TABLE OF CONTENTS

PART 1 GENERAL...1
1.01 WORK INCLUDED ..1
1.02 RELATED WORK PROVIDED UNDER OTHER SECTIONS – PROVIDED BY OTHERS1
1.03 DEFINITIONS ...1
1.04 QUALITY ASSURANCE ...4
1.05 DOCUMENT VERIFICATION ...5
1.06 SUBMITTALS ...6
1.07 PERMIT, TEST AND INSPECTION. ...6
1.08 MAINTENANCE ..6

PART 2 PRODUCTS ..7
2.01 MATERIALS ..7
2.02 CAR AND GROUP PERFORMANCE ...8
2.03 OPERATION ..8
2.04 MACHINE ROOM EQUIPMENT ..12
2.05 HOISTWAY EQUIPMENT ...14
2.06 HOISTWAY ENTRANCES ...16
2.07 CAR EQUIPMENT ...16
2.08 CAR ENCLOSURE ..20
2.09 HALL CONTROL STATIONS ...21
2.10 SIGNALS ...21
2.11 INTERCOM AND DISTRESS SIGNAL SYSTEM ...22
2.12 MONITORING CAPABILITES ...23

PART 3 EXECUTION .. 23
3.01 SITE CONDITION INSPECTION ..23
3.02 PRODUCT DELIVERY, STORAGE, AND HANDLING ..24
3.03 INSTALLATION ...24
3.04 FIELD QUALITY CONTROL ..24
3.05 ADJUSTMENTS ..24
3.06 CLEANUP ..25
3.07 ACCEPTANCE REVIEW AND TESTS ..25
3.08 PURCHASER’S INFORMATION ...26
SECTION 14240
HYDRAULIC ELEVATORS

PART 1 GENERAL

1.01 WORK INCLUDED

A. Hydraulic elevator(s) as follows:

B. All engineering, equipment, labor, and permits required to satisfactorily complete elevator installation required by Contract Documents.

C. Applicable conditions of General, Special, and Supplemental Conditions, and Division 1.

D. Warranty / Preventive maintenance as described herein.

E. Additional equipment or finishes furnished under other sections, installed under this section:
 1. Building announcement speaker(s) in Elevator cabs
 2. In car Firefighters’ telephone jack(s)
 3. CCTV system – If required
 4. Provisions for and mounting of Card reader security system- if required
 5. Car interior finishes
 6. Car finish flooring

1.02 RELATED WORK PROVIDED UNDER OTHER SECTIONS – PROVIDED BY OTHERS

A. Hoistway and Pit:
 1. Clear, plumb, substantially flush hoistway with variations not to exceed 1” at any point.
 2. Divider beams between adjacent elevators at each floor, pit, and overhead. Supports at each floor for car and counterweight guide rail fastening, including supports for car guide rail fastening above top landing. Intermediate car guide rail support when floor heights exceed 14’-0” or as designated on contract drawings. Intermediate counterweight guide rail supports where floor heights exceed 16’-0”. Building supports not to deflect in excess of 1/8” under normal conditions
 3. Hoist machine supports including two (2) additional horizontal supports above the top terminal landing on the machine side of the hoistway. Locate as required for selected Contractors’ equipment.
 4. Wall blockouts and fire rated closure for control and signal fixture boxes which penetrate walls.
 5. Cutting and patching walls and floors.
 6. Concrete wall pockets and/or structural steel beams for support of hoist
machine, rope sheaves, and dead-end hitch beams. Support deflection shall not exceed 1/1666 of span under static load.

7. Erect front hoistway wall after elevator entrances are installed.
8. Grout floor up to hoistway sills and around hoistway entrances.
9. Lockable, self-closing, fire-rated pit door (walk in pits only)
10. Pit access stationary ladder for each elevator. Retractable ladder if provided shall include an electrical contact conforming to ASME A17.1, Rule 2.2.2.4.2.7.
11. Structural support at pit floor for buffer impact loads, guide rail loads.
12. Waterproof pit. Indirect waste drain or sump with flush grate and pump. Sump pump/drain capacity minimum 3000 gallons per hour, per elevator.
13. Groundwater sumps residing in elevator shafts must be protected from any water generated in the elevator shaft. Groundwater sumps are not to be used or considered as elevator emergency drain pump unless written approval is given by the Colorado Division of Oil and Public Safety Conveyance Program.
14. Protect open hoistways and entrances during construction per OSHA Regulations.
15. Protect car enclosure, hoistway entrance assemblies, and special metal finishes from damage.
17. Hoistway pressurization for smoke control. If required.
18. Hoist machine ventilation, heating, and/or cooling. Maintain minimum temperature of 55°F, maximum 90°F at the location of the hoist machine.
19. Seal fireproofing to prevent flaking.
20. Single Blind hoistway Rules - Provide emergency access door every third floor and maximum 36'-0" sill to sill. Minimum 28" wide x 80" high single slide or swing, self-closing and self-locking with key removable in locked position only. Mark room side of door with 2" high letters, “Danger: Elevator Hoistway.” Door operable from hoistway side without key.
21. Finished Floor Covering: Unless otherwise specified, Provide Rubber tile 1/8” thick with 1” diameter by 0.025” raised circular pattern. Color to be determined.

B. Electrical Service, Conductors, and Devices:
1. Lighting and GFCI convenience outlets in pit. Provide one additional non-GFCI convenience outlet in pit for sump pump.
2. Three-phase mainline copper power feeder with true earthen grounding to terminals of each elevator controller in the controller space with protected lockable “open” disconnecting means.
3. Single-phase copper power feeder to each elevator controller for car lighting and exhaust blower with individual protected lockable “open” disconnecting means located in the controller space.
4. Emergency telephone line to each individual elevator control panel in elevator controller space.
5. Fire alarm initiating devices in each elevator lobby for each group of
elevators or single elevator and each machine room to initiate firefighters’ return feature. Device at top of hoistway if sprinklered. Provide alarm initiating signal wiring from hoistway or controller space connection point to elevator controller terminals. Device in machine room and at top of hoistway to provide signal for general alarm and discrete signal for Phase II firefighters’ operation.

6. Temporary power and illumination to install, test, and adjust elevator equipment.
7. Firefighters’ telephone jack and announcement speaker in car with connection to individual elevator control panels in the controller space and elevator control panel in firefighters’ control room. If required.
8. Conduit from the closest hoistway of each elevator group or single elevator to the firefighters’ control room and/or main control console. If required. Coordinate size, number, and location of conduits with Elevator Contractor.
9. Means to automatically disconnect power to affected elevator drive unit and controller prior to activation of the controller space fire sprinkler system, and/or hoistway fire sprinkler system. Manual shut-off means shall be located outside bounds of the controller space. If sprinklers are required
10. When sprinklers are provided in the hoistway all electrical equipment, located less than 4'-0" above the pit floor shall be identified for use in wet locations. Exception: seismic protection devices.
11. Single-phase power feeders to main control console and firefighters’ control panel.
12. Single-phase power feeder to elevator intercom amplifier in the elevator machine room. If present.
13. Single-phase power feeder to each elevator controller with protected, lockable “open” disconnecting means for car heating and air conditioning unit. If present.
14. Single-phase power feeders to controller(s) for CCTV with lockable “open” disconnecting means. If present.

