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1. INTRODUCTION

Most planar and linear features in geology are three dimensional. Planar features include, for instance,
fractures, faults, joints, foliation and bedding planes. Linear features include striations, lines of
intersection of fracture planes, fold axes, normal of fracture planes, etc... It is often difficult to
visualize how these different features are oriented in space and how they interact with each other.
Hemispherical projections are graphical methods whereby planes and lines in space can be
represented in two dimensions on a piece of paper.

Hemispherical projections are of great value in geology to identify preferred directions of fracturing
in a rock mass or in structural geology when analyzing the modes of deformation and fracturing at
the micro and macro scales. In engineering, and in particular in rock mechanics, hemispherical
projections can also be used to identify rock blocks formed by the intersection of discontinuities and
conduct stability analysis of such blocks for surface or underground excavations. Force vectors can
also be represented using hemispherical projections. Several authors have discussed the use of
hemispherical projections in geology and rock mechanics. They include Phillips (1971), Ragan (1973),
Goodman (1976), (1989), Priest (1985) and Goodman and Shi (1989).

Before discussing the different types of projection, recall the basic orientation angles that are used
in geology to describe lines and planes in space:

(1) The orientation of a line in three dimensions is defined by two angles:

* Plunge | - acute angle measured in a vertical plane between the line and the horizontal. It varies
between -90° and 90°. Positive values are for lines pointing downward.

* Trend [3 - geographical azimuth measured in a clockwise rotation from North of the vertical plane
containing the line of plunge Y. It varies between 0 and 360°.

The orientation of a line is recorded in terms of 3 and Y as a three digit and a two digit number
separated by a slash (example 201/65).

(2) The orientation of a plane can be defined by two angles (i) strike and dip angles or (ii) dip
direction and dip angles. These angles are defined as follows:

* Strike - the compass direction of a line formed by the intersection of a horizontal plane and an
inclined geologic plane such as a fault, fracture, joint, etc. Because it is a compass direction, the
strike is usually expressed relative to North or South. Hence, strike is expressed as "North (or
South) so many degrees East" or "North (or South) so many degrees West".

* Dip - the angle between a horizontal plane and the plane of interest. A thin stream of water
poured on an inclined surface always runs down parallel to dip. The inclination of the water
line down from the horizontal plane is called the (true) dip angle. The true dip angle is
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always measured perpendicular to the strike line. It is the maximum inclination of the plane
to the horizontal and varies between 0 and 90°.

e Dip Direction - the angle between North and the direction of the line of true dip of an
inclined geologic plane. It is measured clockwise and varies between 0 and 360°.

e Apparent Dip - the inclination angle of a line on an inclined geologic plane measured in a
direction oblique to the strike direction. It varies between the true dip and 0°.

The orientation of a plane is recorded in terms of dip and dip direction as a three digit and a two digit
number separated by a slash. Ifthe strike and dip angles are used to define the orientation of a plane,
the direction in which the plane dips must also be defined. As an example, a plane with strike N 80°E
and dip 40° to the SE is equivalent to a plane with a dip direction of 170° and a dip angle of 40°. The
plane will be reported as 170/40 or N 80°E, 40° SE.

2. FUNDAMENTALS

Two types of hemispherical projections are available: the equal angle and the equal area projections.
The basis of those two hemispherical projections is an imaginary sphere of radius R called the
reference sphere (Figure 1). The sphere is positioned with its center at the center of the area of
projection. A horizontal diametral plane passing through the center O of the sphere is called the
projection plane. It divides the sphere into an upper and lower hemisphere. The intersection of the
projection plane with the reference sphere is called the reference circle. Any line or plane to be
projected on the projection plane is made to pass through the origin O of the sphere. Let x, y, z be
a coordinate system attached to the sphere with the x-axis pointing to the East, the y-axis pointing
to the North, and the z-axis pointing upward. Points F and F' at the top and bottom of the sphere are
called focal points. Point F is used for lower hemisphere projections whereas point F' is used for
upper hemisphere projections.

