- 1) Consider the geometry of Figure 1b and two orthogonal joint sets with spacings S_1 and S_2 intersecting the vertical hole. Since the joint sets are orthogonal, their dip angles α_1 and α_2 are such that $\alpha_1 + \alpha_2 = \pi/2$. What is the expression for the apparent fracture frequency along the borehole in terms of the true fracture frequencies $f_1 = 1/S_1$ and $f_2 = 1/S_2$? Assume that $S_1 = S_2 = S$, and $\alpha_1 = \alpha$. Plot in a polar diagram the variation of F/f (where f = 1/S) with α as it varies between 0 and 2π .
- 2) Consider the shearing of a joint with the geometry of Figure 11. The joint surface is smooth with zero cohesion and a friction angle φ . Let *i* be the inclination angle of the joint surface with respect to the horizontal. Show that the shear strength of the inclined joint is equal to $\tau = \sigma_n \tan(\varphi + i)$.
- 3) For the geometry of the plane shown in Figure 3b derive the following two equations:

$$tan\psi_a = tan\psi \cdot cos\beta$$

$$tan\psi_{\alpha} = tan\psi \cdot sin\alpha$$

- 4) If the attitude of a plane is N 75 $^{\circ}$ W 22 $^{\circ}$ NE, what is its apparent dip in the direction N 50 $^{\circ}$ E?
- 5) Two lines define a plane. From two apparent dips: (i) $\psi_{a1} = 10^{\circ}$ in the N 72° W direction, and (ii) $\psi_{a2} = 25^{\circ}$ in the N 35° E direction. Determine the strike and true dip angles of the plane.
- 6) A certain bed dips 40° due North. In what direction will its apparent dip be exactly half as great?

- 2) Consider the shearing of a joint with the geometry of Figure 11. The joint surface is smooth with zero cohesion and a friction angle φ . Let *i* be the inclination angle of the joint surface with respect to the horizontal. Show that the shear strength of the inclined joint is equal to $\tau = \sigma_n \tan(\varphi + i)$.
- 3) For the geometry of the plane shown in Figure 3b derive the following two equations:

$$tan\psi_a = tan\psi \cdot cos\beta$$

$$tan\psi_a = tan\psi \cdot sin\alpha$$

- 4) If the attitude of a plane is N 75 $^{\circ}$ W 22 $^{\circ}$ NE, what is its apparent dip in the direction N 50 $^{\circ}$ E?
- 5) Two lines define a plane. From two apparent dips: (i) $\psi_{a1} = 10^{\circ}$ in the N 72° W direction, and (ii) $\psi_{a2} = 25^{\circ}$ in the N 35° E direction. Determine the strike and true dip angles of the plane.
- 6) A certain bed dips 40° due North. In what direction will its apparent dip be exactly half as great?

- 2) Consider the shearing of a joint with the geometry of Figure 11. The joint surface is smooth with zero cohesion and a friction angle φ . Let *i* be the inclination angle of the joint surface with respect to the horizontal. Show that the shear strength of the inclined joint is equal to $\tau = \sigma_n \tan(\varphi + i)$.
- 3) For the geometry of the plane shown in Figure 3b derive the following two equations:

$$tan\psi_a = tan\psi \cdot cos\beta$$

$$tan\psi_a = tan\psi \cdot sin\alpha$$

- 4) If the attitude of a plane is N 75 $^{\circ}$ W 22 $^{\circ}$ NE, what is its apparent dip in the direction N 50 $^{\circ}$ E?
- 5) Two lines define a plane. From two apparent dips: (i) $\psi_{a1} = 10^{\circ}$ in the N 72° W direction, and (ii) $\psi_{a2} = 25^{\circ}$ in the N 35° E direction. Determine the strike and true dip angles of the plane.
- 6) A certain bed dips 40° due North. In what direction will its apparent dip be exactly half as great?

- 2) Consider the shearing of a joint with the geometry of Figure 11. The joint surface is smooth with zero cohesion and a friction angle φ . Let *i* be the inclination angle of the joint surface with respect to the horizontal. Show that the shear strength of the inclined joint is equal to $\tau = \sigma_n \tan(\varphi + i)$.
- 3) For the geometry of the plane shown in Figure 3b derive the following two equations:

$$tan\psi_a = tan\psi \cdot cos\beta$$

$$tan\psi_a = tan\psi \cdot sin\alpha$$

- 4) If the attitude of a plane is N 75 $^{\circ}$ W 22 $^{\circ}$ NE, what is its apparent dip in the direction N 50 $^{\circ}$ E?
- 5) Two lines define a plane. From two apparent dips: (i) $\psi_{a1} = 10^{\circ}$ in the N 72° W direction, and (ii) $\psi_{a2} = 25^{\circ}$ in the N 35° E direction. Determine the strike and true dip angles of the plane.
- 6) A certain bed dips 40° due North. In what direction will its apparent dip be exactly half as great?

- 2) Consider the shearing of a joint with the geometry of Figure 11. The joint surface is smooth with zero cohesion and a friction angle φ . Let *i* be the inclination angle of the joint surface with respect to the horizontal. Show that the shear strength of the inclined joint is equal to $\tau = \sigma_n \tan(\varphi + i)$.
- 3) For the geometry of the plane shown in Figure 3b derive the following two equations:

$$tan\psi_a = tan\psi \cdot cos\beta$$

$$tan\psi_a = tan\psi \cdot sin\alpha$$

- 4) If the attitude of a plane is N 75 $^{\circ}$ W 22 $^{\circ}$ NE, what is its apparent dip in the direction N 50 $^{\circ}$ E?
- 5) Two lines define a plane. From two apparent dips: (i) $\psi_{a1} = 10^{\circ}$ in the N 72° W direction, and (ii) $\psi_{a2} = 25^{\circ}$ in the N 35° E direction. Determine the strike and true dip angles of the plane.
- 6) A certain bed dips 40° due North. In what direction will its apparent dip be exactly half as great?

