB

xz yz z
The (3 x 3) matrix in equations (7a) and (7b) is a matrix representation of the stress tensor 0.
2.4 Force and Moment Equilibrium

For all differential elements in the continuum of Figure 2, force and moment equilibrium leads
respectively to the equilibrium equations and the symmetry of the stress tensor 0.

Equations of equilibrium

ao"+at”"+atz"+pbl o
dx Jdy o0z
0

aty+80y+ t""+pb2 = 0 ®)
ox Jdy oz

atﬂ+atw+a°z+pb3 o

ox dy 0dz
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where p is the density and pb,, pb, and pb; are the components of the body force per unit volume
of the continuum in the x, y and z directions, respectively. The positive directions of those
components are in the positive x, y and z directions if the engineering mechanics convention for
stress is used, and in the negative x, y and z directions if the rock mechanics sign convention is used
instead.

Symmetry of stress tensor

T, =1T; T_=1T )

which implies that only six stress components are needed to describe the state of stress at a point in
a continuum: three normal stresses and three shear stresses.

2.5 Stress Transformation Law
Consider now two rectangular coordinate systems x,y,z and x,y',Z' at point P. The orientation of the

x-, y'-, Z-axes is defined in terms of the direction cosines of unit vectors €', €', and €', in the x,y,z
coordinate system, i.e.

I
€ = lx’el+mx’e2+nx’e3
/o
ey = Le+m e, tn e, (10)
e, = 1Le+m e, +n e
3 z™1 z™v2 273

Let [A] be a coordinate transformation matrix such that

Ix’ mxf nx;

[A] = Iyi mya ny; (1 1)

lzl mz; nz.-'

Matrix [A] is an orthogonal matrix with [A]' = [A]". Using the coordinate transformation law for
second order Cartesian tensors, the components of the stress tensor 0'; in the x',y’,z' coordinate
system are related to the components of the stress tensor 0j; in the X,y,z coordinate system as follows

CVEN 5768 - Lecture Notes 3 Page 6
© B. Amadei



g s TIny Txrzl el My Moy G, Txy T Ix! lyl sz

Ty Oy Typell, my nt, O, T im, m, m, (12)

‘l.'x.rzr Tyrzf 0, lzr m, n, Tn Tyz O_|n.. nyf n,
Using (6x 1) matrix representation of 0'; and G;;, and after algebraic manipulations, equation(12) can
be rewritten in matrix form as follows

01, = [T,]lo],, (13)

where {0]',,=[0, 0, 0,7, T, T, }, [0]'yy. =[O0, O, O, T, T, Tyy] and [T,] is a (6x6) matrix whose
components can be found in equation A1.23 in Goodman (1989). It can be written as follows

2 2 2

lx ' mx I nx ’ 2mx N, 21: m_; me d !
2 2 2

Iy ’ my ’ ny 7 2my my.r ZIy ;ny ' 2my d !
2 2 2

) I, m, n 2mz,nz: 2lz;nzf ZmZJz;

_ !
[To] = z z z
ly.flzr my:mz; ny,nz; my,nzﬁmz;nyf nyllz.r"’ﬂzllyf lyfmzrl-lz.vmy;

Ixrlzr mx:mzf n.m, mx.«nzﬁmzmx; nx:lzﬂnz.rlx: lxrmzr"lzfm:.r

I.nyle mmg nn MR mon, nx,ly:+ny,1xf prmyﬁly;mx,_

Expressions for the direction cosines 1, m, n,......are given below for two special cases shown in
Figures 5a and 5b, respectively. In Figure Sa, the orientation of the x -axis is defined by two angles
B and & and the z"-axis lies in the Pxz plane. In this case, the direction cosines are

I /=cosdcosP; m, ,=sind; n,_,=cosbsinf
ly;=—sinﬁcos[5; myf—cosb; nya=—sinﬁsin{3 (14)

1,=-sinf; m_=0; n,=cosp

If we take $=0, 6=0, and the z"-axis to coincide with the z-axis, the x-, y'- and z-axes coincide, for
instance, with the radial, tangential and longitudinal axes of a cylindrical coordinate system r,0,z
(Figure 5b) with
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Figure 5. Two special orientations of x'-, y'- and z'-axes with respect to the
X, ¥, Z coordinate system.