2.1 Equal Angle Projection of a Line

Consider first a line with plunge { and trend [3 piercing the sphere at two points A and A’ called poles
(Figure 2a). The lower and upper hemisphere projections of line AA' are shown in Figures 2b and 2d,
respectively. First, consider the vertical plane in Figure 2a containing points F, F, A, A'and the origin
O. That vertical plane is reproduced in Figures 2b and 2d.

In Figure 2b, a straight line is drawn from the upper focal point F to point A. The intersection of that
line with the plane of projection gives a point, a, which is by definition the Jower hemisphere
projection of line OA. Likewise, point, a' is the lower hemisphere stereographic projection of line
OA but falls outside the reference circle. Note that point, &' is usually not considered in geology
textbooks but is quite important in the engineering applications of hemispherical projections when
distinction must be made between the part of a line that points upward and the other part that points
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downward. Using simple trigonometry for triangles OaF and Oa'F, it can be shown that
Oa = Rtan(Z- I) ; Oa' = Rtan(1+1) 1)
4 2 4 2
According to Figure 2c, the x and y coordinates of points, a, and, a’, are equal to
T_Y\ . T ¥
x_ = Rtan(—--)sin ; = Rtan(—---)cos
. (4 2) B Y, (4 2) B )

and

X, = —Rtan(%+%)sinﬁ 5 Y = —Rtan(%*“%)COSﬁ 3)

Figure 2d shows the upper hemisphere projection of OA and OA'. The lower focal point F' instead
of the upper focal point F is now used for that projection. Equation (1) is replaced by the following

Oa = Rtan(z+—) ;. Oa' = Rtan(z——) @

The x and y coordinates of points, a, and, a', are again given by equations (2) and (3) with /2
replaced by -{5/2. Note that point, a, is now outside the reference circle and point, a', is in the
reference circle. For both upper and lower hemisphere projections, 0a.0a' =R

Note that equations (1)-(4) allow us to position exactly the points corresponding to the hemispherical
(upper or lower hemisphere) projection of OA and OA' without the use of any net. Remember that
the hemispherical projection of a line in space is a point on the projection plane. A vertical line
projects at the center of the reference circle. A horizontal line projects on the circumference of the
reference circle and its position depends on the trend of the line.

2.1 Equal Angle Projection of a Cone

Consider now a small cone centered at O and subtending an angle 2¢ as shown in Figure 3a. The
axis, ON, of the cone has a plunge J and a trend 3. The intersection of the cone with the sphere is
a small circle. A vertical section through the cone containing the axis ON forms a wedge also
subtending the same angle 2¢ (Figure 3b). Let OA, and OA, be the two lines defining that wedge.
The lower hemisphere projection of those lines and the axis ON will give three points a,, a, andn. It
can be shown that a,a, is the diameter of a circle that represents the lower hemispherical projection
of the cone on the projection plane (Figure 3c). Using equations (1)-(3), the radius, 1, of the circle
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and the coordinates x,, y, of its center, c, are equal to

_ R m_ W)y B D)
r 2[tan(4 > ) tan(4 . )] "

x, = OcsinB ; y, = Oc.cosp

with

R - +
Oc = E[tm(%-(l;d’l) + tan(%-(—"’;@)] (6)

Note that point, ¢, does not coincide with point, n. The lower hemispherical projection of the cone
with axis ON' shown in Figure 3a will fall outside the reference circle.

A construction similar to that shown in Figures 3b and 3c can be carried out for the upper
hemispherical projection of the cone with axis ON'. In that case, the cone with axis ON' will project
as a circle within the reference circle (Figures 3b and 3¢) whereas the cone with axis ON will project
outside the reference circle. The upper hemispherical projection of the cone with axis ON'is a circle
of radius, r, given by equation (5) and center, ¢, which is opposite to ¢ with Oc' = Oc.

