1. GENERAL
 a. DRAWING - Refers to the structural drawings that show the overall layout and details of the structure. These drawings include floor plans, elevations, and sections that define the structural elements.

2. EXISTING STRUCTURES
 a. During the construction, the existing structures may have been destroyed using available drawings and site visits. For the existing conditions that were observed during the construction, see the drawings shown below.

3. USE OF DRAWINGS
 a. The drawings should be used as a guide for the construction process.
 b. They should be used for planning, budgeting, and coordinating the work.
 c. The drawings should be used to verify the dimensions and details.

4. CONCRETE
 a. The concrete used in the construction should meet the specifications outlined in ACI 318-05.
 b. All concrete should be placed in accordance with the specifications provided in the drawings.

5. MISCELLANEOUS CONCRETE REQUIREMENTS
 a. The concrete should be placed in accordance with the specifications provided in the drawings.
 b. All concrete should be placed in accordance with the specifications provided in the drawings.

6. CONSTRUCTION OF DOORS AND WINDOWS
 a. The doors and windows should be installed in accordance with the specifications provided in the drawings.
 b. All doors and windows should be installed in accordance with the specifications provided in the drawings.

7. ELEVATOR SHAFTS
 a. The elevator shafts should be constructed in accordance with the specifications provided in the drawings.
 b. All elevator shafts should be constructed in accordance with the specifications provided in the drawings.

8. STEEL
 a. The steel used in the construction should meet the specifications outlined in AISC 360.
 b. All steel should be placed in accordance with the specifications provided in the drawings.

9. MECHANICAL, ELECTRICAL, AND PLUMBING
 a. The mechanical, electrical, and plumbing systems should be installed in accordance with the specifications provided in the drawings.
 b. All mechanical, electrical, and plumbing systems should be installed in accordance with the specifications provided in the drawings.

10. CONCRETE mix Table:
 a. The concrete mix should be used for the construction of the structure.
 b. The concrete mix should be used for the construction of the structure.
1. DEFINITION:
 A structural masonry is defined as being either load bearing and/or serving as part
 of the lateral load resistant system. Structural masonry includes in the
 structural plans and schedules are details of the structural drawings.
 2. DESIGN STRENGTH:
 a. Minimum compressive strength at 28 days
 b. Primary reinforcing: ASTM A615, 60 KSI
 c. Concrete is to be specified as per the project requirements.

2. INSTALLATION REQUIREMENTS:
 a. Composite beams are designed assuming stud-sizes are identical to the
 maximum stud dia.
 b. Steel reinforcing:
 - Horizontal joint reinforcing: ASTM A82, prefabricated, ladder type
 - Primary reinforcing: ASTM A615, 60 KSI
 c. Concrete:
 - Develop 2000 PSI compressive strength (f'm) in 28 days
 - Design strength:

3. SPLICES:
 a. See Masonry Lap Splice Schedule for Lap Lengths
 b. Primary reinforcing:
 - Horizontal joint reinforcing: ASTM A82, prefabricated, ladder type
 - Primary reinforcing: ASTM A615, 60 KSI
 c. Concrete:
 - Develop 2000 PSI compressive strength (f'm) in 28 days
 - Design strength:

4. METAL DECK:
 a. See 'Metal Deck Schedule' for materials, profile, and connections to structure.
 b. Metal deck is in accordance with Steel Deck Institute (SDI) Publication No. 31 and
 required to satisfy performance criteria in the contract documents. Minimum stud gage
 gages are shown specifically in the drawings, do not metal deck as single span unless specified.

5. STRUCTURAL COLD-FORMED METAL FRAMING:
 a. In composite beams and columns, the masonry is designed assuming stud sizes are
 identical to the maximum stud dia.
 b. Steel reinforcing:
 - Horizontal joint reinforcing: ASTM A82, prefabricated, ladder type
 - Primary reinforcing: ASTM A615, 60 KSI
 c. Concrete:
 - Develop 2000 PSI compressive strength (f'm) in 28 days
 - Design strength:

6. INSTALLATION REQUIREMENTS:
 a. Metal deck is in accordance with Steel Deck Institute (SDI) Publication No. 31 and
 required to satisfy performance criteria in the contract documents. Minimum stud gage
 gages are shown specifically in the drawings, do not metal deck as single span unless specified.