I.,=1=cos0; m =m=sin0; n=n=0

ly;=le=—sm6; my:=me=c0sﬁ; ny,=n3=0

(15)

L=0; m,=0; n,=1

Substituting these direction cosines into equation (12) gives a relationship between the stress
components in the r, 0, z coordinate system and those in the x,y,z coordinate system as follows

6,=0,c0s8 +0 ysinzﬁ +1,,5in20

0o =0,sin’0 + oycosz— T,,8in20
Tgo=T,,c080 -7 _sin6 (16)
T,.=T,sin0 +7 cosO

T,5=(0,- 0,)sinBcosB +t_cos26

2.6 Normal and Shear Stresses on an Inclined Plane

Consider a plane passing through point P and inclined with respect to the x-, y- and z-axes. Let
x.y,Zz be a Cartesian coordinate system attached to the plane such that the x'-axis is along its
outward normal and the y'- and z'-axes are contained in the plane. The x'-, y'- and z'-axes are oriented

as shown in Figure 5 with the direction cosines defined in equation (14).

The state of stress across the plane is defined by one normal component G,~ G, and two shear
components T, and T,, such that (see Figure 6)

Ox" le m. B, OI le sz le

rx,y,=ly, my nlt, G, T tm. (17

T ¢ lz" mz; nzatn T

x'z ¥z S L

Equation (17) is the matrix representation of the first, fifth and sixth lines of equation (13). The
resultant shear stress, T, across the plane is equal to
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Figure 6. Normal and shear components of the stress vector acting
on a plane passing through point P.



2 2

= T, T (18)

T x'y

The stress vector ¢, acting on the plane is such that

2,2

l4,|? = 0,2 +7 = 0 P41 e, 7 (19)

2.7 Principal Stresses

Among all the planes passing by point P, there are three planes (at right angles to each other) for
which the shear stresses. These planes are called principal planes and the normal stresses acting on
those planes are called principal stresses and are denoted 0, 0, and 0, with G,>0,>0,. Finding the
principal stresses and the principal stress directions is equivalent to finding the eigenvalues and
eigenvectors of the stress tensor G;;. Since this tensor is symmetric, the eigenvalues are real.

The eigenvalues of g;; are the values of the normal stress @ such that the determinant of 0,-00,
vanishes, i.e.

I—O tyx sz
T, 6,6 T,(=0 (20)
sz tyz OZ-O

Upon expansion, the principal stresses are the roots of the following cubic polynomial

o*-1,06%+Lo-1,=0 1)

where I, L, and I, are respectively the first, second and third stress invariants and are equal to

Il=0x+oy+oz
2.2, .2

12=0ycz+0xoz+ Oxoy-(‘tﬁ+1.'xz+1:xy (22)
2 2 2
l,=6,00,+27 1 7, -(0,1,,+0,1,+0,T;)

For each principal stress 0, (0,, G,, G,), there is a principal stress direction for which the direction
cosines n,;,;=cos (0,,X), n,=cos (0,,y) and n;,=cos (0,,z) are solutions of
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(O~ 0N+ T iy T, 15,=0
Tt (0,0, +T 1y =0 (23)

Tt Tyl (0, -0 N, =0
with the normality condition
Ayt g1 (24)

2.8 Stress Decomposition

The stress tensor 0;; can be separated into a hydrostatic component 0,0, and a deviatoric component

m-y

s;- Using (3x3) matrix representations, the decomposition can be expressed as follows

