TABLE OF CONTENTS

DIVISION 03

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 30 00</td>
<td>Cast In Place Concrete</td>
</tr>
</tbody>
</table>

DIVISION 22 – PLUMBING

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 05 00</td>
<td>Common Work Results for Plumbing</td>
</tr>
<tr>
<td>22 11 10</td>
<td>Facility Water Distribution Piping</td>
</tr>
</tbody>
</table>

DIVISION 23 – HEATING, VENTILATING AND AIR CONDITIONING

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 05 00</td>
<td>Common Work Results for HVAC</td>
</tr>
<tr>
<td>23 05 23</td>
<td>General Duty Valves for HVAC Piping</td>
</tr>
<tr>
<td>23 05 29</td>
<td>Hangers and Supports for HVAC Piping & Equipment</td>
</tr>
<tr>
<td>23 05 53</td>
<td>Identification for HVAC Piping & Equipment</td>
</tr>
<tr>
<td>23 07 00</td>
<td>HVAC Insulation</td>
</tr>
<tr>
<td>23 11 16</td>
<td>Steam Specialties</td>
</tr>
<tr>
<td>23 22 13</td>
<td>Steam and Condensate Piping</td>
</tr>
</tbody>
</table>

DIVISION 26 – ELECTRICAL

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 05 00</td>
<td>Common Work Results for Electrical</td>
</tr>
<tr>
<td>26 05 29</td>
<td>Hangers and Supports for Electrical Systems</td>
</tr>
</tbody>
</table>

DIVISION 31

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 20 00</td>
<td>Earthwork</td>
</tr>
</tbody>
</table>
SECTION 03 30 00 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes cast-in-place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes.

B. Related Sections:
 1. Section 312000 "Earth Moving" for drainage fill under slabs-on-grade.

1.2 SUBMITTALS

A. Concrete Mix Designs: Submit in accordance with ACI 301.
 1. Submit substantiating data for each concrete mix design contemplated for use to the Engineer not less than two weeks prior to first concrete placement. Data for each mix shall, as a minimum, include the following:
 a. Mix identification designation (unique for each mix submitted).
 b. Statement of intended use for mix.
 c. Mixture proportions and descriptions.
 d. Water/cementitious materials ratio.
 e. Total air content
 f. Design slump.
 g. Intended method of placement in field.

B. Steel Reinforcement Shop Drawings:
 1. Placing drawings that detail fabrication, bending, and placement. Include bar sizes, lengths, material, grade, bar schedules, stirrup spacing, bent bar diagrams, bar arrangement, splices, and supports for concrete reinforcement.
 2. Show locations of approved construction joints, locations of shrinkage pour strips, splices of reinforcing, type of splice used and splice location, grade of all reinforcement used and specifically identify all ASTM A706 and epoxy coated reinforcing.

1.3 QUALITY ASSURANCE

A. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.

B. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:
 1. ACI 301, "Specifications for Structural Concrete"
 2. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."
C. Pre-installation Conference: Conduct conference at project site.

PART 2 - PRODUCTS

2.1 FORM-FACING MATERIALS

A. Smooth-Formed Finished Concrete: Form-facing panels that will provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.

B. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.

2.2 STEEL REINFORCEMENT

A. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), deformed.

B. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI's "Manual of Standard Practice.

2.3 CONCRETE MATERIALS

A. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source, throughout Project:

1. Portland Cement: ASTM C 150, Type noted in the structural drawings. Supplement with the following:

B. Normal-Weight Aggregates: ASTM C 33, graded.

1. Maximum Coarse-Aggregate Size: as noted in the structural drawings.

C. Water: ASTM C 94/C 94M

2.4 ADMIXTURES

B. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and that will not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.

1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
2. Retarding Admixture: ASTM C 494/C 494M, Type B.
3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.

2.5 CURING MATERIALS
A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete.
B. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating.

2.6 RELATED MATERIALS
A. Expansion- and Isolation-Joint-Filler Strips: ASTM D 1751, asphalt-saturated cellulosic fiber

2.7 CONCRETE MIXTURES
A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301.
B. Admixtures: Use admixtures according to manufacturer's written instructions.
 1. Use water-reducing admixture in concrete, as required, for placement and workability.
 2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
 3. Use water-reducing admixture in pumped concrete, and concrete with a water-cementitious materials ratio below 0.50.
C. Proportion normal-weight concrete mixture as defined in the structural drawings.

2.8 FABRICATING REINFORCEMENT
A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

2.9 CONCRETE MIXING
A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M, and furnish batch ticket information.
 1. When air temperature is between 85 and 90 deg F (30 and 32 deg C), reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F (32 deg C), reduce mixing and delivery time to 60 minutes.
PART 3 - EXECUTION

3.1 FORMWORK

A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.

B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117.

C. Chamfer exterior corners and edges of permanently exposed concrete.

3.2 EMBEDDED ITEMS

A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

3.3 STEEL REINFORCEMENT

A. General: Comply with CRSI's "Manual of Standard Practice" for placing reinforcement.

3.4 JOINTS

A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.

B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.

C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated in the drawings. Saw-cut contraction joints for a depth equal to at least one-fourth of concrete thickness.

D. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.

E. Waterstops: Install in construction joints and at other joints indicated according to manufacturer's written instructions.

3.5 CONCRETE PLACEMENT

A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.
B. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete will be placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation.

1. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301.

C. Cold-Weather Placement: Comply with ACI 306.1.

D. Hot-Weather Placement: Comply with ACI 301.

3.6 FINISHING FORMED SURFACES

A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defects repaired and patched. Remove fins and other projections that exceed specified limits on formed-surface irregularities.

1. Apply to concrete surfaces not exposed to public view.

B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defects. Remove fins and other projections that exceed specified limits on formed-surface irregularities.

1. Apply to concrete surfaces exposed to public view.

3.7 FINISHING SLABS

A. General: Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.

B. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power driven floats. Restraighten, cut down high spots, and fill low spots. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture.

1. Apply float finish to surfaces to be covered with fluid-applied or sheet waterproofing.

C. Trowel Finish: After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.

1. Apply a trowel finish to surfaces as noted in the drawings.
2. Finish and measure surface so gap at any point between concrete surface and an unleveled, freestanding, 10-ft.- (3.05-m-) long straightedge resting on two high spots and placed anywhere on the surface does not exceed 3/16 inch (4.8 mm).

D. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, ramps, and elsewhere as indicated.
3.8 CONCRETE PROTECTING AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 301 for hot-weather protection during curing.

B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h (1 kg/sq. m x h) before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.

C. Cure concrete according to ACI 308.1, by one or a combination of the following methods:
 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days.
 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches (300 mm), and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period using cover material and waterproof tape.
 3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.

3.9 CONCRETE SURFACE REPAIRS

A. Defective Concrete: Repair and patch defective areas when approved by Architect. Remove and replace concrete that cannot be repaired and patched to Architect's approval.

3.10 FIELD QUALITY CONTROL

A. Testing and Inspecting: Owner will engage a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.

END OF SECTION 03 30 00
SECTION 22 05 00 – COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS:

A. Refer to Section 23 05 00. All work of Division 22 shall be in accordance with the corresponding section of Division 23, unless otherwise addressed in this Division.

END OF SECTION 22 05 00
SECTION 221110 – FACILITY WATER DISTRIBUTION PIPING

PART 1 - GENERAL

1.1 DESCRIPTION OF WORK:

A. This Section specifies the water distribution piping system, including potable cold, hot, and recirculated hot water piping, fittings, and specialties.

B. Related Sections: The following Sections contain requirements that relate to this section.

1. Refer to other Division 22 sections for piping materials; methods for sealing pipe penetrations through basement walls and fire and smoke barriers; thermometers, flow meters and pressure gauges; mechanical identification; plumbing pumps; and dielectric unions, strainers and pressure regulating valves.

1.2 DEFINITIONS:

A. Water Distribution Piping: A pipe within the building or on the premises which conveys water from the water service pipe or meter to the points of usage.

B. Water Service Piping: The pipe from the water main or other source of potable water supply to the water distributing system of the building served.

C. Pipe Sizes used in this Specification are Nominal Pipe Size (NPS).

1.3 SUBMITTALS:

A. Refer to Division 1 and Basic Mechanical Requirements for administrative and procedural requirements for submittals.

B. Provide data for each piping specialty and valve specified.

C. Certification of Compliance with ASME and UL fabrication requirements.

D. Test reports specified in Part 3 of this Section.

E. Manufacturer and product data for lead free solder with material breakdown.

F. Maintenance data for each piping specialty and valve specified for inclusion in operation and maintenance manual specified in Division 22.

1.4 QUALITY ASSURANCE:

A. Regulatory Requirements: Comply with the provisions of the following:

1. ASME B 31.9 "Building Services Piping" for materials, products and installation. Safety valves and pressure vessels shall bear the appropriate ASME label.

3. Local Plumbing Code and Utility Department requirements.

4. Local cross connection control manual.
1.5 DELIVERY, STORAGE AND HANDLING:
 A. Store pipe in a manner to prevent sagging and bending.
 B. Cap ends of piping when being stored.

1.6 SEQUENCING AND SCHEDULING:
 A. Coordinate the size and location of concrete equipment pads. Cast anchor bolt inserts into pad. Concrete, reinforcement, and formwork requirements are specified in Division 3.
 B. Coordinate the installation of pipe sleeves for foundation wall penetrations.

1.7 EXTRA STOCK:
 A. Maintenance Stock: Furnish one valve key for each key operated wall hydrant, hose bibb, or faucet installed.

PART 2 - PRODUCTS

2.1 PIPE AND TUBE MATERIALS:
 A. General: Provide pipe material and pipe fittings complying with Division 22.

2.2 BASIC SUPPORTS AND ANCHORS:
 A. General: Provide supports and anchors complying with Division 22.

2.3 GENERAL DUTY VALVES:
 A. General: Provide valves complying with Division 22.

2.4 SPECIAL DUTY VALVES:
 A. Calibrated Balance Valve: Refer to Division 22.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Verify all dimensions by field measurements. Verify that all water distribution piping may be installed in accordance with pertinent codes and regulations, the original design, and the referenced standards.
 B. Examine rough-in requirements for plumbing fixtures and other equipment having water connections to verify actual locations of piping connections prior to installation.
 C. Do not proceed until unsatisfactory conditions have been corrected.

3.2 PIPING INSTALLATION:
 A. Refer to Division 23, "Basic Piping Materials and Methods" for installation of piping.
 B. Install backflow preventers on plumbing lines where contamination of domestic water may occur and on boiler make-up lines, hose bibbs and flush valves.
3.3 HANGERS AND SUPPORTS:
 A. Refer to Division 23, "Supports and Anchors" for supports and anchors.

3.4 PIPE AND TUBE JOINT CONSTRUCTION:
 A. Refer to Division 23, "Basic Piping Materials and Methods" for pipe joints.

3.5 VALVE APPLICATIONS:
 A. General Duty Valve Applications: The drawings indicate valve types to be used. Where
 specific valve types are not indicated the following requirements apply:
 2. Throttling duty: Use globe, ball, and butterfly valves.

3.6 INSTALLATION OF VALVES:
 A. Sectional Valves: Install sectional valves on each branch and riser, close to main, where
 branch or riser serves 2 or more plumbing fixtures or equipment connections, and elsewhere
 as indicated. For sectional valves 2inch and smaller, use gate or ball valves; for sectional
 valves 2- 1/2inch and larger, use gate or butterfly valves.
 B. Shutoff Valves: Install shutoff valves on inlet of each plumbing equipment item, and on inlet of
 each plumbing fixture, and elsewhere as indicated. For shutoff valves 2inch and smaller, use
 gate or ball valves; for shutoff valves 2- 1/2inch and larger, use gate or butterfly valves.
 C. Drain Valves: Install drain valves on each plumbing equipment item, located to completely
 drain equipment for service or repair. Install drain valves at the base of each riser, at low
 points of horizontal runs, and elsewhere as required to completely drain distribution piping
 system. For drain valves 2inch and smaller, use gate or ball valves; for drain valves 2-1/2inch
 and larger, use gate or butterfly valves.
 D. Check Valves: Install non-slam spring loaded check valves on discharge side of each pump,
 and elsewhere as indicated. See Division 23 for valve application.

3.7 FIELD QUALITY CONTROL:
 A. Inspections: Inspect water distribution piping as follows:
 1. Do not enclose, cover, or put into operation water distribution piping system until it has
 been inspected and approved by the authority having jurisdiction.
 2. During the progress of the installation, notify the plumbing official having jurisdiction, at
 least 48 hours prior to the time such inspection must be made. Perform tests specified
 below in the presence of the plumbing official.
 a. Rough-in Inspection: Arrange for inspection of the piping system before
 concealed or closed-in after system is roughed-in, and prior to setting fixtures.
 b. Final Inspection: Arrange for a final inspection by the plumbing official to
 observe the tests specified below and to insure compliance with the requirements
 of the plumbing code.
3. Reinspections: Whenever the plumbing official finds that the piping system will not pass the test or inspection, make the required corrections and arrange for reinspection by the plumbing official.

4. Reports: Prepare inspection reports, signed by the plumbing official.

B. Test water distribution piping as follows:

1. Refer to Division 23 "Basic Piping Materials and Methods" for pipe test.

3.8 ADJUSTING AND CLEANING:

A. Clean and disinfect water distribution piping as follows:

1. Purge all new water distribution piping systems and parts of existing systems, which have been altered, extended, or repaired prior to use.

2. Use the purging and disinfecting procedure prescribed by the authority having jurisdiction, or in case a method is not prescribed by that authority, the procedure described in either AWWA C651, or AWWA C652, or as described below:

 a. Flush the piping system with clean, potable water until dirty water does not appear at the points of outlet.
 b. Fill the system or part thereof, with a water/chlorine solution containing at least 50 parts per million of chlorine. Isolate (valve off) the system, or part thereof, and allow to stand for 24 hours.
 c. Drain the system, or part thereof, of the previous solution, and refill with a water/chlorine solution containing at least 200 parts per million of chlorine and isolate and allow to stand for 3 hours.
 d. Following the allowed standing time, flush the system with clean potable water until chlorine does not remain in the water coming for the system.
 e. Submit water samples in sterile bottles to the authority having jurisdiction. Repeat the procedure if the biological examination made by the authority shows evidence of contamination.

B. Prepare reports for all purging and disinfecting activities.

3.9 COMMISSIONING:

A. Fill the system.

B. Check compression tanks to determine that they are not air bound and that the system is completely full of water.

C. Before operating the system perform these steps:

1. Open valves to full open position. Close drain, valves, hydrants, and sill cocks.
2. Remove and clean strainers.
3. Check pump for proper direction of rotation. Correct improper wiring.
4. Lubricate pump motors and bearings.

END OF SECTION 221100
SECTION 230500 - COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS:

A. All drawings associated with the entire project, including general provisions of the Contract, including The General Conditions of the Contract for Construction, General and Supplementary Conditions specification sections shall apply to the Division 23 specifications and drawings. The Contractor shall be responsible for reviewing and becoming familiar with the aforementioned and all other Contract Documents associated with the project.

B. Related Sections: Refer to all sections in Division 23. Refer to Division 26 specification sections and Division 26 drawings.

C. Contractor shall be defined as any and all entities involved with the construction of the project.

1.2 SUMMARY:

A. This Section specifies the basic requirements for mechanical installations and includes requirements common to more than one section of Division 23.

1.3 MECHANICAL INSTALLATIONS:

A. The Contract Documents are diagrammatic, showing certain physical relationships which must be established within the mechanical work and its interface with all other work. Such establishment is the exclusive responsibility of the Contractor. Drawings shall not be scaled for the purpose of establishing material quantities.

B. Drawings and specifications are complementary. Whatever is called for in either is binding as though called for in both. Report any discrepancies to the Engineer and obtain written instructions before proceeding. Where any contradictions occur between the specifications and the drawings the more stringent requirement shall apply. The contractor shall include pricing for the more stringent and expensive requirements.

C. Drawings shall not be scaled for rough-in measurements or used as shop drawings. Where drawings are required for these purposes or have to be made from field measurement, Contractor shall take the necessary measurements and prepare the drawings.

D. The exact location for some items in this specification may not be shown on the drawings. The location of such items may be established by the Engineer during the progress of the work.

E. The contract documents indicate required size and points of terminations of pipes, and suggest proper routes to conform to structure, avoid obstructions and preserve clearances. It is not intended that drawings indicate necessary offsets. The contractor shall make the installation in such a manner as to conform to the structure, avoid obstructions, preserve headroom and keep openings and passageways clear, without further instructions or costs to the Owner. All equipment shall be installed so access is maintained for serviceability.

F. Before any work is installed, determine that equipment will properly fit the space; that required piping grades can be maintained and that ductwork can be run as intended without interferences between systems, structural elements or work of other trades.

G. Verify all dimensions by field measurements.
H. Coordinate installation in chases, slots and openings with all other building components to allow for proper mechanical installations.

I. Sequence, coordinate, and integrate installations of mechanical materials and equipment for efficient flow of the work. Give particular attention to large equipment requiring positioning prior to closing-in the building.

J. Where mounting heights are not detailed or dimensioned, install mechanical services and overhead equipment to provide the maximum headroom possible.