C. Standby Power Provision: If present or required
1. Standby power of normal voltage characteristics via normal electrical feeders to run one elevator at a time in each elevator group and/or single elevator unit at full-contract car speed and capacity.
2. Conductor from auxiliary form “C” dry contacts, located in the standby power transfer switch to a designated elevator control panel in each elevator group and/or single elevator unit. Provide a time delay of 30 - 45 seconds for pre-transfer signal in either direction.
3. Standby single-phase power to group controller, and each elevator controller for car lighting, exhaust blower, emergency signaling device, intercom amplifier, hoist machine cooling fan, car heating and air conditioning unit.
4. Standby power to machine room, pit, and overhead machinery space lighting.
5. Standby power to hoist machine and control room ventilation or air
conditioning.
6. Standby power to emergency communications device(s).

1.03 DEFINITIONS

A. Terms used are defined in the latest edition of the Safety Code for Elevators and Escalators, ASME A17.1.

B. Reference to a device or a part of the equipment applies to the number of devices or parts required to complete the installation.

C. Provisions of this specification are applicable to all elevators unless identified otherwise.

1.04 QUALITY ASSURANCE

A. Approved Manufacturers: Alternate Providers must receive approval of Owner at least 14 calendar days prior to bid date.
2. Car Enclosure: Eklund’s Inc., Gunderlin, Ltd., Hauenstein & Burmeister, KONE, Otis, Schindler, ThyssenKrupp, Tyler Schumacher
3. Hoistway Entrance: Hauenstein & Burmeister, KONE, Minnesota Elevator, Otis, Schindler, ThyssenKrupp, Tyler, Columbia
4. Fixtures: KONE, Otis, Thyssen Krupp, Schindler, EPCO, GAL Manufacturing, Innovation Industries,
5. Freight Vertical Bi-Parting Door: Courion, EMS, Peelle

B. Compliance with Regulatory Agencies: Comply with most stringent applicable provisions of following codes, laws, and/or authorities, including revisions and changes in effect:
1. Safety Code for Elevators and Escalators, ASME A17.1
2. Guide for Inspection of Elevators, Escalators, and Moving Walks, ASME A17.2
3. Elevator and Escalator Electrical Equipment, ASME A17.5
4. National Electrical Code, NFPA 70
5. Americans with Disabilities Act, ADA
6. Local Fire Authority
7. Requirements of IBC, DSA, and all other Codes, Ordinances and Laws applicable within the governing jurisdiction
9. Uniform Federal Accessibility Standard, UFAS
10. University of Colorado at Boulder standards and practices

C. Warranty:
1. Material and workmanship of installation shall comply in every respect with Contract Documents. Correct defective material or workmanship
which develops within one year from date of substantial completion of all work to satisfaction of Owner at no additional cost, unless due to ordinary wear and tear, or improper use or care by Purchaser. Perform maintenance in accordance with terms and conditions indicated in the Preventive Maintenance Agreement.

2. Defective is defined to include, but not limited to: operation or control system failures, car performance below required minimum, excessive wear, unusual deterioration or aging of materials or finishes, unsafe conditions, the need for excessive maintenance, abnormal noise or vibration, and similar unsatisfactory conditions.

3. Make modifications, requirements, adjustments and improvements to meet performance requirements in Parts 2 and 3.

1.05 DOCUMENT VERIFICATION

In order to discover and resolve conflicts or lack of definition which might create problems, Provider must review Contract Documents for compatibility with its product prior to submittal of quotation. Purchaser will not pay for change to structural, mechanical, electrical, or other systems required to accommodate Provider’s equipment.

1.06 SUBMITTALS

A. Within 60 calendar days after award of contract and before beginning equipment fabrication, submit shop drawings and required materials for review as outlined in Division I. Allow 30 calendar days for response to initial submittal.

1. Scaled or Fully Dimensioned Layout: Plan of pit, hoistway and machine room with Component Listing, indicating equipment arrangement, elevation section of hoistway, details of car enclosures, hoistway entrances, and car/hall signal fixtures, and component listing.

2. Design Information: Indicate equipment lists, reactions, and design information on layouts.

4. Fixtures: Cuts, samples, or shop drawings.

5. Finish Material: Submit 3” x 12” samples of actual finished material for Architect review of color, pattern, and texture. Compliance with other requirements is the exclusive responsibility of the Provider. Include, if requested, signal fixtures, lights, graphics, Braille plates, and details of mounting provisions.

B. Acknowledge and/or respond to review comments within 14 calendar days of return. Promptly incorporate required changes due to inaccurate data or incomplete definition so that delivery and installation schedules are not affected. Provider’s revision response time is not justification for equipment delivery or installation delay.
1.07 PERMIT, TEST AND INSPECTION

A. Obtain and pay for permit, license, and inspection fee necessary to complete installation.

B. Perform test required by Governing Authority in accordance with procedure described in ASME A17.2 Guide for Inspection of Elevators, Escalators, and Moving Walks in the presence of Authorized Representative.

C. Supply personnel and equipment for test and final review by AHJ inspector, Consultant and owner as required in Part 3.

1.08 MAINTENANCE

A. Interim:

1. When one or more elevators are near completion and ready for service, the General Contractor may accept elevators for interim use and place in service prior to substantial completion of project, entirely at their own risk.

2. During this period General Contractor may pay a mutually agreed upon monthly amount per elevator for preventive maintenance to the elevator contractor. Provide a unit cost with bid documents to perform this work per elevator per month.

3. Temporary acceptance form must be acceptable to General Contractor and signed prior to use.

4. General Contractor must provide or pay for temporary hoistway and car enclosures; protect installed equipment and finishes; pay for and return elevators to elevator sub-contractor for all cleaning, repairs, and replacement of materials necessary to restore elevator to “as-new” condition as determined solely by representatives of the University of Colorado prior to final acceptance.

B. Warranty Maintenance:

1. Provide preventive maintenance and 24-hour emergency callback service for one year commencing on date of final acceptance by Purchaser. Systematically examine, adjust, clean, and lubricate all equipment. Repair or replace defective parts using parts produced by the Contractor of installed equipment. Maintain elevator control room, hoistway, and pit in clean condition.

2. Use competent personnel, acceptable to the Purchaser, supervised and employed by Contractor.

3. The warranty maintenance period specified in Item 1 above shall be extended one (1) month for each three (3) month period in which equipment related failures average more than .25 per unit per month.

4. Purchaser retains the option to delete cost of warranty maintenance from new equipment contract and remit twelve (12) equal installments directly to Contractor during period in which maintenance is being performed.

5. Use competent personnel, acceptable to the Purchaser, employed and
supervised by Contractor.

PART 2 PRODUCTS

2.01 MATERIALS

A. Steel:

B. Stainless Steel: Type 302 or 304 complying with ASTM A240, with standard tempers and hardness required for fabrication, strength and durability. Apply mechanical finish on fabricated work in the locations shown or specified, (Federal Standard and NAAMM nomenclature), with texture and reflectivity required to match Architect’s sample. Protect with adhesive paper covering.
 1. Satin: Directional polish finish (US32D). Graining directions as shown or, if not shown, in longest dimension.
 3. Textured: 5WL as manufactured by Rigidized Metals or Windsor pattern as manufactured by Rimex Metals or approved equal with .050 inches mean pattern depth with bright directional polish (satin finish).