O, T T| [0 O O 6,6, T, T,
Ty O, Tyl=(0 0, O]+ T 6,0, T, (25)
Te %y O, 0 0 o, T, T, 0,70,

with 0,,=(0,+0,+0)/3. As for the stress matrix, three principal deviatoric stresses s, (k=1,2,3) can
be calculated by setting the determinant of s,-s0,, to zero. Equation (21) is then replaced by the
following cubic polynomial

s3-Jist-Jps-J,=0 (26)

where J,, J,, and J; are respectively the first, second and third invariants of the deviatoric stress
tensor and are equal to

J;=0
J==(ss5 +55 + )+t2 +12 41
2 S},S z sxs z Sys x: v xz Cxy (2 ?}
_ o a2 2 2
Jy=ss 542t 11, (8, T8, T *S,Ty)
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with 5,=0,-0,,, 5,=0,-0,,, and 5,~0,-0,,. Note that J, can also be written as follows
1
J2 = E[(Gl_02)2+(01_03)2+(02_03)2] (28)

2.9 Octahedral Stresses

Let assume that the x, y, and z directions of the x,y,z coordinate system coincide with the principal
stress directions, i.e. 6,0, 0,~0,, and 0,=0;. Consider a plane that makes equal angles with the
three coordinate axes and whose normal has components n,=n,=n,=1/v/3. This plane is an octahedral
plane. The normal stress across the plane is called the octahedral normal stress, G, and the shear
stress is called the octahedral shear stress, T,,. The stresses are equal to

AL
3

ot 3
. ) (29)
= 9[(0[_02)2"'(01_03)2+(02_03)2] T EJz

2.10 References
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Mase, G.E. (1970) Continuum Mechanics, Schaum's Qutline Series, McGraw-Hill.

Timoshenko, S.P. (1983) History of Strength of Materials, Dover Publications.
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3. STRAIN ANALYSIS
3.1 Deformation and Finite Strain Tensors

Consider a material continuum which at time =0 can be seen in its initial or undeformed
configuration and occupies a region R, of Euclidian 3D-space (Figure 7). Any point P, in R, can be
described by its coordinates X, X,, X, with reference to a suitable set of coordinate axes (material
coordinates). Upon deformation and at time t=t, the continuum will now be seen in its deformed
configuration, R being the region it now occupies. Point P, will move to a position P with
coordinates x,, X,, X, (spatial coordinates). The X ,X,,X; and x,X,,X, coordinate systems are
assumed to be superimposed. The deformation of the continuum can be defined with respect to the
initial configuration (Lagrangian formulation) or with respect to the current configuration (Eulerian
formulation). The vector u joining points P, and P is known as the displacement vector and is equal
to

u=x-X (31)

where x=0P and X=0P,,. It has the same three components u,, u, and u; in the x,,X,,x; and X, X,.X,
coordinate systems (since both coordinate systems are assumed to coincide).

Partial differentiation of the spatial coordinates with respect to the material coordinates 0x/0X;
defines the material deformation gradient. Likewise, partial differentiation of the material
coordinates with respect to the spatial coordinates 0X,/0x; defines the spatial deformation gradient.
Both gradients can be expressed using (3x3) matrices and are related as follows

ox,0X, X, ox,

-5,
ax,0x, o0x 0%, ™ 32)

Partial differentiation of the displacement vector u; with respect to the coordinates gives either the
material displacement gradient du/OX or the spatial displacement gradient du/Ox;. Both gradients
can be written in terms of (3x3) matrices and are related as follows

Ju, ax,.
X ax % (33)
7 J

In general, two strain tensors can be introduced depending on which configuration is used as
reference. Consider, for instance, Figure 7 where two neighboring particles P, and Q, before
deformation move to points P and Q after deformation. The square of the linear element of length
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Fieure 7. Initial and final (deformed) configurations of a continuum (after Mase, 1970).