For the same value of the angle ¢, equation (5) indicates that the area of the projected circle (= i)
is not constant but decreases as |/ increases. Figure 3b also illustrates where the equal angle
projection got its name. Indeed, for any value of |, the angle A;FA, is always equal to ¢ regardless
of the value of the plunge angle .

2.3 Equal Area Projection of a Line

Consider again a line with plunge angle { as shown in Figure 4. The line intersects the sphere at
points A and A'. Consider the lower hemisphere equal area projection of that line. Point A is now
projected by swinging it in a vertical plane through a circular arc centered on point F'. The projection
of OA occurs at point, a", where this circular arc intersects the horizontal plane passing through point
F'. The distance Fa" is equal to

Iqh = ¥
F'a 2R.cos(4 2) Q)

When V is equal to zero, the distance F'a" is equal to Rv/2. This means that the radius of the resultant
projection is larger by a factor of v'2 than the radius of the reference sphere. Since R is the reference
radius, point, a", is transferred to point, a, a distance Oa from point O by taking Oa = F'a"/V2. Thus,
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Oa = Rﬁ.cos(%h%) ®

The equal area projection is like peeling the skin off the lower reference hemisphere, flattening it out
and then shrinking it to a circle of radius R.

Note that the equal area projection of the cones of Figure 3a is not a circle but a fourth-order curve.
A property of the equal area projection is that for any given value of ¢, the area enclosed in the
projection of the small circle is constant for all values of . This important property is the reason why
the equal angle projection is often used in the statistical analysis of lines in space.

2.4 Equal Angle Projection of a Plane

Consider a plane P with dip angle { and dip direction [ . The plane intersects the reference sphere
along a circle as shown in Figure 5a. The equal angle projection of that circle could be determined
by considering an infinite number of lines contained in the circle and by projecting (on the upper or
lower hemispheres) each one of those lines using the method proposed above. Another method is to
use a theorem that applies to the equal angle projection only. "The equal angle projection of a circle
on the reference sphere is a circle on the projection plane". Thus, using that theorem or an infinite
number of lines we arrive to the conclusion that the equal angle projection of a plane is a circle.

In order to find the position of the center of the circle and its radius consider Figure 5b. This figure
shows a vertical section through the reference sphere passing through points F, F',0, the dip vector
OD of the plane and its opposite vector OW. The lower hemisphere projections of lines OD and OW
are represented by points, d, and, w. It can be shown that the distance dw is the diameter of the circle
representing the equal angle projection of plane P. Using equations (1)-(3), the radius, R', of that
circle and the coordinates of its center O' can be determined exactly. They are equal to

1o Rean(®- ¥ LI AN
R 2[tan(4 2) + tan(4+ 2)] Ricosy o
X, = -00'sinp ; y, = -00’cosp

with
R U Ty
00’ = —[tan(—+-X) - tan(—--+)] = Rtan
2[ (4 2) (4 2)] Ul (10)
Figure 5¢c shows the circle on the projection plane. If { is equal to zero, the plane is horizontal, R’
= R and OO' vanishes and its hemispherical projection coincides with the reference circle. On the
other hand, if J is equal to 90°, the plane is vertical, R' and OO' are equal to infinity and the
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projection of a plane is a line parallel to the strike direction.

Figure 5d shows the upper hemisphere projection of plane P on the projection plane. The radius R'
and OO' are again given by equations (9) and (10). However, the coordinates of the center are now
equal to

X, = 00'sinf ; y, = 00'cosp (11)

Note that in classical geology texts, the arc of the circle representing the equal angle projection of a
plane contained in the reference circle is considered only and the rest is neglected. For engineering
purpose, this is important since the circle helps defining two half spaces: the half space above the
plane and the half space below the plane. For the lower hemisphere projection, the half space below
the plane is contained in the projection circle whereas the half space above the plane is contained
outside the circle. The reverse is true for the upper hemisphere projection.