7. STEEL ELEMENTS:
 a. See listing of structural steel elements.
 b. Connections:
 - Structural steel is designed as shown in the details herein.
 c. Welding requirements:
 - Use a minimum of 2.5% of the welds to the total number of welds.
 - Minimum welds: ASTM specification, not less than 3/16" fillet, continuous unless
 otherwise noted.
 d. All groove welds shall be complete penetration unless otherwise noted.
 e. Weld sizes and lengths called for in the drawings are not effective until
 inspection and testing is complete.
 f. Weld symbols indicate suggested construction procedures.
 g. Welding requirements:
 - Minimum welds: ASTM specification, not less than 3/16" fillet, continuous unless
 otherwise noted.
 - All groove welds shall be complete penetration unless otherwise noted.

8. METAL DECK:
 a. See Metal Deck Schedule for materials, profile, and connections to structure.
 b. Metal deck is in accordance with Steel Deck Institute (SDI) Publication No. 31 and
 required to satisfy performance criteria in the contract documents. Minimum stud gage
 gages are shown specifically in the drawings, do not metal deck as single span unless specified.

9. STRUCTURAL COLD-FORMED METAL FRAMING:
 a. In composite beams and columns, the masonry is designed assuming stud sizes are
 identical to the maximum stud dia.
 b. Steel reinforcing:
 - Horizontal joint reinforcing: ASTM A82, prefabricated, ladder type
 - Primary reinforcing: ASTM A615, 60 KSI
 c. Concrete:
 - Develop 2000 PSI compressive strength (f'm) in 28 days
 - Design strength:

10. INSTALLATION REQUIREMENTS:
 a. Metal deck is in accordance with Steel Deck Institute (SDI) Publication No. 31 and
 required to satisfy performance criteria in the contract documents. Minimum stud gage
 gages are shown specifically in the drawings, do not metal deck as single span unless specified.
 b. Concrete:
 - Develop 2000 PSI compressive strength (f'm) in 28 days
 - Design strength:

11. STEEL ELEMENTS:
 a. See listing of structural steel elements.
 b. Connections:
 - Structural steel is designed as shown in the details herein.
 c. Welding requirements:
 - Use a minimum of 2.5% of the welds to the total number of welds.
 - Minimum welds: ASTM specification, not less than 3/16" fillet, continuous unless
 otherwise noted.
 d. All groove welds shall be complete penetration unless otherwise noted.
 e. Weld sizes and lengths called for in the drawings are not effective until
 inspection and testing is complete.
 f. Weld symbols indicate suggested construction procedures.
 g. Welding requirements:
 - Minimum welds: ASTM specification, not less than 3/16" fillet, continuous unless
 otherwise noted.
 - All groove welds shall be complete penetration unless otherwise noted.
1. WET SURFACE AND REMOVE STANDING WATER PRIOR TO PLACING CONCRETE
2. CLEAN SURFACES AND REMOVE LAITANCE
3. ANGLED AT EDGES MAY BE CONT KEY, TYP
4. SEE OTHER DTLS FOR REINF AT OPNINGS IN CONC WALLS AND CONC STR SLABS

LAP SPlice AND DEVELOPMENT LENGTH SCHEDULE (INCHES)

<table>
<thead>
<tr>
<th>BAR SIZE</th>
<th>1 1/2"</th>
<th>1 1/2"</th>
<th>2"</th>
<th>2"</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP</td>
<td>LCE</td>
<td>LTE</td>
<td>LTS</td>
<td>LTS</td>
</tr>
<tr>
<td>COMP</td>
<td>LCE</td>
<td>LTE</td>
<td>LTS</td>
<td>LTS</td>
</tr>
<tr>
<td>TENSION</td>
<td>LCE</td>
<td>LTE</td>
<td>LTS</td>
<td>LTS</td>
</tr>
<tr>
<td>TENSION</td>
<td>LCE</td>
<td>LTE</td>
<td>LTS</td>
<td>LTS</td>
</tr>
</tbody>
</table>