between P, and Q, is equal to

BX )¢

dX? = dXdX, = & dxdx, = 2%, 3%, —Edv gy, = Crgh, (4

where C; is called the Cauchy's deformation tensor. Likewise, in the deformed configuration, the
square of the linear element of length between P and Qs equal to

ox, Bxk

(@) = digr, = b deg, = AKX dXdX, = GdXdx, (35)

where G;; is the Green's deformation tensor. The two deformation tensors represent the spatial and
material description of deformation measures. The relative measure of deformation that occurs in
the neighborhood of two particles in a continuum is equal to (dx)* - (dX)2. Using the material
description, the relative measure of deformation is equal to

2 2 0% 0x _
(dxy -(dX)" = (Ei;'a?’:_ag)dx;dxj = 2L,,dX,dXJ (36)

where L; is the Lagrangian (or Green's) finite strain tensor. Using the spatial description, the
relative measure of deformation is equal to

dX, X,
(&y-(dX)? = 3,~— 5%, 0% —dxdx, = 28 dxdx, G7)

where E;; is the Eulerian (or Almansi’s) finite strain tensor.
Both L; and E; are second-order symmetric strain tensors that can be expressed in terms of (3x3)

matrices. They can also be expressed in terms of the displacement components by combining
equation (36) or (37) with equation (31). This gives,

_1 ou, au aukauk
v~ 20X, oX, oX,ox, 38
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and

1
) a_x; dx, Ox, ox, (39)
3.2 Small Deformation Theory
Infinitesimal Strain Tensors
In the small deformation theory, the displacement gradients are assumed to be small compared to

unity, which means that the product terms in equations (38) and (39) are small compared to the other
terms and can be neglected. Both equations reduce to

1,04, auj)
= —(——t—
g 2 aA; a‘xi (40)

which is called the Lagrangian infinitesimal strain tensor, and

1, 0u, auj)
€ o e
v 2o ox, “1)

which is called the Ewlerian infinitesimal strain tensor.

If the deformation gradients and the displacements themselves are smatl, both infinitesimal strain
tensors may be taken as equal.

Examples

Consider first, the example of a prismatic block of initial length |, width w,, and height h,. The
block is stretched only along its length by an amount I-1.. The corresponding engineering strain €
is then equal to (I-1,)/1,. The deformation of the block can be expressed as x,=X,+€X,; x,=X, and
X;=X,. Thus, the displacement components are u,=€X,, u,=u,=0. For this deformation, the matrix
representation of the Lagrangian finite strain tensor L; is equal to

2¢+€?2 0 0
L] = % 0 00 (42)
0 00

For any vector dX of length dX and components dX,, dX,, and dX, equation (36) can be written as
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follows

2e+e2 0 0]
del-dx? = {dX, dX, dX;] 0 0 o)dX, (43)
0 0 0fdx,

If dX is parallel to the X;-axis with dX,=dX=l,, dX,=dX,=0, then equation (43) yields

€og = 5y T o€ (44)

The block does not experience any deformation along the X, and X, -axes. Equation (44) shows that
the longitudinal Lagrangian strain, €,,,, differs from the engineering strain, €, by the amount 0.5€2.
For small deformations, the square term is very small and can be neglected.

As a second example, consider again the same prismatic block deforming such that x,=X;;
x,=X,+AX, and x;=X;+BX,. The corresponding displacement components are u,=0; u,=AX; and
u;=BX,. For this deformation, the matrix representation of the Lagrangian finite strain tensor L, is
equal to

0 0 0
L) = S0 B A+B (45)
0 A+B 47

For any vector dX of length dX and components dX,, dX,, and dX;, equation (36) can be written as
follows

0 0 o 4
dx?-dx? = [dX, dX, dX,]0 B? A+BldX, (46)
0 A+B A? |dX,

If dX is parallel to the X -axis with dX,=dX=1, dX,=dX,=0, then dx=dX, i.e the prismatic block
does not deform in the X, direction.
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If dX is parallel to the X,-axis with dX,=dX=h,, dX;=dX,=0, then equation (46) yields dx’=
(14B%dX?, i.e the dip of vector dX is displaced in the X, direction by an amount Bh,,.

