ROCK SLOPE ENGINEERING

1. MODES OF FAILURE OF ROCK SLOPES
2. SINGLE PLANE SLIDING MODE

3. WEDGE SLIDING WITH TWO FREE SURFACES
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1. MODES OF FAILURE OF ROCK SLOPES

The modes of failure of slopes in rock are more complex than slopes in soils since, in most cases, they
are controlled by discontinuities. Several modes of failure can be observed in rock masses.

Modes of Failure in Soft, Weathered or Jointed Rock Masses

These include raveling, slumping or sliding through the body of rock itself. They are common in soft
formations such as shale and in deeply weathered, jointed or broken rock masses (see Figure 1).

Modes of Failure in Hard Rock Masses

These are related to movement along rock mass discontinuities such as joints, faults, bedding and
cleavage planes. Several failure modes can take place. The three basic ones are: PLANE SLIDING,
WEDGE SLIDING, TOPPLING.

* DPlane sliding: Movement of a block along a plane of weakness (Figure 2a). The conditions
for plane sliding include: (1) the plane of weakness must daylight, and (2) lateral block release
must be available through joints, topography, excavation, or intact rock failure.

* Wedge sliding: Movement of a block along two planes of weakness (Figure 2b). The
conditions for wedge sliding include: (1) the line of intersection of planes must daylight, and
(2) lateral block release is required.

o Toppling: Overturning of rock layers inclined steeply into the hillside (Figure 2¢). A
mechanism is needed to start the process of toppling such as erosion, excavation at the toe

of the slope. Several types of toppling mechanisms have been identified by geologists (see
Figures 3 and 4).

Higher Modes of Failure

These are exhibited by complex jointed and bedded rock masses in which plane sliding, wedge sliding,
and toppling occur simultaneously or successively (see Figures 4 and 5).
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b) c)

Figure 1. Modes of failure in soft, weathered, or jointed rock masses. (a) Rotational (soil type), (b)
Raveling, (c) Tension crack toppling.
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Figure 2. Modes of failure in hard rock masses (a) Single plane sliding, (b) Wedge sliding, (c)
Toppling (after Goodman, 1989).
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Figure 3. Three classes of toppling mechanisms (after Goodman and Bray, 1976).
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Slide base toppling when
steeply dippIing beds are
S11de head toppling when . dragged along by Instability
movement lower In the slope frees of overlying material.
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Figure 4. Higher modes of slope failure. (a) Slide head toppling, (b) Slide base toppling, (c) Slide toe
toppling (after Hoek and Bray, 1977).
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Figure 5. Higher modes of slope failure. éa) Two block gliding, (b) Block gliding with rotated graben,
(c?l]]?.uckling, (d) Rock crushing and sliding (adapted from Hoek and Bray, 1977).
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2. SINGLE PLANE SLIDING MODE
2.1 Fundamentals

Sliding of a block along a plane of weakness in a rock mass requires that the block is free to move
kinematically and that friction is mobilized along the plane of weakness. The plane on which sliding
occurs must strike parallel or nearly parallel (within + 20°) to the slope face.

Plane sliding under gravity alone, takes place in a direction parallel to the dip vector of the plane of
weakness. Let & be the dip angle of that plane, and o be the apparent dip angle of the slope face in
the direction of the dip vector of the plane of weakness. The shear strength of the plane of weakness
is assumed to be described by a Coulomb criterion with friction angle ¢.

Sliding takes place when & > 6 > ¢.

TRIR~7

—
D dip vector of
plane of weakness

ol

A\ 7o

Illustrative example: Consider a rock slope with orientation N 0° E 60° W (60/270). The slopeis cut
by four major joint sets with the following orientations:

Plane 1: N 30°E 40° NW (40/300)
Plane 2: N 47° W 30° SW (30/223)
Plane 3: Horizontal

Plane 4: NO°E 40°W (40/270)

The planes of weakness have same friction angle ¢ = 30°. What are the planes that could allow a
slide?

Inverse problem: Given the orientation of a potentially trouble-some plane of weakness, what is the
steepest safe slope for a rock cut of given orientation?