GENERAL NOTES:
1. LCE = COMPRESSION EMBEDMENT LENGTH, LTE = COMPRESSION LAP SPLICE LENGTH, LCE = TENSION EMBEDMENT LENGTH, LTE = TENSION LAP SPLICE LENGTH
2. ALL BARS THAT ARE NOT TOP BARS AND TENSION BARS
3. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
4. ALL BARS SHALL BE Machine STRIPPED PRIOR TO PLACING CONCRETE
5. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
6. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
7. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
8. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
9. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
10. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE

LAP SPlice NOTES:
1. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
2. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
3. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
4. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
5. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
6. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
7. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
8. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
9. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE

NOTES:
1. CLEAN SURFACES AND REMOVE LAITANCE
2. WET SURFACES AND REMOVE ЕPoxy ADHESIVE PRIOR TO PLACING CONCRETE
3. ALL BARS THAT ARE NOT TOP BARS AND TENSION BARS
4. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
5. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
6. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
7. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
8. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
9. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE
10. ALL BARS SHALL BE MACHINE STRIPPED PRIOR TO PLACING CONCRETE

REBAR SIZE HILTI 'HIT RE 500'

<table>
<thead>
<tr>
<th>BAR SIZE</th>
<th>#10</th>
<th>#8</th>
<th>#6</th>
<th>#5</th>
<th>#4</th>
<th>#3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYP</td>
<td>2' - 0"</td>
</tr>
</tbody>
</table>

ADJUSTMENTS TO GIVEN LAP LENGTHS:

- **C.** INCREASE LAP LENGTH 33% FOR A 4 BAR BUNDLE
- **B.** INCREASE LAP LENGTH 20% FOR A 3 BAR BUNDLE
- **A.** CLEAR SPACING BETWEEN BARS IS GREATER THAN 2 BAR DIAMETERS

HOOK EMBEDMENT NOTES:

- **4.** SPLICE LENGTHS NOTED BASED ON $F_y = 60,000$ PSI. FOR OTHER YIELD STRENGTHS, MULTIPLY SPLICE LENGTHS NOTED BY $F_y/60,000$
- **3.** SCHEDULED LAP LENGTHS ASSUME:
 - **IF REINFORCING IS SPECIFIED AS EPOXY COATED, INCREASE SCHEDULED LAP LENGTHS BY 50%**
 - **IF LIGHTWEIGHT AGGREGATE IS SPECIFIED, INCREASE SCHEDULED LAP LENGTHS BY 30%**
 - **IF SIDE COVER IS LESS THAN 2 1/2 INCHES, INCREASE LENGTHS BY 40%**
 - **EPOXY ADHESIVE**
 - **3 1/4" 4 1/2"**

GENERAL NOTES:

- **1.** ALL BENDS SHALL BE MADE COLD
- **2.** TYPICAL CONCRETE DETAILS
- **SHEET NO.**
- **SHEET TITLE**
- **DRAWN CHECKED**
- **University Theater ADA Elevator Addition**
- **Martin/Martin, Inc. considers that design data is only in its final form on plotted drawings with original signatures and is to be used for verifying the information contained within the electronic data against the recorded or approved documents. The use of electronically transmitted drawings is considered to be at your own risk. Martin/Martin, Inc. assumes no responsibility for verifying the information contained within the electronic data. No unauthorized use of these documents is permitted. Martin/Martin, Inc. reserves the right to make changes to the electronic data at any time without notice. The recipient of this file agrees that the information may not be transferred to any other party.**
1. TYP ELEVATOR ON GRADE
2. TYP ELEVATOR SUMP PIT ON GRADE
3. SDG AT TOP OF WALL OR GR BM
4. EAST ELEVATOR WALL FOUNDATION
NOTES:
1. PROVIDE tooled joint or saw cut as soon as the concrete has hardened sufficiently to permit cutting without chipping, spalling, or tearing (but not more than 12 hours after casting)
2. Gravel course: [6" min compacted gravel fill], see earthwork spec
3. Prepared/compact subgrade, see earthwork spec
4. 1 1/2" CLR
5. 2'-6" @12" top
6. See architectural drawings for additional information
7. Rebar in stairs exposed to weather shall be epoxy coated
8. See details for additional information