C. Aluminum: Extrusions per ASTM B221; sheet and plate per ASTM B209.

D. Plastic Laminate: ASTM E84 Class A and NEMA LD3.1, Fire-Rated Grade (GP-50), Type 7, 0.050” ± 0.005” thick, color and texture as follows;
 1. Exposed Surfaces: Color and texture selected by Architect.
 2. Concealed Surfaces: Provider’s standard color and finish.

E. Fire-Retardant Treated Particle Board Panels: Minimum 3/4” thick backup for natural finished wood and plastic laminate veneered panels, edged and faced as shown, provided with suitable anti-warp backing; meet ASTM E84 Class “I” rating with a flame-spread rating of 25 or less, registered with Local Authorities for elevator finish materials.

F. Paint: Clean exposed metal parts and assemblies of oil, grease, scale, and other foreign matter and factory paint one shop coat of standard rust-resistant primer. After erection, provide one finish coat of industrial enamel paint. Galvanized metal need not be painted.

G. Prime Finish: Clean all metal surfaces receiving a baked enamel paint finish of oil,
grease, and scale. Apply one coat of rust-resistant primer followed by a filler coat over uneven surfaces. Sand smooth and apply final coat of primer.

H. Baked Enamel Finish: Prime finish per above. Unless specified “prime finish” only, apply and bake three (3) additional coats of enamel in the selected solid color.

2.02 CAR AND GROUP PERFORMANCE

A. Car Speed: ±10% of contract speed under any loading condition.

B. Car Stopping Zone: ±1/4" under any loading.

2.03 OPERATION

A. Approved non-proprietary microprocessor-based elevator controls and landing systems are as follows:
 1. Computerized Elevator Controls Corporation
 2. Elevator Controls Corporation
 3. Motion Control Engineering
 4. SmartRise
 5. Galaxy
 6. Original Equipment Manufacturers
 a. Major Manufacturers equipment may be substituted with documentation confirming strict adherence to Section 14215, 3.08, A, 1-9.
 i. KONE, Otis, ThyssenKrupp, Schindler

B. Selective Collective Microprocessor Based (Car(s)):
 1. Operate car without attendant from pushbuttons in car and located at each floor. When car is available, automatically start car, and dispatch it to floor corresponding to registered car or hall call. Once car starts, respond to registered calls in direction of travel and in the order the floors are reached.
 2. Do not reverse car direction until all car calls have been answered, or until all hall calls ahead of car and corresponding to the direction of car travel have been answered.
 3. Slow car and stop automatically at floors corresponding to registered calls, in the order in which they are approached in either direction of travel. As slowdown is initiated for a hall call, automatically cancel hall call. Cancel car calls in the same manner. Hold car at arrival floor an adjustable time interval to allow passenger transfer.
 4. Answer calls corresponding to direction in which car is traveling unless call in the opposite direction is highest (or lowest) call
registered.

5. Illuminate appropriate pushbutton to indicate call registration. Extinguish light when call is answered.

C. Duplex Selective Collective Microprocessor-Based, Car(s):
1. Operate cars without attendants from pushbuttons in cars and located at each floor. When cars are available, park one car at main floor (“home” car). Park other car where last used (“free” car).
2. Respond to car calls and hall calls above main floor using the free car. Once a car has started, respond to registered calls in the direction of travel and in the order the floors are reached.
3. Do not reverse car direction until all car calls have been answered, or until all hall calls ahead of the car and corresponding to the direction of car travel have been answered.
4. Slow cars and stop automatically at floors corresponding to registered calls in the order in which they are approached in either direction of travel. As slowdown is initiated for a hall call, automatically cancel hall call. Cancel car calls in the same manner. Hold car at arrival floor an adjustable time interval to allow passenger transfer.
5. Answer calls corresponding to direction in which car is traveling unless call in the opposite direction is the highest (or lowest) call registered.
6. When the free car is clearing calls, start home car to respond to:
 a. A call registered on home car pushbuttons.
 b. An up hall call registered below free car.
 c. An up or a down call registered above free car while free car is traveling down.
 d. A hall call when free car is delayed in its normal operation for a predetermined period.
7. When both cars are clearing calls, stop only one car in response to any registered hall call. Return the first car to clear its calls to main floor. Should last service required bring both cars to main floor, the first arriving car becomes the free car.
8. Illuminate appropriate pushbutton to indicate call registration. Extinguish light when call is answered.

D. Group Automatic, Car(s)
1. Include, as a minimum, the following features:
 a. Operate cars as a group capable of balancing service and providing continuity of group operation with one or more cars removed from the system.
 b. Register service calls from pushbuttons located at each floor and in each car. Slow cars and stop automatically at floors corresponding to registered calls. Make stops at successive floors for each direction of travel irrespective of order in which calls are registered except when bypassing hall calls to balance and improve overall service; stop only one car in response to a particular hall call.
Assign hall calls to specific cars and continually review and modify those assignments to improve service. Simultaneous to initiation of slow down of a car for a hall call, cancel that call. Render hall pushbutton ineffective until car doors begin to close after passenger transfer. Cancel car calls in the same manner. Give priority to coincidental car and hall calls in car assignment.

c. Operate system to meet changing traffic conditions on a service demand basis. Include provisions for handling traffic which may be heavier in either direction, intermittent or very light. As traffic demands change, automatically and continually modify group and individual car assignment to provide the most-effective means to handle current traffic conditions. Provide means to sense long-wait hall calls and preferentially serve them. Give priority to coincidental car and hall calls in hall call assignment. Accomplish car direction reversal without closing and reopening doors.

d. Use easily reprogrammable system software. Design basic algorithm to optimize service based on equalizing system response to registered hall calls and equalizing passenger trip time to shortest possible time.

e. Serve floors below main floor in a manner which logically minimizes delay in passing or stopping at main floor in both directions of travel. Provide manual means to force a stop at the main floor when passing to or from lower levels.

f. Required Features:

i. Dispatch Protection: Backup dispatching shall function in the same manner as the primary dispatching.

ii. Delayed Car Removal: Automatically remove delayed car from group operation.

iii. Position Sensing: Update car position when passing or stopping at each landing.

iv. Hall Pushbutton Failure: Provide multiple power sources and separate fusing for pushbutton risers.

v. Communication link: Provide serial or duplicate communication link for all group and individual car computers.

E. Other Items:

1. Low Oil Control: In the event oil level is insufficient for travel to the top floor, provide controls to return elevator to the main level and park until oil is added.

2. Independent Service: Provide controls for operation of each car from its pushbuttons only. Close doors by constant pressure on desired destination floor button or door close button. Open doors automatically upon arrival at selected floor.

3. Key requirements for all key operated devices must conform to the University master key plan, Medco brand.
F. Firefighters’ Service: Provide equipment and operation in accordance with Code requirements.

G. Automatic Car Stopping Zone: Stop car within 1/4” above or below the landing sill. Maintain stopping zone regardless of load in car, direction of travel, distance between landings.

H. Remote Monitoring and Diagnostics: Equip each controller with standard ports, interface boards and drives to accept maintenance, data logging, fault finding diagnostic, and monitoring computers, keyboards, modems, and programming tools. The system shall be capable of driving remote color LCD monitor(s) that continually scan and display the status of each car and call.

I. Motion Control: AC type with unit valve suitable for operation specified and capable of providing smooth, comfortable car acceleration and retardation. Limit the difference in car speed between full load and no load to not more than ±10% of the contract speed in either direction of travel.