Example: A slope contains a critical plane of weakness with orientation N 0° E 40° W. Find the
steepest safe slopes for a rock cut whose orientation varies between N 0° E and N 90° E.
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Kinematic condition ¢ > O is satisfied in the ruled area.

The condition & > 0 > @ is satisfied in the ruled area.

CVEN 5768 - Lecture Notes 4
® B. Amadei



b \
{ R | \
r | ip
4

: * 4 EBS ’ !’
‘ Dl ! ;
\ ¢ | /

o )

"¢ "~““‘K ,/~$\~ 30

L s / haER
o ’
.\ §>21 '~<'J&.. J-”.-” ;j’

ROCK CUT SLOPE : N O E 60 W

PLANE 1: N 30 E 40 NW
PLANE 2: N 47 W 30 SW FRICTION ANGLE : 30 degrees
PLANE 3: Horzontal

PLANE 4: N OE 40 W



Rock SloPe

Shike N« E Max. Troel Orike Max
-D"P‘ N o = Trwe D"p-
0 40 F0 &3
% N £ 73
4L
40 a5 ap
60 60




4

4
L M y T

o O o o o o
(=) B ¢ o] ~ (Xe] n <

odoTs Jo drp Shi3l WWNWTXER

o
[a2]

20

10

20 30 40 50 60 70 80 90

10

Strike angle

N x




Analysis of Plane Slide

tension crack filled
with water

Wcoss‘

A: base area of the block

2Applied normal force

N = WcosS-LL-i—Tbs;nP (1)
Applied shear force T=Wsind +V — 'T'}; C,osﬁ (2)
Resisting shear force c A + M ‘l'o.n/d

Safety factor F =

ch + (WcosS—u_+TLsin ﬁ)‘f‘ang! (3
Wsin®+ V -—[Lc.as/?s -

The expression for the water force components U and V depends on
the water pressure distribution between points A, B and C.

Solve equation (3) for Tb

_ris—

~cA+ (U-Weces §)tang + F (Wsin%-i—V) (4)
Fcos P + 'hanil sin ﬁ
is such that 4T, /d P=o
= ton g
_ r
The corresponding value of T

b is obtained by substituting/5==/ac
in eq. (4).

The minimum value of Tb =3>

tan ﬁc

N~



CRITICAL SLOPE HEIGHT VERSUS SLOPE ANGLE RELATIONSHIP

. plane of weakness is
parallel to the rock
slope face

H . consider a unit length
of slope

cohesion,c, and fricti

angle along the plan

of weakness

“/ = (L \qﬁz [ ‘ - ' ] (1)
2 ten tanol

For any fixed value of the safety factor F,we have

H = 2 (2)
\(cos S (Fsms-cos Stcm?)(l tan $

Fanol

For a vertical slope (°(=90), the previous eguation becomes

Hz 2c (3)

Yeos S (Fsmg - cos Stmﬁ)

The minimum value of H takes place when dH/d$=0, i.,e. when S =$>¢

tan 2§ = F ton (%4-;{)
when F=1 SC - %+%

W
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2.2 Slope with tension crack (from Hoek and Bray, 1977)

Tension crack in upper surface of the slope

Tension crack in upper
surface of slope

fallure surface

vp

W = %sz [(1 - @HY)cot ¥, - cot ¥ ]
Tension crack in the slope face

Tension crack In slope face

W = %yH’ [(1 - (HY)cot ¥ (cot tany, - 1]
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In all cases,

1 1 (H-2)
V==yz?,; U== ; 4= 22

5 VP i simy,
The safety factor against sliding is then equal to

c4 + (Weosy, - U - Vsing ytand
Wsing , + Vcosy,

or

F o QAP + [Qcoty, - R(P + Stand
Q + RS.coty,

where P, Q, R and S are dimensionless parameters that depend on the geometry and not on the
size of the slope. They are equal to

4

Yw 2 s= %
' z

P=( - zHysing, ; R = —-2.-;—[ : .fil.simlrp
Y Z

and

0 = [(1 - @H)*)cot ¥, - cot Y Jsiny,

when the tension crack is in the upper surface of the slope, and
W= [(1 - @H)cot ¥ (cot tany, - 1)]

when the tension crack intersects the slope surface.
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Numerical example:

¢ = 1000 1b/ft?
¢ =30°
;=60
y,=30

For z/H = 0.5, the charts give P = 1 and Q = 0.36. The safety factor F is found to be equal to
1.34, 1.10 and 0.77 when z,/z = 0 (dry tension crack), 0.5 and 1.0, respectively.