- 2) Consider the shearing of a joint with the geometry of Figure 11. The joint surface is smooth with zero cohesion and a friction angle φ . Let *i* be the inclination angle of the joint surface with respect to the horizontal. Show that the shear strength of the inclined joint is equal to $\tau = \sigma_n \tan(\varphi + i)$.
- 3) For the geometry of the plane shown in Figure 3b derive the following two equations:

$$tan\psi_a = tan\psi \cdot cos\beta$$

$$tan\psi_a = tan\psi \cdot sin\alpha$$

- 4) If the attitude of a plane is N 75 $^{\circ}$ W 22 $^{\circ}$ NE, what is its apparent dip in the direction N 50 $^{\circ}$ E?
- 5) Two lines define a plane. From two apparent dips: (i) $\psi_{a1} = 10^{\circ}$ in the N 72° W direction, and (ii) $\psi_{a2} = 25^{\circ}$ in the N 35° E direction. Determine the strike and true dip angles of the plane.
- 6) A certain bed dips 40° due North. In what direction will its apparent dip be exactly half as great?

- 2) Consider the shearing of a joint with the geometry of Figure 11. The joint surface is smooth with zero cohesion and a friction angle φ . Let *i* be the inclination angle of the joint surface with respect to the horizontal. Show that the shear strength of the inclined joint is equal to $\tau = \sigma_n \tan(\varphi + i)$.
- 3) For the geometry of the plane shown in Figure 3b derive the following two equations:

$$tan\psi_a = tan\psi \cdot cos\beta$$

$$tan\psi_a = tan\psi \cdot sin\alpha$$

- 4) If the attitude of a plane is N 75 $^{\circ}$ W 22 $^{\circ}$ NE, what is its apparent dip in the direction N 50 $^{\circ}$ E?
- 5) Two lines define a plane. From two apparent dips: (i) $\psi_{a1} = 10^{\circ}$ in the N 72° W direction, and (ii) $\psi_{a2} = 25^{\circ}$ in the N 35° E direction. Determine the strike and true dip angles of the plane.
- 6) A certain bed dips 40° due North. In what direction will its apparent dip be exactly half as great?

- 2) Consider the shearing of a joint with the geometry of Figure 11. The joint surface is smooth with zero cohesion and a friction angle φ . Let *i* be the inclination angle of the joint surface with respect to the horizontal. Show that the shear strength of the inclined joint is equal to $\tau = \sigma_n \tan(\varphi + i)$.
- 3) For the geometry of the plane shown in Figure 3b derive the following two equations:

$$tan\psi_a = tan\psi \cdot cos\beta$$

$$tan\psi_a = tan\psi \cdot sin\alpha$$

- 4) If the attitude of a plane is N 75 $^{\circ}$ W 22 $^{\circ}$ NE, what is its apparent dip in the direction N 50 $^{\circ}$ E?
- 5) Two lines define a plane. From two apparent dips: (i) $\psi_{a1} = 10^{\circ}$ in the N 72° W direction, and (ii) $\psi_{a2} = 25^{\circ}$ in the N 35° E direction. Determine the strike and true dip angles of the plane.
- 6) A certain bed dips 40° due North. In what direction will its apparent dip be exactly half as great?

- 2) Consider the shearing of a joint with the geometry of Figure 11. The joint surface is smooth with zero cohesion and a friction angle φ . Let *i* be the inclination angle of the joint surface with respect to the horizontal. Show that the shear strength of the inclined joint is equal to $\tau = \sigma_n \tan(\varphi + i)$.
- 3) For the geometry of the plane shown in Figure 3b derive the following two equations:

$$tan\psi_a = tan\psi \cdot cos\beta$$

$$tan\psi_a = tan\psi \cdot sin\alpha$$

- 4) If the attitude of a plane is N 75 $^{\circ}$ W 22 $^{\circ}$ NE, what is its apparent dip in the direction N 50 $^{\circ}$ E?
- 5) Two lines define a plane. From two apparent dips: (i) $\psi_{a1} = 10^{\circ}$ in the N 72° W direction, and (ii) $\psi_{a2} = 25^{\circ}$ in the N 35° E direction. Determine the strike and true dip angles of the plane.
- 6) A certain bed dips 40° due North. In what direction will its apparent dip be exactly half as great?

- 2) Consider the shearing of a joint with the geometry of Figure 11. The joint surface is smooth with zero cohesion and a friction angle φ . Let *i* be the inclination angle of the joint surface with respect to the horizontal. Show that the shear strength of the inclined joint is equal to $\tau = \sigma_n \tan(\varphi + i)$.
- 3) For the geometry of the plane shown in Figure 3b derive the following two equations:

$$tan\psi_a = tan\psi \cdot cos\beta$$

$$tan\psi_a = tan\psi \cdot sin\alpha$$

- 4) If the attitude of a plane is N 75 $^{\circ}$ W 22 $^{\circ}$ NE, what is its apparent dip in the direction N 50 $^{\circ}$ E?
- 5) Two lines define a plane. From two apparent dips: (i) $\psi_{a1} = 10^{\circ}$ in the N 72° W direction, and (ii) $\psi_{a2} = 25^{\circ}$ in the N 35° E direction. Determine the strike and true dip angles of the plane.
- 6) A certain bed dips 40° due North. In what direction will its apparent dip be exactly half as great?