J. Selective Leveling: Provide means to limit elevator car speed when traveling between adjacent floors.

K. Passenger Door Operation: Automatically open doors when car arrives at main floor. At expiration of normal dwell time, close doors. Reopen doors when car is designated for loading. Provide front or rear selective door operation for front and rear applications.

L. Freight Power Door Operation: Open door and gate automatically when car arrives at a floor. Control door and gate closing by using constant-pressure buttons on car or at each floor. Provide passenger sequence operation. Provide reversing safety edge device on car gate. Provide automatic door and gate closing feature with warning buzzer.

M. Standby Lighting and Alarm: Car mounted battery unit with solid-state charger to operate alarm bell and car emergency lighting. Battery to be rechargeable with minimum 5-year life expectancy. Include required transformer. Provide constant pressure test button in service compartment of car operating panel. Provide lighting integral with portion of normal car lighting system.

N. Standby Power Operation: If provided or required
 1. Upon loss of normal power, adequate standby power will be supplied via building electrical feeders to simultaneously start and run one car in each group and single cars at contract car speed and capacity.
 2. Automatically return one car at a time, in each group and single car(s), nonstop to designated floor, open doors for approximately 3.0 seconds, close doors, and park car. During return operation, car and hall call pushbuttons shall be rendered inoperative. As each car parks, system shall
immediately select the next car until all cars in a group have returned to the
designated floor. If a car fails to start or return within 30 seconds, system
shall automatically select the next car in the group to automatically return.

3. When all cars in a group have returned to the designated floor, one car in
each group shall be designated for automatic operation. When a service
demand exists for 30 seconds and designated car fails to start, next
available car in the group shall be automatically selected for operation.

4. Provide separate group selection switch(es) in firefighters’ control panel
and security control panel. If required.
 a. Switch(es) shall be labeled “STANDBY POWER OVERRIDE” with
 positions marked “AUTO” and appropriate car numbers controlled
 by each respective switch. Key shall be keyed same as key utilized
 for firefighters’ Phase I and II key switch. Key shall be removable in
 “AUTO” position only.
 b. Switch shall override automatic return and automatic selection
 functions, and cause the manually selected car to operate. Manual
 selection shall cause car to start and proceed to designated floor and
 open and close its doors before standby power is manually
 transferred to next selected car.
 c. Provide “STANDBY POWER” indicator lights, one per car, in
 firefighters’ control panel and security control panel. Indicator light
 illuminates when corresponding car is selected, automatically or
 manually, to operate on standby power.

5. Successive Starting: When normal power is restored or there has been
a power interruption, individual cars in each bank shall restart at five
second intervals.

O. Battery Standby Power Transfer: Upon loss of normal power, provide controls to
automatically lower the car(s) nonstop to the lowest landing. Upon arrival at the
lowest landing, the elevator doors shall open automatically and remain open until
regular door time has expired. The elevator shall then become deactivated. The
standby power source shall be provided via 12-volt D.C. battery units installed in
machine room, including solid-state charger and testing means mounted in a
common metal container. Battery to be rechargeable lead acid or nickel cadmium
with a 10-year life expectancy. Upon restoration of normal power, the elevator
shall automatically resume normal operation.

2.04 MACHINE ROOM EQUIPMENT

A. Arrange equipment in spaces per code requirements and to provide
unobstructed service, repair and maintenance of the equipment.

B. Pump Unit: Assembled unit consisting of positive displacement pump, induction
motor, master-type control valves combining safety features, holding, direction,
bypass, stopping, manual lowering functions, shut off valve, oil reservoir with
protected vent opening, oil level gauge, outlet strainer, drip pan, muffler, all
mounted on isolating pads. Enclose entire unit with removable sheet steel panels
lined with sound-absorbing material. Provide electronic soft start with closed transition. Design unit for 80 upstarts/hour.

C. Landing System: Solid-state, magnetic or optical type.

D. Controller: UL/CSA labeled.
 1. Compartment: Securely mount all assemblies, power supplies, chassis switches, relays, etc., on a substantial, self-supporting steel frame. Completely enclose equipment with covers. Provide means to prevent overheating.
 2. Relay Design: Magnet operated with contacts of design and material to insure maximum conductivity, long life and reliable operation without overheating or excessive wear. Provide wiping action and means to prevent sticking due to fusion. Contacts carrying high inductive currents shall be provided with arc deflectors or suppressors.
 3. Microprocessor-Related Hardware:
 a. Provide built-in noise suppression devices which provide a high level of noise immunity on all solid-state hardware and devices.
 b. Provide power supplies with noise suppression devices.
 c. Isolate inputs from external devices (such as pushbuttons) with opto-isolation modules.
 d. Design control circuits with one leg of power supply grounded.
 e. Safety circuits shall not be affected by accidental grounding of any part of the system.
 f. System shall automatically restart when power is restored.
 g. System memory shall be retained in the event of power failure or disturbance.
 h. Equipment shall be provided with Electro Magnetic Interference (EMI) shielding within FCC guidelines.
 4. Wiring: CSA labeled copper for factory wiring. Neatly route all wiring interconnections and securely attach wiring connections to studs or terminals.
 5. Permanently mark components (relays, fuses, PC boards, etc.) with symbols shown on wiring diagrams.
 6. Monitoring System Interface: Provide controller with serial data link through RJ45 Ethernet connection and install all devices necessary for monitoring function. Elevator contractor responsible to connect monitoring system interface to machine room monitoring compartment and LAN. Wiring from the LAN to the machine room monitoring compartment by others.
 7. Provide controller or machine mounted auxiliary, lockable “open,” disconnect if mainline disconnect is not in sight of controller and/or machine.
 8. Provide all diagnostics for testing, adjusting and troubleshooting within controller (including door operation).
E. Muffler: Provide in discharge oil line near pump unit. Design shall dampen and absorb pulsation and noise in the flow of hydraulic fluid.

F. Piping and Oil: Provide piping, connections and oil for the system. Buried piping shall be secondarily contained with watertight Schedule 40 PVC sleeves between elevator machine room and pit. A minimum of two sound isolation couplings shall be provided between the pump unit and oil line and the oil line and jack unit. Provide isolated pipe stands or hangers as required.

G. Noise/Vibration Isolation: All elevator equipment including their supports and fastenings to building, shall be mechanically and electrically isolated from the building structure and main line power feeders to minimize objectionable noise and vibration transmission to car, building structure, or adjacent occupied areas of building.

H. Sound Isolation:
 1. Noise level relating to elevator equipment operation in machine room shall not exceed 80 dBA.
 2. All dBA readings shall be taken three (3) feet off the floor and three (3) feet from equipment using the “A” weighted scale.

2.05 HOISTWAY EQUIPMENT

A. Guide Rails: Planed steel T-sections for car of suitable size and weight for the application, including brackets for attachment to building structure. Provide rail backing to meet Code requirements. No additional structural points of rail attachment, other than those shown on the Contract Documents, will be provided.

B. Buffers: Spring type with blocking and support channels.

C. Hydraulic Jack Assembly:
 1. Cylinder(s): Seamless steel pipe. Design head to receive unit-type packing and provide means to collect oil at cylinder head and return automatically to oil reservoir.
 2. Plunger(s): Polished seamless steel tubing or pipe. If plunger length exceeds 24 feet, provide two or more sections not exceeding 16 feet in length, or coordinate installation of longer unit at the jobsite. Join sections by internal threaded couplings. Multiple section jack units shall be factory polished while assembled and marked for proper future reassembly. Isolate plunger from car frame(s).