K. Install mechanical equipment to facilitate maintenance and repair or replacement of equipment components. As much as practical, connect equipment for ease of disconnecting, with minimum of interference with other installations.

L. Make allowance for expansion and contraction for all building components and piping systems that are subject to such.

M. The Contractor shall provide all labor and material necessary but not limited to the starting/stopping of all mechanical equipment, opening/closing of all valves, draining/refilling all mechanical systems and operating/verifying the operation of all mechanical systems controls as required to accomplish all work necessary to meet construction document requirements. Contractor shall submit records of such activities to engineer and include in the O & M manuals.

1.4 COORDINATION:

A. Work out all installation conditions in advance of installation. The Contractor shall be responsible for preparing coordination drawings, showing all work, in all areas. The Contractor shall be responsible for providing all labor and material, including but not limited to all fittings, isolation valves, offsets, hangers, control devices, etc., necessary to overcome congested conditions at no increase in contract sum. The Contractors base bid shall include any and all time and manpower necessary to develop such coordination efforts and drawings. Increases to contract sum or schedule shall not be considered for such effort.

B. Provide proper documentation of equipment, product data and shop drawings to all entities involved in the project.

C. Existing Conditions:
 1. Carefully survey existing conditions prior to bidding work.
 2. Provide proper coordination of mechanical work with existing conditions.
 3. Report any issues or conflicts immediately to Engineer before commencing with work and prior to purchasing equipment and materials.

D. Utility Connections:
 1. Coordinate mechanical utility interruptions one week in advance with the Owner and the Utility Company. Plan work so that duration of the interruption is kept to a minimum.

1.5 COORDINATION WITH OTHER DIVISIONS:

A. General:
 1. Coordinate all work to conform with the progress of the work of other trades.
2. Complete the entire installation as soon as the condition of the building will permit. No extras will be allowed for corrections of ill timed work, when such corrections are required for proper installation of other work.

B. Support Dimensions: Provide dimensions and drawings so that concrete bases and other equipment supports to be provided under other sections of the specifications can be built at the proper time.

C. Coordinate the installation of required supporting devices and sleeves to be set in poured in place concrete and other structural components, as they are constructed.

D. Coordinate the cutting and patching of building components to accommodate the installation of mechanical equipment and materials. Refer to Division 1 and Division 23.

E. Modifications required as result of failure to resolve interferences, provide correct coordination drawings or call attentions to changes required in other work as result of modifications shall be paid for by responsible Contractor/Subcontractor.

F. Coordination with Electrical Work: Refer to Division 1 and 26.

1.6 DESIGN WORK REQUIRED BY CONTRACTOR:

A. The construction of this project requires the Contractor to include the detailing and design of several systems and/or subsystems. All such design work associated with the development of the coordination drawings shall be the complete responsibility of the Contractor.

B. The Contractor shall take the full responsibility to develop and complete routing strategies which will allow fully coordinated system to be installed in a fully functional manner. The Engineers contract drawings shall be for system design intent and general configurations.

C. Systems or subsystems which require design responsibility by the contractor include but are not limited to:

1. Any system not fully detailed
2. Equipment supports, hangers, anchors and seismic systems not fully detailed nor specified in these documents, or catalogued by the manufacturer.

D. Design Limitations:

1. The Contractor shall not modify the Engineers design intent in any way.
2. The Contractor shall not change any pipe size or equipment size without prior written approval from the Engineer.
3. Bull nosed tees on piping systems shall not be installed under any circumstance.

1.7 PROJECT CONDITIONS:

A. The Contractor shall be required to attend a mandatory pre-bid walk-thru and shall make themselves familiar with the existing conditions. No additional costs to the Owner shall be accepted for additional work for existing conditions.

B. Field verify all conditions prior to submitting bids.

C. Report any damaged equipment or systems to the Owner prior to any work.
D. Protect all mechanical and electrical work against theft, injury or damage from all causes until it has been tested and accepted.

E. Be responsible for all damage to the property of the Owner or to the work of other contractors during the construction and guarantee period. Repair or replace any part of the work which may show defect during one year from the final acceptance of all work, provided such defect is, in the opinion of the Architect, due to imperfect material or workmanship and not due to the Owner's carelessness or improper use.

F. The Contractor shall coordinate and co-operate with Owner at all times for all new to existing connections, system shutdowns and start-ups, flushing and filling both new and existing systems.

G. Provide temporary ductwork and piping services, where required, to maintain existing areas operable.

H. Coordinate all services shut-down with the Owner; provide temporary services. Coordinate any required disruptions with Owner, one week in advance.

I. Minimize disruptions to operation of mechanical systems in occupied areas.

1.8 SAFETY:

A. Contractor shall develop and submit to Owner a detailed safety plan for all work within the tunnel. Submit confined space certification cards and calibration of air monitors.

1.9 EQUAL EMPLOYMENT OPPORTUNITY REQUIREMENTS:

A. Refer to Division 1 and conform with the Owners requirements.

1.10 REQUIREMENTS OF REGULATORY AGENCIES:

A. Execute and inspect all work in accordance with all Underwriters, local and state codes, rules and regulations applicable to the trade affected as a minimum, but if the plans and/or specifications call for requirements that exceed these rules and regulations, the greater requirement shall be followed. Follow recommendations of NFPA, SMACNA, EPA, OSHA and ASHRAE.

B. Comply with standards in effect at the date of these Contract Documents, except where a standard or specific date or edition is indicated.

C. The handling, removal and disposal of regulated refrigerants shall be in accordance with U.S. EPA, state and local regulations.

D. The handling, removal and disposal of lead based paint and other lead containing materials shall comply with EPA, OSHA, and any other Federal, State, or local regulations.

E. After entering into contract, Contractor will be held to complete all work necessary to meet these requirements without additional expense to the Owner.

1.11 PERMITS AND FEES:

A. Contractor shall arrange for and pay for all inspections, licenses and certificates required in connection with the work.
1.12 PROJECT SEISMIC REQUIREMENTS:

A. All systems shall be installed to meet NFPA and IBC Seismic requirements.
 1. Where any conflicts arise the more stringent requirements shall be applicable.
 2. The design of the seismic requirements shall be the full responsibility of the Contractor.

1.13 PRODUCT OPTIONS AND SUBSTITUTIONS:

A. Materials and equipment of equivalent quality may be submitted for substituted prior to bidding. This may be done by submitting to the at least ten (10) working days prior to the bid date a letter in triplicate requesting prior review. This submittal shall include all data necessary for complete evaluation of the product.
 1. Substitutions shall be allowed only upon the written approval of the Engineer NO EXCEPTIONS.
 2. The Contractor shall be responsible for removal, replacement and remedy of any system or equipment which has been installed which does not meet the specifications or which does not have prior approval.

1.14 MECHANICAL SUBMITTALS:

A. General
 1. Refer to the Conditions of the Contract (General and Supplementary), Division 1.
 2. The submittals shall be submitted as one package identified by the specification section. Submittals that are not complete with the required information will be sent back to be corrected.
 3. The Contractor shall identify any "long lead time" items which may impact the overall project schedule. If these submittal requirements affect the schedule, the Contractor shall identify the impacts and confer with the Engineer within two weeks of entering into the contract.
 4. At least one copy of the first submittal package shall be provided in expandable, 3 post, hard back binders, sized to fit all future submittals for this job. The cover shall be identified with the job name, Owner's project number, date, Prime Contractor's name, etc.
 5. Submittals may be provided electronically. All electronic submittals need to be complete with all design information and stamped for conformity by the contractor. Any submittal not stamped or complete will be sent back. Submittals that are submitted electronically will be reviewed, marked appropriately and returned by the same means received.
 6. An index shall be provided which includes:
 a. Product
 b. Plan Code (if applicable)
 c. Specification Section
 d. Manufacturer and Model Number

B. The manufacturer's material or equipment listed in the schedule or identified by name on the drawings are the types to be provided for the establishment of size, capacity, grade and quality. If alternates are used in lieu of the scheduled names, the cost of any changes in construction required by their use shall be borne by Contractor.
C. All equipment shall conform to the State and/or local Energy Conservation Standards.

D. Submittal of shop drawings, product data and samples will be accepted only when submitted by and stamped by the General Contractor. Data submitted from Subcontractors and material suppliers directly to the Engineer will not be processed unless prior written approval is obtained by the General Contractor.

E. Before starting work, prepare and submit to the Architect/Engineer six (6) sets of all shop drawings and descriptive equipment data required for the project. Unless each item is identified with specification section and sufficient data to identify its compliance with the specifications and drawings, the item will be returned "Revise and Resubmit". Where an entire submittal package is returned for action by the Contractor, the Engineer will summarize comments in letter format and return the entire set. Continue to submit six (6) sets of any individual shop drawings, product data or samples which were returned without a "make corrections noted" or "no exceptions taken" action, until they are so marked. When a "Make Corrections Noted" is received, make the required corrections for inclusion in the operation and maintenance manual. Submittals marked "Make Corrections Noted" shall not be resubmitted during the submittal process.

F. The Design Professional’s review and appropriate action on all submittals and shop drawings is only for the limited purpose of checking for conformance with the design concept and the information expressed in the contract documents. This review shall not include:

1. Accuracy or completeness of details, such as quantities, dimensions, weights or gauges, fabrication processes
2. Construction means or methods
3. Coordination of the work with other trades
4. Construction safety precautions

G. The Design Professional’s review shall be conducted with reasonable promptness while allowing sufficient time in the Design Professional’s judgment to permit adequate review. Review of a specific item shall not indicate that the Design Professional has reviewed the entire assembly of which the item is a component.

H. The Design Professional shall not be responsible for any deviations from the contract documents not brought specifically to the attention of the Design Professional in writing by the Contractor. This shall clearly identify the design and the specific element which vary from the Design. The Contractor shall be responsible for all remedy for lack of strict conformance associated with this criteria.

I. The Design Professional shall not be required to review partial submissions or those for which submissions of correlated items have not been received.

1.15 SPECIFIC CATEGORY SUBMITTAL REQUIREMENTS:

A. Product Data:

1. Where pre-printed data covers more than one distinct product, size, type, material, trim, accessory group or other variation, mark submitted copy with black pen to indicate which of the variations is to be provided.

2. Delete or mark-out portions of pre-printed data which are not applicable.

3. Where operating ranges are shown, mark data to show portion of range required for project application.
4. For each product, include the following:

 a. Sizes.
 b. Weights.
 c. Speeds.
 d. Capacities.
 e. Piping and electrical connection sizes and locations.
 f. Statements of compliance with the required standards and regulations.
 g. Performance data.
 h. Manufacturer's specifications.

B. Shop Drawings:

 1. Shop Drawings are defined as mechanical system layout drawings prepared specifically for this project, or fabrication and assembly type drawings of system components to show more detail than typical pre-printed materials.

 2. Prepare Mechanical Shop Drawings, except diagrams, to accurate scale, min 1/8"-1'-0", unless otherwise noted.

 a. Show clearance dimensions at critical locations.
 b. Show dimensions of spaces required for operation and maintenance.
 c. Show interfaces with other work, including structural support.

C. Test Reports:

 1. Submit test reports which have been signed and dated by the accredited firm or testing agency performing the test.

 2. Prepare test reports in the manner specified in the standard or regulation governing the test procedure (if any) as indicated.

 3. Submit test reports as required for O & M manuals.

D. Product Listing:

 1. Prepare listing of major mechanical equipment and materials for the project, within (2) two weeks of signing the Contract Documents and transmit to the Architect. A sample schedule is included at the end of this section to complete this requirement.

 a. Provide all information requested.
 b. Submit this listing as a part of the submittal requirement specified in Division 1, "PRODUCTS AND SUBSTITUTION."

 2. Unless otherwise specified, all materials and equipment shall be of domestic (USA) manufacture and shall be of the best quality used for the purpose in commercial practice.

 3. When two or more items of same material or equipment are required (plumbing fixtures, pumps, valves, air conditioning units, etc.) they shall be of the same manufacturer. Product manufacturer uniformity does not apply to raw materials, bulk materials, pipe, tube, fittings (except flanged and grooved types), sheet metal, wire, steel bar stock, welding rods, solder, fasteners, motors for dissimilar equipment units and similar items used in work, except as otherwise indicated.
a. Provide products which are compatible within systems and other connected items.

E. Schedule of Values

1. Provide preliminary schedule of values with product data submittal, within three (3) weeks from award of contract to successful bidder. Provide according to the following descriptions:
 a. Plumbing
 b. HVAC
 1) Equipment
 2) Sheet Metal
 3) Piping
 4) Insulation
 5) Test and Balancing
 6) Specialty Systems
 c. Demolition
 d. Miscellaneous

2. Provide a final Schedule of Values at close-out of project including updated values based on actual installation.

F. Coordination Drawings: See section 1.4 of this specification section.

G. Required Submittals: Provide submittals for each item of equipment specified or scheduled in the contract documents. See table at the end of this section.

H. If more than two submittals (either for product data, shop drawings, record drawings, or test and balance reports) are made by the Contractor, the Owner reserves the right to charge the Contractor for subsequent reviews by their consultants. Such extra fees shall be deducted from payments by the Owner to the Contractor.

1.16 DELIVERY, STORAGE, AND HANDLING:

A. Deliver products to project properly identified with names, model numbers, types, grades, compliance labels and similar information needed for distinct identifications; adequately packaged and protected to prevent damage or contamination during shipment, storage, and handling.

B. Check delivered equipment against contract documents and submittals.

C. Store equipment and materials at the site, unless off-site storage is authorized in writing. Protect stored equipment and materials from damage, dirt, dust, freezing, heat and moisture.

D. Coordinate deliveries of mechanical materials and equipment to minimize construction site congestion. Limit each shipment of materials and equipment to the items and quantities needed for the smooth and efficient flow of installations.

E. Provide factory-applied plastic end-caps on each length of pipe and tube, except for concrete, corrugated metal, hub-and-spigot, clay pipe. Maintain end-caps through shipping, storage and handling to prevent pipe-end damage and prevent entrance of dirt, debris and moisture.

F. Protect stored ductwork, pipes and tubes. Elevate above grade and enclose with durable, waterproof wrapping. When stored inside, do not exceed structural capacity of the floor.
G. Protect flanges, fittings and specialties from moisture and dirt by inside storage and enclosure, or be packaging with durable, waterproof wrapping.

H. Protect sheet metal ductwork and fittings. Elevate and store above grade and cover ends with waterproof wrapping.

1.17 DEMOLITION:
A. During the demolition phase of this contract it is the responsibility of this Contractor to carefully remove existing equipment, piping or ductwork and related items either as shown on the demolition drawings as being removed, or as required for the work. These items shall be tagged, protected from damage and stored as directed by the Architect. A list of all items stored shall be turned over to the Architect. At the completion of the remodeling work or when directed by the Architect, all stored items not reused or wanted by the Owner shall be removed from the premises. Disposition of items not reused is by the direction of the Engineer.

B. The location of existing equipment, pipes, ductwork, etc., shown on the drawings has been taken from existing drawings and is, therefore, only as accurate as that information. All existing conditions shall be verified from field measurements with necessary adjustment being made to the drawing information.

C. If asbestos material, in any form, is discovered by this Contractor in the process of his work, he shall report such occurrence to the Owner immediately. The Owner will determine the action to be taken for the asbestos removal, which is not a part of the work to be done under this Division.

1.18 CUTTING AND PATCHING:
A. This Article specifies the cutting and patching of mechanical equipment, components and materials to include removal and legal disposal of selected materials, components and equipment.

B. Do not endanger or damage installed work through procedures and processes of cutting and patching.

C. Arrange for repairs required to restore other work, because of damage caused as a result of mechanical installations.

D. No additional compensation will be authorized for cutting and patching work that is necessitated by ill-timed, defective or non-conforming installations.

E. Perform cutting, fitting and patching of mechanical equipment and materials required to:
 1. Uncover work to provide for installation of ill-timed work;
 2. Remove and replace defective work;
 3. Remove and replace work not conforming to requirements of the Contract Documents;
 4. Remove samples of installed work as specified for testing;
 5. Install equipment and materials in existing structures;
 6. Upon written instructions from the Engineer, uncover and restore work to provide for Engineer observation of concealed work.

F. Cut, remove and legally dispose of selected mechanical equipment, components, and materials as indicated, including, but not limited to removal of mechanical piping, heating units, plumbing fixtures and trim and other mechanical items made obsolete by the new work.
G. Protect the structure, furnishings, finishes and adjacent materials not indicated or scheduled to be removed.

H. Provide and maintain an approved type of temporary partitions or dust barriers adequate to prevent the spread of dust and dirt to adjacent areas. Temporary partitions must not impede access to building egress.

I. Locate identify, and protect mechanical and electrical services passing through remodeling or demolition area and serving other areas required to be maintained operational. When services must be interrupted, provide temporary services for the affected areas and notify the Owner prior to changeover. Cover openings in ductwork to remain. Protect equipment and systems to remain.

1.19 ROUGH-IN:

A. Verify final locations for rough-ins with field measurements and with the requirements of the actual equipment to be connected.

B. Refer to equipment shop drawings and manufacturer's requirements for actual provided equipment for rough-in requirements.