The projection of the normal ON to a plane can be determined using equations (1)-(4). For the
geometry of Figure 5b, the distance On = R.tan({/2). For the lower hemisphere projection (Figure
5c) the coordinates of point, n, are equal to

x, = -Onsinp ; y, = -On.cosp (12)

For the upper hemisphere projection (Figure 5d), On is replaced by -On in equation (12).
2.5 Equal Area Projection of a Plane

The equal area projection of a plane is not a circle and is in general a fourth-order curve with no
simple mathematical form.

3. POLAR PROJECTIONS AND POLAR NETS

The equal angle or equal area projection of lines in space can be determined exactly using equations
(1) to (4). Another way of doing the same thing, is to use circular grids or nets that have been
developed to facilitate the plotting procedure. Figures 6a and 6b show a polar equal angle net and a
polar equal area net, respectively.

Polar nets consist of a series of concentric circles corresponding to different values of the plunge
angle r ranging between 0 and 90° and radial lines oriented at angles ranging between 0 and 360°
with 2° increments corresponding to the trend angle 3. Note that using equation (5), you can
construct your own equal angle net by considering a series of cones centered at O with dip angle {
= 90°, and subtending an angle 2¢ ranging between 0 and 180°. For a given value of ¢, the radius
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of the circle representing the cone is equal to R.tan(¢/2). An alternative is to use equations (1) and
(2) and plot the equal angle projection of lines with trend [ ranging between 0 and 360° and dip angle
y ranging between 0 and 90°.

When using the nets of Figures 6a and 6b, a sheet of transparent tracing paper must be overlaid on
the net in order to avoid marking the net. The polar nets are ideally suited for plotting the projection
of lines in space but is of little value for plotting the projection of planes. In rock mechanics studies,
polar nets (and in particular equal area nets) are used for plotting the normals to discontinuities
mapped during a rock mechanics survey. Any clustering of data points indicates preferred directions
of discontinuity planes.

4. EQUATORIAL PROJECTIONS AND EQUATORIAL NETS

Equatorial projections are used for the projection of both lines and planes. This can be done using the
equations presented earlier or by using another set of circular grids called equatorial nets.

The equal angle equatorial net (Figure 7a), sometimes called Wulf net, consists of two sets of circles:
the big circles and the small circles. The big circles are the stereographic projection of planes that all
strike North-South and dip to the East or the West with dip angles ranging between 0 and 90° with
2° increments. The small circles are the stereographic projections of cones centered at O with
horizontal axes in the North-South direction and half-apex angle ranging between 0 and 90° with 2°
increments. They also describes the changing orientation of a given line when it is rotated about a
given North-South horizontal axis (Figures 8a and 8b).

The big circles can be constructed by using equations (9) and (10) with B =90 or 270° and  ranging
between 0 and 90° with 2° increments. The small circles can be constructed by using equations (5)
and (6) with §r = 0°, § = 0° (North pointing cone) and 3 = 180° (South pointing cone) and ¢ ranging
between 0 and 90° with 2° increments. The small circles have a radius r = R.tan(¢) and their center
is at a distance equal to = R/cos¢ from O.

The construction of the equal area net is more complex. The great and small circles of the equal angle
net are now replaced by fourth-order curves (see Figure 7b).

Note that the equatorial nets of Figures 7a and 7b contain two straight lines: the North-South and
East-West diameters. The former represents the great circle of a vertical plane with a North-South
strike. The latter corresponds to a cone with an apex angle of 180°. It is also the projection of a
vertical plane with an East-West strike. The center represents the stereographic projection of a
vertical line or the normal to the horizontal plane. Any point on an equatorial net represents by
definition a line. It is always at the intersection of a great circle (a plane in space containing the line)
and a small circle (cone containing the line making a constant apex angle with the North-South
horizontal line) (see Figure 9).

CVEN 5768 - Lecture Notes 3 Page 8
© B. Amadei



When using equatorial nets, a sheet of transparent tracing paper must be overlaid on the nets in order
to avoid marking the nets. This makes it possible to plot a plane of any general orientation by rotating
the tracing paper until the plane has its strike temporarily on the North-South diameter of the net.