D. Jack Support and Fluid Shut-Off Valve(s): Provide steel pit channels to support jack assembly and transmit loads to building structure. Provide intermediate stabilizers as required. Provide manual on/off valve(s) in oil line(s) adjacent to pump unit and jack unit(s) in pit adjacent to jack unit(s).

E. Well Hole Casing:
 1. Well hole is to be provided by Elevator Contractor. No additional compensation will be allowed for unforeseen conditions of any kind or spoil removal.
 2. Install steel outer casing minimum 18” diameter. Install watertight sleeve over jack assembly for secondary containment prior to insertion into the outer casing. Extend PVC
sleeve through pit floor slab to underside of jack support beams and seal with non-permeable membrane. Seal well opening at the pit floor with hydraulic quick setting cement. Provide PVC vision/access ports.

3. Provide Union Guard within PVC casing.

F. Terminal Stopping: Provide normal and final devices.

G. Provide compact fluorescent protected lighting fixtures, mounted vertically throughout the hoistway. Attain no less than 10 ft candles illumination in pit and hoistway.

H. Electrical Wiring and Wiring Connections:
 1. Conductors and Connections: Copper throughout with individual wires coded and connections on identified studs or terminal blocks. Use no splices or similar connections in wiring except at terminal blocks, control compartments, or junction boxes. Provide 10% spare conductors throughout. Run spare wires from car connection points to individual elevator controllers in the control room. Provide four pair of spare shielded communication wires in addition to those required to connect specified items. Tag spares in control room.
 2. Conduit: Painted or galvanized steel conduit, EMT, or duct. Conduit size, 1/2” minimum. Flexible heavy-duty service cord may be used between fixed car wiring and car door switches for door protective devices.
 3. Traveling Cables: Flame and moisture-resistant outer cover. Prevent traveling cable from rubbing or chafing against hoistway or equipment within hoistway.
 4. Auxiliary Wiring: Connect fire alarm initiating devices, emergency two-way communication system, firefighters’ phone jack, paging speaker, CCTV, card reader, intercom, and announcement speaker and/or background music in each car controller in control room. If required.

I. Passenger Doors - Entrance Equipment:
 1. Door Hangers: Two-point hanger roller with neoprene roller surface and suspension with eccentric upthrust roller adjustment.
 2. Door Tracks: Bar or formed, cold-drawn removable steel tracks with smooth roller contact surface.
 3. Door Interlocks: Operable without retiring cam. Paint interlock box flat black.
 4. Door Closers: Spring, spirator or jamb/strut mounted counterweight type. Design and adjust to insure smooth, quiet mechanical close of doors.
 5. Hoistway Door Unlocking Device: Provide unlocking device with escutcheon in door panel at all floors, with finish to match adjacent surface.

J. Vertical Freight Bi-Parting Doors - Entrance Equipment:
 1. Door Guide Tracks: Continuous steel angles or formed steel tracks fastened to hoistway door jamb.
 2. Door Guide Shoes: Machined iron shoes. Four shoes per door panel, with not less than 2-1/2” lateral contact per shoe.
 3. Door Interlocks: Operable without retiring cam.
 4. Hoistway Door Unlocking Device: Provide unlocking device with pull chain under hinged, lockable cover with stainless steel No. 4 finish at all floors.
K. Floor Numbers: Stencil paint 4” high floor designations in contrasting color on inside face of hoistway doors or hoistway fascia in location visible from within car.

2.06 HOISTWAY ENTRANCES

A. Complete entrances bearing fire labels from a nationally recognized testing laboratory approved within the governing jurisdiction.

B. Frames: 14 gauge hollow metal at all floors. Bolted and lapped head to jamb assembly at all floors. Provide Arabic floor designation/Braille plates, centered at 60” above finished floor, on both side jambs of all entrances. Provide plates at main egress landing with “Star” designation. For designated emergency car, provide “Star of Life” designation plates at height of 78” - 84” above finished floor on both side jambs at all floors. Braille indications shall be below Arabic floor designation. Provide cast floor designation/Braille plates as manufactured by SCS, Vision Mark or Entrada.

C. Door Panels: 16 gauge steel, sandwich construction without binder angles. Provide leading edges of center-opening doors with rubber astragals. Provide a minimum of two (2) gib per panel, one at leading and one at trailing edge with gib in the sill groove entire length of door travel. Construct door panels with interlocking, stiffening ribs.

D. Sight Guards: 14 gauge, same material and finish as hoistway entrance door panels. Construct without sharp edges.

E. Sills: Extruded nickel silver unless otherwise specified

F. Sill Supports: Structural or formed steel designed to support door sill based upon car loading classification. Mount to eliminate need for grout under the sill.

G. Fascia, Toe Guards and Hanger Covers: 14 gauge furniture steel with Provider’s standard finish.

H. Struts and Headers: Provide for vertical support of entrances and related material. Provide door open bumpers on entrances equipped with vertical struts.

I. Vertical Bi-Parting Freight Door Panels: 16 gauge metal clad wood core doors within a welded steel angle frame. Provide with safety astragals, vision panels and truckable sills. Provide telescoping upper section or pass-type doors as required.

2.07 CAR EQUIPMENT

A. Frame: Welded or bolted, rolled or formed steel channel construction to meet load classification specified.

B. Platform: Isolated type, constructed of steel, or steel and wood which is fireproofed on underside. Design and construct to accommodate load classification requirements.

C. Platform Apron: Minimum 14 gauge steel, reinforced and braced to car platform with Provider’s standard finish.

D. Guide Shoes: Provide as listed in equipment summary.
E. Finish Floor Covering: Provided under other sections.

F. Passenger Sills: One-piece nickel silver extrusion with extruded extension between car entrance columns to face of car front return. Extruded extension to match finish of sill.

G. Freight Sills: Channel, angle or plate steel.

H. Doors: Provide as specified for hoistway entrance doors.

I. Door Hangers: Two-point hanger roller with neoprene roller surface and suspension with eccentric upthrust roller adjustment.

J. Door Track: Bar or formed, cold-drawn removable steel track with smooth roller contact surface.

K. Door Header: Construct of minimum 12 gauge steel, shape to provide stiffening flanges.

L. Door Electrical Contact: Prohibit car operation unless car door is closed.

M. Door Clutch: Heavy-duty clutch, linkage arms, drive blocks and pickup rollers or cams to provide positive, smooth, quiet door operation. Design clutch so car doors can be closed, while hoistway doors remain open.

N. Restricted Opening Device: Restrict opening of car door(s) outside unlocking zone.

O. Passenger / Service Door Operator: High speed, heavy-duty closed loop door operator capable of opening doors at no less than 2-1/2 f.p.s. Accomplish reversal in no more than 2-1/2” of door movement. Provide solid-state door control with closed loop circuitry to constantly monitor and automatically adjust door operation based upon velocity, position, and motor current. Maintain consistent, smooth, and quiet door operation at all floors, regardless of door weight or varying air pressure.