C. Work through all coordination before rough-in begins.

1.20 ACCESSIBILITY:

A. Install equipment and materials to provide required access for servicing and maintenance. Coordinate the final location of concealed equipment and devices requiring access with final location of required access panels and doors. Allow ample space for removal of all parts that require replacement or servicing.

1.21 CLEANING:

A. Refer to Division 23, "TESTING, ADJUSTING AND BALANCING" for requirements for cleaning filters, strainers, and mechanical systems prior to final acceptance.

1.22 RECORD DOCUMENTS:

A. Keep a complete set of record document prints in custody during entire period of construction at the construction site. Documents shall be updated on a weekly basis.

B. Mark Drawing Prints to indicate revisions to piping and ductwork, size and location both exterior and interior; including locations of coils, dampers and other control devices, filters, boxes, and similar units requiring periodic maintenance or repair; actual equipment locations, dimensioned from column lines; actual inverts and locations of underground piping; concealed equipment, dimensioned to column lines; mains and branches of piping systems, with valves and control devices located and numbered, concealed unions located, and with items requiring maintenance located (i.e., traps, strainers, expansion compensators, tanks, etc.); Change Orders; concealed control system devices. Changes to be noted on the drawings shall include final location of any piping or ductwork relocated more than 1 foot-0 inches from where shown on the drawings.

C. Mark shop drawings to indicate approved substitutions; Change Orders; actual equipment and materials used.
D. Mark equipment and fixture schedules on drawings to indicate manufacturer and model numbers of installed equipment and fixtures.

E. Revisions to the Contract Documents shall be legible and shall be prepared using the following color scheme:
 1. Red shall indicate new items, deviations and routing.
 2. Green shall indicate items removed or deleted.
 3. Blue shall be used for relevant notes and descriptions.

F. At the completion of the project, obtain from the Engineer a complete set of the Mechanical Contract Documents in a read-only electronic format (.pdf unless otherwise noted). This set will include all revisions officially documented through the Architect/Engineer. Plot these drawings and using the above color scheme, transfer any undocumented revisions from the construction site record drawings to this complete set. Submit original hardcopies of both sets of marked up documents to the Architect/Engineer. This contract will not be considered completed until these record documents have been received and reviewed by the Architect/Engineer.

G. At the completion of the project, obtain from the Architect a complete set of the Mechanical Construction Documents in the electronic format used by the design team. This set will include all revisions officially issued through the Architect. The Contractor shall transfer all revisions noted on the record document prints to the electronic drawings. The Contractor shall transmit the final record documents in the electronic format used on the project to the Architect. This contract will not be considered completed until these record drawings have been received and reviewed by the Architect/Engineer.

1.23 OPERATION AND MAINTENANCE DATA:

A. No later than four (4) weeks prior to the completion of the project, make up minimum of four sets of operating and maintenance manuals, as specified in Sections of Division 1.

B. The testing and balancing report shall be submitted and received by the Engineer at least fifteen calendar days prior to the contractor's request for final observation time frame requirements. Include in the O & M Manual after review with “No Exceptions Taken” has been accomplished.

C. In addition to the information required above for Maintenance Data, include the following information:
 1. Description of mechanical equipment, function, normal operating characteristics and limitations, performance curves, engineering data and tests, and complete nomenclature and commercial numbers of all replaceable parts.
 2. Manufacturer's printed operating procedures to include start-up, break-in, routine and normal operating instructions; regulation, control, stopping, shut-down, and emergency instructions; and summer and winter operating instructions. Provide any test reports and start-up documents.
 3. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions.
 4. Servicing instructions, lubrication charts and schedules, including Contractor lubrication reports.
5. Manufacturer's service manuals for all mechanical equipment provide under this contract.

6. Include the valve tag list.

7. Name, Address and Telephone number of party to be contacted for 24-hour service for each item of equipment.

8. Starting, stopping, lubrication, equipment identification numbers and adjustment clearly indicated for each piece of equipment.

9. Complete parts list. Provide to Owner, recommended spare parts list.

10. Mechanical warranties.

11. Final schedule of values with all mechanical change order costs included and identified.

D. This contract will not be considered completed nor will final payment be made until all specified material, including testing and balancing report and final schedule of values with all mechanical change order costs included and identified, is received in this operating and maintenance report and the manual is reviewed by the Engineer.

1.24 PROJECT CLOSEOUT:

A. In addition to the requirements specified in Division 1, complete the requirements listed below.

B. The Contractor shall be responsible for the following Mechanical Checklist either by performing and/or coordinating such items prior to applying for certification of substantial completion. Refer to individual specification sections for additional requirements.

C. Mechanical Checklist

1.25 WARRANTIES:

A. Refer to the Division 1 for procedures and submittal requirements for warranties. Refer to individual equipment specifications for warranty requirements. In any case the entire mechanical system shall be warranted no less than one year from the time of acceptance by the Owner.

B. Compile and assemble the warranties specified in Division 23, into the operating and maintenance manuals.

C. Provide complete warranty information for each item to include product or equipment to include date or beginning of warranty or bond; duration of warranty or bond; and names, addresses, and telephone numbers and procedures for filing a claim and obtaining warranty services.
<table>
<thead>
<tr>
<th>SPEC SECTION</th>
<th>ITEM</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td>SPEC SECTION</td>
<td>ITEM</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td>220500</td>
<td>COMMON WORK RESULTS FOR PLUMBING</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td>221110</td>
<td>FACILITY WATER DISTRIBUTION PIPING</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td>230500</td>
<td>PRELIMINARY SCHEDULE OF VALUES</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td></td>
<td>FINAL SCHEDULE OF VALUES</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td></td>
<td>EQUIPMENT WARRANTIES</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td></td>
<td>O&M MANUALS</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td></td>
<td>RECORD DRAWINGS</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td>230503</td>
<td>METHOD OF PROCEDURE</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td>230510</td>
<td>BASIC PIPING MATERIALS AND METHODS</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td>230516</td>
<td>PIPE EXPANSION JOINTS</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td>230518</td>
<td>PIPING SPECIALTIES</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td>230519</td>
<td>METERS AND GAUGES</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>230523</td>
<td>VALVES</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td>230529</td>
<td>SUPPORTS AND ANCHORS</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td>230553</td>
<td>MECHANICAL IDENTIFICATION</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td>230593</td>
<td>TESTING, ADJUSTING AND BALANCING</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td>230700</td>
<td>MECHANICAL INSULATION</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td>230800</td>
<td>MECHANICAL COMMISSIONING</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td>232213</td>
<td>STEAM PIPING</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
<tr>
<td>232216</td>
<td>STEAM SPECIALTIES</td>
<td>SUBmittALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPPLEMENTAL</td>
</tr>
</tbody>
</table>

1 For Soft Starters and Variable Frequency Drives
2 Requires Review & Approval from T & B Contractor
3 Warranty Report/Warranty
4 Kitchen Exhaust Hood
5 See Specific Specification Section for Test & Certification Requirements

END OF SECTION 230500
SECTION 230510 - BASIC PIPING MATERIALS AND METHODS

PART 1 - GENERAL

1.1 SUBMITTALS:

 A. Refer to Division 1 and Basic Mechanical Requirements for administrative and procedural requirements for submittals.

 B. Product Data: Submit industry standards and manufacturer's technical product data, installation instructions, and dimensioned drawings for each type of pipe and pipe fitting. Submit piping schedule showing pipe or tube weight, fitting type, and joint type for each piping system.

 C. Welding Certifications: Submit reports as required for piping work.

 D. Brazing Certifications: Submit reports as required for piping work.

1.2 QUALITY ASSURANCE:

 A. Manufacturer's Qualifications: Firms regularly engaged in manufacturer of pipes and pipe fittings of types and sizes required, whose products have been in satisfactory use in similar service for not less than 5 years.

 B. Welder's Qualifications: All welders shall be qualified in accordance with ASME Boiler and Pressure Vessel Code, Section IX, Welding and Brazing Qualifications.

 C. Welding procedures and testing shall comply with the latest revisions of the applicable sections for B31, of the ANSI/ASME standard codes for pressure piping, noted as follows: B31.1 - Pressure Piping Code / B31.2 - Fuel Gas Piping Code / B31.5 - Refrigeration Piping / B31.9 - Building Service Piping Code.

 D. Before any welding is performed, the contractor shall submit to the Architect/Engineer, or his authorized, a copy of the Manufacturer's Record of Welder or Welding Operator Qualification Tests and his Welding Procedure Specification together with the Procedure Qualification Record as required by ASME Boiler and Pressure Vessel Code.

 E. Each manufacturer or contractor shall be responsible for the quality of welding done by his organization and shall repair or replace any work not in accordance with these specifications.

 F. Soldering and Brazing procedures shall conform to ANSI Standard Safety Code for Mechanical Refrigeration.

PART 2 PRODUCTS

2.1 GENERAL:

 A. Piping Materials: Provide pipe and tube of type, pressure and temperature ratings, capacities, joint type, grade, size and weight (wall thickness or Class) indicated for each service. Where type, grade or class is not indicated, provide proper selection as determined by Installer for installation requirements, and comply with governing regulations and industry standards.

 B. Pipe/Tube Fittings: Provide factory-fabricated fittings of type, materials, grade, class and pressure rating indicated for each service and pipe size. Provide sizes and types matching pipe, tube, valve or equipment connection in each case. Where not otherwise indicated,
comply with governing regulations and industry standards for selections, and with pipe manufacturer's recommendations where applicable.

2.2 STEEL PIPES AND PIPE FITTINGS:

A. Black Steel Pipe: ASTM A 53, Grade B, type E, electric resistance welded.

B. Seamless Steel Pipe: ASTM A 53, Grade B, type S or A106 high temperature.

C. Cast-Iron Flanged Fittings: ANSI/ASME B16.1, including bolting (Class 125 and 250).

E. Malleable-Iron Threaded Fittings: ANSI/ASME B16.3; plain or galvanized as indicated (Class 125 and 300).

F. Malleable-Iron Threaded Unions: ANSI B16.39, Class 150, 250 or 300; selected by Installer for proper piping fabrication and service requirements, including style, end connections, and metal- to-metal seats (iron, bronze or brass); plain or galvanized as indicated (Class 150, 250 and 300).

H. Steel Flanges/Fittings: ANSI/ASME B16.5, ASTM A234 (Fire Protection) including bolting and gasketing of the following material group, end connection and facing, except as otherwise indicated.

 Material Group: Group 1.1.
 End Connections: Buttwelding.
 Facings: Raised-face.

I. Steel Pipe Flanges for Waterworks Service: AWWA C207 (water service piping only).

J. Corrosion-Resistant Cast Flanges/Fittings: MSS SP-51, including bolting and gasketing (threaded where pressure is not critical).

K. Forged-Steel Socket-Welding and Threaded Fittings: ANSI B16.11, except MSS SP-79 for threaded reducer inserts; rated to match schedule of connected pipe (up to 4 inch pipe size).

L. Wrought-Steel Buttwelding Fittings: ANSI B16.9, except ANSI B16.28 for short-radius elbows and returns; rated to match connected pipe.

M. Stainless-Steel Buttwelding Fittings: MSS SP-43.

O. Forged Branch-Connection Fittings: Except as otherwise indicated, provide type as determined by Installer to comply with installation requirements.

P. Pipe Nipples: Fabricated from same pipe as used for connected pipe; except do not use less than Schedule 80 pipe where length remaining unthreaded is less than 1-1/2 inches, and where pipe size is less than 1-1/2 inches, and do not thread nipples full length (no close-nipples).
2.3 COPPER TUBE AND FITTINGS:

A. Copper Tube: ASTM B 88; Type K or L as indicated for each service; hard-drawn temper, except as otherwise indicated.

B. DWV Copper Tube: ASTM B 306.

C. ACR Copper Tube: ASTM B 280.

D. Cast-Copper Solder-Joint Fittings: ANSI B16.18.

E. Wrought-Copper Solder-Joint Fittings: ANSI B16.22.

F. Cast-Copper Solder-Joint Drainage Fittings: ANSI B16.23 (drainage and vent with DWV or tube).

G. Wrought-Copper Solder-Joint Drainage Fittings: ANSI B16.29.

I. Bronze Pipe Flanges/Fittings: ANSI B16.24 (Class 150 and 300).

J. Copper-Tube Unions: Provide standard products recommended by manufacturer for use in service indicated.

2.4 CAST-IRON SOIL PIPES AND PIPE FITTINGS:

A. Hubless Cast-Iron Soil Pipe: FS WW-P-401 and CISPI Standards 301 and 310. Pipe and fittings shall be marked with the collective trademark of the cast iron soil pipe institute or receive prior approval of the engineer.

B. Cast-Iron Hub-and-Spigot Soil Pipe: ASTM A 74. Pipe and fittings shall be marked with the collective trademark of the cast iron soil pipe institute or receive prior approval of the engineer.

D. Heavy Duty Hubless Cast Iron Soil Pipe Couplings: Neoprene gasket coupling with ASTM C564. 304 stainless steel shield, minimum 0.15 inches thick, minimum 3 inches wide with 4 sealing bands up to 4 inch pipe, minimum 9 inches wide with 6 sealing bands up to 10 inch pipe.

1. Basis of Design: Husky SD 4000.

F. Neoprene Compression Gaskets: ASTM C 564.

2.5 PLASTIC PIPES AND PIPE FITTINGS:

A. Acrylonitrile-Butadiene-Styrene Sewer Pipe (ABS): ASTM D-1527, 3 inch thru 12 inch; SDR 23.5, 4 and 6 inch; SDR 35, 3 inch, 4 inch, and 6 inch; SDR 42, 8 inches, 10 inch and 12 inch.

B. ABS Pipe Fittings:
Schedule 40 Socket: ASTM D 2468.
Schedule 80 Socket: ASTM D 2469.
Schedule 80 Threaded: ASTM D 2465.
Solvent Cement: ASTM D 2235.
Solvent Cement (To Join ABS to PVC): ASTM D 3138.

C. Polyvinylchloride Sewer Pipe (PVC): ASTM D-2729, 2 inch thru 6 inch; ASTM D2665, 1-1/2 inches thru 8 inches.

2.6 MISCELLANEOUS PIPING MATERIALS/PRODUCTS:

A. Welding Materials: Except as otherwise indicated, provide welding materials as determined by Installer to comply with installation requirements.

B. Soldering Materials: All soldering materials shall be lead free.

1. 95-5 Tin-Antimony: ASTM B 32, Grade 95TA. Melting Range 450-470 degrees F.
3. Flux: All flux shall be lead free, water soluble, and compatible with the solder and the materials being joined. ASTM B813-93.

C. Brazing Materials: Except as otherwise indicated, provide brazing materials to comply with installation requirements.

1. Comply with AWSA 5.8, Section II, ASME Boiler and Pressure Vessel Code for brazing filler metal materials.

 a. Copper phosphorus -Bcup-5, 15 percent solver content, melting range 1190 to 1480 degrees F.

 b. Silver - BAg-36, 45 percent silver, cadmium-free. Melting range 1195 to 1265 degrees F.

D. Gaskets for Flanged Joints: ANSI B16.21; full-faced for cast-iron flanges; raised-face for steel flanges, unless otherwise indicated.

E. Piping Connectors for Dissimilar Non-Pressure Pipe: Elastomeric annular ring insert, or elastomeric flexible coupling secured at each end with stainless steel clamps, sized for exact fit to pipe ends and subject to approval by plumbing code.

1. Manufacturer: Subject to compliance with requirements, provide piping connectors of the following:

 a. Husky Technologies (Husky SD 4000):

F. Pipe Thread Sealant Material: Except as otherwise indicated, provide all pipe threads with the sealant material as recommended by the manufacturer for the service.

1. Manufacturer: Subject to compliance with requirements, provide piping thread sealant material of the following:
PART 3 EXECUTION

3.1 EXAMINATION:

A. Verify all dimensions by field measurements. Verify that all water distribution piping may be installed in accordance with pertinent codes and regulations, and original design, and the referenced standards.

B. Examine rough-in requirements for plumbing fixtures and other equipment having water connections to verify actual locations of piping connections prior to installation.

C. Do not proceed until unsatisfactory conditions have been corrected.

3.2 PIPING INSTALLATION:

A. General: Install pipes and pipe fittings in accordance with recognized industry practices which will achieve permanently-leakproof piping systems, capable of performing each indicated service without piping failure. Install each run with minimum joints and couplings, but with adequate and accessible unions for disassembly and maintenance/replacement of valves and equipment. Reduce sizes (where indicated) by use of reducing fittings. Align piping accurately at connections, within 1/16 inch misalignment tolerance.

1. Comply with ANSI B31 Code for Pressure Piping.

2. Electrical Equipment Spaces: Do not run piping through transformer vaults and other electrical or electronic equipment spaces and enclosures. Only piping serving this type of equipment space shall be allowed.

3. Locations and Arrangements: Drawings (plans, schematics, and diagrams) indicate the general location and arrangement of piping systems. Locations and arrangements of piping take into consideration pipe sizing and friction loss, expansion, pump sizing, and other design considerations. So far as practical, install piping as indicated.

4. Use fittings for all changes in direction and all branch connections.

5. Install piping at right angles or parallel to building walls. Diagonal runs are not permitted, unless expressly indicated.

6. Conceal all pipe installations in walls, pipe chases, utility spaces, above ceilings, below grade or floors, unless indicated to be exposed to view.