The equatorial nets are ideally suited for plotting the projection of lines or planes. Equal angle nets
are used mostly for rock mechanics design whereas equal area nets are used for statistical analysis of
discontinuity data.

5. EXAMPLES

Before proceeding with the examples, you should have a copy of an equatorial equal-angle net
mounted on a reinforcing backing. A drawing pin is pressed through the back of the net at the center
of the net. A sheet of tracing paper is placed on top of the net and is free to rotate around the pin axis.
The North (N) point is marked on the tracing paper corresponding to a 0° azimuth. You may also
want to mark the South (S), East (E), and (W) directions.

To plot the projection of a line, rotate the tracing paper until the trend direction of the line lies
temporarily on an EW or NS diameter. In doing so you have placed the trend parallel to a vertical
plane. The angle of plunge can then be counted from the perimeter of the net along the EW or NS
diameter using the great circles on the net as graduations.

The plotting of the great circle and the normal to a plane is an extension of the plotting procedure for
a line.

Using the lower hemisphere stereographic projection:
(1)  Plot the projection of line 1 with a plunge of 40° to the N 30° E (30/40),
(2)  Plot the projection of line 2 with a plunge of 20° to the N 20° W (340/20),

(3)  Plot the projection of plane 1 with orientation N 50° E 20° NW (320/20) and its normal and
dip vectors. What is the apparent dip of plane 1 in the NS direction?

(4)  Plot the projection of plane 2 with orientation N 60° W 45° SW (210/45) and its normal
and dip vectors. What is the apparent dip of plane 2 in the NS direction?

(5)  What is the angle between lines 1 and 27

(6)  What is the orientation of the line of intersection, I,,, between planes 1 and 27 This can
be determined by the line of intersection between the great circles representing the two
planes. It can also be determined by first constructing the great circle representing the
plane containing the normals to planes 1 and 2. The normal to that plane gives I,,.
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(7)  Plot the locus of lines at 45° with the normal to plane 1.

6. STATISTICAL ANALYSIS OF ORIENTATION DATA

The discontinuity orientation data obtained from field measurements in boreholes or surface outcrops
can be presented graphically on a hemispherical projection. The way to do this is to plot the normals
(poles) to all the planes measured in a certain volume of rock of interest. Various symbols can be used
to differentiate between the different types of discontinuities (joints, faults, bedding joints., etc..). The
size of each symbol can also be used to represent the range of discontinuity sizes. An example of such
a plot is shown in Figure 10a.

The objective of statistical analysis is to identify groups or clusters of sub-parallel discontinuities, also
called sets, that may have major influence upon the engineering behavior of a rock mass. In the
absence of such sets, the rock mass can be said to be randomly fractured.

Contouring methods are used to determine major fracture sets from the poles on equatorial equal
area nets. In general, they consist of a three-stage process:

e Each discontinuity normal (pole) is plotted on a lower hemisphere projection;

* A sampling window (usually circular) is placed over the data, to generate a matrix of moving
average values, representing the variation in the concentration of discontinuity normals over the
projection;

* The moving average values are contoured at some appropriate interval.

The moving average is obtained by finding the sub-sample that appears within a small window placed
over the discontinuity normal data points. The window is usually a circle with a radius, r, equal to
one-tenth the sphere radius, R. Thus, the area of the window is equal to 1% of the projection area.
This method is called the floating circle counting method. The process can be done automatically by
computers or manually.

If the manual approach is used, two circles that are 2R apart need to be drawn on a strip of paper or
cut in a strip of perspex. Before proceeding with the counting process, it is necessary to construct a
square grid with a line spacing, r, to provide reference points for the counting circle (Figure 10b). The
grid is drawn on tracing paper and fixed on top of the projection containing the data points that have
to be counted. A transparent overlay is placed on top with the N, S, W, and E points marked on it.
The counting circle is positioned with its center at a grid intersection and the total sub-sample within
the circle is calculated. Let, n, be the number of poles in the sub-sample. The sub-sample is expressed
as a percentage of the total population, N, and is recorded at the grid point on the overlay with a
percentage of 100(rn/N). When one of the two counting circles on the strip falls outside the net, the
total number of poles falling within the circle is given by adding the poles in the circle and the circle
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that is diametrically opposite to it. When the counting process is complete, the transparent overlay
can be removed and contoured where the contour lines join points with same percentage. A contour
interval of 1% is usually satisfactory for most practical purposes. The inter-contour zones can also
be shaded to emphasize the different concentrations.