Acceptable closed-loop door operators:

1. G.A.L. MOVFR
2. Elevator Components Industries ECI 2000
3. Motion Control Engineer SmarTraq
4. Original Equipment Manufacturers
 a. Major Manufacturers equipment may be substituted with documentation confirming strict adherence to Section 14215, 3.08, A, 1-9.
 i. KONE, Otis, ThyssenKrupp, Schindler

P. Passenger / Service Door Control Device:
1. Infrared Reopening Device: Black, fully enclosed device with full screen infrared matrix or multiple beams extending vertically along leading edge of each door panel to minimum height of 7'-0" above finished floor. Device shall prevent doors from closing and reverse doors at normal opening speed if beams are obstructed while doors are closing, except during nudging operation. In event of device failure, provide for automatic shutdown of car at floor level with doors open.
a. Acceptable Infrared Reopening Device:
 i. Cegard/MAX-154 by CEDES
 ii. Gatekeeper by Adams
 iii. Lambda II by Otis
 iv. Magic Edge by Tri-Tronics
 v. Microlite by ThyssenKrupp
 vi. Microscan E by T.L. Jones
 vii. Pana40 Plus by Janus

b. Acceptable Infrared 3D Reopening Device:
 i. Cegard/MAX-154 by CEDES
 ii. Gatekeeper by Adams
 iii. Lambda 3D by Otis
 iv. Microlite 3D by ThyssenKrupp
 v. Pana40 Plus 3D by Janus

2. Nudging Operation: After beams of door control device are obstructed for a predetermined time interval (minimum 20.0 - 25.0 seconds), warning signal shall sound and doors shall attempt to close with a maximum of 2.5 foot pounds kinetic energy. Activation of the door open button shall override nudging operation and reopen doors.

3. Interrupted Beam Time: When beams are interrupted during initial door opening, hold door open a minimum of 3.0 seconds. When beams are interrupted after the initial 3.0 second hold open time, reduce time doors remain open to an adjustable time of approximately 1.0 - 1.5 seconds after beams are reestablished.

4. Differential Door Time: Provide separately adjustable timers to vary time that doors remain open after stopping in response to calls.
 a. Car Call: Hold open time adjustable between 3.0 and 5.0 seconds.
 b. Hall Call: Hold open time adjustable between 5.0 and 8.0 seconds. Use hall call time when car responds to coincidental calls.

Q. Bi-Parting Freight Door and Gate Operation: Power door and gate. Provide means to open doors and gate from inside of car in the event of power failure.

R. Bi-Parting Freight Car Gate: Power operated, vertical rise, single section minimum 6’-0” high, constructed of 12 gauge welded wire mesh welded into frame angles. Mount car gate lift chains on hoistway side of car gate. Include reversing safety edge device.

S. Infrared Reopening Device: Black, fully enclosed device with full screen infrared matrix or multiple beams extending vertically along edge of each car gate guide track to a minimum height of 7’-0” above finished floor. Include retractable infrared sensor beams positioned at each side of lower edge of gate. Obstruction of beams during gate closing shall cause immediate re-opening.

T. Car Operating Panel:
 1. Car operating panel(s) without faceplate(s), consisting of a metal box containing vandal resistant operating fixtures, mounted behind the car swing front return panel(s).
 2. Suitably identify floor buttons, alarm button, door open button, door close button and emergency push-to-call button with SCS, Visionmark, or Entrada cast tactile symbols recessed flush rear mounted. Configure plates per local building code accessibility standards including Braille. Locate operating controls no higher than 48” above the car floor; no lower than 35” for emergency push-to-call button and alarm button.
3. Provide minimum 3/4" diameter raised floor pushbuttons which illuminate to indicate call registration.

4. Provide alarm button to ring bell located on car. Illuminate button when actuated.

5. Provide keyed stop switch at bottom of car operating panel in locked car service compartment.
 Mark device to indicate “run” and “stop” positions.

6. Provide “door open” button to stop and reopen doors or hold doors in open position.

7. Provide “door close” button to activate door close cycle. Cycle shall not begin until normal door dwell time for a car or hall call has expired, except firefighters’ operation.

8. Provide “door hold” Button

9. Provide firefighters’ Phase II key switch with engraved instructions filled red.
 Include light jewel, audible signal, and call cancel button.

10. Install firefighters’ telephone jack with bezel matching adjacent controls if required.

11. Provide lockable service compartment with recessed flush door. Door material and finish shall match car return panel or car operating panel faceplate.

12. Include the following controls in lockable service cabinet with function and operating positions identified by permanent signage or engraved legend:
 a. Inspection switch.
 b. Light switch.
 c. Three-position exhaust blower switch.
 d. Independent service switch.
 e. Constant pressure test button for battery pack emergency lighting.
 f. 120-volt, AC, GFCI protected electrical convenience outlet.
 g. Card reader override switch.
 h. Stop switch.

13. Provide black paint filled (except as noted), engraved, or approved etched signage as follows with approved size and font:
 a. Phase II firefighters’ operating instructions on main operating panel above corresponding keyswitch filled red.
 b. Car number on main and auxiliary car operating panel.
 c. “Certificate of Inspection on File in Building Office” on main car operating panel.
 d. “No Smoking” on main car operating panel.
 e. Car capacity in pounds on service compartment door.

14. Provide black paint filled (except as noted), engraved or approved etched signage as follows with approved size and font:
 a. Phase II firefighters’ operating instructions on main operating panel above corresponding keyswitch filled red.
 b. Car number on main car operating panel.
 c. “Certificate of Inspection on File in Campus Office” on main car operating panel.
 d. “No Smoking” on main car operating panel.
 e. Car capacity in pounds on main car operating panel service compartment door.
 f. Freight loading classification and description on car operating panel service compartment door.

U. Car Top Control Station: Mount to provide safe access and utilization while standing in an upright position on car top.

V. Work Light and Duplex Plug Receptacle: GFCI protected outlet at top of car. Include on/off
W. Communication System:

1. “Push to Call,” two-way communication instrument in car with automatic dialing, tracking, and recall features with shielded wiring to car controller in control room. Provide dialer with automatic rollover capability with minimum two numbers.
 a. “Push to Call” button or adjacent light jewel shall illuminate and flash when call is acknowledged. Button shall match car operating panel pushbutton design. Provide uppercase “PUSH TO CALL,” “HELP ON THE WAY” engraved signage adjacent to button.
 b. Provide “Push to Call” button tactile symbol, engraved signage, and Braille adjacent to button mounted integral with car front return panel.

2. Firefighters’ telephone jack in car and firefighters’ panel, with four shielded wires to control room junction box. Jack bezel shall match adjacent controls if required.

3. Install remote speaker(s) in car behind front return panel with drilled speaker pattern, with shielded wiring to control room junction box if required.

4. Provide two-way communication between car and machine room if required.

2.08 CAR ENCLOSURE

A. Car Enclosure Passenger Elevator: Provide complete as specified herein and/or detailed on architectural drawings. Provide the following features.

1. Shell: Reinforced minimum 16 gauge furniture steel formed panels with baked enamel interior finish as selected. Apply sound-deadening mastic to exterior.

2. Canopy: Reinforced 12 gauge furniture steel formed panels with lockable, hinged emergency exit. Interior finish white reflective baked enamel.

3. Front Return Panels and Integral Entrance Columns: Reinforced minimum 16 gauge stainless steel satin finish. Swing entire unit on substantial pivot points (minimum 3) for service access to car operating panel(s). Locate pivot points to provide full swing of front return panel without interference with side wall finish or handrail. Secure in closed position with concealed three-point latch. Provide service compartment with recessed flush cover and cutouts for operating switches, etc.

4. Entrance Columns: Reinforced minimum 16 gauge stainless steel satin finish.

5. Transom: Reinforced minimum 16 gauge stainless steel satin finish full width of enclosure

8. Interior Wall Finish: Removable panels, faced and edged, with color core plastic laminate. Color and finish as selected.