7. Install piping tight to slabs, beams, joists, columns, walls, and other permanent elements of the building. Provide space to permit insulation applications, with 1 inch clearance outside the insulation. Allow sufficient space above removable ceiling panels to allow for panel removal.

8. Locate groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

9. Install drains in pressure pipe systems at all low points in mains, risers, and branch lines consisting of a tee fitting, ¾ inch ball valve, and short ¾ inch threaded end nipple and cap with chain.
10. Install piping free of sags or bends and with ample space between piping to permit proper insulation applications.

11. Exterior Wall Penetrations: Seal pipe penetrations through exterior walls using sleeves and mechanical sleeve seals (See Section 23 05 18). Pipe sleeves smaller than 6 inch shall be steel; pipe sleeves 6 inches and larger shall be sheet metal.

12. Anchor piping to ensure proper direction of expansion and contraction.

13. Coordinate foundation and all other structural penetrations with structural engineer.

B. Hydronic Piping:

1. Make reductions in hydronic pipe sizes using eccentric reducer fitting installed with the level side up.

2. Install hydronic piping branch connections to mains using Tee fittings in main with take-off out the bottom of the main, except for up-feed risers which shall have take-off out the top of the main line. Install all hydronic piping level with manual air vent at all high points in direction of flow.

3. Install hydronic piping level except for gravity flow systems such as condenser water and condensate drain piping.

3.3 PIPING SYSTEM JOINTS:

A. General: Provide joints of type indicated in each piping system.

B. Thread pipe in accordance with ANSI B2.1; cut threads full and clean using sharp dies. Ream threaded ends to remove burrs and restore full inside diameter. Apply pipe joint compound, or pipe joint tape (Teflon) where recommended by pipe/fitting manufacturer, on male threads at each joint and tighten joint to leave not more than 3 threads exposed.

C. Braze copper tube-and-fitting joints in accordance with ASME B31.

D. Solder copper tube-and-fitting joints with silver solder or 95-5 tin-antimony. Cut tube ends squarely, ream to full inside diameter, and clean outside of tube ends and inside of fittings. Apply solder flux to joint areas of both tubes and fittings. Insert tube full depth into fitting, and solder in manner which will draw solder full depth and circumference of joint. Wipe excess solder from joint before it hardens.

E. Weld pipe joints in accordance with ASME Code for Pressure Piping, B31. Provide weld-o-let fittings for two pipe sizes less than main pipe size.

F. Weld pipe joints in accordance with recognized industry practice and as follows:

1. Weld pipe joints only when ambient temperature is above 0 degrees F (-18 degrees C) where possible.

2. Bevel pipe ends at a 37.5 degrees angle where possible, smooth rough cuts, and clean to remove slag, metal particles and dirt.

3. Use pipe clamps or tack-weld joints with 1 inch long welds; 4 welds for pipe sizes to 10 inches, 8 welds for pipe sizes 12 inch to 20 inch.
4. Build up welds with stringer-bead pass, followed by hot pass, followed by cover or filler pass. Eliminate valleys at center and edges of each weld. Weld by procedures which will ensure elimination of unsound or unfused metal, cracks, oxidation, blow-holes and non-metallic inclusions.

5. Do not weld-out piping system imperfections by tack-welding procedures; refabricate to comply with requirements.

G. Weld pipe joints of steel water pipe in accordance with AWWA C206.

H. Flanged Joints: Match flanges within piping system, and at connections with valves and equipment. Clean flange faces and install gaskets. Tighten bolts to provide uniform compression of gaskets.

I. Hubless Cast-Iron Joints: Comply with coupling manufacturer's installation instructions. Use pre-set torque wrench set to 80 in-lbs on heavy duty couplings.

3.4 PIPING APPLICATION:

A. Domestic Hot and Cold Water:

1. Above Grade Inside Tunnel:

 a. 6 inches and Smaller: Type L / K, hard drawn copper tube with wrought copper or bronze fittings, 95-5 tin-antimony / silver tin alloy soldered joints.

3.5 PIPING TESTS:

A. General: Provide temporary equipment for testing, including pump and gauges. Test piping system before insulation is installed wherever feasible, and remove control devices before testing. Test each section of each piping system independently but do not use piping system valves to isolate sections where test pressure exceeds valve pressure rating. Fill each section with water and pressurize for indicated pressure and time.

B. Test all piping systems as specified. Correct leaks by remaking joints. Remove equipment not able to withstand test procedure during test.

C. Work to be installed shall remain uncovered until the required tests have been completed.

D. Piping which is to be concealed shall be tested before being permanently enclosed.

E. As soon as work has been completed, conduct preliminary tests to ascertain compliance with specified requirements. Make repairs or replacements as required.

F. Give a minimum of twenty-four hours notice to Engineer of dates when acceptance test will be conducted. Conduct tests as specified for each system in presence of representative of owner, agency having jurisdiction or his representative. Submit three (3) copies of successful tests to the Engineer for his review. Report shall state system tested and date of successful test.

G. Contractor shall obtain certificates of approval, acceptance and compliance with regulations of agencies having jurisdiction. Work shall not be considered complete until such certificates have been delivered by the Engineer to the Owner.

H. All costs involved in these tests shall be borne by Contractor.
I. System Tests

1. Hydrostatic Test: The test shall be accomplished by hand pumping the system to the specified water pressure, and maintaining that pressure until the entire system has been inspected for leaks, but in no case for a time period of less than four hours.

a. Domestic water systems: 100 psig or 150 percent of system pressure, whichever is greater.

b. Heating water: 100 psig or 150 percent of operating pressure, whichever is greater.

c. Chilled water: 100 psig or 150 percent of system pressure, whichever is greater.

d. Condenser water: 100 psig or 150 percent of system pressure, whichever is greater.

2. Compressed Air or Nitrogen Test: Compressed air tests may be substituted for hydrostatic tests only when ambient conditions or existing building conditions prohibit safe use of hydrostatic testing and must be reviewed by the Engineer prior to any testing. For tests of this type, the piping system shall be subjected to the gas pressure indicated for that specific system. The piping capped or plugged and water-pumped with oil free air, or a nitrogen bottle shall be introduced into the entire system to the pressure specified. The system shall maintain that pressure for the duration of a soapy water test of each joint.

3. Waste, Drain and Vent Piping: All waste and vent piping, including building drain, roof drain and building sewer, shall be subjected to a water test. All openings in the piping system shall be tightly closed, except the highest opening, and the system filled with water to the point of overflow. The water shall be kept in the system, or in the portion under test, for at least 15 minutes before inspection starts; the system shall then be tight to all points. No section shall be tested with less than a ten foot head of water. Roof drain shall be closed at the lowest point and filled with water to the point of overflow.

4. Sump Pump Discharge: With water in sump and pump running at full capacity, check for leaks until satisfied that system is tight.

5. Test all refrigerant piping systems with nitrogen at 300 psig pressure on high side of system, and at 150 psig pressure on low side of system. Maintain pressure without loss for a time period of not less than 4 hours. After test has been completed, the piping shall be evacuated by means of a vacuum pump for a period of not less than 24 hours or until system has been completely evacuated.

6. Repair piping systems sections which fail required piping test, by disassembly and re-installation, using new materials to extent required to overcome leakage. Do not use chemicals, stop-leak compounds, mastics, or other temporary repair methods.

7. Drain test water from piping systems after testing and repair work has been completed.

3.6 ADJUSTING AND CLEANING:

A. General: Clean exterior surfaces of installed piping systems of superfluous materials, and prepare for application of specified coatings (if any). Flush out piping systems with clean water before proceeding with required tests. Inspect each run of each system for completion of joints, supports and accessory items.

1. Inspect pressure piping in accordance with procedures of ASME B31.
B. Disinfect all potable water mains and water service piping in accordance with local and health department requirements. Submit test results report.

C. Clean and flush hydronic piping systems. Remove, clean, and replace strainer screens. After cleaning and flushing hydronic piping system, but before balancing, remove disposable fine mesh strainers in pump suction diffusers.

D. Chemical Treatment: Provide hydronic systems with a water analysis prepared by the chemical treatment supplier to determine the type and level of chemicals required for prevention of scale and corrosion. Perform initial treatment after completion of system testing.

END OF SECTION 230510
SECTION 230523 - GENERAL DUTY VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION OF WORK:

A. This Section includes general duty valves common to most mechanical piping systems.

B. Valves tags and charts are specified in Division 23 Section "Mechanical Identification."

1.2 SUBMITTALS:

A. Product Data: including body material, valve design, pressure and temperature classification, end connection details, seating materials, trim material and arrangement, dimensions and required clearances, and installation instructions.

1.3 QUALITY ASSURANCE:

A. Single Source Responsibility: Comply with the requirements specified in Division-23 Section "Basic Mechanical Requirements," under "Product Options."

B. MSS Standard Practices: Comply with the following standards for valves:

1. MSS SP-45: Bypass and Drain Connection Standard
2. MSS SP-67: Butterfly Valves
3. MSS SP-70: Cast Iron Gate Valves, Flanged and Threaded Ends
4. MSS SP-71: Cast Iron Swing Check Valves, Flanged and Threaded Ends
5. MSS SP-72: Ball Valves with Flanged or Butt-Welding Ends for General Service
6. MSS SP-78: Cast Iron Plug Valves, Flanged and Threaded Ends
7. MSS SP-80: Bronze Gate, Globe Angle and Check Valves
8. MSS SP-84: Steel Valves - Socket Welding and Threaded Ends

1.4 DELIVERY, STORAGE, AND HANDLING:

A. Preparation for Transport: Prepare valves for shipping as follows:

1. Ensure valves are dry and internally protected against rusting and galvanic corrosion.

2. Protect valve ends against mechanical damage to threads, flange faces, and weld end preps.

3. Set valves in best position for handling. Globe and gate valves shall be closed to prevent rattling; ball and plug valves shall be open to minimize exposure of functional surfaces; butterfly valves shall be shipped closed or slightly open; and swing check valves shall be blocked in either closed or open position.

B. Storage: Use the following precautions during storage:

1. Valves shall be stored and protected against all dirt, debris and foreign material at all times.

2. Do not remove valve end protectors unless necessary for inspection; then reinstall for storage.
3. Protect valves against weather. Where practical, store valves indoors. Maintain valve temperature higher than the ambient dew point temperature. If outdoor storage is necessary, support valves off the ground or pavement and protect in watertight enclosures.

C. Handling: Valves whose size requires handling by crane or lift shall be slung or rigged to avoid damage to exposed valve parts. Handwheels and stems, in particular, shall not be used as lifting or rigging points.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturer: Subject to compliance with requirements, provide products by the manufacturers listed.

1. Gate Valves:
 a. Stockham
 b. Vogt
 c. Bonney Forge
 d. Anvil

2. Ball Valves:
 a. Conbraco (Apollo)
 b. Milwaukee
 c. Nibco
 d. Watts
 e. Jomar
 f. Dynaquip
 g. Hammond
 h. James Bury
 i. Worcester

3. Butterfly Valves:
 a. Keystone/Tyco
 b. Crane
 c. Nibco
 d. Dezurik
 e. Fisher
 f. Hammond
 g. James Bury
 h. Milwaukee
 i. Posi-Seal

4. Swing Check Valves
 a. Conbraco
 b. Grinnell Corp.
 c. Nibco
 d. Watts (screwed)
 e. Stockham
2.2 VALVE FEATURES:

A. General: Comply with MSS-92 1980 "Valve Users Manual".

B. Valve Design: Valves shall have rising stem, or rising stem outside screw and yoke design; except, non-rising stem valves may be used where headroom prevents full operation of rising stem valves.

C. Sizes: Unless otherwise indicated, provide valves of same size as upstream pipe size. (Control valves shall be sized for required flow.)

D. Operators: Provide the following special operator features:

1. Handwheels, fastened to valve stem for valves other than quarter turn.

2. Lever Handle on quarter turn valves 6 inch and smaller, except plug valves. Provide a wrench for every plug valve.

3. Chainwheel operators for valves 2-1/2 inch and larger that are installed 96 inches or higher above finished floor elevation. Provide chains to an elevation of 6'-0" above finished floor elevation.

4. Worm gear operators of an enclosed weather-proof design shall be provided on all quarter turn valves 8 inches and larger.

E. Extended Stems: Where insulation is indicated or specified, provide extended stems to allow full operation of the valve without interference by the insulation.

F. Bypass and Drain Connections: Comply with MSS SP-45.

G. End Connections: As specified in the individual valves specifications.

 a. Caution: Where soldered end connections are used, use solder having a melting point below 840 degrees F for gate, globe, and check valves and below 421 degrees F for ball valves.

2.3 GATE VALVES:

A. Gate Valves – 2 inches and Smaller: MSS SP-80, Class 150 Class 200/300, body and bonnet of cast bronze ASTM B62 for 150# / B61 for 200/300, threaded ends, solid wedge disc, union bonnet, rising stem, bronze gland, TFE impregnated packing, malleable iron handwheel. Provide stainless steel seats on all steam service valves and class 200/300 gate valves.

 Stockham Fig. B-120/B-124 B-132/B-145

B. Gate Valves - 2-1/2 inches and Larger: MSS SP-70, Class 125 /Class 250, iron body conforming to ASTM A126 C1 B, Bronze trim, O S & Y design, Flanged ends, TFE
impregnated packing. Provide stainless steel seats on all steam service valves and class 250 gate valves.

Stockham Fig. G-623 /F-667

2.4 BALL VALVES:

A. Ball Valves – Inch and Smaller: 150 WSP, 600 WOG, rated for 150 PSI at 350 degrees F, two piece end entry body style, bronze body conforming to ASTM B584, full port chrome plated brass ball, 15 percent glass reinforced PTFE seats, PTFE packing, adjustable packing nut blow-out proof stem, vinyl covered steel handle. Provide solder ends or threaded ends to match piping system. Company with NSF-61. Apollo 77C-100/200

B. Ball valves for steam service: 250 WSP, 600 WOG rated for 250 psig saturated steam. Two piece and entry body style, bronze body conforming to ASTM B594, standard port 316 stainless steel ball and stem. Carbon and graphite reinforced PTFE blowout proof stem, vinyl covered steel handle. Threaded ends. Apollo 70-140-64.

C. Ball valve options/accessories: Provide the following as required or as specifically indicated:

1. Tee handle for tight fit applications (within enclosures, etc.).
2. Locking handle.
3. Drain.
4. Stem extension.
5. Mounting pads.

2.5 BUTTERFLY VALVES:

A. Steam Service Butterfly Valves 2-1/2 Inch and Larger: MSS SP-67 and SP-68 carbon steel ASTM A216-WCB body, 316 stainless steel disc, 17-4 PH stainless steel stem, RTFE seat with stainless steel backup ring, 316 stainless steel nitrate bushing, TFE packing, steam trim accessories ANSI class 150/300 extended neck for 2 inches thick insulation. All valves shall be factory tested at their rated pressures. All butterfly valves shall be full lugged body, drilled and tapped.

Keystone K-Lok Series Fig. 362/372

2.6 CHECK VALVES:

A. Swing Check Valves - 2-1/2 Inch and Smaller: MSS SP-80; Class 125/150 WSP 200/300, cast bronze body and cap conforming to ASTM B 62, ASTM B61 for 200/300 bronze, horizontal swing design, Y-pattern, with a bronze/teflon disc, stainless steel pin and having threaded or solder ends. Class 150 valves meeting the above specifications may be used where pressure requires or Class 125 are not available.

B. Swing Check Valves - 2-1/2 to 3 Inch: MSS SP-71; Class 125 /250 (Class 175 FM approved for fire protection piping systems), cast iron body and bolted cap conforming to ASTM A 126, Class B; horizontal swing, with a bronze disc or cast iron disc with bronze disc ring, and flanged ends. Valve shall be capable of being refitted while the valve remains in the line. For sewage ejector and sump pump discharge swing check valves 2-1/2 inches and larger, provide outside lever with weight or spring to assist disc to close rapidly.

2.7 DRAIN VALVES: FOR HVAC AND PLUMBING HYDRONIC SYSTEMS PROVIDE BALL VALVE WITH THREADED HOSE END, AND CAP WITH CHAIN.
PART 3 - EXECUTION

3.1 EXAMINATION:

A. Install valves in accordance with manufacturer’s instructions.

B. Examine valve interior through the end ports, for cleanliness, freedom from foreign matter and corrosion. Remove special packing materials, such as blocks used which prevents disc movement during shipping and handling.

C. Actuate valve through an open-close and close-open cycle. Examine functionally significant features, such as guides and seats made accessible by such actuation. Following examination, return the valve closure member to the position in which it was shipped.

D. Examine threads on both the valve and the mating pipe for form (out-of-round or local indentation) and cleanliness.

E. Examine mating flange faces for conditions which might cause leakage. Check bolting for proper size, length, and material. Check gasket material for proper size and material, and for freedom from defects and damage.

F. Prior to valve installation, examine the piping for cleanliness, freedom from foreign materials, and proper alignment.

3.2 VALVE SELECTION:

A. Selection of Valve Ends (Pipe Connections): Except as otherwise indicated, select valves with the following ends or types of pipe/tube connections:

1. Copper Tube Size 2 Inch and Smaller: Solder ends, except in heating hot water and low pressure steam service which shall have threaded ends.