CVEN 5768 - Lecture Notes 4
© B. Amadei



(Hoek and Bray, 1977)

Figure 6ka : Values of the
ratio P for various slope
4.0 geometries.
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Figure 64b: Values of the ratio S for varjous geometries
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2.3. Analysis of block sliding using the stereographic projection

The stereographic projection can be a valuable tool to conduct stability analysis of rock slopes.
Consider a block resting on a planar surface. Let ¢ be the friction angle between the block and the
surface. The block will remain at rest on the surface if the resultant of all forces acting on the block
is inclined with the normal to the surface at an angle less than ¢. If the block is free to move in any
direction, the envelope of all allowable resultant forces on the block is a cone of vertex angle 2¢
centered around the normal of the planar surface. This cone of static friction will be projected on the
stereographic projection as a small circle of radius ¢ about the normal n to the planar surface.

normal to

R o €
block at st
the plane ock at re

ol = ¢ limiting equilibrium

o > ﬁ sliding

- n normal to the
R / plane

cone of
friction

Lower stereographic
projection and firction
circle.
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Force vectors can be represented as points on the stereographic projection. Depending on the
orientation of a vector, the lower or upper hemisphere projection should be used for the projection

of the vector.

How to find the orientation and magnitude of the resultant R=F,+F, of two forces F, =F, f, and

F,=F, f, knowing their orientation and magnitude? F, and F, are the magnitudes of the two force
vectors and £, and f,are the unit vectors parallel to the two forces.

Numerical example:

F, = 20 MN; and f, plunges 30° to the N 40° W
F, = 30 MN,; and £, plunges 40° to the N35°E

Let R be the resultant force acting on a block resting on a plane with orientation N 90° E 60° S
(60/180). The friction angle between the block and the plane is equal to 30 degrees. Is the block safe
under the effect of R ?

R Fl_Fz

sin 120  sin 24 sin 36
Thus, the magnitude, R, of the resultant vector R is equal to 42.6 MN.
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Let F be the safety factor against sliding such that

tan ¢,

F =
tan ¢,

where ., is the friction angle available for design (equal to ¢), and
.., is the friction angle required for design and to reach a fixed value of the safety factor.
As an example, if §,,,; = 30° and ¢, = 15°, the safety factor would be equal to 2.5.

If we decide to design a slope with a fixed safety factor F, the resultant force would have to be
located on a friction circle of radius (b,,q.
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Forces that can enter into rock slope stability calculations include:

rock block weight, W

loads transmitted by adjacent blocks
water forces, U

earthquake forces

support forces.

Convention: use the lower hemisphere (LH) stereographic projection. # is the normal pointed out
of the block, into the support, and the forces plotted are those acting on the block.

Block weight
-

w - :

* Water force U nokmal to
contact plane in the -n
direction,

iy
support force Tb'

The earthquake force is treated as a "pseudostatic" force with constant acceleration a=gK . The
inertlal force is then equal to

F=WK

The direction of K is opposed to the earthquake acceleration.

CVEN 5768 - Lecture Notes 4
© B. Amadei



2.4 Example # 1

A block weighing 100 MN rests on a plane whose orientation is N 40° W, 30° SW (30/230) .The
available friction angle is believed to be 45 degrees.

a) Is the block stable under its own weight?
b) What is the safety factor of the block under its own weight?

c) We want to raise the safety factor to 2.5 by using rock bolts. What is the minimum bolt force
that has to be applied to reach that safety factor?

d) What is the bolt force that has to be applied to reach that safety factor if the bolts are installed
60 degrees below horizontal (minimum bolt length criterion)?
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2.5 Example # 2

We are given a plane P daylighting into a cut and having attitude as follows: N 30° W, 50° NE
(50/060) .The weight of a potentially sliding mass resting on plane P is 400 tons (metric tons)
on an area of 200 m .The friction angle is believed to be 30 degrees.

a) Find the direction and magnitude of the minimum rock bolt force to achieve a factor of safety of
1.0, and a factor of safety of 1.5.