9. Ventilation: Two-speed type mounted to car canopy on isolated rubber grommets. Exhaust blower shall meet requirements of Item 2.04, F.

11. Handrails: Minimum 1-1/4” diameter stainless steel tubular grab bar across rear wall

B. Car Enclosure Service Elevator: Provide complete as specified herein. Provide the following features.

1. Shell: Reinforced 14 gauge textured stainless steel formed panels as specified in Item 2.02.
Apply sound deadening mastic to exterior.

2. Canopy: Reinforced 12 gauge furniture steel formed panels with lockable hinged emergency exit. Interior finish white reflective baked enamel.

3. Return Panels: Reinforced 16 gauge stainless steel, satin finish as specified in Item 2.02.

5. Car Door Panels: Reinforced minimum 16 gauge stainless steel textured finish as specified in Item 2.02. Same construction as hoistway door panels. Architectural metal cladding shall wrap around leading and trailing edge of panel and return a minimum of 1/2” on rear side of leading edge of panels.

7. Lighting: Fluorescent fixture flush mounted in ceiling with protective diffusor and steel guard over fixtures on car top.

8. Handrails/Guardrails: Handrail line minimum 2” solid stainless steel flatstock bars mounted on all cab walls. Bolt rails through car walls from back and mount on 1-1/2” deep solid round stainless steel standoff spacers no more than 18” O.C. Return handrail/guardrail ends to car walls.

C. Freight Elevator: Provide complete as specified herein. Provide the following features.

1. Shell: Reinforced 10 gauge furniture steel formed panels no more than 20” wide with light-proof joints. Baked enamel finish as selected. Reinforce and brace panels to provide rigid structure and securely fasten to car sling and platform. Provide recess in car side wall for recessed mounting of car operating panel.

2. Canopy: Reinforced 12 gauge furniture steel formed panels no more than 20” wide with light-proof joints. Interior finish white reflective baked enamel. Provide hinged emergency exit.

3. Lighting: Recessed 4-tube fluorescent fixtures with on/off switch in car operating panel. Recess mount fixture flush with inside surface of car top. Provide steel guard on car top over fixture.

4. Bumper Rails: Two (2) rows of 2” x 12” oak or maple bumpers mounted on all sides of the car. Locate bottom rail at floor level and top rail at 36” above the car floor. Bolt rails through car walls with bolt and captive nuts on exterior of wall panel sections.

2.09 HALL CONTROL STATIONS

A. Pushbuttons: Provide number of riser(s) with flush or surface mounted faceplates per architectural drawings. Include pushbuttons for each direction of travel which illuminate to indicate call registration. Include approved engraved message and pictorial representation prohibiting use of elevator during fire or other emergency situation as part of faceplate. Pushbutton design shall match car operating panel pushbuttons.

B. Freight Door Control Buttons: Include vandal resistant “door open,” “door close” and “stop” buttons for control of power operated vertical bi-parting doors at each landing call button fixture. Provide buttons integral with hall control station. Pushbutton design shall match car operating panel pushbuttons.

2.10 SIGNALS

A. Passenger Car(s): Provide at each entrance to indicate travel direction of arriving car. Illuminate up or down LED lights and sound tone once for up and twice for down direction.
prior to car arrival at floor. Sound level shall be adjustable from 20 - 80 dBA measured at 5'-0" in front of hall control station and 3'-0" off floor. Illuminate light until the car doors start to close. Provide advanced hall lantern notification to comply with ADA hall call notification time. Car direction lenses shall be arrow shaped with faceplates. Lenses shall be minimum 2-1/2" in their smallest dimension. Provide vandal resistant lantern and light assemblies consisting of series of dots or lines for maximum visibility.

B. Car Position Indicator: Alpha-numeric digital indicator containing floor designations and direction arrows a minimum of 1/2" high to indicate floor served and direction of car travel. Locate fixture in each car operating panel. When a car leaves or passes a floor, illuminate indication representing position of car in hoistway. Illuminate proper direction arrow to indicate direction of travel. Provide multi-numeral vandal resistant indicator and light assemblies.

C. Faceplate Material and Finish: Stainless steel Satin finish all fixtures unless otherwise specified

D. Floor Passing Tone: Provide an audible tone of no less than 20 decibels and frequency of no higher than 1500 Hz, to sound as the car passes or stops at a floor served.

E. Voice Synthesizer: Provide electronic device with easily reprogrammable message and female voice to announce car direction, floor, emergency exiting instructions, etc.

F. Firefighters’ Control Panel: IF REQUIRED: Locate in building fire control room. Fixture faceplate, stainless steel satin finish, including the following features:
1. Car position and direction indicator (digital-readout or color SVGA display type). Identify each position indicator with car number
2. Indicator showing operating status of car.
3. Manual car standby power selection switch(es) and power status indicators.
4. Two-position firefighters’ emergency return switch(es) and indicators with engraved instructions filled red.
5. Firefighters’ telephone jack.

Fixtures and monitor shall be located as directed by Architect. Where applicable, identify all indicators and manual switches with appropriate engraving. Provide conduit and wiring to control panel. Coordinate size and location with Building Console Supplier.

G. Firefighters’ Key Box: Flush-mounted box with lockable hinged cover. Engrave instructions for use on cover per Local Fire Authority requirements.

2.11 INTERCOM AND DISTRESS SIGNAL SYSTEM

A. Cars with a travel > 60'-0” require additional two way communication to master control panel for emergency personnel.

B. General: Provide intercommunication system. Include all wiring between elevator hoistways and control panels.

C. Basic Equipment:
1. Amplifier providing static-free voice transmission with adequate volume and
minimum distortion at all stations, with pre-amplifier capable of receiving voice and music inputs from building and emergency building communication system.

2. Activation of emergency building communication system overrides all other conversations and permits one-way conversation to all master stations in system.

3. Master Stations:
 a. Speaker-microphone combination and/or handset for two-way communication.
 b. Selection buttons to enable communication with all master stations. Maintain continual reception of hands-free reply from station when a selected button is depressed.
 c. Two-Position “Talk/Listen” Button: Press to talk; release to listen.
 d. Illuminate “in use” light when any master station is being used.
 e. Reset button to make system available for use by any master station.
 f. Volume control knob for adjustment of incoming volume.
 g. Button to establish communications with all stations.
 h. Distress light in lobby panel which illuminates when “push to call” button, or alarm button in car is actuated. Energize distress light and buzzer or chime until intercom selection button for that car has been depressed. Sound buzzer or chime in lobby panel simultaneously with illumination of distress light.

4. Remote Stations:
 a. Station in car shall be activated by “push to call,” two-way communication button. “Push to call” button shall illuminate and flash when call is acknowledged. Button shall match car operating panel pushbutton design. Provide uppercase “PUSH TO CALL,” “HELP ON THE WAY” engraved signage adjacent to button. Provide “push to call” button tactile symbol, engraved signage, and Braille adjacent to button.
 b. Locate car microphone and speaker or transceiver/speaker combination in car canopy behind front return panel with drilled speaker pattern, with shielded wiring to control room junction box.

D. Station Housings:

1. House master station at direction or owner in a metal compartment with baked enamel finish. Attach to the group elevator supervisory control panel or wall mount. Provide communication handset with 25'-0” long cord.
2. Provide control center master intercoms with stainless steel satin finish faceplates and engraved operating instructions. Coordinate faceplate size and installation of units with building Console Supplier.