2. Steel Pipe Sizes 2 Inch and Smaller: Threaded end.

4. At all piping hot taps provide a gate valve with the hot tap and a butterfly valve for shut-off service. Hot taps shall be provided only where approved by the Engineer.

5. Contractor shall provide and install hi-performance steam butterfly valves on sizes 6" and larger.

3.3 VALVE INSTALLATIONS:

Valve Application Table

(Where sizes overlap, contractor has choice of either type)

<table>
<thead>
<tr>
<th>SERVICE</th>
<th>VALVE TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plumbing Water Services; 3" or smaller</td>
<td>Ball Valve</td>
</tr>
<tr>
<td>Plumbing Water Services; 2-1/2” and larger</td>
<td>Butterfly Valves</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>HVAC & Plumbing Check Valves; 2” and smaller</td>
<td>Swing Check</td>
</tr>
<tr>
<td>Steam and Condensate Piping Shut-off; 3” and smaller</td>
<td>Steam Ball Valves or Gate Valves</td>
</tr>
<tr>
<td>Steam and Condensate Piping Shut-off; 2-1/2” and larger</td>
<td>Steam Butterfly Valves or Gate Valves</td>
</tr>
<tr>
<td>Steam and Condensate Piping Check Valves; All Sizes</td>
<td>Swing Check</td>
</tr>
</tbody>
</table>

A. Locate valves for easy access and provide separate support where necessary.

B. Install valves and unions for each fixture and item of equipment in a manner to allow equipment removal without system shut-down. Unions are not required on flanged devices.

C. Install 3-valve bypass around each pressure reducing valve using throttling type valves.

D. Gate and globe valves shall be installed with the stem in the upright position. In overhead horizontal piping, ball valves shall be installed with the handle in the side or bottom of the piping. Butterfly valves shall be installed with the stem within 45 degrees of the horizontal position. The handle of quarter turn valves shall open in the direction of flow. Quarter turn valves with hand wheels or chain wheels shall be located so that the position indicator is visible from the floor without the use of a ladder or climbing on equipment or piping.

E. Installation of Check Valves: Install for proper direction of flow as follows:
 1. Swing Check Valves: Install in horizontal position with hinge pin level.

3.4 SOLDER CONNECTIONS:

A. Cut tube square and to exact lengths.

B. Clean end of tube to depth of valve socket, using steel wool, sand cloth, or a steel wire brush to a bright finish. Clean valve socket in same manner.

C. Apply proper soldering flux in an even coat to inside of valve socket and outside of tube.

D. Open gate and globe valves to fully open position.

E. Remove the cap and disc holder of swing check valves with composition discs.

F. Insert tube into valve socket making sure the end rests against the shoulder inside valve. Rotate tube or valve slightly to insure even distribution of the flux.

G. Apply heat evenly to outside of valve around joint until solder will melt upon contact. Feed solder until it completely fills the joint around tube. Avoid hot spots or overheating the valve. Once the solder starts cooling, remove excess amounts around the joint with a cloth or brush.

3.5 THREADED CONNECTIONS:

A. Note the internal length of threads in valve ends, and proximity of valve internal seat or wall, to determine how far pipe should be threaded into valve.

B. Align threads at point of assembly.
C. Apply appropriate tape or thread compound to the external pipe threads (except where dry seal threading is specified).

D. Assemble joint wrench tight. Wrench on valve shall be on the valve end into which the pipe is being threaded.

3.6 FLANGED CONNECTIONS:

A. Align flanges surfaces parallel.

B. Assemble joints by sequencing bolt tightening to make initial contact of flanges and gaskets as flat and parallel as possible. Use suitable lubricants on bolt threads. Tighten bolts gradually and uniformly using a torque wrench.

3.7 GROOVED CONNECTIONS:

A. Assembly valves with grooved end in accordance with manufacturers published instructions.

B. Clean pipe ends from indentations, projections, burrs and roll marks from pipe to groove.

C. Provide gasket, flanges, fittings, bolts, nuts, lubrication applied per manufacturer’s instructions for intended service.

3.8 FIELD QUALITY CONTROL:

A. Testing: After piping systems have been tested and put into service, but before final adjusting and balancing, inspect each valve for leaks. Adjust or replace packing to stop leaks; replace valve if leak persists.

3.9 ADJUSTING AND CLEANING:

A. Cleaning: Clean mill scale, grease, and protective coatings from exterior of valves and prepare to receive finish painting or insulation.

END OF SECTION 230523
SECTION 230529 – HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 QUALITY ASSURANCE:

A. Manufacturer’s Qualifications: Firms regularly engaged in manufacture of supports and anchors, of types and sizes required, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Codes and Standards:

1. Regulatory Requirements: Comply with applicable plumbing codes pertaining to product materials and installation of supports and anchors.

2. NFPA Compliance: Hangers and supports shall comply with NFPA standard No. 13 when used as a component of a fire protection system.

3. UL and FM Compliance: Hangers, supports, and components shall be listed and labeled by UL and FM where used for fire protection piping systems.

4. Duct Hangers: SMACNA Duct Manuals

5. MSS Standard Compliance:

 a. Provide pipe hangers and supports of which materials, design, and manufacture comply with MSS SP-69.

1.2 SUBMITTALS:

A. Product Data: Submit manufacturer’s technical product data, including installation instructions for each type of support and anchor. Submit pipe hanger and support schedule showing Manufacturer’s figure number, size, location, and features for each required pipe hanger and support.

B. Shop Drawings: Submit manufacturer’s assembly-type shop drawings for each type of support and anchor, indicating dimensions, weights, required clearances, and methods of assembly of components.

C. Product certificates signed by the manufacturer of hangers and supports certifying that their products meet the specified requirements.

D. Maintenance Data: Submit maintenance data and parts list for each type of support and anchor. Include this data, product data, and shop drawings in maintenance manual; in accordance with requirements of Division 23.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturer: Subject to compliance with requirements, provide products by one of the following:

 1. Pipe Hangers and Supports:
2. Saddles, Shield and Thermal Shield Inserts:
 a. ANVIL International
 b. Pipe Shields, Inc.
 c. B-Line
 d. Snapp Itz
 e. Erico
 f. Value Engineered Products, Inc.

3. Concrete Inserts and Anchors:
 a. Unistrut Metal Framing Systems
 b. Power-Strut
 c. ITW Ramset/Red Head
 d. Hilti
 e. B-Line
 f. Erico

2.2 PIPE HANGERS & SUPPORTS:

A. Hangers and support components shall be factory fabricated of materials, design, and manufacturer complying with MSS SP-69.
 1. Components shall have galvanized coatings where installed for piping and equipment that will not have field-applied finish.
 2. Pipe attachments shall have nonmetallic coating for electrolytic protection where attachments are in direct contact with copper tubing.

B. Adjustable Clevis Hanger: MSS Type.
 1. Steel Pipe, size 3/8" thru 30", Type 1.
 2. Non-insulated Copper Pipe, size 1/2" thru 4", Type 1. (PVC Coated)

C. Adjustable Swivel Ring for Non-insulated Pipe: MSS Type.
 1. Steel Pipe, size 1/2" thru 8", Type 7.
 2. Copper Pipe, size 1/2" thru 4", Type 7 (PVC Coated)

D. Pipe Clamps: MSS Type.
 2. Copper Pipe, size 1/2" thru 4", Type 8 (PVC Coated).

E. U Bolts: MSS Type.
1. Steel Pipe, size 1/2" thru 30" Type 24
2. Copper Pipe, size 1/2" thru 8", Type 24 (PVC Coated).

F. Straps: MSS Type 26.

G. Pipe Stanchion Saddle: MSS Type 37.

H. Yoke & Roller Hanger: MSS Type 43.

I. Hanger Rods: Continuous threaded steel, sizes as specified.

J. Hangers:
 1. Hot Pipes:
 a. 1/2" through 1-1/2": Adjustable wrought steel ring.
 b. 2" through 5": Adjustable wrought steel clevis.
 c. 6" and Over: Adjustable steel yoke and cast iron roll.
 2. Cold Pipes:
 a. 1/2" through 1-1/2": Adjustable wrought steel ring.
 b. 2" and Over: Adjustable wrought steel clevis.
 3. Multiple or Trapeze: Structural steel channel (with web vertical and engineered for the specific applications), with welded spacers and hanger rods. Provide cast iron roll and base plate for hot pipe sizes six inches and over. Provide hanger rods one size larger than for largest pipe in trapeze. If the deflection at center of trapeze exceeds 1/360 of the distance between the end hangers, install an additional hanger at mid-span or use a larger channel.

K. Wall Supports for Horizontal Steel Pipe:
 1. ½ inch through 4 inches: Offset or straight j-hook.
 2. 4 inches and Over: Welded steel bracket Type 31, 32 or 33 and wrought steel clamp. Provide adjustable steel yoke and cast iron roll Type 44 for hot pipe 200° F and over and for sizes six inches and over.

L. Supports for Vertical Pipe: Steel riser clamp. Type 8.

M. Upper Attachments:
 1. For attaching hanger rods to structural steel I-beams:
 a. Provide adjustable beam clamp, MSS-Type 21. Attach to bottom flange of beam.
 2. For attaching hanger rods to bar joists:
 a. When bottom chord is constructed of structural steel angles, provide square washer. Place hanger rod between backs of the two angles and support with the washer and dual locking nuts on top of the angles. Spot weld washer to angles.
 b. When bottom chord is constructed of round bars, provide Elcen No. 137 bar joint washer or equal.
2.3 CONCRETE INSERTS AND ANCHORS:

A. Inserts: Case shall be of galvanized carbon steel with square threaded concrete insert nut for hanger rod connection; top lugs for reinforcing rods, nail holes for attaching to forms. This type of upper attachment is to be used for all areas having poured in place concrete construction.

1. Size inserts to suit threaded hanger rods.

B. Provide fasteners attached to concrete ceilings that are vibration and shock resistant. Provide hangers for piping attached to concrete construction with one of the following types.

1. Concrete insert per MSS SP 69, Type 18.
2. Powder driven fasteners subject to approval Structural Engineer. Each fastener shall be capable of holding a test load of 1000 pounds whereas the actual load shall not exceed 50 pounds.
3. Self-drilling expansion shields. The load applied shall not exceed one-fourth the proof test load required.
4. Machine bolt expansion anchor. The load applied shall not exceed one-fourth the proof test load required.

C. Anchors: Carbon steel, zinc plated. Installation shall be in holes drilled with carbide-tipped drill bits or by use of self-drilling anchors.

1. Provide anchors suitable for the location of installation and designed to withstand all forces and movements acting in the anchor. Manufacture pipe anchors in accordance with MSS SP 69. Provide a safety factor of four for the anchor installation.

2.4 SADDLES AND THERMAL SHIELD INSERTS:

A. Protection Saddles: MSS Type 39; fill interior voids with segments of insulation matching adjoining insulation.

B. Protection Shields: MSS Type 40; 180 degrees arc, galvanized steel, minimum 12 inches long, to prevent crushing of insulation.

C. Thermal Shield Inserts: Provide 100-psi minimum compressive strength, waterproof, asbestos free calcium silicate, encased with a sheet metal enclosure. Insert and shield shall cover the entire circumference or the bottom half circumference of the pipe as required by Part 3 of this Specification, and shall be of length recommended by the manufacturer for pipe size and thickness of insulation. For cold piping, calcium silicate shall extend beyond the sheet metal shield to allow overlap of the vapor barrier. Where piping 4 inches and larger is supported on trapeze or pipe rollers, provide double thickness shields. For piping 12 inches and over, provide 600 psi calcium silicate structural insert.

2.5 MISCELLANEOUS MATERIALS:

A. Steel Plates, Shapes, and Bars: ASTM A 36.

B. Cement Grout: Portland cement (ASTM C 150, Type I or Type III) and clean uniformly graded, natural sand (ASTM C 404, Size No. 2). Mix ratio shall be 1.0 part cement to 3.0 parts sand, by volume, with minimum amount of water required for placement and hydration.
C. Heavy-Duty Steel Trapezes: Fabricate from steel shapes selected for loads required; weld steel in accordance with AWS standards.

D. Pipe Alignment Guides: Provide factory-fabricated guides, of cast semi-steel or heavy fabricated steel, consisting of bolted two-section outer cylinder and base with two-section guiding spider bolted tight to pipe. Size guide and spiders to clear pipe and insulation (if any), and cylinder. Provide guides of length recommended by manufacturer to allow indicated travel.

PART 3 EXECUTION

3.1 INSPECTION:

A. Examine areas and conditions under which supports and anchors are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.2 PREPARATION:

A. Proceed with installation of hangers, supports and anchors only after required building structural work has been completed in areas where the work is to be installed. Correct inadequacies including (but not limited to) proper placement of inserts, anchors and other building structural attachments. Review Structural Drawings to obtain structural support limitations.

B. Prior to installation of hangers, supports, anchors and associated work, Installer shall meet at project site with Contractor, installer of each component of associated work, inspection and testing agency representatives (if any), installers of other work requiring coordination with work of this section and Architect/Engineer for purpose of reviewing material selections and procedures to be followed in performing the work in compliance with requirements specified. Provide Shop Drawing showing method and support locations from structure.

3.3 INSTALLATION OF BUILDING ATTACHMENTS:

A. Install building attachments within concrete or on structural steel. Space attachments within maximum piping span length indicated in MSS SP-69. Install additional attachments at concentrated loads, including valves, flanges, guides, strainers, expansion joints, and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten insert to forms. Where concrete with compressive strength less than 2500 psi is indicated, install reinforcing bars through openings at top of inserts.

B. Existing Construction:

1. In existing concrete construction, drill into concrete slab and insert and tighten expansion anchor bolt. Connect anchor bolt to hanger rod. Care must be taken in existing concrete construction not to sever reinforcement rods or tension wires.

3.4 INSTALLATION OF HANGERS AND SUPPORTS:

A. Install hangers, supports, clamps and attachments to support piping properly from building structure; comply with MSS SP-69. Arrange for grouping of parallel runs of horizontal piping to be supported together on field fabricated, heavy-duty trapeze hangers where possible. Install supports with maximum spacings complying with MSS SP-69. Where piping of various sizes is supported together by trapeze hangers, space hangers for smallest pipe size or install...
Intermediate supports for smaller diameter pipe. Do not use wire or perforated metal to support piping, and do not support piping from other piping.

B. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers and other accessories.

C. Support fire-water piping independently from other piping systems.

D. Prevent electrolysis and abrasion in support of copper tubing by use of hangers and supports which are plastic coated, or with EPDM isolation strips. Duct tape or copper coated hangers are not acceptable.

E. Install hangers and supports to allow controlled movement of piping systems, to permit freedom of movement between pipe anchors, to facilitate action of expansion joints, expansion loops, expansion bends and similar units and within 1'-0" of each horizontal elbow.

F. Load Distribution: Install hangers and supports so that piping live and dead loading and stresses from movement will not be transmitted to connected equipment.

G. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes, and so that maximum pipe deflections allowed by ANSI B31.9 Building Services Piping Code is not exceeded.

H. Insulated Piping: Comply with the following installation requirements.

1. Clamps: Attach clamps, including spacers (if any), to piping with clamps projecting through insulation; do not exceed pipe stresses allowed by ANSI B31.

2. Saddles: Install Protection saddles where supported by pipe rollers. Fill interior voids with segments of insulation that match adjoining pipe insulation.

3. Shields: Install galvanized steel protection shields, on all insulated piping 2 inches and less, except where required to be clamped. Where necessary to prevent dislocation, strap shield to pipe with wire ties or "Zip Strips".

4. Thermal Inserts: Provide thermal shield inserts at all supports for all insulated piping over 2 inches and for all piping required to be clamped. Provide 180 percent inserts at clevis and roller hangers. Provide 360 percent inserts for all trapeze and clamped supports.

I. Install horizontal hydronic and steam piping with the following minimum rod sizes and maximum spacing:

<table>
<thead>
<tr>
<th>SIZE (NPS)</th>
<th>MAX. SPAN IN FEET</th>
<th>MIN. ROD SIZE-INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Steel</td>
<td>Copper</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>1-1/2</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>12</td>
</tr>
</tbody>
</table>
Table: Size, Max. Span, and Min. Rod Size

<table>
<thead>
<tr>
<th>SIZE (NPS)</th>
<th>MAX. SPAN IN FEET</th>
<th>MIN. ROD SIZE-INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Steel</td>
<td>Copper</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>23</td>
<td>19</td>
</tr>
<tr>
<td>14</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>27</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>32</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>33</td>
<td>-</td>
</tr>
</tbody>
</table>

Specifications

J. Place a hanger within one foot of each horizontal elbow.

K. Use hangers which are vertically adjustable 1-1/2 inch minimum after piping is erected.

L. Support vertical steel and copper piping at every story height but at not more than 15 foot intervals for steel and 10 feet for copper.

M. Where several pipes can be installed in parallel and at same elevation, provide trapeze hangers.

N. Where practical, support riser piping independently of connected horizontal piping.

O. Support steam supply and condensate return pipe runs on adjustable roller hangers.

P. Each pipe drop to equipment shall be adequately supported. All supporting lugs or guides shall be securely anchored to the building structure.