Figures 11a, 11b and 11c show an example of application of the floating circle contouring method
presented by Hoek and Brown (1980).

Beside the floating circle contouring method, another statistical technique consists of determining the
mean joint orientation of a cluster of poles of discontinuity. Consider a group of N discontinuities,
each one being defined by a unit vector parallel to its normal. Let R be the resultant of all unit vectors
in the group. If all the discontinuity planes are parallel, their normals must also be parallel, and the
magnitude of R denoted R must be equal to N. As the discontinuity directions become dispersed, R
becomes less than N. An index of dispersion is equal to

K=—— (13)

The coefficient K approaches infinity as the dispersion decreases. The value of K can be very helpful
in finding the probability of occurrence of a discontinuity normal in a given direction that belongs to
the group of N discontinuities. According to the Hemispherical Normal Distribution, Fisher (see
Goodman, 1976) has shown that the probability P that a normal will make an angle of {r degrees or
less with the direction of R is such that

cosy = 1 + ()log(1-P) (14)

The standard deviation of that distribution is equal to 1/VK. A chi square test must be carried out to
check to which degree the hemispherical distribution fits the data.

7. BLOCK REPRESENTATION

The stereographic projection is a valuable tool to visualize the blocky nature of hard rock masses.
Blocks are essentially volumes of rock limited by planar features. Since each plane divides the 3D
space into two half-spaces, a block can be seen as the intersection of half spaces. In the stereographic
projection (equal angle projection), a plane is represented by a circle and the top and bottom half
spaces are represented by the area inside the circle or outside depending on the lower or upper
projection is used:

* When using the UH or upper hemisphere projection (lower-focal point), the half space above a
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plane (denoted U) is contained in the projection circle whereas the half space below the plane
(denoted L) is contained outside the circle. This is shown in Figure 12a for a plane P;.

e When using the LH or lower hemisphere projection (upper-focal point), the half space below a
plane (denoted L) is contained in the projection circle whereas the half space above the plane
(denoted U) is contained outside the circle.

If a rock mass is cut by i = 1, N discontinuity planes, each plane can be represented by a circle and
the upper and lower half spaces U; and L, can be identified. Each region on the stereonet will consist
of a combination of U;'s and L;'s. For instance, block 1 in Figure 12b is formed by the intersection of
four discontinuity planes and its "stereographic” label is U;U,U;U,. Note that the stereographic
projection of a block (i.e a 3D object) is a surface on the projection plane.

Block theory is a branch of rock mechanics dealing with the characterization of blocks, their
mechanical behavior and their stability. The theory was pioneered by Goodman (1976, 1989) and
Goodman and Shi (1985). An important concept in block theory is that of "key block", i.e. a block
that is the most critical in the stability of an excavation (surface or underground). They may be more
than one key blocks at a given time in a rock mass. Being able to identify those blocks and understand
their stability is paramount in block theory. Figure 13 shows the different types of blocks in the block
theory.

8. ANALYSIS OF BOREHOLE DATA

The problem here is how to determine the orientation of a given fracture plane intersecting two or
more boreholes. Consider the geometry of Figure 14a showing a fracture plane of unknown
orientation intersecting a borehole core of diameter, D. The angle ¢ that the normal to the fracture
plane makes with the core axis can be determined by measuring the distances h, and h, along the
borehole axis from an arbitrary reference datum (a-a). The two distances are elevations of the two
extremities of the longitudinal axis of the ellipse representing the trace of the plane on the core
surface. The angle ¢ is equal to

_ -1 h,-h,
¢ = tan (—D ) (15)

Unless the core is oriented, it is not possible to determine the complete orientation of the fracture
plane except when the angle ¢ is zero which corresponds to a borehole with axis perpendicular to
the fracture plane. We will assume that we do not have down-the-hole core orientation devices and
that the angle ¢ is not zero. A second borehole inclined with respect to the first is also assumed to
be available.