1. PROVIDE tooled joint or saw cut as soon as the concrete has hardened sufficiently to permit cutting without chipping, spalling, or tearing (but not more than 12 hours after casting)
2. Gravel course: [6" min compacted gravel fill], see earthwork spec
3. Prepared/compact subgrade, see earthwork spec
4. 1 1/2" CLR
5. 2'-6" @12" top
6. See architectural drawings for additional information
7. Rebar in stairs exposed to weather shall be epoxy coated
8. See details for additional information
HEADED ANCHOR BOLT

BOLT EMBEDMENT

ML5 - 1/2" Ø
ML6 - 3/4" Ø
ML7 - 5/8" Ø

NOTES:
1. PROVIDE ADHESIVE BOLT MOUNTING LUG

BOLT EMBEDMENT

ML5 - 1/2" Ø
ML6 - 3/4" Ø
ML7 - 5/8" Ø

NOTES:
2. PROVIDE ADHESIVE BOLT MOUNTING LUG

REINFORCED MASONRY LINTEL SCHEDULE

<table>
<thead>
<tr>
<th>Lintel Size</th>
<th>Embedment Length</th>
<th>Depth</th>
<th>Reinf</th>
</tr>
</thead>
<tbody>
<tr>
<td>12" Lintel</td>
<td>5'</td>
<td>8"</td>
<td>No</td>
</tr>
<tr>
<td>15" Lintel</td>
<td>5'</td>
<td>8"</td>
<td>No</td>
</tr>
<tr>
<td>18" Lintel</td>
<td>5'</td>
<td>8"</td>
<td>No</td>
</tr>
</tbody>
</table>

MASONRY LAP SPICE (MLS) & DEVELOPMENT LENGTH SCHEDULE

<table>
<thead>
<tr>
<th>MLS Size</th>
<th>Centennial</th>
<th>Smaller</th>
<th>Bedding</th>
<th>Bedding</th>
<th>Spacing</th>
<th>Spacing</th>
<th>Bedding</th>
<th>Bedding</th>
<th>Spacing</th>
<th>Spacing</th>
<th>Bedding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1" MLS</td>
<td>10"</td>
<td>15"</td>
<td>6"</td>
<td>6"</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2" MLS</td>
<td>10"</td>
<td>15"</td>
<td>6"</td>
<td>6"</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