Q. Securely anchor and support plumbing domestic water piping in chases or walls. Use factory manufactured clamps and brackets connected to fixtures, waste/vent piping or brackets connected to studs. Wires or straps will not be permitted.

1. When copper supplies are connected to flush valves, support the tubing by the studs or by a fixture, not by clamping to waste/vent piping.

2. Prevent copper tubes from making contact with steel brackets using fire retardant polyethylene inserts or other dielectric insulating material. Duct tape shall not be used.

R. Install anchors and fasteners in accordance with manufacturer’s recommendations and the following:

1. In the event a self-drilling expansion shield or machine bolt expansion shield is considered to have been installed improperly, the Contractor shall make an acceptable
replacement or demonstrate the stability of the anchor by performing an on-site test under which the anchor will be subjected to a load equal to twice the actual load.

2. Powder-driven fasteners may be used only where they will be concealed after the construction is complete. Where an occasional fastener appears to be improperly installed, additional fastener(s) shall be driven nearby (not closer than 6 inches) in undisturbed concrete. Where it is considered that many fasteners are improperly installed, the Contractor shall test load any 50 successively driven fasteners. If 10 percent or more of these fasteners fail, the Contractor shall utilize other fastening means as approved and at no additional cost to the Owner.

3. Hangers for piping and ducts shall be attached to cellular steel floor decks with steel plates and bolted rod conforming to the steel deck manufacturer's requirements. Where the individual hanger load exceeds the capacity of a single floor deck attachment, steel angles, beams or channels shall be provided to span the number of floor deck attachments required.

4. Welding may be used for securing hangers to steel structural members. Welded attachments shall be designed so that the fiber stress at any point of the weld or attachment will not exceed the fiber stress in the hanger rod.

3.5 INSTALLATION OF ANCHORS:

A. Install anchors at proper locations to prevent stresses from exceeding those permitted by ANSI B31.9, and to prevent transfer of loading and stresses to connected equipment.

B. Fabricate and install anchor by welding steel shapes, plates and bars to piping and to structure. Comply with ANSI B31.9 and with AWS Standards D1.1.

C. Where expansion compensators are indicated, install anchors in accordance with expansion unit manufacturer's written instructions, to control movement to compensators.

D. Anchor Spacings: Where not otherwise indicated, install anchors at ends of principal pipe-runs, at intermediate points in pipe-runs between expansion loops and bends. Make provisions for preset of anchors as required to accommodate both expansion and contraction of piping. Provide shop drawing for review by Engineer.

3.6 SHEET METAL DUCT HANGERS AND SUPPORTS:

A. Provide in accordance with SMACNA HVAC duct construction standards.

B. Additional Hanger Requirements:

 1. 2" to 24" from flexible connections of fans.
 2. 2" to 24" from the outlets or flexible connections of VAV control units or mixing boxes.
 3. 12" to 36" from the main duct to the first hanger of long branch ducts.
 4. 2" to 12" from the ends of all branch ducts and linear diffuser plenums.
 5. 2" to 24" from fire damper break-away joints.
 6. Hangers at throat and heal of round or square elbows 48" or greater in width.

3.7 EQUIPMENT SUPPORTS:

A. Fabricate structural steel stands to suspend equipment from structure above or support equipment above floor.
B. Grouting: Place grout under supports for piping and equipment.

C. Concrete bases for the mechanical equipment indoors or outdoors will be provided by the General Contractor only if shown on the architectural or structural drawings. Otherwise, all bases shall be provided by this Contractor.

D. For inertia bases, see Section 23 05 48.

E. Housekeeping bases shall be 4 inches thick minimum, extended 4 inches beyond machinery bedplates.

F. This Contractor shall be responsible for the proper size and location of all bases and shall furnish all required anchor bolts and sleeves. If bases are provided by the General Contractor, furnish him with templates showing the bolt locations.

G. Equipment shall be secured to the bases with anchor bolts of ample size. Bolts shall have bottom plates and pipe sleeves and shall be securely imbedded in the concrete. All machinery shall be grouted under the entire bearing surface. After grout has set, all wedges, shims and jack bolts shall be removed and the space filled with non-shrinking grout. This Contractor shall provide lead washers at all equipment anchor bolts.

H. Construct equipment supports above floor of structural steel members or steel pipe and fittings. Brace and fasten with flanges bolted to structure.

I. Provide rigid anchors for ducts and pipes immediately after vibration connections to equipment. See also Section 23 05 48.

3.8 METAL FABRICATION:

A. Cut, drill, and fit miscellaneous metal fabrications for pipe anchors and equipment supports. Install and align fabricated anchors in indicated locations.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1 for procedures of manual shielded metal-arc welding, appearance and quality of welds made, methods used in correcting welding work, and the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.

2. Obtain fusion without undercut or overlap.

3. Remove welding flux immediately.

4. Finish welds at exposed connections so no roughness shows after finishing and contours at welded surfaces match adjacent contours.

3.9 ADJUSTING:

A. Hanger Adjustment: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe. Cut off the bottom of threaded rods so they are no more than one rod diameter below the bottom nut.
B. Touch-Up Painting: Immediately after erection of anchors and supports, clean field welds and abraded areas of shop paint and paint exposed areas with same material as used for shop painting to comply with SSPC-PA-1 requirements for touch-up of field-painted surfaces.

1. Apply by brush or spray to provide a minimum dry film thickness of 2.0 mils.

C. For galvanized surfaces clean welds bolted connections and abraded areas and apply galvanizing repair paint to comply with ASTM A 780.

END OF SECTION 230529
SECTION 230553 – IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 QUALITY ASSURANCE:

A. Manufacturer’s Qualifications: Firms regularly engaged in manufacturer of identification devices of types and sizes required, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Codes and Standards:

1. Existing Building Standards: Comply with the existing lettering size, length of color field, colors and identification method as presently exists in the existing building unless otherwise indicated.

1.2 SUBMITTALS:

A. Product Data: Submit manufacturer's technical product data and installation instructions for each identification material and device required.

B. Schedules: Submit valve schedule for each piping system, typewritten and reproduced on 8-1/2" x 11" bond paper. Tabulate valve number, piping system, system abbreviation (as shown on tag), location of valve (room or space), size of valve, and variations for identification (if any). Only tag valves which are intended for emergency shut-off and similar special uses, such as valve to isolate individual system risers, individual floor branches or building system shut off valves. In addition to mounted copies, furnish extra copies for Maintenance Manuals as specified in Division 23.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturer: Subject to compliance with requirements, provide products by one of the following:

B. Mechanical Identification:

1. Allen Systems, Inc.
4. Industrial Safety Supply Co., Inc.
5. Seton Name Plate Corp.
6. PVC Specialties

2.2 MECHANICAL IDENTIFICATION MATERIALS:

A. General: Provide manufacturer's standard products of categories and types required for each application as referenced in other Division-23 sections. Where more than single type is specified for application, selection is Installer's option, but provide single selection for each product category.
2.3 PAINTED IDENTIFICATION MATERIALS:

A. Stencils: Standard fiberboard stencils, prepared for required applications with letter sizes generally complying with recommendations of ANSI A13.1 for piping or to match existing size in existing building, but not less than 1-1/4" high letters for ductwork and not less than 3/4" high letters for access door signs and similar operational instructions.

B. Stencil Paint: Standard exterior type stenciling enamel; black, except as otherwise indicated; either brushing grade or pressurized spray-can form and grade.

C. Identification Paint: Standard identification enamel of colors indicated or, if not otherwise indicated comply with ANSI A13.1 for colors or to match existing building standard identification.

2.4 PLASTIC PIPE MARKERS:

A. Snap-On Type: Provide manufacturer’s standard pre-printed, semi-rigid snap-on, color-coded pipe markers, complying with ANSI A13.1.

B. Insulation: Furnish 1 inch thick molded fiberglass insulation with jacket for each plastic pipe marker to be installed on uninsulated pipes subjected to fluid temperatures of 125 degrees F. (52 degrees C.) or greater. Cut length to extend 2 inches beyond each end of plastic pipe marker.

C. Small Pipes: For external diameters less than 6 inches (including insulation if any), provide full-band pipe markers, extending 360 degrees around pipe at each location, fastened by one of the following methods:
 1. Snap-on application of pre-tensioned semi-rigid plastic pipe marker.
 2. Taped to pipe (or insulation) with color-coded plastic adhesive tape, not less than 3/4 inch wide; full circle at both ends of pipe marker, tape lapped 1-1/2 inches.

D. Large Pipes: For external diameters of 6 inches and larger (including insulation if any), provide either full-band or strip-type pipe markers, but not narrower than 3 times letter height (and of required length), fastened by one of the following methods:
 1. Steel spring or non-metallic fasteners.
 2. Taped to pipe (or insulation) with color-coded plastic adhesive tape, not less than 1-1/2 inches wide; full circle at both ends of pipe marker, tape lapped 3 inches.
 3. Strapped-to-pipe (or insulation) application of semi-rigid type, with manufacturer’s standard stainless steel bands.

E. Lettering: Comply with piping system nomenclature as specified, scheduled, shown, or to match existing building lettering nomenclature system and abbreviate only as necessary for each application length.

F. Arrows: Print each pipe marker with arrows indicating direction of flow, either integrally with piping system service lettering (to accommodate both directions), or as separate unit of plastic.
2.5 PLASTIC TAPE:

A. General: Provide manufacturer's standard color-coded pressure-sensitive (self-adhesive) vinyl tape, not less than 3 mils thick.

B. Width: Provide 1-1/2 inches wide tape markers on pipes with outside diameters (including insulation, if any) of less than 6 inches, 2-1/2 inches wide tape for larger pipes.

C. Color: Comply with ANSI A13.1, except where another color selection is indicated.

2.6 VALVE TAGS:

A. Brass Valve Tags: Provide 19-gage polished brass valve tags with stamp-engraved piping system abbreviation in 1/4 inch high letters and sequenced valve numbers 1/2 inch high, and with 5/32 inch hole for fastener.

1. Provide 1-1/2 inch diameter tags, except as otherwise indicated.
2. Fill tag engraving with black enamel.

B. Valve Tag Fasteners: Provide manufacturer's standard solid brass chain (wire link or beaded type), and solid brass S-hooks of the sizes required for proper attachment of tags to valves, and manufactured specifically for that purpose.

C. Access Panel Markers: Provide manufacturer's standard 1/16 inch thick engraved plastic laminate access panel markers, with abbreviations and numbers corresponding to concealed valve. Include 1/8 inch center hole to allow attachment.

2.7 VALVE SCHEDULE FRAMES:

A. General: For each page of valve schedule, provide glazed display frame, with screws for removable mounting on masonry walls. Provide frames of finished hardwood or extruded aluminum, with non-glare type sheet glass.

2.8 ENGRAVED PLASTIC-LAMINATE SIGNS:

A. General: Provide engraving stock melamine plastic laminate, complying with FS L-P-387, in the sizes and thicknesses indicated, engraved with engraver's standard letter style of the sizes and wording indicated, black with white core (letter color) except as otherwise indicated, punched for mechanical fastening except where adhesive mounting is necessary because of substrate.

B. Thickness: 1/16 inch, except as otherwise indicated.

C. Fasteners: Self-tapping stainless steel screws, except contact-type permanent adhesive where screws cannot or should not penetrate the substrate.

2.9 PLASTICIZED TAGS:

A. General: Manufacturer's standard pre-printed or partially pre-printed accident-prevention tags, of plasticized card stock with matt finish suitable for writing, approximately 3-1/4 inch x 5-5/8 inch, with brass grommets and wire fasteners, and with appropriate pre-printed wording including large-size primary wording (as examples; DANGER, CAUTION, DO NOT OPERATE).
2.10 LETTERING AND GRAPHICS:

A. General: Coordinate names, abbreviations and other designations used in mechanical identification work, with corresponding designations shown, specified, scheduled and approved by the Owner/Engineer. Provide numbers, lettering and wording as indicated and approved by the Owner/Engineer for proper identification and operation/maintenance of mechanical systems and equipment.

B. Multiple Systems: Where multiple systems of same generic name are shown and specified, provide identification which indicates individual system number as designated on the drawings or schedule as well as service.

PART 3 - EXECUTION

3.1 GENERAL INSTALLATION REQUIREMENTS:

A. Coordination: Where identification is to be applied to surfaces which require insulation, painting or other covering or finish including valve tags in finished mechanical spaces, install identification after completion of covering and painting. Install identification prior to installation of acoustical ceilings and similar removable concealment.

3.2 PIPING SYSTEM IDENTIFICATION:

A. General: Install pipe markers of the following type on each system indicated to receive identification, and include arrows to show normal direction of flow. Existing building identification shall match the existing method which exists in the building.

B. Plastic pipe markers, with application system as indicated under "Materials" in this section. Install on pipe insulation segment where required for hot non-insulated pipes.

C. Locate pipe markers and color bands as follows wherever piping is exposed to view in occupied spaces, machine rooms, accessible maintenance spaces (shafts, tunnels, plenums) and exterior non-concealed locations.

D. Near each valve and control device.

E. Near each branch, excluding short take-offs for fixtures and terminal units; mark each pipe at branch, where there could be question of flow pattern.

F. Near locations where pipes pass through walls or floors/ceilings, or enter non-accessible enclosures.

G. At access doors, manholes and similar access points which permit view of concealed piping.

H. Near major equipment items and other points of origination and termination.

I. Spaced intermediately at maximum spacing of 25 feet along each piping run, except reduce spacing to 15’ in congested areas of piping and equipment.

J. On piping above removable acoustical ceilings.

3.3 UNDERGROUND PIPING IDENTIFICATION:

A. General: During back-filling/top-soiling of each exterior underground piping systems, install continuous underground-type plastic line marker, located directly over buried line at 6 inches
to 8 inches below finished grade. Where multiple small lines are buried in common trench and
do not exceed overall width of 16 inches, install single line marker. For tile fields and similar
installations, mark only edge pipe lines of field.

3.4 VALVE IDENTIFICATION:

A. General: Provide valve tag on valves in each piping system. List each tagged valve in valve
schedule for each piping system.

1. Building services main shut-off valves.
2. Each individual system main shut-off valves.
3. Each individual system riser shut-off valves.
4. Each individual system floor shut-off valves.
5. Each individual system major branch shut-off valves.

B. Mount valve schedule frames and schedules in mechanical equipment rooms where directed
by Architect/Owner/Engineer.

C. Where more than one major mechanical equipment room is shown for project, install mounted
valve schedule in each major mechanical equipment room, and repeat only main valves which
are to be operated in conjunction with operations of more than single mechanical equipment
room.

3.5 ADJUSTING AND CLEANING:

A. Adjusting: Relocate any mechanical identification device which has become visually blocked
by work of this division or other divisions.

B. Cleaning: Clean face of identification devices, and glass frames of valve charts.

END OF SECTION 230553
SECTION 230700 - HVAC INSULATION

PART 1 - GENERAL

1.1 QUALITY ASSURANCE:

A. Manufacturer's Qualifications: Firms regularly engaged in manufacture of mechanical insulation products and systems, of types and sizes required, whose products have been in satisfactory use in similar service for not less than 3 years.

B. Installer's Qualifications: Firm with at least 5 years successful installation experience on projects with mechanical insulations similar to that required for this project.

C. Flame/Smoke Ratings: Provide composite mechanical insulation (insulation, jackets, coverings, sealers, mastics and adhesives) with flame-spread index of 25 or less, and smoke-developed index of 50 or less, as tested by ASTM E 84 (NFPA 255) method. In addition, the products, when tested, shall not drip flame particles, and flame shall not be progressive. Provide Underwriters Laboratories Inc., label or listing, or satisfactory certified test report from an approved testing laboratory to prove that fire hazard ratings for materials proposed for use do not exceed those specified.

D. Codes and Standards:

1.2 SUBMITTALS:

A. Product Data: Submit manufacturer's technical product data and installation instructions for each type of mechanical insulation. Submit schedule showing manufacturer's product number, k-value, thickness, density, and furnished accessories for each mechanical system requiring insulation. Submit detail product information and installation information for all jacketing systems specified in this section.

1.3 DELIVERY, STORAGE, AND HANDLING:

A. Deliver insulation, coverings, cements, adhesives, and coatings to site in containers with manufacturer's stamp or label, affixed showing fire hazard indexes of products.

B. Protect insulation against dirt, water, and chemical and mechanical damage. Do not install damaged or wet insulation; remove from project site.

PART 2 - PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturer: Subject to compliance with requirements, provide product by one of the following:

1. Mechanical Insulation:

 a. Johns Manville Corp.
 b. Owens-Corning Fiberglas Corp.
 c. Knauf Fiber Glass
 d. Manson
 e. CertainTeed
 f. Einsulation
2. Jacketing & Covering Products:

a. Childers
b. Ceel-Co
c. Zeston
d. Alpha Associates, Inc.

2.2 PIPING INSULATION MATERIALS:

A. Fiberglass Piping Insulation: ASTM C 547, Class 1 unless otherwise indicated. "K" factor shall be maximum 0.24 at 75 degrees F. mean temperature, jacket with tensile strength of 35 lbs/in, mullen burst 70 psi, beach puncture 50 oz. in/in, permeability .02 perm factory applied vapor barrier jacket and adhesive self-sealing lap joint.