For a given value of the angle ¢ and a given borehole axis, the locus of all possible normals to the
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fracture plane is a cone subtending an angle 2¢ (see Figure 14b). On an equal LH stereographic
projection, this will be represented as a circle with radius and center given by equations (5) and (6).
The borehole axis with trend 3 and plunge § will be represented by a point, L, in the circle with
coordinates given by equation (2).

If we know the orientation angles (8, {,) of borehole axis #1, the orientation angles (3,, ,) of
borehole axis #2, and the angles ¢, and , measured on two sets of core samples, it is then possible
to construct two circles representing the cones with apex angles 2¢), and 2¢,. The two circles will
intersect at two points corresponding to two lines in space, each one being a possible normal to the
fracture plane passing by both boreholes. Additional information (qualitative information) may help

in deciding which of the two solutions is the correct one. A third borehole intersecting the same
fracture will indicate which orientation is correct since three points define a plane.

9. REFERENCES
Goodman, R.E. (1976) Methods of Geological Engineering, West Publ.

Goodman, R.E. (1989) Appendix 5 in Introduction to Rock Mechanics, Wiley.

Goodman, RE. and Shi, G-H. (1985) Block Theory and its Applications to Rock Engineering,
Prentice Hall, 1985.

Hoek, E and Brown, E. T. (1980) Underground Excavations in Rock, Institution of Mining and
Metallurgy, London.

Philipps (1971) The Use of Stereographic Projection in Structural Geology, E. Arnold.
Priest, S.D. (1985) Hemispherical Projection Methods in Rock Mechanics, Allen and Unwin.

Ragan (1985) Structural Geology, an Introduction to Geometrical Techniques, Wiley.

CVEN 5768 - Lecture Notes 11 Page 13
® B. Amadei



F Focus for lower hemisphere
projection

—_ = T/ /////‘~ ~ projection
2 g y plane
/'//i///////' Lg////j/- ////,//<;i! (diametral

: - 7 g d ,/'/ plane)
X e
4 S

4 Réference

sphere of

Lerence x (East) radius R
cirele.

‘ /
F' Focus for upper hemisphere
projection

Figure 1. Reference sphere and projection plane.




——

Figure 2. (a) Line in space intersecting the reference sphere at A and A’

r\urae direchon

ne of

\nteces)

lower hemisphere
projection of line AA"

—» Plonge

duedtton

: stereographic
projection of(0A

a': stereographic
g . projection offAa’

Figure 2. (b) Lower hemisphere stereographic projection of OA and OA'(vertical section)



Y
X (Ead—)

Figure 2. (c) Projection of Oa and Oa' on the x and y axes for lower hemisphere projection
(plan view)




-1

Fﬂoqae.

direcion
upper
hemisphere
projection
of line AA'

Upper Hemisphere Stereographic
Projection

Figure 2. (d) Upper hemisphere stereographic projection of OA and OA' (vertical section).




! l ! |
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cone with axis ON'
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Figure 6. (a) Polar equal area net.
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Figure 7. (a) Equatorial equal angle net.
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Figure 8. (a) Locus of a line making constant angle with NS axis, (b) Lower hemisphere

stereographic projection of cone.
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Figure 10. (a) Example of alower hemisphere plot of discontinuity normals (after Priest, 1985).
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Figure 10. (b) Floating circle counting method (after Priest, 1985).
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Figure 11. Steps in the analysis of poles of discontinuities in a hard rock mass using the floating
circle counting method (after Hoek and Brown, 1980).
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Figure 13. Types of blocks used in block theory (after Goodman and Shi, 1985).
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