b) What water pressure acting on plane P could cause failure after rock bolts are installed for a safety
factor of 1.5?

c) Consider the sliding rock mass without the rock bolts. What is the cohesion needed to increase the
frictional resistance along plane P such that a safety factor of 1.0 is achieved when the sliding mass
is under its own weight?
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2.6 Example # 3

A block weighing 200 MN rests on a plane striking North and dipping 60° W (60/270) .The available
friction angle is believed to be 33 degrees.

a) Find the minimum force for stabilizing the block with a safety factor of 2 using rock bolts.

b) Find the force for stabilizing the block with a safety factor of 2 if the bolts are installed 10 degrees
below horizontal to the N 76 E.

c) What inertia force associated with ground motion initiates slip if the inertia force acts horizontally
to the North? The bolts are installed as in case b) before the earthquake.
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3. WEDGE SLIDING WITH TWO FREE SURFACES
3.1 Fundamentals

Intersecting discontinuity surfaces may liberate tetrahedral wedges. Consider only wedges with two
of their four surfaces being free surfaces.

Consider two planes 1 and 2 with friction angles ¢, and ¢,, respectively. Let 7 and 5, be unit vectors
normal to planes 1 and 2 respectively. The unit vectors are pointing into the corresponding supporting
planes. Let ], be a unit vector parallel to the line of intersection of planes 1 and 2. Vector I, points
into the free space.

The wedge can experience three possible modes of sliding: (1) Sliding on plane 1 alone, (2) Sliding
on plane 2 alone, and (3) sliding on planes 1 and 2 parallel to the line of intersection I,. Wedge failure
requires that the wedge is free to move kinematically and that friction is mobilized along one or two
planes depending on the failure mode.

Let R be the total applied force on the wedge with R =R, + R, where R is the fraction of R that is
acting on plane 1 and R, the fraction of R that is acting on plane 2.

In addition,
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The mechanics of sliding on plane 1 or plane 2 alone is identical to the one discussed in Section 2.
However, there is an additional constraint: sliding on a single plane is possible only within a restricted
set of directions in the plane. There are sliding directions on plane 1 that will be associated with
closing on plane 2 and vice versa. When sliding takes place on one plane only, the total force Ris
carried by that plane.

The great circle (f 12> 1,) bounds the region of kinematically possible slip on plane 1. Likewise, the
great circle (1,,, n,) bounds the region of kinematically possible slip on plane 2. Between these two
great circles, there is a region in which slip is possible along the line of intersection I,,. At limiting
equilibrium in the intersection failure mode, full friction has been mobilized on planes land 2
simultaneously. The force R, consists of a normal force and a shear force parallel to I,andis §,
degrees from ;. Likewise, the force R, consists of a normal force and a shear force parallel to I,and
is ¢, degrees from n,.

Given the friction angles ¢, and ¢,, it is possible to construct a generalized safe zone including all
possible modes of movement of the wedge. When the safe zone has been constructed, one examines
the orientation of the resultant R with respect to the safe zone. The orientation tells whether the
wedge is stable or unstable and indicates the mode of potential slip.

For a wedge, two safety factors are introduced

tan ¢l avail = tan d>2 avail

F = 3
tan 4’l req. tan <b2 req.

Note that for a given position of R in the safe zone of the wedge, there are several combinations for
F, and F,.
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3.2 Example

Consider a rock wedge with weight equal to 500 MN.
Plane 1 : NS9°W60°W ¢, =30°

Plane 2 : N 0° E 45° ¢, = 40°

a) Is the block safe under its own weight?

b) Find the magnitude of bolting force for a safety factor of 2 on each plane. Bolts are installed 10
degrees below horizontal to the North.

c) Assume the bolts are installed as in question b) What should be the water pressure on planes 1 and
2 to create sliding?

d) Assume the bolts are installed as in question b) .What should be the water pressure on plane 2
alone to create sliding on both planes?

e) What inertia force associated with ground motion initiates slip if the inertia force acts 20 degrees
above horizontal to the S 30° W?

Note: The rock wedge line of intersection I, is assumed to daylight. The upper free surface of the
wedge is assumed to be horizontal for all practical purposes.
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