B. Cellular Glass Piping Insulation: ASTM C 552, Type II, Class 2. "K" factor shall be maximum 0.29 at 75 degrees F mean temperature.

C. Calcium Silicate Piping Insulation: ASTM C 533, Type I. "K" factor shall be maximum 0.45 at 500 degrees F. mean temperature, compression strength 200 psi for 5 percent compression, transverse strength 200 psi for 5 percent compression, flexural strength 60 psi.

D. Flexible Closed Cell Piping Insulation: ASTM C 534, Type I. "K" factor shall be maximum 0.27 at 75 degrees F. mean temperature, with a water vapor permeability of 0.10 perm inches or less. Insulation shall be pre-installed on piping, or un-slit to be slipped over piping as a single piece.

E. Jackets for Piping Insulation: ASTM C 921, Type I for piping with temperatures below ambient, Type II for piping with temperatures above ambient. Type I may be used for all piping at Installers option.

1. Fitting Covers: UV resistant PVC, pre-molded fitting covers, flame spread 25, smoke developed 50. PVC tape for cold systems, serrated tacks or PVC tape for hot systems.

2. Aluminum Jacketing: Manufactured from T3003 (or T/5005) H14 to H19 aluminum alloy with 3/16" corrugations and shall have a factory attached 1 mil thick polyethylene moisture barrier continuously laminated across the full width of the jacketing. Jacketing shall be .016" thick minimum. Provide matching factory fabricated covers for 90 degrees and 45 degrees elbows, tee fittings, flange fittings valve bodies, blind ends, reducers and other fittings necessary to make the covering system complete, waterproof and weatherproof.

F. Staples, Bands, Wires, and Cement: As recommended by insulation manufacturer for applications indicated.

G. Adhesives, Sealers, and Protective Finishes: As recommended by insulation manufacturer for applications indicated and additional finishes as specified.
PART 3 - EXECUTION

3.1 INSPECTION:

A. Examine areas and conditions under which mechanical insulation is to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

B. Workmanship shall be first class and of the highest quality, poor installation or bad appearance as determined by the engineer shall be due cause to reject the entire project in whole and retainage will be withheld until corrective action is completed to the engineer's satisfaction.

3.2 PLUMBING PIPING SYSTEM INSULATION:

A. Insulation Omitted: Omit insulation on unions, balance cocks, flow regulators, drainage piping located in fire protection piping, and pre-insulated equipment.

B. Cold Piping:
 1. Application Requirements: Insulate the following cold plumbing piping systems:
 a. Potable and non-potable cold water piping.
 2. Insulate each piping system specified above with the following types and thicknesses of insulation:
 a. Fiberglass; ½ inch thickness.

C. Hot Piping:
 1. Application Requirements: Insulate the following hot plumbing piping systems:
 a. Potable hot water and tempered piping.
 b. Potable hot water and tempered recirculating piping.
 2. Insulate each piping system specified above with the following types and thicknesses of insulation:
 a. Fiberglass: (IECC) 1 inch thick for all pipe sizes.

3.3 HVAC PIPING SYSTEM INSULATION:

A. Insulation Omitted: Omit insulation on steam condensate piping between steam trap and union; and on hot piping unions, flexible connections, and expansion joints. Insulation may be omitted inside of cabinet unit heaters, convectors and fan coils for hot piping. Cold piping insulation inside fan coil unit cabinet may be omitted provided piping is located over drain pan. Hot and cold piping routed inside air handler units shall be insulated. Omit insulation on strainers in heating water strainers operating below 200 degrees F.

B. Heating System Piping (to 200 degrees F (90 degrees C)):
 1. Application Requirements: Insulate the following heating piping systems:
 a. Hot water supply and return piping.
 b. Low pressure steam vent & relief piping.
2. Insulate each piping system specified above with the following type and thicknesses of insulation:
 a. Fiberglass: (IECC): 1 inch thick for pipe sizes up to and including 1-1/2", 2 inch thick for pipe over 1-1/2 inches.

C. High Temperature, Low Pressure Piping (200 to 250 degrees F (90 to 120 degrees C)):
 1. Application Requirements: Insulate the following hot low pressure HVAC piping.
 a. Low pressure steam (up to 15 psig).
 b. Steam condensate piping (all pressures).
 2. Insulate each piping system specified above with the following type and thicknesses of insulation:
 a. Fiberglass: (IECC): 1-1/2 inch thick for pipe sizes up to and including 1-1/2 inch, 3 inch thick for pipe sizes 2 inch and over.

D. High Temperature, Medium and High Pressure Piping (250 to 350 degrees F (120 to 175 degrees C)):
 1. Application Requirements: Insulate the following hot high pressure HVAC piping:
 a. Medium and High pressure (16 to 125 psig) steam piping.
 2. Insulate each piping system specified above with the following type and thicknesses of insulation:
 a. Fiberglass: 1-1/2 inches thick for pipe sizes up to and including 1-1/2 inch, 3 inch thick for pipe sizes 2 inch and over.

3.4 INSTALLATION OF PIPING INSULATION:

A. General: Install insulation products in accordance with manufacturer's written instructions, and in accordance with recognized industry practices to ensure that insulation serves its intended purpose.

B. Install insulation on pipe systems subsequent to installation of heat tracing, testing, and acceptance of tests.

C. Install insulation materials with smooth and even surfaces. Insulate each continuous run of piping with full-length units of insulation, with single cut piece to complete run. Do not use cut pieces or scraps abutting each other.

D. Clean and dry pipe surfaces prior to insulating. Butt insulation joints firmly together to ensure complete and tight fit over surfaces to be covered.

E. Maintain integrity of vapor-barrier jackets on cold pipe insulation, and protect to prevent puncture or other damage.
 1. Do not use staples or tacks on vapor barrier jackets.
 2. Seal vapor barrier penetrations with vapor barrier finish recommended by the manufacturer.
3. Seal fitting covers with PVC tape.

4. Cover all unions, check valves, and other in-line devices. Mark outer covering with indelible marker to identify item covered.

F. Neatly bevel and seal insulation at all exposed edges.

G. Cover valves, fittings and similar items in each piping system with equivalent thickness and composition of insulation as applied to adjoining pipe run. Install factory molded, precut or job fabricated units (at Installer’s option) except where specific form or type is indicated.

H. Extend piping insulation without interruption through walls, floors and similar piping penetrations, except where otherwise indicated.

I. See equipment insulation for removable insulation on accessible piping components.

J. See Section 23 05 29 for insulation inserts and shields. Butt pipe insulation against pipe hanger insulation inserts. For all piping apply wet coat of vapor barrier lap cement on butt joints and seal all joints and seams with 3 inch wide vapor barrier tape or band.

K. Flexible Elastomeric Piping Insulation:
 1. Install unslit, by slipping over piping prior to joining, or install pre-insulated soft copper tubing.
 2. Seal butt ends with adhesive.

L. Cellular Glass Insulation:
 1. Apply in a single layer. Secure to pipe with ½ inch wide aluminum bands.
 2. For indoor applications, apply all purpose Kraft paper/aluminum foil/vinyl coating jacket. Seal all lap and butt joints with self seal vapor barrier tape.
 3. For outdoor applications, apply aluminum rubber/Tedlar jacketing as described below.

M. Calcium Silicate Insulation:
 1. Apply in a single layer. Secure to pipe with 1/2 inch wide aluminum bands.
 2. For indoor applications, provide canvas jacketing. Adhere joints of jacketing and provide a finish coat of sealant as recommended by the manufacturer.

N. Piping Exposed to Weather: Protect outdoor insulation from weather by aluminum jacketing.
 1. Jacketing shall be secured by 1/2 inch wide stainless steel bands located on 24 inch centers. All joints and seams shall be caulked with clear silicone. Locate all longitudinal seams at the bottom of piping to minimize joint exposure to weather. Contractor may propose pre-fabricated sealing and fastening systems, submit samples and product data for approval.
3.5 EXISTING INSULATION REPAIR:
A. Repair damaged sections of existing mechanical insulation, both previously damaged or damaged during this construction period. Use insulation, install new jacket lapping and sealed over existing.

3.6 PROTECTION AND REPLACEMENT:
A. Replace damaged insulation which cannot be repaired satisfactorily, including units with vapor barrier damage and moisture saturated units.
B. Protection: Insulation Installer shall advise Contractor of required protection for insulation work during remainder of construction period, to avoid damage and deterioration.

END OF SECTION 230700
SECTION 231116 - STEAM SPECIALTIES

PART 1 GENERAL

1.1 QUALITY ASSURANCE:

A. Manufacturer's Qualifications: Firms regularly engaged in manufacture of steam and condensate specialties of types and sizes required, whose products have been in satisfactory use in similar service for not less than 10 years.

B. Steam and Condensate Specialty Types: Provide steam and condensate specialties of same type by same manufacturer.

C. Steam and condensate specialties furnished as part of factory-fabricated equipment shall meet or exceed requirements of this section.

D. Codes and Standards:

1. ASME Compliance: Manufacture and install steam and condensate specialties in accordance with ASME B31.9 "Building Services Piping."

1.2 SUBMITTALS:

A. Product Data: Submit manufacturer's technical product data and installation instructions for each type of steam and condensate specialty. Submit schedule indicating manufacturer's figure number, size, location, rated capacities, and features for each required steam and condensate specialty.

B. Shop Drawings: Submit manufacturers' assembly-type shop drawings indicating dimensions, weights, required clearances, and method of assembly of components.

C. Record Drawings: At project closeout, submit record drawings of installed systems products in accordance with requirements of Divisions 1 and 23.

D. Maintenance Data: Submit maintenance data and spare parts lists for each type of steam and condensate specialty. Include this data, product data, and shop drawings in maintenance manual; in accordance with requirements of Divisions 1 and 23

PART 2 PRODUCTS

2.1 MANUFACTURERS:

A. Manufacturer: Subject to compliance with requirements, provide products by one of the following:

1. Steam Traps:
 a. Armstrong International

2. Steam Vents:
 a. Armstrong International
 b. Hoffman Specialty ITT; Fluid Handling Div.
 c. Nicholson Steam
2.2 STEAM AND CONDENSATE SPECIALTIES:

A. General: Provide factory-fabricated steam and condensate specialties recommended by manufacturer for use in service indicated. Provide steam and condensate specialties of types, capacities, and pressure ratings indicated for each service, or if not indicated, provide proper selection as determined by the manufacturer to make the system complete and operating properly. Provide sizes as indicated, and connections, which properly mate with pipe, tube, and equipment connections. All traps on the project shall be supplied by one manufacturer, multiple manufacturers of different trap types will not be accepted.

2.3 TRAP SIZING:

A. For constant steam pressure applications using either inverted buckets or float and thermostatic traps as indicated on the drawings, use a 2:1 safety factor at the operating pressure differential between the supply pressure and the return line pressure the trap discharges into.

B. For modulating steam pressure using either inverted buckets or float and thermostatic traps as indicated on the drawings use the following sizing criteria:

1. For 0-15 psig supply steam service, size traps at .5 psi pressure differential using a 2:1 safety factor.

2. For 16-30 psig supply steam service, size traps at 2 psi pressure differential using a 2:1 safety factor.

3. For 31 psig at greater supply steam service, size traps at 1/2 of the maximum pressure differential across the trap using a 3:1 safety factor.

NOTE: When determining maximum pressure differential, the outlet pressure after the control valve shall be used.

C. Sizing of steam traps is to be based on condensate discharge at saturated steam temperatures. Water discharge capacities are not acceptable.

2.4 THERMOSTATIC TRAPS:

A. General: Provide thermostatic traps as indicated, with body constructed of cast brass, with integral ball joint union, and screw-in top. Provide thermostatic element of diaphragm or bellows type, with stainless steel valve cone and renewable stainless steel valve seats. Design trap for discharging condensate, air, and other non-condensable gases without loss of steam at steam operating pressures.

2.5 FLOAT AND THERMOSTATIC TRAPS:

A. General: Provide float and thermostatic traps as indicated, with body and cover constructed or cast iron or semi-steel, pressure rated to 175 psig, designed so all internal parts are accessible without disturbing piping. Provide thermostatic air vent shall be austenitic stainless steel and brass cage with a phosphor-bronze balanced pressure bellow. Provide austenitic stainless steel float with positive snap-action valve mechanism, stainless steel valve and renewable seat. Design trap for discharging condensate, air, and other non-condensable gases without loss of steam at system operating pressures.

B. F & T traps shall have the following features:

1. Integral vacuum breaker
2.6 INVERTED BUCKET TRAPS:

A. General: Provide inverted bucket traps with body and cover constructed of cast iron pressure rated for 250 psi, designed so internal parts are accessible without disturbing piping. Construct bucket of austenitic stainless steel, and lever mechanism of heat treat stainless steel, operating on knife edges for friction-free performance. Construct removable seats and plungers of heat treated stainless steel. Trap shall continuously vent non-condensable gases.

B. Inverted bucket traps shall have the following features:

1. Scrub wire bucket with a vent scrub wire.
2. Bucket with a thermostatically controlled air vent.
3. Integral stainless steel check valve.
4. Pop drain condensate drain for low pressure/freezing applications.
5. LV bucket with increased air-venting capacity.

2.7 THERMODYNAMIC TRAPS:

A. General: Provide thermodynamic traps as indicated, with body and cover constructed of stainless steel, pressure rated for 600 psi, designed so internal parts are accessible without disturbing piping. Construct disc of heat treated stainless steel.

1. Strainer: Provide integral inlet strainer built into trap body.
2. Blow Down Valve: Provide blow down valve fitted on strainer blow down connection.
3. Insulated Cap: Provide insulated cap sized to fit over trap cover.

2.8 STEAM VENTS:

A. General: Provide steam vents for venting of air and non-condensable gases from steam piping system.

1. Quick Vents: Cast-brass body and bottom, with thermostatic bellows, and removable vent port with vacuum check.

2. Float Vents: Cast-iron body, cast-brass bottom, seamless-brass float, thermostatic bellows, removable stainless steel seat, monel metal plunger, and vacuum check disks.

2.9 STRainers:

A. See Section 23 05 18 - “Piping Specialties”.

PART 3 EXECUTION

3.1 INSPECTION:

A. General: Examine areas and conditions under which steam and condensate specialties are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.2 INSTALLATION OF STEAM AND CONDENSATE SPECIALTIES:

A. General: Install steam and condensate specialties as indicated, and in accessible locations to permit service. When located behind heating enclosures, center steam and condensate specialties on access door. Install in neat and workmanlike manner. Use only wrenches.
having square flat jaws, or non-metallic strap wrenches on brass specialties; wrench marks will not be permitted.

B. Each trap shall have a check valve on its downstream side or exiting pipe.

C. Thermostatic Traps: Install on outlet of each steam heating terminal unit, and elsewhere as indicated.

D. Float and Thermostatic Traps: Install where indicated. Install strainer ahead of trap, union and shut-off valve on inlet and outlet.

E. Inverted Bucket Traps: Install on high pressure steam piping and where indicated. Install strainer ahead of trap, union and shut-off valve on inlet and outlet.

F. Thermodynamic Traps: Install on high pressure steam piping as indicated. Install strainer ahead of trap, union and shut-off valve on inlet and outlet.

G. Steam Terminal Inlet Valves: Install on inlet to each steam heating room terminal which is not automatically controlled, and elsewhere as indicated. Install with stem in vertical upright position and in accessible position. Install stem extension in top of radiation cover where indicated.

H. Provide inverted bucket trap for steam drip for all low points in the piping system and all other locations where condensate may collect whether shown on the drawings or not. Provide all piping accessories per piping details shown on drawings.

I. Strainers: Install upstream of control valves, pressure reducing valves, and temperature/pressure regulating valves and as shown on drawings. Install in horizontal position to prevent strainer from trapping liquid.

END OF SECTION 231116
PART 1 GENERAL

1.1 DESCRIPTION OF WORK:

A. This section includes low and high pressure steam and condensate piping for system. Materials and equipment specified in this Section include:

 1. Pipes and fittings

B. Related Sections: The following sections contain requirements that relate to this section:

 1. Refer to other Division 23 sections for materials and methods for sealing pipe penetrations through basement walls and fire/smoke barriers, gauges, thermometers, flow meters, mechanical identification, mechanical insulation, condensate pumps and receiver sets, and temperature control valves and sensors.

1.2 SYSTEMS DESCRIPTION:

A. The steam and condensate piping systems for this project is a two-pipe, mechanical flow.

1.3 SUBMITTALS:

A. Shop drawings, detailing dimensions, methods of assembly of components, and location and size of each field connection for flash tanks.

B. Record Drawings: At project closeout, submit record drawings of installed systems products in accordance with requirements of Division 23.

C. Maintenance data, including data for steam and condensate specialties and special duty valves. Refer to Division 23.

D. Welders’ certificates certifying that welders meet the quality requirements specified in Quality Assurance below.

E. Certification of compliance with specified ASTM, ASME, and ANSI manufacturing requirements for pipe, fittings, and specialties.

F. Test reports specified in Part 3 of this Section.

1.4 QUALITY ASSURANCE:

A. Manufacturer’s Qualifications: Firms regularly engaged in manufacturer of steam and condensate piping products, of types, materials, and sizes required, whose products have been in satisfactory use in similar service for not less than 5 years.