NOTES:
1. IF GROUT SPACING IS LESS THAN MINIMUM SPACING, USE LAP SPICE LENGTH TO 4" x 4" MASONRY.
2. IF GROUT SPACING BETWEEN 4"-8" USE 4" x 4" MASONRY.
3. IF GROUT SPACING BETWEEN 8"-12" USE 4" x 4" MASONRY.
4. IF GROUT SPACING BETWEEN 12"-16" USE 4" x 4" MASONRY.
5. IF GROUT SPACING BETWEEN 16"-20" USE 4" x 4" MASONRY.
6. IF GROUT SPACING BETWEEN 20"-24" USE 4" x 4" MASONRY.
7. IF GROUT SPACING BETWEEN 24"-28" USE 4" x 4" MASONRY.
8. IF GROUT SPACING BETWEEN 28"-32" USE 4" x 4" MASONRY.
9. IF GROUT SPACING BETWEEN 32"-36" USE 4" x 4" MASONRY.
10. IF GROUT SPACING BETWEEN 36"-40" USE 4" x 4" MASONRY.
11. IF GROUT SPACING BETWEEN 40"-44" USE 4" x 4" MASONRY.
12. IF GROUT SPACING BETWEEN 44"-48" USE 4" x 4" MASONRY.
13. IF GROUT SPACING BETWEEN 48"-52" USE 4" x 4" MASONRY.
14. IF GROUT SPACING BETWEEN 52"-56" USE 4" x 4" MASONRY.
15. IF GROUT SPACING BETWEEN 56"-60" USE 4" x 4" MASONRY.
16. IF GROUT SPACING BETWEEN 60"-64" USE 4" x 4" MASONRY.
17. IF GROUT SPACING BETWEEN 64"-68" USE 4" x 4" MASONRY.
18. IF GROUT SPACING BETWEEN 68"-72" USE 4" x 4" MASONRY.
19. IF GROUT SPACING BETWEEN 72"-76" USE 4" x 4" MASONRY.
20. IF GROUT SPACING BETWEEN 76"-80" USE 4" x 4" MASONRY.
21. IF GROUT SPACING BETWEEN 80"-84" USE 4" x 4" MASONRY.
22. IF GROUT SPACING BETWEEN 84"-88" USE 4" x 4" MASONRY.
23. IF GROUT SPACING BETWEEN 88"-92" USE 4" x 4" MASONRY.
24. IF GROUT SPACING BETWEEN 92"-96" USE 4" x 4" MASONRY.
25. IF GROUT SPACING BETWEEN 96"-100" USE 4" x 4" MASONRY.
METAL DECK SLAB SCHEDULE

<table>
<thead>
<tr>
<th>DECK</th>
<th>CONCRETE SLAB</th>
<th>DECK PROPERTIES (MINIMUMS)</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DECK
- Type: Metal Deck
- Width: [Width in ft]
- Length: [Length in ft]
- Thickness: [Thickness in in]
- Color: [Deck Color]
- Material: [Material]

CONCRETE SLAB
- Type: Concrete Slab
- Size: [Size in ft]
- Color: [Concrete Color]
- Material: [Concrete Material]

DECK PROPERTIES (MINIMUMS)
- Slab Thickness: [Slab Thickness in in]
- Slab Width: [Slab Width in ft]
- Slab Length: [Slab Length in ft]
- Slab Color: [Slab Color]
- Material: [Material]

REMARKS
- [Remarks]

DECK CONNECTION SCHEDULE

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PART SUPPORT</th>
<th>MATERIAL</th>
<th>CONN.</th>
<th>CONNECTOR</th>
<th>PLF</th>
<th>KSI</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DECK CONNECTION PATTERN

<table>
<thead>
<tr>
<th>CONNECTION PATTERN</th>
<th>SUPERIMPOSED LOAD CAPACITY</th>
<th>UNIFORM LOAD CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UNIF 20 PSF</td>
<td>UNIF 15 PSF</td>
</tr>
<tr>
<td></td>
<td>PSF 50</td>
<td>PSF 40</td>
</tr>
</tbody>
</table>

NO SCALE

ARCHED BRICK SUPPORT

METAL DECK SLAB SCHEDULE

ROOF DECK CONNECTIONS

COMPOSITE DECK CONNECTIONS

TYP FASTENER LAYOUT AT PERP SUPPORT

NOTES

- [Notes]

REFERENCE DOCUMENTS

- [Reference Documents]

COPYRIGHT

- [Copyright Information]

CONTACT INFORMATION

- [Contact Information]
TYPICAL COLD-FORMED ROOF TRUSS NOTES

1. COLD-FORMED METAL TRUSSES ARE SHOWN ON THE STRUCTURAL DRAWINGS. DESIGN TRUSS MEMBERS AND COLD-FORMED METAL TRUSSES SHALL NOT BE MODIFIED OR ADJUSTED WITHOUT PRIOR WRITTEN APPROVAL BY THE ARCHITECT AND STRUCTURAL ENGINEER.