If dX is parallel to the X;-axis with dX,=dX=w,, dX,=dX,=0, then equation (46) yields dx’=
(1+A%)dX?, i.e the dip of vector dX is displaced in the X, direction by an amount Aw,,

Overall, the prismatic block is deformed in the X,-X; plane with the rectangular cross-section
becoming a parallelogram. This deformation can also be predicted by examining the components of
L;; in equation (45); there is a finite shear strain of magnitude 0.5(A+B) in the X,-X, plane and finite
normal strains of magnitude 0.5B? and 0.5A? in the X, and X, directions, respectively. Note that if
A and B are small (small deformation theory), those normal strains can be neglected.

3.3 Interpretation of Strain Componenis
Relative Displacement Vector

Throughout the rest of these notes we will assurne that the small deformation theory is valid and that,
for all practical purposes, the Lagrangian and Eulerian infinitesimal strain tensors are equal.

Consider the geometry of Figure 8 and the displacement vectors u®® and u‘® of two neighboring
particles P, and Q,. The relative displacement vector du between the two particles is taken as u‘@-
u®, Using a Taylor series expansion for the displacement components in the neighborhood of P,
and neglecting higher order terms in the expansion gives

ou, ou, ou,]
Ox, dx, Ox,
du, Ou, OJu, OJu, dx,
du,| - dx, (47)

du, Ox, Ox, Ox, d,
6u3 8u3 8u3

dx, Ox, Ox,

The displacement gradients (material or spatial) appearing in the (3x3) matrix in equation (47) can
be decomposed into a symmetric and an anti-symmetric part, i.e.

_i =] _._.i-l-__] + - .f
x 20 o) 2 F (48)
J J i J i
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Figure 8. Definition of relative displacement vector between two neighboring particles (after
Mage 1Q97M



The first term in (48) is the infinitesimal strain tensor, €;, defined in section 3.2. The second term
is called the infinitesimal rotation tensor w;; and is denoted as

1,0u; oy

) 2(6xJ ax‘.) G

This tensor is anti-(or skew) symmetric with w;=-w;; and corresponds to rigid body rotation around
the coordinate system axes.

Strain Components

In three dimensions, the state of strain at a point P in an arbitrary x,,X,,X; Cartesian coordinate
system is defined by the components of the strain tensor. Since that tensor is symmetric, only six
components defined the state of strain at a point: three normal strains €,,, €,,, and €, and three
shear strains €,,=0.5Y,,, €,;=0.5Y 3, and €,,=0.57Y,, with

au, ou, Ju,
Ty SmT o fmTg
*) = X3

1 6u1 auz

en=yTu 30, ox, %,

(50)

1 1(3'41 ouy

‘873872 5y, ox,

1 1 6u2 Ou,

AL 2(a ox,

In equation (50), ¥ ,,, ¥,s, and ¥, are called the engineering shear strains and are equal to twice the
tensorial shear strain components.

From a physical point of view, the normal strains €,,, €,,, and €, represent the change in length of
unit lines parallel to the x,, x,, and x, directions, respectively. The shear strain components € ,, €,,,
and €,, represent one-half the angle change (Y, Y3, and ;) between two line elements originally
at right angles to one another and located in the (x,,X,), (x;,X;), and (x,,X,) planes.

Note that two sign conventions are used when dealing with strains. In both cases, the displacements
u,, U,, and u, are assumed to be positive in the the +x,, +x,, and +x, directions, respectively. In
engineering mechanics, positive normal strains correspond to extension, and positive shear strains
correspond to a decrease in the angle between two line elements originally at right angles to one
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another. In rock mechanics, however, positive normal strains correspond to contraction (since
compressive stresses are positive), and positive shear strains correspond to an increase in the angle
between two line elements originally at right angles to one another. When using the rock mechanics
sign convention, the displacement components u,, u,, and u, in equation (50) must be replaced by
-u,, -U,, and -u,, respectively.