B. Installer’s Qualifications: Personnel with at least 3 years of successful installation experience on projects with steam and condensate piping work similar to that required for the project.

C. Regulatory Requirements: Comply with the provisions of the following:

 1. ASME B 31.9 "Building Services Piping: for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label.
2. ASME "Boiler and Pressure Vessel Code," Section IX, "Welding and Brazing Qualification" for qualifications for welding processes and operators.

3. Local Mechanical Code.

4. UMC Compliance: Fabricate and install steam and condensate piping in accordance with IAPMO "Uniform Mechanical Code."

PART 2 PRODUCTS

2.1 MATERIALS AND PRODUCTS:

A. General: Provide piping materials and factory-fabricated piping products of sizes, types, pressure ratings, temperature ratings, and capacities as indicated. Where not indicated, provide proper selection as determined by Installer to comply with installation requirements. Provide materials and products complying with ASME B31.9 Code for Building Services Piping where applicable, base pressure rating on steam and condensate piping systems maximum design pressures. Provide sizes and types matching piping and equipment connections; provide fittings and materials which match pipe materials used in steam and condensate piping systems. Where more than one type of materials or products are indicated, selection is Installer's option.

2.2 PIPE AND TUBE MATERIALS:

A. Steam and Condensate Piping:

1. Low (15 psig and under) and Medium (15 psi to 100 psig) Pressure Steam Supply:
 a. Piping, 2 Inches and Under:
 1) Pipe: Schedule 40, black steel, threaded and coupled.
 2) Joint: Screwed, above ground; welded, below ground.
 3) Fittings: Screwed, black cast-iron, 125 lb.; welded, forged steel socket weld type, 300 lb. (WOG).
 b. Piping, 2-1/2 Inches and Over:
 1) Pipe: Schedule 40, black steel, beveled ends.
 2) Fittings: Schedule 40 steel, butt weld type.
 3) Flanges: 150 lb. forged steel, welding neck type.

2. Low (15 psig and under) and Medium (15 psi to 100 psig) Pressure Steam Condensate:
 a. Piping, 2 Inches and Under:
 1) Pipe: Schedule 40, black steel, threaded and coupled.
 2) Joints: Screwed above ground, welded below ground.
 3) Fittings: Black cast iron, 125 lb.
 b. Piping, 2-1/2 Inches and Over:
 1) Schedule 80, black steel, beveled ends.
 2) Fittings: Schedule 80, steel, butt weld type.
 3) Flanges: 150 lb. forged steel, welding neck type with bore to match pipe.

3. High (above 100 psig) Pressure Steam Supply:
a. Piping, 2 Inches and Under:
 2) Joints: Screwed, above ground; welded, below ground.
 3) Fittings: Black Iron, 250 lb.

b. Piping, 2-1/2 Inches and Over:
 1) Schedule 40, seamless, black steel, beveled ends.
 2) Fittings: Schedule 40, seamless, black steel, butt weld type.
 3) Flanges: 300 lb. forged steel, welding neck type.

4. High (above 100 psig) Pressure Steam Condensate:
 a. Piping, 2 Inches and Under:
 1) Pipe: Schedule 80, seamless, black steel, plain ends.
 2) Fittings: Forged steel socket weld type, 300 lb. (WOG).
 b. Piping 2-1/2 Inches and Over:
 1) Pipe: Schedule 80, seamless, black steel, beveled ends.
 2) Fittings: Schedule 80, seamless, steel, butt weld type.
 3) Flanges: 300 lb. forged steel, welding neck type with bore to match pipe.

PART 3 EXECUTION

3.1 INSPECTION:
 A. General: Examine areas and conditions under which steam and condensate piping materials and products are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.2 PIPING INSTALLATIONS:
 A. General Locations and Arrangements: Drawings (plans, schematics, and diagrams) indicate the general location and arrangement of the piping systems. Location and arrangement of piping layout take into consideration pipe sizing and friction loss, expansion, pump sizing, and other design considerations. So far as practical, install piping as indicated. Refer to individual system specifications for requirements for coordination drawing submittals.
 B. Use fittings for all changes in direction and all branch connections.
 C. Install piping at right angles and parallel to building walls. Diagonal runs are not permitted, unless expressly indicated.
 D. Install piping free of sags or bends and with ample space between piping to permit proper insulation applications.
 E. Install piping tight to slabs, beams, joists, columns, walls, and other permanent elements of the building. Provide space to permit insulation applications, with 1 inch clearance outside the insulation. Allow sufficient space above removable ceiling panels to allow for panel removal.
F. Locate groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves. Install drains at low points in mains, risers, and branch lines consisting of a tee fitting, \(\frac{3}{4} \)" ball valve, and short \(\frac{3}{4} \)" threaded nipple and cap.

G. Wall Penetrations: Where pipes pass through fire rated walls, partitions, ceilings, and floors, maintain the fire rated integrity. Refer to Division 23 for sealers and materials.

H. Install steam supply piping at a uniform grade of 1 inch in forty feet downward in the direction of flow.

I. Install branch connections to supply mains using 45 degree fittings in main with take-off out the top of the main. Use of 90 degree "tee" fittings is permissible, where use of 45 degree fittings are not practical. Where the length of a branch takeoff is less than 10 feet, pitch branch line down toward mains, 1 inch per twenty feet.

J. Make reductions in pipe sizes using eccentric reducer fitting installed with the level side down.

K. Install unions in pipes 2 inches and smaller, adjacent to each valve, at final connections each piece of equipment, and elsewhere as indicated. Unions are not required on flanged devices.

L. Install flexible connectors at inlet and discharge connections to pumps and other vibration producing equipment.

M. Anchor piping to ensure proper direction of expansion and contraction. Install expansion loops and joints as indicated on the Drawings and specified in Division 23 Section "Anchors and Supports."

N. Install drip legs at low points and natural drainage points in the system, such as at the ends on mains, bottom of risers, and ahead of pressure regulators, control valves, isolation valves, pipe bends, and expansion joints.

1. On straight runs with no natural drainage points, install drip legs at intervals not exceeding 200 feet where pipe is pitched down in the direction of the steam flow and a maximum of 150 feet where the pipe is pitched up so that condensate flow is opposite of steam flow.

2. Extend drip legs at vertical risers beyond the rise.

3. Provide an 18 inch long drip leg. For steam mains smaller than 6 inches, provide line size drip leg. In steam mains 6 inches and larger, provide drip legs sized 2 pipe sizes smaller than the main, but not less than 4 inches.

4. Strainer blowdowns shall be equipped with ball valves with hose end and cap to allow removal of dirt and scale.

5. Install steam traps close to drip legs.

3.3 HANGERS AND SUPPORTS:

A. General: Hanger, supports, and anchors devices are specified in Division 23 Section "Supports and Anchors."

B. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet in length.
2. Adjustable roller hangers and spring hangers for individual horizontal runs 20 feet or longer.

3. Pipe roller complete - MSS Type 44 for multiple horizontal runs, 20 feet or longer, supported on a trapeze.

4. Spring hangers to support vertical runs.

3.4 PIPE JOINT CONSTRUCTION:

A. Welded Joints: Comply with the requirements in ASME Code B31.9 - "Building Services Piping."

B. Threaded Joints: Conform to ANSI B1.20.1, tapered pipe threads for field cut threads. Join pipe, fittings, and valves as follows:

1. Note the internal length of threads in fittings or valve ends, and proximity of internal seat or wall, to determine how far pipe should be threaded into joint.

2. Align threads at point of assembly.

3. Apply appropriate tape or thread compound to the external pipe threads (except where dry seal threading is specified).

4. Assemble joint to appropriate thread depth. When using a wrench on valves place the wrench on the valve end into which the pipe is being threaded.

5. Damaged Threads: Do not use pipe with threads which are corroded or damaged. If a weld opens during cutting or threading operations, that portion of pipe shall not be used.

C. Flanged Joints: Align flanges surfaces parallel. Assemble joints by sequencing bolt tightening to make initial contact of flanges and gaskets as flat and parallel as possible. Use suitable lubricants on bolt threads. Tighten bolts gradually and uniformly to appropriate torque specified by the bolt manufacturer.

3.5 FIELD QUALITY CONTROL:

A. Preparation for testing: Prepare steam and condensate piping in accordance with ASME B31.9 and as follows:

1. Leave joints including welds uninsulated and exposed for examination during the test.

2. Provide temporary restraints for expansion joints which cannot sustain the reactions due to test pressure. If temporary restraints are not practical, isolate expansion joints from testing.

3. Flush system with clean water. Clean strainers.

4. Isolate equipment that is not to be subjected to the test pressure from the piping. If a valve is used to isolate the equipment, its closure shall be capable of sealing against the test pressure without damage to the valve. Flanged joints at which blinds are inserted to isolate equipment need not be tested.

5. Install relief valve set at a pressure not more than 1/3 higher than the test pressure, to protect against damage by expansion of liquid or other source of overpressure during the test.
B. Testing: Test steam and condensate piping as follows:

1. Use ambient temperature water as the testing medium, except where there is a risk of damage due to freezing. Another liquid may be used if it is safe for workmen and compatible with the piping system components.

2. Use traps installed at high points in the system to release trapped air while filling the system. Use drip legs installed at low points for complete removal of the liquid.

3. Examine system to see that equipment and parts that cannot withstand test pressures are properly isolated. Examine test equipment to ensure that it is tight and that low pressure filling lines are disconnected.

4. Subject piping system to a hydrostatic test pressure which at every point in the system is not less than 1.5 times the design pressure. The test pressure shall not exceed the maximum pressure for any vessel, pump, valve, or other component in the system under test. Make a check to verify that the stress due to pressure at the bottom of vertical runs does not exceed either 90 percent of specified minimum yield strength, or 1.7 times the "SE" value in Appendix A of ASME B31.9.

5. Hydrostatic Test: The test shall be accomplished by hand pumping the system to the specified water pressure, and maintaining that pressure until the entire system has been inspected for leaks, but in no case for a time period of less than four hours.

a. Steam and Condensate Systems: 100 psig or 150 percent of system pressure, whichever is greater.

6. After the hydrostatic test pressure has been applied for at least 4 hours, examine piping joints and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components as appropriate, and repeat hydrostatic test until there are no leaks.

3.6 CLEANING:

A. After testing a hydronic system for proper operation of all automatic devices and controls, operate the entire system for one week, then drain and wash out with caustic soda. Immediately rinse system with water. Clean the strainer baskets and refill the system with system media and leave in proper working order. After the system has been in operation for one month, thoroughly check all automatic control valves for water or steam leakage and where necessary, clean and repair same.
SECTION 31 20 00 - EARTH WORK

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Preparing subgrades for slabs-on-grade.
 2. Excavating and backfilling for structures.
 4. Excavating and backfilling for utility trenches.

1.2 DEFINITIONS

A. Backfill: Soil material used to fill an excavation.
 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 2. Final Backfill: Backfill placed over initial backfill to fill a trench.

B. Bedding Course: Course placed over the excavated subgrade in a trench before laying pipe.

C. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.

D. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.
 1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Engineer. Authorized additional excavation and replacement material will be paid for according to Contract provisions changes in the Work.
 2. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Engineer. Unauthorized excavation, as well as remedial work directed by Engineer, shall be without additional compensation.

E. Fill: Soil materials used to raise existing grades.

F. Structures: Buildings, footings, foundations, retaining walls, slabs, tunnels, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.

G. Subbase Course: Course placed between the subgrade and a cement concrete pavement.

H. Subgrade: Surface or elevation remaining after completing excavation, or top surface of a fill or backfill immediately below subbase, drainage fill, or topsoil materials.
I. Utilities: On-site underground pipes, conduits, ducts, and cables, as well as underground services within buildings.

1.3 PROJECT CONDITIONS

A. Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted in writing by Architect and then only after arranging to provide temporary utility services according to requirements indicated.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.

B. Satisfactory Soils: ASTM D 2487 Soil Classification Groups GW, GP, GM, SW, SP, and SM, or a combination of these groups; free of rock or gravel larger than 3 inches (75 mm) in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.

C. Unsatisfactory Soils: Soil Classification Groups GC, SC, CL, ML, OL, CH, MH, OH, and PT according to ASTM D 2487 or a combination of these groups.

1. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction.

D. Subbase Material: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2-inch (37.5-mm) sieve and not more than 12 percent passing a No. 200 (0.075-mm) sieve.

E. Base Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 95 percent passing a 1-1/2-inch (37.5-mm) sieve and not more than 8 percent passing a No. 200 (0.075-mm) sieve.

F. Engineered Fill: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2-inch (37.5-mm) sieve and not more than 12 percent passing a No. 200 (0.075-mm) sieve.

2.2 ACCESSORIES

A. Warning Tape: Acid- and alkali-resistant polyethylene film warning tape manufactured for marking and identifying underground utilities, 6 inches (150 mm) wide and 4 mils (0.1 mm) thick, continuously inscribed with a description of the utility.
PART 3 - EXECUTION

3.1 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earthwork operations.

B. Prepare subgrade for earthwork operations by removing vegetation, topsoil, debris, obstructions, and deleterious materials from ground surface.

C. Provide and maintain erosion and sedimentation controls of the site during earthwork operations.

3.2 EXCAVATION

A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of obstructions.

1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.

3.3 EXCAVATION FOR STRUCTURES

A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch (25 mm). If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.

1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.

3.4 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

3.5 EXCAVATION FOR UTILITY TRENCHES

A. Excavate trenches to indicated gradients, lines, depths, and elevations.

B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches (300 mm) higher than top of pipe or conduit, unless otherwise indicated.
1. Clearanc: 12 inches (300 mm) each side of pipe or conduit.

C. Trench Bottoms: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.

1. Excavate trenches 6 inches (150 mm) deeper than elevation required in rock or other unyielding bearing material, 4 inches (100 mm) deeper elsewhere, to allow for bedding course.

3.6 SUBGRADE INSPECTION

A. Proof-roll subgrade below the site concrete walks and pavements with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.

B. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by Architect, without additional compensation.

3.7 UNAUTHORIZED EXCAVATION

A. Fill unauthorized excavation under foundations or wall footings by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill, with 28-day compressive strength of 2500 psi (17.2 MPa), may be used when approved by Engineer.

1. Fill unauthorized excavations under other construction or utility pipe as directed by Engineer.

3.8 STORAGE OF SOIL MATERIALS

A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.

1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.9 UTILITY TRENCH BACKFILL

A. Place backfill on subgrades free of mud, frost, snow, or ice.

B. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.
C. Backfill trenches excavated under footings and within 18 inches (450 mm) of bottom of footings with satisfactory soil; fill with concrete to elevation of bottom of footings. Concrete is specified in Division 03 Section "Cast-in-Place Concrete."

D. Provide 4-inch- (100-mm-) thick, concrete-base slab support for piping or conduit less than 30 inches (750 mm) below surface of roadways. After installing and testing, completely encase piping or conduit in a minimum of 4 inches (100 mm) of concrete before backfilling or placing roadway subbase.

E. Place and compact initial backfill of subbase material, free of particles larger than 1 inch (25 mm) in any dimension, to a height of 12 inches (300 mm) over the utility pipe or conduit.

1. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of utility piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.

F. Place and compact final backfill of satisfactory soil to final subgrade elevation.

G. Install warning tape directly above utilities, 12 inches (300 mm) below finished grade, except 6 inches (150 mm) below subgrade under pavements and slabs.

3.10 SOIL FILL

A. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.

B. Place and compact fill material in layers to required elevations as follows:

1. Under grass and planted areas, use satisfactory soil material.
2. Under walks and pavements, use satisfactory soil material.
3. Under steps and ramps, use engineered fill.
4. Under footings and foundations, use engineered fill.

3.11 SOIL MOISTURE CONTROL

A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2 percent of optimum moisture content.

1. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.
2. Remove and replace, or scarify and air dry otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.
COMPACTATION OF SOIL BACKFILLS AND FILLS

A. Place backfill and fill soil materials in layers not more than 8 inches (200 mm) in loose depth for material compacted by heavy compaction equipment, and not more than 4 inches (100 mm) in loose depth for material compacted by hand-operated tampers.

B. Place backfill and fill soil materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure.

C. Compact soil materials to not less than the percentages specified by the University Campus Civil Engineer.

GRADING

A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.

B. Site Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to required elevations within the following tolerances:

1. Lawn or Unpaved Areas: Plus or minus 1 inch (25 mm).
2. Walks: Plus or minus 1 inch (25 mm).
3. Pavements: Plus or minus 1/2 inch (13 mm).

SUBBASE AND BASE COURSES

A. Place subbase and base course on subgrades free of mud, frost, snow, or ice.

B. On prepared subgrade, place subbase and base course under pavements and walks as follows:

1. Shape subbase and base course to required crown elevations and cross-slope grades.
2. Compact subbase and base course at optimum moisture content to required grades, lines, cross sections, and thickness to not less than the percentage specified by the University Campus Civil Engineer.

FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified independent geotechnical engineering testing agency to perform field quality-control testing.

B. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earthwork only after test results for previously completed work comply with requirements.

C. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil to depth required; recompact and retest until specified compaction is obtained.
3.16 PROTECTION

A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.

B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.

C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.

1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.17 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Owner's property.

END OF SECTION 31 20 00