2. CONTRACTOR TO VERIFY LOADS AND LOAD CHAINS FOR ALL TRUSS LOADING AND TRUSS GEOMETRY AND SUPPORTS REFER TO ARCHITECTURAL DRAWINGS FOR ADDITIONAL GEOMETRIC INFORMATION.

3. ALL CONNECTIONS (GRAVITY, UP-LIFT, AND LATERAL) TO STRUCTURE SHALL BE DESIGNED BY COLD-FORMED TRUSS MANUFACTURER.

4. BARS, TIES, AND/OR CIRCULAR TRUSSES SHALL BE DESIGNED FOR PERTINENT LOADING AS SPECIFIED IN THIS DOCUMENT.

5. ALL MEMBER CONFIGURATIONS ARE NOT SHOWN ON LOADING DRAWINGS. ACTUAL WEB MEMBER CONFIGURATIONS SHALL BE ESTABLISHED BY THE CONTRACTOR.

6. TRUSS WEB MEMBERS SHOWN ARE FOR DESIGN PURPOSES ONLY AND MAY BE USED IF INSTALLED.

7. SOME TRUSSES HAVE OVERHANGING EAVE MEMBERS AND/OR NOTCHING OF TRUSS MEMBERS IS NOT ALLOWED WITHOUT PRIOR WRITTEN APPROVAL BY THE ARCHITECT AND STRUCTURAL ENGINEER.

8. ALL TRUSS TOP CHORDS SHALL BE 18 GA. MINIMUM.

9. ALL WEB (DIAGONAL AND VERTICAL) MEMBERS SHALL BE CLIPPED ENDS. REFER TO ARCHITECTURAL DRAWINGS FOR ADDITIONAL GEOMETRY.

10. MAXIMUM VERTICAL TRUSS DEFLECTION SHALL BE LIMITED TO 0.0175 TIMES THE TRUSS SPAN.

11. TEMPORARY AND PERMANENT TRUSS BRACING IS REQUIRED. TRUSS MEMBERS ARE DESIGNED AS UNBRACED FOR THEIR FULL LENGTH BETWEEN CHORD CONNECTIONS. ACTUAL WEB MEMBER CONFIGURATIONS SHALL BE DESIGNED TO ACHIEVE A COMPLETE, BRACED SYSTEM.

12. INSTALL PER MANUFACTURER’S RECOMMENDATIONS. TRUSS MANUFACTURER SHALL PROVIDE A CRITERIA (INCLUDING MAXIMUM HUNG MECHANICAL EQUIPMENT, ETC.) MAY BE USED IF INSTALLED.

13. NOTCHING OF TRUSS MEMBERS IS NOT ALLOWED WITHOUT PRIOR WRITTEN APPROVAL BY THE ARCHITECT AND STRUCTURAL ENGINEER.

14. MAXIMUM VERTICAL TRUSS DEFLECTION SHALL BE LIMITED TO 0.0175 TIMES THE TRUSS SPAN.

15. ALL CONNECTIONS (GRAVITY, UP-LIFT, AND LATERAL) TO STRUCTURE SHALL BE DESIGNED BY COLD-FORMED TRUSS MANUFACTURER.

16. TRUSS T2 AND T3 SPECIFIC WIND LOADS FOR END ZONES, RIDGES, OVERHANGS, ETC. ARE 60 PSF.

17. TRUSS T3 SPECIFIC WIND LOADS FOR END ZONES, RIDGES, OVERHANGS, ETC. ARE 30 PSF.

18. SPECIFIC WIND LOADS FOR END ZONES, RIDGES, OVERHANGS, ETC. ARE 36 PSF.

19. SPECIFIC WIND LOADS FOR END ZONES, RIDGES, OVERHANGS, ETC. ARE 24 PSF.

GENERAL TRUSS LOADING NOTES

1. ALL LOADING SHOWN ARE UNFACTORED TRUSS LOADING COMBINATIONS.

2. DEAD LOAD PLUS SNOW LOAD PLUS WIND LOAD (D + S + W) = 1.35 TIMES THE DEAD LOAD.

3. COLD-FORMED METAL TRUSSES ARE SHOWN ON THE STRUCTURAL DRAWINGS. ACTUAL WEB MEMBER CONFIGURATIONS SHALL BE ESTABLISHED BY THE CONTRACTOR.