3.4 Strain Transformation Law

The components of the strain tensor €'; in an x',y',z' (x,',X,’X;) Cartesian coordinate system can be
determined from the components of the strain tensor €; in an X,y,z (x,,X,,X;} Cartesian coordinate
system using the same coordinate transformation law for second order Cartesian tensors used in the
stress analysis. The direction cosines of the unit vectors parallel to the x'-,y'- and z'-axes are assumed

to be known and to be defined by equation (10). Equation (12) is replaced by

foxf Exlyl €. 10| by M N E, ny Gu lx.r Iyr lz.r
ex‘:y’ Eyﬁ,f eylz! =1, myl ny.r ny Gw eyz m.: my, m.:
Ex 7! eyizl szzr lzl m, n, exz Gﬁ Gz n,: ny, n,:

D

Using (6x1) matrix representation of €'; and €, and after algebraic manipulations, equation (51) can
be rewritten in matrix form as follows

el = [T.)el,,

(52)

where [e]txyz _[exx eyy Gu YYL sz ny]! [e]lx‘y'z‘ =[€x'x' ey'y' ez'z' Yy'z' Yx'z' Yx'y'] and [TF] isa (6X6) matrix

with components similar to those of matrix [T,] in equation (13). it can written as follows:

[7]=

21,
200,

24 2mom  2nm monrmon, ndrnd Lmg+lm,,

2 2

mx, nx, m.n. lxlnxr mx.le:

m2 n’ m.mn lmn m. 1
¥ v "y’ !yt y'y!
2 2

mz, nz; mz:nz; lz;nza mz,-lz;

2m,m,; 2nm. mon rmm, nd ovnd, Lm+lm,

2m m 2n.m, momrmom g ndvnd o Lim+lim,
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[T,] and [T,] are related as follows

[7.Y = [T,I', (70! = [T,) (53)

Note that equation (53) is valid as long as engineering shear strains (and not tensorial shear strains)
are used in [€],, and [€],y.,

The direction cosines defined in equation (15) can be used to determine the strain components in the
r, 0, z cylindrical coordinate system of Figure 5b. After algebraic manipulation, the strain
components in the 1, 0, z and x,y,z coordinate systems are related as follows

€,,=€,,c05°0 +€_sin’0 + ;yzysinZG

€99=€,,5in’0 +ewcosz—%y 5,5in20

&0
Yo.=Y,,C080 -y _sin0

Y,.=Y,5in0 +y _cosO

Y0=(€,,~€,)sin20 +y_cos26

3.5 Principal Strains

The principal strain values and their orientation can be found by determining the eigenvalues and
eigenvectors of the strain tensor €;. Equation (20) is replaced by

€ € €y
€, €,€ €,1=0 (55)
€, €, €,7€

Upon expansion, the principal strains are the roots of the following cubic polynomial
€-1,€*+1 ,e-1,-0 (56)

where 1, I,, and I; are respectively the first, second and third strain invariants and are equal to
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I =€+ +e_
_ 2.2, .2
Iez—ewez+enez+enew (e”+em+exy) (57)

- e o2 2 2
I =€,€,€,+2€, € €, (€€, €€ +€E€)

For each principal strain €, (€,, €,, €,), there is a principal strain direction which can be determined
using the same procedure as for the principal stresses.

Let the x-, y-, and z-axes be parallel to the directions of €, €,, and €, respectively, and consider a
small element with edges dx, dy and dz whose volume V =dxdydz. Assuming no rigid body

displacement, the components of the relative displacement vector du are equal to €,dx, €,dy and
€,dz. After deformation the volume of the element is equal to

V = (1+€,)de(l+e)d(1+€,)dz (58)
or
V= U+ +1,+1 )V, (59)

For small strains, the second and third strain invariants can be neglected with respect to the first
strain invariant. Equation (59) yields

(60)

Equation (60) indicates that the first strain invariant can be used as an approximation for the cubical
expansion of a medium. If the rock mechanics sign convention is used instead, the first strain
invariant is an approximation for the cubical contraction. The ratio AV/V is called the volumetric
Strain.

3.6 Strain Decomposition
The strain tensor €, can be separated into a hydrostatic part e, 0, and a deviatoric part ¢;. Using

(3x3) matrix representations and an x,y,z coordinate system, the strain decomposition can be
expressed as follows

CVEN 5768 - Lecture Notes 3 Page 20
© B. Amadei



xx ¥x zx m m b3 zx
€y €y €,5=10 e, 0|+]| €, €, €, €, (61)
€. €, €, 0 0 e, €, €, €€,

with e,=(€,,+€,+€,)/3.

3.7 Compatibility Equations

The six components of strain are related to the three components of displacement through equation
(50). These relations can be seen as a system of six partial differential equations with three
unknowns. The system is therefore over-determined and will not, in general, possess a unique
solution for the displacements for an arbitrary choice of the six strain components.

Continuity of the continuum as it deforms requires that the three displacement components be
continuous functions of the three coordinates and be single valued. It can be shown that this requires
the strain components to be related by six equations called equations of compatibility. In an arbitrary
X,y,Z Cartesian coordinate system, these equations can be written as follows

2 2 2
Bex+6ey ) ayxy

dy? ax? Bxdy

62ey+azez i 8%y,

9z% 8y?  0yoz

3% +a2ex _ Py,

z

ax2 622 B dx0z

(62)
2
26 € _ i(ayz+ayxy_ayﬂ)
oydz Ox 3y 0z Ox
2
27€ . 9 Yy Yy OV
ox0z dy Ox 3z oy
2
T 0 e 3t
oxdy 0z oOx dy Oz
CVEN 5768 - Lecture Notes 3 Page 21

© B. Amadei



3.8 Strain Measurements

Consider an (x,y) plane and a point P in that plane. The state of strain at point P is defined by three
components €,,, €., and €,,. The longitudinal strain €, in any direction making an angle O with the
X-axis is, according to equation (54), equal to

€, = € _cos’0+e ,Sin0 +€, sin26 (63)

The state of strain at (or in the near vicinity of) point P can be determined by measuring three
longitudinal strains, €, €,,, and €,; in three different directions with angles 0,, 8,, and 0,. This gives
the following system of three equations and three unknowns

cos’0, sin’0, sin20,
i €

€| = lcos’0, sin’®, sin26,| € (64)

»

€ ) ] €
. cos’0, sin’0, sin20,) L@

which can be solved for €,,, €, and €.

Longitudinal strains can be measured using strain gages (invented in the United States in 1939), A
strain gage consists of many loops of thin resistive wire glued to a flexible backing (Figure 9a). It
is used to measure the longitudinal strain of a structural member to which it is attached. As the
material deforms, the wire becomes somewhat longer and thinner (or shorter and thicker) thereby

changing its resistance by a small amount.

Recall that the electrical resistance, R, of a wire of length |, sectional area A, and resistivity p is
equal to

l

Let €=Al/ be the longitudinal strain of the wire. As the wire stretches, its diameter decreases due
to the Poisson's effect. The change in resistance, AR, of the wire is related to €, as follows

1 Ap
= = ——F+(1+2v) 66
€ R € P ()

where V is the Poisson's ratio of the wire and GF is the so-called gage factor whose value is given
by the gage manufacturer. For instance for Cr-Ni gages, GF=2.05. Thus,
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Figure 9. (a) Schematic representation of a strain gage, (b) Wheastone bridge.



1 AR

e - —
' GF R (1)

Equation (67) shows that the strain can be determined once the change in resistance, AR, is
measured. This can be done by mounting the strain gage on a Wheastone bridge. Figure 9b shows
a Wheastone bridge where the active strain gage has a resistance R,. The bridge is equilibrium when
R,R;=R,R,. If R, changes by AR,, the bridge will be in equilibrium only if

R4
AR;="*AR,
R3

where AR, is changed by means of a potentiometer. Equation (68) indicates that in order to obtain
a high precision, i.e. a large variation of R, for a given change of R, (corresponding to a certain
strain), the ratio R,/R, needs to be as small as possible.

In general, the variable potentiometer used for the experiment is calibrated so that the readings are
immediately in microstrains (j4-strains).

Note that a single strain gage can only be used to measure the longitudinal deformation in one
direction. Thus, in order to solve equation (64) for €,,, €, and €, , three independent gages need
to be used. Another option is to use strain gage rosettes which consist of three strain gages attached
to the same flexible backing. Different strain gage arrangements are available as shown in Figure 10.
Strain rosettes commonly used in rock mechanics include: 45° rosettes (Fig. 10a) where 0,=0, 0,=45
and 0,=90; 60° rosettes (Fig. 10b) where 0,=0, 0,=60 and 6,=120; and 120° rosettes (Fig. 10c)
where 0 =0, 6,=120 and 0,-240.

It is noteworthy that in the usual strain rosettes, the three separate electrical resistances are not
exactly mounted at the same point. Consequently, a small error is introduced when determining the
state of strain at a point.

The advantages of strain gages are as follows:

high sensitivity (about 10®),

large domain of variation (about 15x107%),
negligible weight and inertia,

neither mechanical nor electrical response delay,
minimum space requirements,

direct reading of strain instead of displacement.
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Figure 10. (a) 45° rosette; (b) 60° rosette; and (c) 120° rosette.



The main disadvantages include:

lengthy and delicate mounting procedure,

costly since they serve only once,

sensitive to humidity unless encapsulated,

important temperature effects since Rg=R(1+0t0) where ¢ is the thermal expansion
coefficient of the strain gage.

Note that the effect of temperature can be compensated by using special temperature compensated
strain gages, Another compensation method consists of substituting the resistance R, in Figure 9b
by a strain gage identical to the one corresponding to R,. The R, gage is glued onto the same material
as R, and is exposed to the same environment but is not strained. Thus, the Wheastone bridge will
always be thermally equilibrated.
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APPENDIX

Components of matrix [T,]) in equation (13) and matrix [T,] in equation (52)

12, m% nl 2m, 11, 21 mn,, 2m,1,.
2 2 2
ly; my, .Hy; 2my;ny,- 2 ly,-ny,- Zmy;ly;
12 m? n? 2m_n 21_n 2m /1
[T.] = 2/ i ot s " s I L

lyrlz.f mymz; ny;nz.- my;nzﬁmz.-ny: ny:lzﬁnz.-ly; .Iy.-mz.-+lz;my.-

11,0 M, DM, MM rtMyM,s Ryl rtng el g 1oy +1,m,.

2 y:l x! my:mx: ny;nx: my:n x:+mxrnyf nle y.f"'nyfl »f b xrmyr"' ") yfmxf_

and

1 Jf,r mﬁ, I.I;; m, il 1 g £ ) mx:l x!
2 2 2
1 o m; n, m,m, 1, Myl
2 2 2
[Te] = lz’ mz, nz, mz;nz.- lz.rnzr mzflzf

21yllzl 2my;mz,- 2ny;nz: My 11,13 My iy, ny;lzﬁnz:ly: ly:mzﬁlz:my:

21,1,/ 2m my 2n,M, MMMy ol vyl o 1,.m 1 m

21,01, 2m My 210, MMMl Mol il 1om e 1, my|