2.12 MONITORING CAPABILITIES

A. Elevator controls must be capable of being monitored by monitoring systems as determined by the University of Colorado Facilities Management

PART 3 EXECUTION

3.01 SITE CONDITION INSPECTION

A. Prior to beginning installation of equipment, examine hoistway and machine room areas. Verify that no irregularities exist which affect execution of work specified.
B. Do not proceed with installation until work in place conforms to project requirements.

3.02 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Deliver material in Provider’s original, unopened protective packaging.

B. Store material in original protective packaging. Prevent soiling, physical damage, or moisture damage.

C. Protect equipment and exposed finishes from damage and stains during transportation, erection, and construction.

3.03 INSTALLATION

A. Install all equipment in accordance with Provider’s instructions, referenced Codes, specification and approved submittals.

B. Install machine room equipment with clearances in accordance with referenced Codes and specification.

C. Install all equipment so it may be easily removed for maintenance and repair.

D. Install all equipment for ease of maintenance.

E. Install all equipment to afford maximum accessibility, safety, and continuity of operation.

F. Remove oil, grease, scale, and other foreign matter from the following equipment and apply one coat of field-applied machinery enamel.
 1. All exposed equipment and metal work installed as part of this work which does not have architectural finish.
 3. Neatly touch up damaged factory-painted surfaces with original paint color. Protect machine-finish surfaces against corrosion.

3.04 FIELD QUALITY CONTROL

A. Work at jobsite will be checked during course of installation. Full cooperation with reviewing personnel is mandatory. Accomplish corrective work required prior to performing further installation.

B. Have Code Authority acceptance inspection performed and complete corrective work.

3.05 ADJUSTMENTS

A. Install hydraulic jack assembly and guide rails plumb and align vertically with tolerance of 1/16” in 100’-0”. Secure guide rail joints without gaps and file any irregularities to a smooth surface.
B. Static balance car to equalize pressure of guide shoes on guide rails.

C. Lubricate all equipment in accordance with Provider’s instructions.

D. Adjust motors, valves, controllers, leveling switches, limit switches, stopping switches, door operators, interlocks, and safety devices to achieve required performance levels.

3.06 CLEANUP

A. Keep work areas orderly and free from debris during progress of project. Remove packaging materials on a daily basis.

B. Remove all loose materials and filings resulting from work.

C. Clean machine room equipment and floor.

D. Clean hoistways, car, car enclosure, entrances, operating and signal fixtures.

3.07 ACCEPTANCE REVIEW AND TESTS

A. Review procedure shall apply for individual elevators, portions of groups of elevators, and completed groups of elevators accepted on an interim basis or elevators and groups of elevators completed, accepted, and placed into operation.

B. Contractor shall perform review and evaluation of all aspects of its work prior to requesting Consultant’s final review. Work shall be considered ready for Consultant’s final contract compliance review when all Contractor’s tests are complete and all elements of work or a designated portion thereof are in place and elevator or groups of elevators are deemed ready for service as intended.

C. Furnish labor, materials, and equipment necessary for Consultant’s review. Notify Consultant a minimum of five (5) working days in advance when ready for final review of elevator or group.

D. Consultants’ written list of observed deficiencies of materials, equipment, and operating systems will be submitted to Contractor for corrective action. Consultant’s review shall include as a minimum:
 1. Workmanship and equipment compliance with Contract Documents.
 3. Performance of following is satisfactory:
 a. Starting, accelerating, running
 b. Decelerating, stopping accuracy
 c. Door operation and closing force
 d. Equipment noise levels
 e. Signal fixture utility
 f. Overall ride quality
 g. Performance of door control devices
 h. Operations of emergency two-way communication device
 i. Operations of firefighters’ service
4. Test Results:
 a. In all test conditions obtain specified contract speed, performance times, stopping
 accuracy without re-leveling, and ride quality to satisfaction of Purchaser and
 Consultant. Tests shall be conducted under both no load and full load condition.
 b. Temperature rise in motor windings limited to 50° Celsius above ambient. A full-
 capacity one (1) hour running test, stopping at each floor for ten (10) seconds in up
 and down directions, may be required.

E. Performance Guarantee: Should Consultant’s review identify defects, poor workmanship,
 variance or noncompliance with requirements of specified codes and/or ordinances, or
 variance or noncompliance with the requirements of Contract Documents, Contractor shall
 complete corrective work in an expedient manner to satisfaction of Purchaser and Consultant
 at no cost as follows:
 1. Replace equipment that does not meet code or Contract Document requirements.
 2. Perform work and furnish labor, materials, and equipment necessary to meet specified
 operation and performance.

F. A follow-up final contract compliance review shall be performed by Consultant after
 notification by Contractor that all deficiencies have been corrected. Provide Consultant with
 copies of the initial deficiency report marked to indicate items which Contractor considers
 complete.

3.08 PURCHASER’S INFORMATION

A. Provide three sets of neatly bound written information necessary for proper maintenance and
 adjustment of equipment within 30 days following final acceptance. Final retention will be
 withheld until data is received by Purchaser and reviewed by Consultant. Include the
 following as minimums:
 1. Straight-line wiring diagrams of “as-installed” elevator circuits with index of location
 and function of components. Provide one set reproducible master. Mount one set wiring
 diagrams on panels, racked, or similarly protected, in elevator control room. Provide
 remaining set rolled and in a protective drawing tube. Maintain all drawing sets with
 addition of all subsequent changes. These diagrams are Purchaser’s property.
 a. Provide one (1) electronic copy of all required documentation
 2. Written Maintenance Control Program (MCP) specifically designed for the equipment
 included under this contract. Include any unique or product specific procedures or
 methods required to inspect or test the equipment. In addition, identify weekly, bi-
 weekly, monthly, quarterly, and annual maintenance procedures, including statutory and
 other required equipment tests.
 3. Lubrication instructions including recommended grade of lubricants.
 4. Parts catalogs for all replaceable parts including ordering forms, price lists and
 ordering instructions.
 5. Four sets of keys for all switches and control features properly tagged and marked.
 6. Diagnostic test devices together with all supporting information / documentation
 necessary for interpretation of test data, fault code interpretation, manufacturers
 acronym definitions, adjustment parameters, troubleshooting of elevator system, and
 performance of routine safety tests.
 7. The elevator installation shall be a design that can be maintained by any licensed
elevator maintenance company employing journeymen mechanics, or University of
Colorado qualified elevator maintenance personnel without the need to purchase or
lease additional diagnostic devices, special tools, or instructions from the original
equipment Contractor.

a. At the request of the University of Colorado, Provide 8 hrs of onsite controller
diagnostic training to University of Colorado qualified elevator maintenance
personnel

b. Provide onsite capability to diagnose faults to the level of individual circuit
boards and individual discrete components for the solid state elevator controller.

c. Provide a separate, detachable device, as required to the Purchaser as part of this
installation if the equipment for fault diagnosis is not completely self-contained
within the controller. Such device shall be in possession of and become property of
the Purchaser.

d. Installed equipment not meeting this requirement shall be removed and
replaced with conforming equipment at no cost to the Purchaser.

8. Provide software upgrades and/or revisions during progress of the work, warranty
period and a term of 10 years from the date of substantial completion.

END OF SECTION 14240