4. TRUSS LOADS SHOWN ARE FOR DESIGN PURPOSES ONLY AND MAY BE USED IF INSTALLED.

5. TRUSS GEOMETRY AND SUPPORTS REFER TO ARCHITECTURAL DRAWINGS FOR ADDITIONAL GEOMETRIC INFORMATION.

6. TRUSS LOADS SHOWN DO NOT INCLUDE TRUSS SELF-WEIGHT.

7. ALL CONNECTIONS (GRAVITY, UP-LIFT, AND LATERAL) TO STRUCTURE SHALL BE DESIGNED BY COLD-FORMED TRUSS MANUFACTURER.

8. TRUSS LOADS SHOWN DO NOT INCLUDE TRUSS SELF-WEIGHT.

9. ALL CONNECTIONS (GRAVITY, UP-LIFT, AND LATERAL) TO STRUCTURE SHALL BE DESIGNED BY COLD-FORMED TRUSS MANUFACTURER.

10. ALL CONNECTIONS (GRAVITY, UP-LIFT, AND LATERAL) TO STRUCTURE SHALL BE DESIGNED BY COLD-FORMED TRUSS MANUFACTURER.

11. TRUSS LOADS SHOWN DO NOT INCLUDE TRUSS SELF-WEIGHT.

12. ALL CONNECTIONS (GRAVITY, UP-LIFT, AND LATERAL) TO STRUCTURE SHALL BE DESIGNED BY COLD-FORMED TRUSS MANUFACTURER.

13. TRUSS LOADS SHOWN DO NOT INCLUDE TRUSS SELF-WEIGHT.

14. ALL CONNECTIONS (GRAVITY, UP-LIFT, AND LATERAL) TO STRUCTURE SHALL BE DESIGNED BY COLD-FORMED TRUSS MANUFACTURER.

15. TRUSS LOADS SHOWN DO NOT INCLUDE TRUSS SELF-WEIGHT.

16. ALL CONNECTIONS (GRAVITY, UP-LIFT, AND LATERAL) TO STRUCTURE SHALL BE DESIGNED BY COLD-FORMED TRUSS MANUFACTURER.
SEC. 4-12.6 - SURFACE WATER INLET

1. **EXISTING WALL BETWEEN TRUSS/DECK**
 - No hard connection

2. **ROAD DECK**
 - Re: 3/S5.10 for joist

3. **SECTION AT ROOF INTERFACE WITH EXISTING**
 - Roof edge at elevator
 - Existing section at roof interface with

4. **2" HOLE TYP**
 - Roof at truss
 - Bottom plate
 - View of bottom ridge bent plates

5. **NO SCALE**
 - Typical venting at all blocking and ridge bent plates
 - Deck attachment must occur at a valley or bend
 - Bents in blocking:
 - End trim
 - End of joists:
 - Side plates:
 - Side plates:

6. **NO SCALE**
 - Structural joist blocking detail
 - Roof at joist
 - 1 1/2" x 1 1/2" x 1 1/2" x 1 1/2"

7. **SECTION AT ROOF INTERFACE WITH EXISTING**
 - Roof edge at joist
 - 1 1/2" x 1 1/2" x 1 1/2" x 1 1/2"

8. **1 1/2" x 1 1/2"**
 - Roof at elevator
 - Bottom plate
 - View of bottom ridge bent plates

9. **TYP VALLEY PLATE**
 - Deck attachment must occur at a valley or bend
 - Bents in blocking:
 - End trim
 - End of joists:
 - Side plates:
 - Side plates:

10. **TYP RIDGE PLATE**
 - Deck attachment must occur at a valley or bend
 - Bents in blocking:
 - End trim
 - End of joists:
 - Side plates:
 - Side plates: