Environmental Engineering (EVEN) Degree Guidelines
Academic Year 2010-2011
College of Engineering and Applied Science
University of Colorado at Boulder

Environmental Engineering Program
428 UCB (U.S. Mail)
1111 Engineering Drive, Engineering Center OT 518 (street address)
University of Colorado
Boulder, Colorado 80309-0428
phone: 303 735 0253
fax: 303 735 7317
web: http://www.colorado.edu/engineering/even/

Environmental Engineering Program Staff
Director: Professor Jana Milford, ECME 214, 303 492 5542, jana.milford@colorado.edu
Program Coordinator: Laurels Sessler, ECOT 518, 303 735 0253, laurels.sessler@colorado.edu

Version: August 2010
latest and previous versions at http://www.colorado.edu/engineering/EnvEng/curriculum.htm
Contents

1. Overview of Guidelines and Introduction to Environmental Engineering
 1.1. Overview of Environmental Engineering ... 3
 1.2. History of the Environmental Engineering Program ... 3
 1.3. Mission and Educational Objectives ... 4
 1.4. Program Outcomes ... 4

2. Environmental Engineering Degree Programs
 2.1. Bachelor of Science in Environmental Engineering (EVEN BS) 5
 2.2. Dual Degrees .. 8
 2.3. Concurrent Bachelor of Science/Master of Science Degree (EVEN BS/CVEN MS) ... 8
 2.4 Certificate Programs and Minors ... 8

3. Advising
 3.1. Advising Process ... 9
 3.2. Program Contact with Students (Email) ... 9
 3.3. Academic Records .. 9
 3.4. Additional Advising Resources ... 10
 3.5. Faculty Advisor Assignments ... 10

4. Academic Policies
 4.1. Prerequisite and Co-Requisite Courses ... 10
 4.2. Transfer Credit ... 10
 4.3. Humanities and Social Sciences Electives ... 12
 4.4. Technical Electives .. 14
 4.5. Free Electives ... 15
 4.6. Air or Earth Sciences Laboratory or Field Course ... 15
 4.7. Independent Study .. 15
 4.8. Senior Thesis ... 16
 4.9. Engineering Co-op Program ... 16
 4.10. Petitions ... 16
 4.11. Academic Honesty ... 16

5. Graduation Requirements
 5.1. Requirements for EVEN BS Degree ... 17
 5.2. Fundamentals of Engineering Examination .. 18
 5.3. Requirements for Dual Degrees .. 18

6. Society of Environmental Engineers (SEVEN) .. 18

7. Faculty Directory .. 19

Forms and Appendices ... 21
 Degree Requirements Worksheet for EVEN BS Degree 22
 Technical Electives Suggestions ... 24
 Table of Prerequisites and Co-requisites for Required Courses 28
 Useful Websites .. 29
1. Overview of Guidelines and Introduction to Environmental Engineering

The Environmental Engineering (EVEN) Degree Guidelines provide an outline of the curriculum and policies of the Environmental Engineering (EVEN) degrees offered by the College of Engineering and Applied Science of the University of Colorado at Boulder. These guidelines are written primarily for Environmental Engineering students and faculty advisors. The current version of these Guidelines and versions dating back to the beginning of the Program in 1998 are kept on the Program’s web site (http://www.colorado.edu/engineering/even/evenbs.htm).

General curriculum and policy information for students is also available from the Office of Student Services in the Dean’s Office of the College of Engineering and Applied Science (http://ecadw.colorado.edu/engineering/students/advising.htm). Further information on academic support programs, advising, and registration is available on the web at the College’s Undergraduate Student Services web page (http://ecadw.colorado.edu/engineering/students/undergraduate.htm).

Information on courses offered, including course descriptions, is available in the University of Colorado at Boulder Catalog (http://www.colorado.edu/catalog/). The course schedule for each semester is available to CU students through the MyCUInfo portal (http://mycuinfo.colorado.edu). A .pdf file of course listings, alphabetical by college and department, can be found on the Continuing Education Access site: http://conted.colorado.edu/programs/access/ (This document is not updated past its “publication date”, however, so check the online schedule for the most recent information.)

1.1. Overview of Environmental Engineering

Environmental engineers play a vital role in maintaining the quality of both human environmental systems and the natural environment. Environmental engineering encompasses the scientific assessment and development of engineering solutions to environmental problems impacting the biosphere, land, water, and air quality. Environmental issues affect almost all commercial and industrial sectors, and are a central concern for the public, for all levels of government, and in international relations. These issues include safe drinking water, wastewater processing, solid and hazardous waste disposal, outdoor air pollution, indoor air pollution and transfer of infectious diseases, human health and ecological risk management, prevention of pollution through product or process design, and renewable and sustainable energy sources.

To address these challenges, environmental engineers often encounter challenging problems that must be solved in data-poor situations as members of multidisciplinary teams. Environmental problems require creative solutions with contributions from scientists, lawyers, business people, and the public. Good communication skills, as well as technical proficiency, are essential for success in this arena. In addition, technology designed to address environmental problems is marketed globally, opening up increasing opportunities for international work in the environmental engineering field.

1.2. History of the Environmental Engineering Program

The Environmental Engineering Program at the University of Colorado at Boulder originated with a college-wide faculty committee that met during the 1993-1994 academic year to develop a multi-disciplinary curriculum for a Bachelor of Science degree in Environmental Engineering. The committee was headed by Prof. John Daily of Mechanical Engineering. The degree program was intended to supplement environmental engineering options that were offered through the Departments of Chemical and Biological Engineering and Civil, Environmental, and Architectural Engineering (the Department of Mechanical Engineering now offers an environmental engineering option as well).

The initiative to develop the EVEN BS degree and the Environmental Engineering Program to administer the degree was motivated by recognition that (1) environmental engineering had matured into a full-fledged discipline of its own and (2) environmental engineering intersected with the traditional disciplines of chemical, civil, and mechanical engineering, but was not adequately covered by any single discipline. The faculty committee decided that students intending to work in environmental engineering would benefit from a curriculum that focused on environmental engineering and related courses regardless of which department offered those courses. At the same time, the existing environmental engineering options could be retained in the departments for students who were interested in environmental engineering but wanted to pursue traditional chemical, civil or mechanical engineering degrees.

The proposed EVEN BS degree program was approved by the faculty of the College of Engineering and Applied Science in the spring of 1994. The faculty committee then prepared a full proposal for the new degree program for the Colorado Commission on Higher Education (CCHE), and the new EVEN BS degree program was approved in the spring of 1998. The first Director of the Environmental Engineering Program was Prof. Jana Milford of Mechanical Engineering. Students began entering the program in the fall of 1998. The first degree was awarded in December 1999 (to a student who transferred into the program as a third-year student).

In approving the new degree, CCHE relied on the College’s intent to deliver the EVEN BS degree using existing courses and faculty. To this end, the program is administered by the College, and operates through the participation of affiliated faculty from Aerospace Engineering Sciences, Chemical and Biological Engineering, Civil, Environmental, and Architectural Engineering, and Mechanical Engineering. The College provides support for a faculty Director (currently Prof. Milford, in her second term), a Program Coordinator, and teaching support for courses to supplement the EVEN curriculum. The four departments that participate in the program are committed to...
regularly offering the courses that comprise the EVEN curriculum, coordinating to avoid scheduling conflicts, and sharing academic advising and other faculty service requirements.

During the 2002-2003 academic year, the Environmental Engineering Program applied for accreditation of the EVEN BS degree with the Accreditation Commission of ABET (Accreditation Board of Engineering and Technology, 111, Market Place, Suite 1050, Baltimore, MD, 21202-4012 – telephone: (410) 347-7700). The application consisted of a detailed Self-Study Report and a visit by three ABET examiners. The ABET examiners were thoroughly satisfied with the EVEN BS degree and ABET granted accreditation to the degree in September 2003. The Environmental Engineering Program completed the first major revision of the EVEN curriculum for the 2004-2005 academic year. Another ABET accreditation review in 2005 resulted in a few curriculum revisions, including the addition of a laboratory or field course related to air or land, as required by the ABET Program Criteria.

1.3. Mission and Educational Objectives

The EVEN faculty, its Professional Advisory Board (representing prospective employers of our graduates), and EVEN alumni and current students have contributed to the creation of the Program’s mission and the educational objectives of the EVEN BS degree.

The mission of the Environmental Engineering Program is to provide a multidisciplinary undergraduate environmental engineering education that emphasizes mastery of principles and practices, inspires service for the global public good, endows a desire for life-long learning, and prepares students for broad and dynamic career paths in environmental engineering.

The educational objectives of the EVEN BS degree are to produce students who reach the following achievements three to five years after graduation:

1. EVEN graduates have become established in professional careers and earned advanced degrees;
2. EVEN graduates have applied multidisciplinary approaches to manage the unique challenges and balance the competing social, political, economic, and technical goals of environmental problems and solutions; and
3. EVEN graduates have served the needs of our society and protected the future of our planet in an ethical manner.

1.4. Program Outcomes

A list of program outcomes for EVEN graduates was developed that satisfies the requirements of ABET in the Criteria for Accrediting Engineering Programs for general engineering programs (ABET Criterion 3) and for environmental engineering programs (Criterion 9) as developed by the American Academy of Environmental Engineers (AAEE) and cooperating societies. As defined by ABET, outcomes are “statements that describe what students are expected to know and are able to do by the time of graduation” (ABET, 2004).

The Environmental Engineering Program demonstrates that

<table>
<thead>
<tr>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. EVEN graduates have sufficient knowledge of engineering, mathematics, and science fundamentals to succeed in environmental engineering practice or advanced degrees;</td>
</tr>
<tr>
<td>ii. EVEN graduates have sufficient knowledge of advanced environmental engineering applications and complementary natural sciences to succeed in environmental engineering practice or advanced degrees;</td>
</tr>
<tr>
<td>iii. EVEN graduates have sufficient knowledge of engineering approaches to problem solving (hypothesis, design, testing; team work) to succeed in environmental engineering practice or advanced degrees;</td>
</tr>
<tr>
<td>iv. EVEN graduates have sufficient knowledge of basic engineering skills and tools (computer, laboratory, and field) to succeed in environmental engineering practice or advanced degrees;</td>
</tr>
<tr>
<td>v. EVEN graduates have adequate writing and oral presentation skills to succeed in environmental engineering practice or advanced degrees;</td>
</tr>
<tr>
<td>vi. EVEN graduates have adequate understanding of the social, economic, political, and ethical context of environmental problems and solutions;</td>
</tr>
<tr>
<td>vii. EVEN graduates have adequate opportunity to include service at the local, state, national, or global levels as an important part of their environmental engineering education; and</td>
</tr>
<tr>
<td>viii. EVEN graduates will recognize the importance of life-long learning by seeking advanced degrees and pursuing continuing education.</td>
</tr>
</tbody>
</table>

The curriculum that has been developed and the content of those courses help to ensure that the Environmental Engineering Program satisfies these outcome goals. Extracurricular activities, internships, co-ops and participation in research also contribute to satisfying these goals. Evaluation of courses, graduating seniors, and alumni via written surveys helps us to document that the EVEN Program
2. Environmental Engineering Degree Programs

2.1. Bachelor of Science Degree in Environmental Engineering

2.1.1. Overview of EVEN BS Degree

The Bachelor of Science degree in Environmental Engineering (EVEN) at the University of Colorado provides preparation for professional proficiency or graduate training in environmental engineering in a four-year curriculum.

The curriculum includes courses in engineering fundamentals and applications, advanced mathematics, chemistry, physics, biology, geology, and the arts and humanities. Courses specific to environmental engineering practice include water chemistry, microbiology, and air pollution control. In addition, environmental engineering requires hands-on laboratory experiences, up-to-date skills in the use of computers for modeling and data analysis, and experience in the design of environmental engineering systems. Many of the required engineering courses in the Bachelor of Science curriculum are delivered by the departments of Chemical and Biological Engineering, Civil, Environmental, and Architectural Engineering, and Mechanical Engineering. The curriculum also includes three Option courses, three technical elective courses and a free elective. The three Option courses represent an area of specialization in environmental engineering selected by the student beginning in the third year. The curriculum includes six sets of prescribed Option courses in these areas of specialization:

- Air Quality
- Applied Ecology
- Chemical Processing
- Energy
- Environmental Remediation
- Water Resources and Treatment

In addition to these prescribed Options, students may also formulate their own sequence of Option courses (referred to as a “Special Option”) representing an area of specialization not included in the Options listed above. This selection must be approved through petition to the Environmental Engineering Program. Examples of special option topics include Energy & Industrial Monitoring, Remediation & Ecology, and Engineering for Developing Communities (EDC; see program website at: http://www.edc-cu.org/).

Students in the program are also encouraged to participate in research through independent study projects, a senior thesis, the Undergraduate Research Opportunities Program (UROP), the Discovery Learning Apprenticeship Program (http://engineering.colorado.edu/activelearning/discovery.htm), or as undergraduate research assistants in sponsored research programs.

2.1.2. Curriculum for EVEN BS Degree

The following section contains the curriculum table for the EVEN BS degree. The curriculum represents a “contract” of sorts with incoming students - for students entering the program during the current academic year, completion of this curriculum with a satisfactory grade point average is the requirement for graduation. The curriculum also represents a guarantee that the courses listed (or acceptable substitutes) will be available in the semesters listed.

The curriculum is somewhat dynamic despite its contractual nature. Minor changes may be made by the Program during the academic year, and major changes may be made between academic years. To meet graduation requirements, students are expected to follow the curriculum in effect for the academic year they started the program; therefore, students should keep a copy of the Environmental Engineering (EVEN) Degree Guidelines for that year. An archive of the Guidelines is retained on the program’s web site (http://www.colorado.edu/engineering/even/evenbs.htm). Students may elect to follow a later curriculum revision with program approval; however, students may not elect to follow a curriculum in effect before they started the program.

The curriculum below shows the recommended sequence of courses. Courses marked with an asterisk (*) are offered only in the semester shown (fall or spring). Other courses are offered in both semesters, and sometimes in the summer. Students may take courses in terms other than those shown, but must be careful to meet prerequisites or co-requisites for each course. The air or earth sciences lab or field course and the free elective (both listed in the fourth year) may be taken in any semester.

Many of the required courses in the EVEN BS curriculum (Solid Mechanics, Engineering Economics, Fluid Mechanics, Thermodynamics, Heat Transfer, Probability and Statistics) may be satisfied by courses from different engineering departments. Students may choose a course from any of the approved options for each requirement; however, students should evaluate these choices carefully depending on their major interest in environmental engineering. For example, a student interested in the Air Quality Option might want to take the Mechanical Engineering courses for Solid Mechanics, Fluid Mechanics, Thermodynamics, and Heat Transfer. A student interested in the Chemical Processing Option would do best to choose chemical engineering courses; in fact, some CHEN courses are required for the Chemical Processing Option.

For certain courses in the EVEN BS degree curriculum, students may encounter questions about prerequisite and co-requisite course requirements not being met. If students are following the recommended curriculum sequence there is no need for concern; the Environmental Engineering Program has consulted in detail with the departments and faculty offering these courses to ensure that the sequence of courses in the EVEN curriculum is appropriate for engineering students.

Guidance on selection of Option, Humanities and Social Science (H&SS), and technical elective courses is offered in Section 4.
EVEN BS Degree, 2010-2011 Academic Year

Fall, First Year

<table>
<thead>
<tr>
<th>Course Code/Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPM 1350 Calculus 1 for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>CHEN 1211 General Chemistry for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1221 General Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>EVEN 1000 Introduction to Environmental Engineering (*)</td>
<td>1</td>
</tr>
<tr>
<td>GEEN 1400 Engineering Projects</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring, First Year

<table>
<thead>
<tr>
<th>Course Code/Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPM 1360 Calculus 2 for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>GEEN 1300 Intro to Engineering Computing</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1110 General Physics 1</td>
<td>4</td>
</tr>
<tr>
<td>Technical Elective I</td>
<td>3</td>
</tr>
<tr>
<td>H655 Elective II</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Fall, Second Year

<table>
<thead>
<tr>
<th>Course Code/Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPM 2350 Calculus 3 for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 1120 General Physics 2</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 1140 Experimental Physics 1</td>
<td>1</td>
</tr>
<tr>
<td>Solid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>H655 Elective III</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring, Second Year

<table>
<thead>
<tr>
<th>Course Code/Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPM 2360 Intro Differential Eqns with Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 4521 Physical Chemistry for Engineers (*)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2120 Material and Energy Balances</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 3414 Fundamentals of Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>H655 Elective IV</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Fall, Third Year

<table>
<thead>
<tr>
<th>Course Code/Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 4404 Water Chemistry (*)</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 4414 Water Chemistry Lab (*)</td>
<td>1</td>
</tr>
<tr>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>Required Communication Course</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring, Third Year

<table>
<thead>
<tr>
<th>Course Code/Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 4484 Introduction to Environmental Microbiology (*)</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 4131 Air Pollution Control (*)</td>
<td>3</td>
</tr>
<tr>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>Option Course I</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Fall, Fourth Year

<table>
<thead>
<tr>
<th>Course Code/Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 4444 (5834) Environmental Engineering Processes (*)</td>
<td>3</td>
</tr>
<tr>
<td>H655 Elective V</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Option Course II</td>
<td>3</td>
</tr>
<tr>
<td>Air or Earth Science Laboratory/Field Course</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective II</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

Spring, Fourth Year

<table>
<thead>
<tr>
<th>Course Code/Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 4333 Engineering Hydrology (*)</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 4424 Environmental Organic Chemistry (*)</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 4434 Environmental Engineering Design (*)</td>
<td>3</td>
</tr>
<tr>
<td>Option Course III</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective III</td>
<td>3</td>
</tr>
<tr>
<td>Senior Thesis</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

* Only offered in the semester shown (not including summer offerings).

Total Credit Hours: 128

A total of 9 credit hours of technical electives is required, from engineering, mathematics or sciences. Three TE credits may be lower division (1000-, 2000-level); remaining TE credits must be upper division (3000+). Three TE credits must be in the earth sciences, either lower or upper division. An independent study/senior thesis (EVEN 4840) may be completed as technical electives for up to 6 credits.

A total of 18 credit hours of humanities and social sciences (H&SS) electives is required. At least nine hours must be at the upper division level. Three hours must be a Required Communication Course at the 3000-level or above.

Solid Mechanics options: CVEN 2121 Analytical Mechanics (F,S), GEEN 3851 Statics for Engineers (Sum), or MCEN 2023 Statics and Structures (F)

Fluid Mechanics options: CHEN 3200 Chemical Engineering Fluid Mechanics (F, required for Chemical Processing Option), CVEN 3313 Theoretical Fluid Mechanics (S), GEEN 3853 Fluid Mechanics for Engineers (Sum), or MCEN 3021 Fluid Mechanics (F)

Heat Transfer options: CHEN 3210 Chemical Engineering Heat Transfer (F, required for Chemical Engineering Option) or MCEN 3022 Heat Transfer (S)

Thermodynamics options: AREN 2110 Thermodynamics (F,S), CHEN 3320 Chemical Engineering Thermodynamics (F, required for Chemical Processing Option), GEEN 3852 Thermodynamics for Engineers (Sum), or MCEN 3012 or 3208 Thermodynamics (F, required for Air Quality Option)

Probability and Statistics options: APPM 4570 Statistical Methods (F,S), CHEN 3010 Applied Data Analysis (F), CVEN 3227 Probability, Statistics, and Decision (S)

Engineering Economics options: EMEN 4100 Business Methods and Economics for Engineers (F), CVEN 4147 Civil Engineering Systems, or EVEN 4830 Technoeconomic Analysis for Environmental Engineering.

Option courses are specified on the following page.

Communication: GEEN 3000 Professional Communications for Engineers, HUEN 3100 Humanities for Engineers (F,S), PHYS 3050 Writing in Physics: Problem Solving and Rhetoric (F), WRTG 3030 Writing on Science and Society (F,S), or WRTG 3035 Technical Communication and Design (F,S).

Air or Earth Science Lab/Field Course: A 3 credit hour course with a significant laboratory or field component related to air quality or earth science. If course is less than 3 credits, the difference is required as an upper division technical elective. Options: ATOC1070 Weather and the Atmosphere Lab, CVEN3708 Geotechnical Engineering, EVEN4100 Envir. Sampling & Analysis, GEOG4111 Methods of Soil Analysis (every other F), GEOL1930 Intro to Geology 1 Lab, GEOL2700 Intro to Field Geology, GEOL3010 Intro to Mineralogy (F), GEO4716 Environmental Field Geochemistry (S)

Senior Thesis: a senior thesis can be completed on a single research topic, with faculty approval and direction, and can apply toward technical elective requirements.
Beginning in the spring of their third year, students must select an Option, an area of specialization in environmental engineering. For each option, a total of 9 credit hours of option courses is required. Students may choose from the lists of possible Option courses listed below. Special topics courses may also be approved on a case-by-case basis. See websites listed under each option for more information, including specific curricula and courses, faculty, research, jobs and employers and other professional opportunities and links. Note that not all of the courses listed are offered every year, denoted by I*.

Air Quality Option (http://www.colorado.edu/engineering/even/air.htm)

- ATOC 3500 Air Chemistry and Pollution (3 credits; prerequisite: two semesters chemistry)
- ATOC 4720 Introduction to Atmospheric Physics and Dynamics (3 credits, I*; prerequisite: APPM 1350, PHYS 1110)
- CHEN 4541 Physical Chemistry Lab for Engineers (2 credits, I*; prerequisite or co-requisite: CHEM 4521 or CHEM 4531)
- MCEN 4122 Thermodynamics 2 (3 credits; prerequisite: MCEN 3012 Thermodynamics or equiv.)
- MCEN 4228 Environmental Modeling (3 credits; prerequisite: chemistry, fluid mechanics, computer programming)
- MCEN 4228 Sustainable Energy (3 credits, I*)

Applied Ecology Option (http://www.colorado.edu/engineering/even/ecology.htm)

- CVEN 3434 Intro to Applied Ecology (required for this option, 3 credits; prerequisite: CHEN 1211-1221 or CHEM 1111)
- EBIIO 2070 Genes to Populations (4 credits; prerequisites: CVEN 3434 with instructor consent or EBIIO 1240)
- EBIIO 3270 Ecosystem Ecology (3 credits; prerequisite: CVEN 3434 or EBIIO 1240, EBIIO 2040 or EBIIO 3020)
- EBIIO 4202 Stream Biology (3 credits; prerequisite: CVEN 3434 or EBIIO 1240, EBIIO 2040)
- EBIIO 4030 Limnology (3 credits; prerequisite: CVEN 3434 or EBIIO 1240, EBIIO 2040)
- EBIIO/GEOL/ENVS 4160 Introduction to Biogeochemistry (3 credits; prerequisite: CHEM 1011 or higher, EBIIO 3270 or GEOL 3320)
- GEG 4311 Watershed Biogeochemistry (2 credits; prerequisite: GEG 1011, GEG 3511)

Chemical Processing Option (http://www.colorado.edu/engineering/even/chemproc.htm) Students must also take CHEN 3200, 3210 & 3220.

- CHEM 3311 Organic Chemistry 1 (4 credits; prerequisite: CHEN 1211 or equiv.; co-requisite: CHEM 3321)
- CHEM 3331 Organic Chemistry 2 (4 credits; prerequisite CHEM 3311 & 3321; prerequisite or co-requisite: CHEM 3341)
- CHEN 3220 Chemical Engineering Separations and Mass Transfer (required for this option, 3 credits; prerequisite: CHEN 3200, CHEN 3220; co-requisite: CHEN 3210 or MCEN 3022)
- CHEN 4330 Chemical Engineering Reaction Kinetics (required for this option, 3 credits; prerequisite: CHEN 3200, CHEN 3210 or MCEN 3022)
- CHEN 4670 Environmental Separations (3 credits, every other S; prerequisite: CHEN 2120, senior or graduate)
- CHEN 4680 Environmental Process Engineering (3 credits; senior or graduate standing)

Energy Option (http://www.colorado.edu/engineering/even/energy.htm)

Courses under review; see department for energy option requirements. Some current courses are:

One course from among the following:
- CHEN 4836 Energy Fundamentals (3 credits; prerequisite: thermodynamics)
- MCEN 3122 Thermodynamics 2 (3 credits, S, prerequisite: MCEN 3012 or equivalent)
- MCEN 4228 Sustainable Energy (3 credits, I*)

Six more credits from among the following:
- AREN 2130 Building Energy Laboratory (3 credits, S, prerequisite: AREN 3010)
- CVEN 5020 Building Energy Audits (3 credits, F, prerequisite: AREN 3010 or equivalent)
- CVEN 5050 Advanced Solar Design (3 credits, F)
- ECEN 2060 Special Topics: Renewable Energy (3 credits, S, prerequisite: Physics 2)
- ENVS/PHYS 3070 Energy and the Environment (3 credits, F & S)
- MCEN 3122 Thermodynamics 2 (3 credits, S, prerequisite: MCEN 3012 or equivalent)
- MCEN 4228 Wind Energy (3 credits, restricted to seniors, prerequisite: fluid mechanics, system dynamics)
- One energy policy class such as ENVS 3621, 4100 or 5820, AREN 4830, BCOR 4000

Environmental Remediation Option (http://www.colorado.edu/engineering/even/remediation.htm)

- CVEN 4353 Groundwater Engineering (3 credits; prerequisite: CVEN 3313 or equivalent fluid mechanics course)
- CVEN 4474 Hazardous and Industrial Waste Management (3 credits, prerequisite: CVEN 3414)
- EVEN 4100 Environmental Sampling and Analysis (3 credits, I*; prerequisite: CVEN 4435, CVEN 4424 or equivalent)
- GEOL 3030 Introduction to Hydrogeology (3 credits; prerequisite: GEOL 1010 or 1060, APPM 1350 or instructor consent)
- GEOL 4716 Environmental Field Geochemistry (2 credits; prerequisite: GEOL 2700, CHEN 1211)

Water Resources and Treatment Option (http://www.colorado.edu/engineering/even/water.htm)

- CVEN 3323 Hydraulic Engineering (3 credits; prerequisite: CVEN 3313 or equivalent fluid mechanics course)
- CVEN 3424 Water and Wastewater Treatment (3 credits; prerequisite: CVEN 3141)
- CVEN 4323 Water Resource Engineering Design (3 credits, I*; prerequisite: statistics, engineering economics)
- CVEN 4343 Open Channel Hydraulics (3 credits; prerequisite: CVEN 3313 or equivalent fluid mechanics course)
- CVEN 4353 Groundwater Engineering (3 credits, prerequisite: CVEN 3313 or equivalent fluid mechanics course)
- CVEN 4474 Hazardous and Industrial Waste Management (3 credits, prerequisite: CVEN 3414)
- CVEN 5353/ECON 6555 Water Resources Development and Management (3 credits, S, prerequisite: senior or graduate)
- GEG 4501 Water Resources and Water Management of the Western U.S. (3 credits)
- MCEN 4228 Environmental Modeling (3 credits, prerequisite: chemistry, fluid mechanics, computer programming)

*I Offered intermittently or by instructor consent as arranged by the Environmental Engineering Program

Special Option

Students with unique educational goals may formulate a personalized sequence of three courses (9 credit hours) as the Option sequence. To do so, students must present their Option plan to their faculty advisor and submit a Special Option Proposal to the Environmental Engineering Program for approval. A special option must have a specific, well-thought-out purpose related to your education or career goals (i.e., “scheduling conflict” is not an acceptable reason for a special option.) Ordinarily, special option courses should be upper division.
2.2. Dual Degrees
Students in the College of Engineering and Applied Science may obtain Bachelor of Science degrees in two engineering disciplines or one degree in engineering and a second degree from a department in another college or school of the University. Students must satisfy the curricula for both programs and may need to complete additional credit hours beyond the larger minimum credit hour requirement.

Colorado residents should be aware that the College Opportunity Fund (COF) may not cover all tuition costs associated with a double degree program (those beyond 145 semester credit hours).

2.3. Concurrent Bachelor of Science/Master of Science Degree
The Environmental Engineering Program is cooperating with the Civil, Environmental, and Architectural Engineering Department to offer concurrent EVEN BS/CVEN MS degrees in a five-year curriculum. To fit the BS and MS degrees in only five years, students are allowed to count two courses (6 credit hours) taken at the graduate level for both the EVEN BS and CVEN MS degrees. Students must first complete the four-year Environmental Engineering Bachelor of Science curriculum (Section 2.1); they then complete the requirements of the CVEN MS degree.

The purpose of the concurrent EVEN BS/CVEN MS degrees is to allow capable students to gain greater depth of knowledge in environmental engineering by jointly pursuing BS and MS degrees. The concurrent degree program offers students greater flexibility in scheduling technical electives and graduate courses and enables them to obtain BS and MS degrees in five years.

Students seeking to pursue the concurrent EVEN BS/CVEN MS degrees must have a minimum grade point average of 3.25 when they submit an application for admission to the program. Students are expected to submit an application during the sixth or seventh semester of their undergraduate program in EVEN (75 to 110 credit hours). Applications are made to the Civil, Environmental, and Architectural Engineering Department. The following items are needed to complete an application:

- Concurrent EVEN BS/CVEN MS Degrees application form (no application fee)
- Four letters of recommendation
- University of Colorado Application for Graduate Admission form, Part II only
- Certification by the EVEN Program that the required number of coursework hours have been completed
- Copy of internal transcript

The application deadlines are April 30 for admission to the program for the following fall and October 30 for admission for the following spring semester.

To continue in the program, students must maintain full-time status with a cumulative GPA of 3.25 to remain in the program. In addition, to count the two graduate courses (6 credit hours) for both the EVEN BS and CVEN MS degrees, the student must achieve a grade point average of at least 3.5 in the 24 credit hours taken immediately after admission to the program. For the CVEN MS, students may complete the requirements for either the Plan I (thesis) or Plan II (course work only) Master of Science degrees.

Students admitted to the concurrent EVEN BS/CVEN MS degrees program who do not meet the requirements for completing the concurrent degrees or who elect not to complete the concurrent degrees may count appropriate graduate courses toward the technical elective (up to 9 credit hours) and option course (up to 9 credit hours) requirements for the EVEN BS.

2.4. Certificate Programs and Minors
The College of Engineering and Applied Science offers three certificate programs, which can be obtained along with the EVEN degree:

Certificate in Engineering Science and Society: http://engineering.colorado.edu/academics/ess.htm. This program considers the question: “How can the increasingly vast powers of science be guided toward the solution of human problems and kept from aggravating them?” Students are guided toward courses that will help them identify and become engaged in the ethical and policy issues, and the risks as well as the benefits of engineering, applied science and technology.

Engineering Entrepreneurship Certificate: http://eship.colorado.edu/ Students take courses in engineering management, finance and marketing, culminating in a senior design project which incorporates an entrepreneurship business plan.

International Engineering Certificate: http://engineering.colorado.edu/academics/international.htm. This certificate is available in Chinese, French, German, Italian, Japanese and Spanish and includes an international corporate or university co-op.

In addition, an **Undergraduate Energy Certificate** is available through the CU Energy Initiative: http://rasei.colorado.edu/. The certificate requires 18 credits, most of which can also apply to the EVEN degree.

Other certificate programs are available throughout the CU-Boulder campus, in many different disciplines.

Some minors are particularly compatible with the EVEN BS degree: Applied Math, Chemistry, Ecology and Evolutionary Biology, Electrical Renewable Energy Systems, Geological Sciences, Math. The Program Coordinator can provide more details on how these minors fit with the EVEN degree requirements.

3. Advising

3.1. Advising Process

In the Environmental Engineering Program, each student is assigned a faculty advisor to provide academic counseling and promote greater student-faculty interaction. Students are required to participate in the faculty advising process during designated advising weeks just prior to course registration for each semester. An advising hold to block registration remains on each student's record until faculty advising has occurred. Faculty advisors are also available during any semester at the student's request, for academic and career counseling beyond the required pre-registration meetings.

A few weeks before each advising period, the Program Coordinator will announce to students and faculty advisors by email the advising period schedule and advising procedures. Students are required to read these important advising messages and to follow the instructions for making appointments with faculty advisors or attending group informational and advising sessions. Faculty advisors will give meetings with advisees high priority during this time; please be courteous and meet with your advisor during the designated advising period.

In preparation for the meeting, students should assemble a proposed course plan for the following semester using these Environmental Engineering (EVEN) Degree Guidelines and the course schedule for the following semester, which is available through MyCUInfo. After the advising meeting, students must complete an Advising Evaluation Form to provide feedback on the advising process. These forms and the student's academic file, noted and signed by the advisor, must be returned to the Program Coordinator, who will then remove the advising hold to allow the student to register.

Many academic advising questions pertain to the "logistics" of course scheduling and registration. Most of these questions should be directed to the Program Coordinator (see the cover sheet for contact information) instead of the faculty advisors. The Coordinator will provide assistance on procedural questions involving registration, degree plans, graduation requirements, and the petition process. In addition, the Coordinator will help students determine whether a particular situation should be discussed with their faculty advisors.

3.2. Program Contact with Students (Email)

Official notices to students concerning Environmental Engineering Program advising, curriculum, registration, graduation requirements, and policies will be made by e-mail. By default, official notices will be sent to your University e-mail address as listed on the student directory on the web (http://www.colorado.edu/search/). If you do not think you are receiving official EVEN e-mail correspondence (you should be receiving messages from the program coordinator or program director at least every couple of weeks, probably more often), please contact the program coordinator to ensure that you are on the e-mail list. To reiterate, the Program is required to notify you only at your CU e-mail address.

The College of Engineering and Applied Science will also send official notices to your CU e-mail address. The college has developed a series of "code words" for the beginning of the subject line to alert you to the content of the message, and the EVEN program tries to use these codes as well:

- **Career** - includes opportunities that will help advance a student's career, e.g. résumé reviews, mock interviewing, meetings with employers, Career Fair, etc.
- **Job** - includes job opportunities for students still in school such as internships, co-ops, and on-campus jobs, as well as information on permanent positions.
- **Scholarship** - includes information on scholarships, grants, other sources of funding, and application deadlines.
- **Academic Advising** or **Advising** - includes advising information, curricular options, registration, academic issues, course information, missing prerequisites, degree progress, etc.
- **Graduation** - includes information for graduating seniors such as FE exam, senior checkout, senior exit processes, senior survey, etc.
- **Event** - includes upcoming meetings, programs, events, trips, and opportunities for volunteers to participate in various functions
- **Extracurricular Opportunity** - includes information on student societies, clubs, etc.
- **Deadline** - includes anything with a looming deadline to which you should pay special attention
- **Urgent** - this will be used sparingly and will indicate a critical communication

3.3. Academic Records

An official Environmental Engineering Program academic file will be maintained for each student by the Program Coordinator. This file will contain copies of official documentation related to academic history and progress.

The Environmental Engineering Program Coordinator and faculty advisors will strive to provide you with complete, timely, and accurate academic advising; but ultimately, the responsibility of meeting graduation requirements is yours. Consequently, you should ensure that all copies of relevant paperwork are present in your academic file and that you keep your own copies of critical information.
3.4. Additional Advising Resources

The College of Engineering and Applied Science's advising website (http://engineering.colorado.edu/students/advising.htm) contains much useful information, including Advising Guides, policies and forms for specific situations.

Students may also be referred to various College of Engineering and Applied Science and University of Colorado counselors for certain issues. In particular, several groups within the College offer academic support, including training on study skills and time management, and one-on-one or small group tutoring. These academic programs and other support services are listed on the college web page http://ecadw.colorado.edu/engineering/students/undergraduate.htm. At the University level, students may consult with the following groups:

• Career Services -- provides services for resume and interview skills improvement, internship and job postings, and career fairs (http://www.colorado.edu/careerservices/, 34 Willard Hall, 303 492 6541)
• Counseling and Psychological Services: A Multicultural Center -- provides a variety of programs and assistance to address general academic or personal issues. (http://www.colorado.edu/sacs/counseling/, 134 Willard Hall, 303 492 6766)
• Student Academic Services Center (http://www.colorado.edu/sasc/, 386 Willard, 303 492 1416)

3.5. Faculty Advisor Assignments

All students in the Environmental Engineering Program will be assigned a faculty advisor. Incoming first-year students will be notified of their advisors at orientation. Students entering EVEN by change-of-major and transfer students will initially be advised by the Program Director, Jana Milford. At the first advising meeting for change-of-major and transfer students, transfer credits will be evaluated and a course plan to meet graduation requirements may be formulated. After the initial advising sessions, students will be assigned to a regular faculty advisor based on credit hours or option track. Students may also confer with the program coordinator.

4. Academic Policies

Academic policies and guides for the College of Engineering and Applied Science, as well as many forms mentioned in this section, can be found at http://engineering.colorado.edu/students/advising.htm.

4.1. Prerequisite and Co-Requisite Courses

Most of the courses in the Environmental Engineering curriculum have prerequisite and/or co-requisite requirements (see tables on pp. 8-9 and the Appendix). The purpose of these requirements is to ensure that you are adequately prepared for subsequent courses. Students must successfully complete all prerequisite courses before enrolling for a required course in the Environmental Engineering curriculum. Students must also simultaneously enroll in and complete satisfactorily all co-requisite courses. Successful completion means receiving a grade of C- or better. Grades of D+, D, D-, F, I, F, IW, P or NC do not satisfy this requirement. Successful completion of prerequisite and co-requisite courses will be monitored for all required courses in the Environmental Engineering curriculum. Students who do not successfully complete prerequisite and co-requisite courses must retake those courses before advancing in the curriculum. If a student registers for a course without satisfactorily completing prerequisite courses, he/she will be notified that the course must be dropped and, if necessary, the student will be dropped from the course. Students required to retake courses are strongly urged to consult their faculty advisors for advice on how successful academic performance can be achieved.

The prerequisite and co-requisite policy applies only to required and option courses in the curriculum. If a student has not satisfied all of the prerequisite and co-requisite requirements for an elective course (technical, humanities & social sciences, or free elective), permission to take that elective course must be obtained from the instructor before enrolling in the course.

Courses not listed in the curriculum may be used to satisfy prerequisite and co-requisite requirements if transfer credit or a petition to the Environmental Engineering Program has been approved. College of Engineering and Applied Science petition forms for this purpose may be obtained from the Program Coordinator or at http://engineering.colorado.edu/students/advising.htm.

4.2. Transfer Credit

Five different kinds of students transfer into the Environmental Engineering program:

• students changing majors from the College’s Open Option major to EVEN
• students changing majors from another of the College’s engineering degrees to EVEN
• students changing majors from another College or School in the University of Colorado at Boulder to EVEN
• students changing majors from another campus of the University of Colorado to EVEN
• students transferring from another institution

For all transfer students, the College of Engineering and Applied Science requires that the last 45 credit hours used to fulfill degree requirements must be taken as a regular degree student in the College of Engineering and Applied Science at the University of Colorado at Boulder. More details about the college’s transfer credit policies are available in the Dean’s office or online at the following URL on the college website (http://ecadw.colorado.edu/engineering/prospective/transfer_students.htm).

4.2.1. Change of Major: From the College’s Open Option to EVEN

The EVEN program accepts the College of Engineering and Applied Science Open Option curriculum as a substitute for its own first-year
curriculum. Grades of C- or better must have been achieved for all courses counting for required courses in the EVEN curriculum. Students changing from Open Option to EVEN must complete a change-of-major form for the college. A description of the college’s Open Option is available online on the college website (http://engineering.colorado.edu/students/advising.htm).

4.2.2. Change of Major: From a College of Engineering Degree to EVEN

Evaluation of the credit hours earned in another engineering degree curriculum in the College of Engineering and Applied Science for credit in EVEN will be done at the first advising meeting with the EVEN Program Director. Grades of C- or better must have been achieved for all courses counting for required courses in the EVEN curriculum. Because EVEN is a multi-department program, most students coming into EVEN from other engineering degree programs in the College are able to transfer most of their basic courses for credit toward the EVEN BS degree. Students changing from another engineering degree to EVEN must complete a change-of-major form for the College.

4.2.3. Change of Major: From Another UCB College or School to EVEN

Students transferring into EVEN from another of the University of Colorado at Boulder’s Colleges and Schools must complete an Intra-University Transfer (IUT) application to the College of Engineering and Applied Sciences (details are available in the Dean’s Office or at http://ecadw.colorado.edu/engineering/prospective/transfer_cu-boulder.htm). Once the application is approved, credit hours from the non-engineering degree will be evaluated for EVEN credit at the first advising meeting with the EVEN Program Director. Students changing majors to EVEN from non-engineering degrees must complete two semesters of calculus and two semesters of chemistry and/or physics to apply for IUT.

4.2.4. Change of Major: From Another Campus of the University of Colorado System

Students transferring into EVEN from another campus of the University of Colorado system will, in almost all cases, have the same status as transfers from the University of Colorado at Boulder. Students from other CU campuses should refer to the three change-of-major sections above. More details on Intercampus Transfer to the College of Engineering and Applied Science are available in the Dean’s Office or online (http://ecadw.colorado.edu/engineering/prospective/transfer_other_cu.htm).

4.2.5. Transfer from Another Institution

Students transferring from another university or community college can find information on the College of Engineering and Applied Science website (http://ecadw.colorado.edu/engineering/prospective/transfer_students.htm). An initial and official transfer credit evaluation is performed by the CU-Boulder Office of Admissions using the transcript from the previous institution(s). Courses in which the student received a grade lower than a C- will not be accepted by the admissions office.

Once the Office of Admissions has completed its evaluation, the student will meet with the EVEN Director for evaluation of transfer credits for the EVEN curriculum. Note that acceptance of transfer credits by the admissions office does not mean that the transfer credits will count toward the EVEN BS degree; courses taken at another institution must match the course requirements for the EVEN curriculum. In most cases, identification of courses is straightforward; however, for some courses, the EVEN Director may request documentation of course content (catalog descriptions, course syllabi).

4.2.6. Advanced Placement and International Baccalaureate Credit

Advanced Placement (AP) credit may be approved on the basis of College Entrance Examination Board’s Advanced Placement tests. International Baccalaureate (IB) credit may be granted to students who have participated in IB diploma or certificate programs. For students who have taken AP or IB courses in high school and who achieve the required score, AP/IB credit will be granted as part of the admission process. AP and IB credits must also be evaluated for credit toward the EVEN curriculum by the EVEN Director or Program Coordinator. If a student later takes a course for which AP or IB credit was granted, the credit for the course taken at the University of Colorado will replace the AP/IB credit.

For a listing of CU course equivalents for typical AP and IB credit, see the College of Engineering and Applied Science “Advanced Placement, IB and MAPS” Advising Guide (available in the dean’s office or online at http://engineering.colorado.edu/students/advising.htm).

College courses taken while in high school (e.g., through the “CU Succeed” Program) will be evaluated as transfer credits according to the applicable section above.

4.2.7. Continuing Education Courses

Courses may be taken for EVEN degree credit through programs offered by the University of Colorado’s Division of Continuing Education (see a full description at http://www.colorado.edu/ContEd/):

- Summer Session, including Maymester
- Available Credit for Eligible Special Students (ACCESS)
- Center for Advanced Engineering and Technology Education (CAETE)
- Boulder Evening Credit
- Independent Learning
- Concurrent High School
A maximum of 16 credit hours taken through Continuing Education programs other than Summer Session can be applied to the EVEN BS degree (Maymester and Summer Session courses are equivalent to courses offered during the regular academic year). A maximum of 8 of the 16 credit hours can be taken as Humanities and Social Sciences courses. According to the College of Engineering and Applied Science, students must secure advance approval of the Environmental Engineering Program and the Dean's Office prior to registering for Continuing Education courses. A credit registration form may be obtained at http://conted.colorado.edu/wp-content/uploads/creditregistrationform.pdf.

4.3. Humanities and Social Sciences Electives

4.3.1. Importance of Humanities and Social Sciences to Environmental Engineers

The purpose of humanities and social sciences (H&SS) electives is to broaden the engineering education. In environmental engineering, appreciation and knowledge of the social, historical, political, and economic context of environmental problems is critically important. The EVEN faculty recommends that you select a sequence of courses that complement and broaden your education in environmental engineering and that you avoid random selection of unrelated introductory courses. See below for some specific courses that may interest environmental engineering students.

4.3.2. Humanities and Social Sciences Requirements

The Environmental Engineering Program follows the College of Engineering and Applied Science H&SS requirements (http://ecadw.colorado.edu/engineering/Advising_Guides/HSS.pdf). A total of 18 credit hours of H&SS electives is required for graduation. At least nine of the required credit hours must be at the upper division level (3000- or 4000-level courses). One required communication course to improve writing and oral presentation skills provides three credit hours of upper division H&SS credit. The remaining courses must be selected from the College’s approved H&SS course lists (http://engineering.colorado.edu/homer/Fall2007.htm).

Instructor's consent must be obtained on a petition form if prerequisites are not met. Permission must be obtained from the relevant department if courses have other restrictions.

Guidance in the H&SS course selection process is available through the College of Engineering and Applied Sciences (see the online guide HOMER, http://engineering.colorado.edu/homer/). The college provides a searchable database (Odyssey) to assist students in selecting H&SS courses: http://engineering.colorado.edu/odyssey/. Students can search by keyword, tag cloud, list browse, or by answering a series of questions designed to determine their interests and needs. Note: not all courses on the approved Homer list in the Odyssey database are offered every semester; the course schedule must be consulted each semester to determine which courses are available for that semester.

Courses on the approved list that might be of interest to environmental engineers include:

- ANTH 4330 Human ecology: Archaeological Aspects (prerequisite: ANTH 2200)
- ANTH 4600 Human ecology: Cultural Aspects
- ATLS 2000 The meaning of Technology
- ATLS 3519 Building Interactive Technology
- ATOC 4800 Policy Implications of Climate Controversy
- BAKR 1500 Colorado: History, Ecology, and Environment
- BAKR 1600 Creating a Sustainable Future
- ECEN 3070 Edges of Science (prereq., MATH 1020/1070 /2510 or PSYC 3101 or SOCY 2061/4061 or equivalent)
- ECON 3535 Natural Resources Economics (prerequisite: ECON 1000 or 2010, restricted to nonmajors)
- ECON 3545 Environmental Economics (prerequisite: ECON 1000 or 2010, restricted to nonmajors)
- ECON 4999 Economics in Action: Econ/Ethics/Environ (prerequisites: ECON 3070 & 3080, JR or SR standing)
- ENV 4800 Critical Thinking in Environmental Studies
- CVEN 4700/5700 Sustainability in the Built Environment
- GEEN 1100 Social Impact of Technology
- GEEN 1510 Self Management and Leadership
- GEEN 3300 Sustainability Ethics and Practice
- GEOG 1992 Human Geographies
- GEOG 4430 Seminar: Conservation Trends (restricted to junior/senior GEOG/ENVS majors)
- GEOG 4742 Environments and Peoples (recommended prerequisites: GEOG 1982, 1992, 2002 or 2412; restricted to juniors/seniors)
- GEOG 4012 Environment and Development in South America (recommended prerequisites: GEOG 1982, 1992, 2002, 3812,3422, ANTH 3110 or PSCI 3032)
- GEOG 4822 Environment and Development in China (recommended prerequisites: GEOG 1982, 1992, 2002 or HIST 1608)
- GEOL 4080 Societal Problems and Earth Sciences (prereq: 1 year calculus, 1 year natural science or equiv, or instructor consent)
- GEOL 4500 Critical Thinking in Earth Sciences (prerequisite: 1000-level science sequence)
- GRMN/HUMN 1701 Nature and Environment in German Literature and Thought
• HIST 4324 History of Modern Science (prerequisite: HIST 1020)
• HIST 4417 Environmental History of North America (prereq: HIST 1015/1025/1035/1045; restricted to soph/juniors/seniors)
• INVS 1000 Responding to Social and Environmental Problems Through Service Learning
• INVS 4302/PSCI 4732 Critical Thinking in Development (prereq: PSCI 2012/IAFS 1000, ECON 2010-2020, and 1 UD PSCI course)
• PHIL 1400 Science and Society
• PHIL/ENVS 3140 Environmental Ethics (prerequisite: PHIL 1100, 1200, 2200, 3100 or 3200, or sophomore standing)
• PHIL 3160 Bioethics (prereq: 6 hours of philosophy course work; restricted to sophomores/juniors/seniors)
• PHIL 3410 History of Science: Ancients to Newton (prereq: 6 hours of philosophy course work: restricted to soph/juniors/seniors)
• PHIL 3430 History of Science: Newton to Einstein (prereq: 6 hours of philosophy course work; restricted to soph/juniors/seniors)
• PHYS 3000 Science and Public Policy (recommended prereq., completion of core science requirement)
• PSCI 3064 Environmental Political Theory (recommended prereq: PSCI 2004)
• PSCI 3206 Environment and Public Policy (prerequisite: PSCI 1101)
• PSCI 4012 Global Development (prereq: PSCI 2012, ECON 2020, IAFS 1000, or one upper-division PSCI course)
• SEWL 2000 America, the Environment, and the Global Economy
• SOCY 2077 Environment and Society
• SOCY 4007 Global Human Ecology
• SOCY/ENVS 4027 Inequality, Democracy and the Environment (restricted to juniors/seniors)
• HUEN or EHON courses, offered by the Herbst Program in the Humanities, and designed especially for engineers. A list of current offerings can be found at http://engineering.colorado.edu/herbst/.

Students may petition the College of Engineering and Applied Science for approval of an H&SS course not on the list of previously approved courses. It is strongly suggested that the petition be approved before enrolling in the course. The College encourages meaningful groupings of courses in related subjects and thus may approve courses that are not on the list if they form a coherent plan of study. (Prior approval has already been granted for groups of four courses that would count toward a minor in certain fields, listed at http://engineering.colorado.edu/homer/Fall2007.htm.) The following courses may be of interest to environmental engineers and might be approved for inclusion in such a grouping (you must petition for approval!):

• ANTH 4150 Human Ecology: Biological Aspects (prerequisite: ANTH 2010 and 2020, or EBIO 1210 and 1220)
• ENVS 3003/ETHN 3011 Race, Class, and Pollution Politics (restricted to junior/senior ENVS or ETHN majors)
• ENVS 3020 Advanced Writing in Environmental Studies (restricted to junior/senior ENVS majors)
• ENVS 3621 Energy Policy and Society (recommended prereq: ENVS 3070)
• ENVS 4100 Topics in Environmental Policy
• GEOG 2002 Geographies of Global Change
• GEOG 2412 Environment and Culture
• GEOG 3412 Conservation Practice and Resource Management (restricted to GEOG and ENVS majors)
• GEOG 3422 Conservation Thought
• PHIL 2140 Environmental Justice
• PSCI 4028 Special Topics: Political Theory and Environment
• additional courses from the required and recommended curricula for the Environmental Studies program in the College of Arts and Sciences (http://envs.colorado.edu)

The communication/writing requirement may be fulfilled by one of the following courses:

• HUEN 3100 Humanities for Engineers 1 (prerequisite: junior standing & program approval)
• PHYS 3050 Writing in Physics: Problem-Solving and Rhetoric (prereq: PHYS 2130 or 2170 and lower-division core writing requirement)
• WRTG 3030 Writing on Science and Society (restricted to junior/senior engineering/physical and biological science majors)
• WRTG 3035 Technical Communication and Design (restricted to junior/senior majors in engineering, architecture & planning, physical, earth and life sciences)

4.3.3. Some Specific Inclusions and Exclusions for the H&SS List

Some foreign language courses will satisfy the humanities and social science requirements.

Generally, courses in performance and fine arts production, mathematics, and natural sciences are not acceptable as H&SS electives. Some courses in the history of art, music, theatre, dance or film are acceptable. The following courses are specifically excluded from satisfying H&SS requirements:

• courses in painting, sculpture, photography, film and other fine arts production
• courses in musical instruments, band, choir, and other performance courses
• courses in accounting, finance, personnel administration, and other business practices
• critical thinking courses in ASTR, CHEM, EBIO, MATH, MCDB, PHYS

These courses may be taken as free electives (up to 3 credits; see section 4.5)
4.4. Technical Electives

4.4.1. Overview of Technical Electives

Technical electives provide an opportunity for students to explore a range of engineering, mathematical, and natural sciences topics to provide increased breadth or to focus on a specific technical area to develop in-depth understanding. In addition, one technical elective must be used to meet a requirement for a course in earth sciences prescribed by the American Academy of Environmental Engineers (AAEE; http://www.aaee.net/) for environmental engineering curricula. Students should consult their faculty advisors to plan their technical elective program.

4.4.2. Technical Elective Requirements

The EVEN BS curriculum requires nine credit hours of technical electives. Technical elective credit may be met by courses in the following categories:

- most engineering, physics, biology (both EBI0 and MCDB), chemistry, geology, physical geography, atmospheric and oceanic sciences, and mathematics (both APPM and MATH) courses that are substantially different from required EVEN courses;
- many courses taught by Computer Science and Engineering Management;
- quantitatively rigorous courses in social sciences (economics, psychology, human geography);
- EVEN senior thesis; and
- independent study courses with appropriate technical content.

Three credit hours of technical electives may be lower division (1000-, 2000-level course). The remaining technical elective courses must be taken at the 3000-level or above. Both undergraduate and graduate courses (5000 level and above) may be taken as technical electives; enrollment in graduate courses requires the consent of the instructor.

One of the technical elective courses (3 credit hours) must be an earth science course at either the lower or upper division level. See the list of recommended earth science courses in the Appendix.

All technical elective course selections should be approved by your advisor.

Technical electives counted toward the graduation requirements for the EVEN BS degree may not be taken pass/fail.

Exceptions to these rules will be considered by petition to the Environmental Engineering faculty.

4.4.3. Specific Inclusions and Exclusions for Technical Electives

A list of selected courses that will meet this requirement appears in the Appendix. If a course is not on this list, check with your advisor or the program coordinator; you may need to petition to have the course approved as a technical elective.

Independent study (see Section 4.6) is accepted as technical elective credit up to a maximum of 6 credit hours.

Co-op credits will not count as technical electives nor toward other degree requirements.

A maximum of 3 credit hours of some Reserve Office Training Corps (ROTC) courses may be used as technical electives upon commissioning.

4.4.4. Advice on Technical Electives

Courses that meet the earth sciences requirement are typically found in the Departments of Geological Sciences, Geography, Atmospheric and Oceanic Sciences, and some engineering departments. See the Appendix for a specific list. Some courses (e.g., ATOC 1050, GEOL 1010) have associated optional labs that will satisfy the air or earth science lab or field requirement.

Many students have found that a course devoted to the use of computer software for engineering drawing (e.g., AutoCAD®) or geographic information science (GIS) and mapping (e.g., ARCview®) can open up job opportunities. The following courses are available on the Boulder campus:

- AREN 1027 Engineering Drawing (formerly AREN 1017)
- CVEN 4822 Geographical Information Systems for Civil and Environmental Systems (prereq CVEN 2012 or instr. consent)
- GEOG 3053 Cartography: Visualization and Information Design (restricted to junior/senior GEOG/ENVS majors)
- GEOG 4043 Cartography 2: Interactive and Multimedia Mapping (prerequisite: GEOG 3053)
- GEOG 4083 Mapping from Remotely Sensed Imagery (prerequisite: 3093, 4093 or equiv; restr to JR/SR GEOG/ENVS majors)
- GEOG/GEOL 4093 Remote Sensing of the Environment
- GEOG 4103/4203/4303 Geographic Information Science (prerequisite: GEOG 2053 or 3053; restricted to junior/senior GEOG/ENVS majors)

Many students are interested in energy-related courses. Some of these courses can be found in the Appendix. It is also suggested that students check each semester for courses in individual departments’ special topics classes for energy-related courses, as well as for other topics of interest.

Instructor's consent must be obtained on a petition form if prerequisites are not met. Permission must be obtained from the relevant department if courses have other restrictions.
4.5. Free Electives
The EVEN curriculum allows for three credits of free elective(s). College-level CU or transfer credits, upper- or lower division, may be used for these credits to broaden the student’s academic experience. Students may also use AP or IB credits, courses from Residential Academic Programs (RAP), President’s Leadership Class (PRLC), ROTC, courses required to pursue a minor, etc. Or they may be used to take a “fun” class in something you always wanted to study!

4.6. Air or Earth Science Laboratory or Field Course
Students are required to take one 3-credit course with a significant lab or field component focusing on air quality or earth science. If the course chosen is less than three credits, upper division technical electives must complete the remaining credits. The following courses will fulfill the lab/field requirement:

- ATOC 1070 Weather and the Atmosphere Lab (1) (prereq or co-req: ATOC 1050 or instructor consent)
- CVEN 3708 Geotechnical Engineering 1 (3) (prerequisite: CVEN 3161)
- EVEN 4100 Environmental Sampling and Analysis (3) (prerequisites: CVEN 4404 & 4414 and fluid mechanics or instructor consent)
- GEOG 4411 Methods of Soil Analysis (3) (prerequisites: GEOG 1001 or 1011; prereq/co-req: GEOG 4401)
- GEOL 1030 Introduction to Geology Lab (1) (prior or current registration in 1000-level GEOL recommended)
- GEOL 2700 Introduction to Field Geology (2) (prerequisites: GEOL 1010 & 1020 or GEOL 1060 & 1070 or GEOG 1001 & 1011)
- GEOL 3010 Introduction to Mineralogy (3) (prerequisites: CHEM 1113/CHEN 1211, MATH 1300/APPM 1350)
- GEOL 4716 Environmental Field Geochemistry (2) (prerequisites: GEOL 2700 and chemistry sequence)

4.7. Independent Study
4.7.1. Introduction to Independent Study
An independent study is a collaboration between a student and a faculty member on a special project that provides the student with a learning experience. An independent study may also fill an academic need of importance to the student that cannot be filled by the regular course offerings. Independent studies are opportunities for students to earn credit for learning outside the normal lecture and laboratory class structure.

In the EVEN BS curriculum, independent studies may be counted as technical electives (up to a maximum of six credit hours). Independent studies may be conducted in any increment of credit hours up to a maximum of 3 credit hours per semester, with one credit hour representing 25 hours of actual work on the task or project. The Environmental Engineering Program encourages students to consider independent study to engage in a long-term research project with a faculty member.

4.7.2. Independent Study Requirements
The following rules apply to independent studies:

- A maximum of 6 credit hours of independent study may be applied to EVEN BS degree requirements as technical electives.
- Independent studies may not be applied as required courses or option courses.
- A maximum of 3 credit hours of independent study may be taken per semester.
- Independent studies may be supervised by any appropriate University of Colorado faculty member.
- A proposal for an independent study must be made by submitting the Independent Study Agreement Form, complete with student and supervising faculty signatures.
- The EVEN Program Director must approve the proposal.
- A final product of the independent study must be submitted to the Environmental Engineering Program before credit is awarded toward degree requirements.
- Approval of a second independent study is contingent on successful completion of the requirements for the first independent study.
- Independent studies may not be arranged retroactively.
- Independent study credit is not allowed for internship experiences, co-ops, work-study, or work done for pay, following University rules.

4.7.3. Independent Study Procedures
To propose an independent study, students must first determine with a collaborating faculty member the topic, goals, number of credit hours, work plan, and required product for the independent study. This information must be recorded on an Independent Study Agreement Form (see the Forms Appendix) and submitted before the drop/add deadline of the semester in which the independent study will be conducted.

The independent study proposal will be reviewed by the EVEN Director and approved, returned for amendment, or disapproved owing to some deficiency in the proposal. The form must then be submitted to the Program Coordinator. For an EVEN independent study, the Program Coordinator will enroll the student. The student will conduct the independent study under the guidance of the faculty advisor. At the end of the independent study, the student must submit to the Environmental Engineering Program a copy of the final product (a report, a computer code, etc.) in addition to any required products due to the collaborating faculty.
4.8. Senior Thesis
Students in their final year may choose to do a senior thesis, which is conducted over two terms and demonstrates that a student can complete scientific and engineering research independently and can communicate results. A senior thesis must be supervised and graded by a member of the Environmental Engineering faculty and defended before a committee of three faculty members, two of whom must be affiliated with the Environmental Engineering Program. Senior thesis hours (3 credits each term) may be applied toward the upper division technical elective requirement.

The student is required to complete (in collaboration with the thesis supervisor) and sign a Senior Thesis Proposal form for each semester; the form must then be signed by the student and thesis supervisor and approved by the EVEN Program Director before registration in the courses. The final thesis must be submitted to the Environmental Engineering Program Coordinator by the final day of the second term of the thesis. More details on senior thesis policy and procedures may be found on the Senior Thesis Proposal Forms (see Forms Appendix).

4.9. Engineering Co-op Program
A Co-operative Education Program is available to EVEN students, whereby semesters of academic coursework alternate with semesters of paid engineering work at an engineering firm or university. International co-ops are also available. The co-op program provides professional experience in a real-world situation with university oversight and a chance to explore career options during the undergraduate career. Students enroll in co-op credit hours through the Division of Continuing Education; these credits do not apply toward degree requirements except as free electives. For more information, see http://engineering.colorado.edu/activelearning/co-op.htm.

4.10. Petitions
4.10.1. Petition Rules and Guidelines
Any exceptions or waivers of the rules and regulations of the Environmental Engineering Program or the College of Engineering and Applied Science must have prior approval by petition. The petition must be completed and submitted to the Environmental Engineering Program for approval; the petition will then be forwarded to the Dean's Office. Exceptions to the humanities/social sciences requirement must also be approved by the Director of the Herbst Program of Humanities for Engineers. It is the student's responsibility to follow up on the petition's progress. Petition forms may be obtained from the Program Coordinator, the dean's office, or from http://engineering.colorado.edu/students/advising.htm.

The following list provides some examples of situations for which a petition is required:
- enrolling in less than 12 or more than 19 credit hours per semester
- enrolling in a course when prerequisites have not been satisfied (requires instructor signature)
- substituting for or waiving a required course
- dropping or adding a course after deadlines
- requesting the pass/fail or no credit (NC) grade option for a course
- when more than half of a semester's credit hours do not meet degree requirements
- to ensure that courses taken elsewhere will count toward degree requirements
- to request approval of technical electives or humanities and social sciences classes that are not on the approved lists

Follow these guidelines when completing the petition:
- review the rules and policies of the College of Engineering and Applied Science as published in the University of Colorado Catalog and EVEN Degree Guidelines during the year of your admission to the College and the current edition(s) of the appropriate Advising Guide(s) to establish your need to petition and the specific rule or policy you wish to waive.
- consult with the Program Coordinator and faculty advisor for clarification of Program rules and policies.
- write or, preferably, type the petition clearly (and neatly!).
- provide complete information in the petition, including the number and title of all courses and pertinent data such as course description syllabi. Additional pages may be attached if necessary.

If properly completed, the petition process will normally take one to two weeks.

4.10.2. One-Time Forgiveness Policy
The College of Engineering offers a one-time forgiveness policy to allow correction of a significant registration error resulting in an unanticipated grade. As indicated by the title, the forgiveness policy can be used only once. Forgiveness may be requested in a petition describing the registration error. Students on academic probation or suspension may not use this policy. See also http://www.colorado.edu/policies/courserepetition.html for information on the Boulder campus Course Repetition Policy.

4.11. Academic Honesty
The Environmental Engineering Program adheres to the policies of the University of Colorado at Boulder and the College of Engineering and Applied Science on academic honesty, which state:

"As members of the academic community, students have a responsibility to conduct themselves with the highest standards of honesty and integrity. These qualities are also vital to the profession of engineering. Violations of academic ethics tarnish the reputation of all students and will be treated with the utmost seriousness."

Be forewarned and discourage your fellow students from participating in any unethical activities. The following are examples of some, but certainly not all, acts that violate academic ethics:
- plagiarizing
- cheating on assignments and exams (including text messaging during exams, quizzes, etc.)
- possessing or observing of exams or solutions to examinations prior to the exam
- altering, forging, or falsifying official records
- performing work or taking an exam for another student
- providing material/work of your own or of others to a fellow student

The College of Engineering and Applied Science procedures for handling academic ethics violations are available in the Dean’s Office and on the college website (http://engineering.colorado.edu/Advising_Guides/Academic_Honesty.pdf). University academic honesty policies are available at the Honor Code website (http://www.colorado.edu/academics/honorcode/).

5. Graduation Requirements

5.1. Requirements for EVEN BS Degree

5.1.1. General Requirements

To graduate with a Bachelor of Science degree in Environmental Engineering from the College of Engineering and Applied Science at the Boulder campus, students must meet the following minimum requirements:

1. Satisfactory completion of the required and elective courses in the Environmental Engineering Bachelor of Science curriculum (see Section 2.1). Students must satisfactorily complete 128 credit hours, of which the last 45 credit hours shall be earned after admission to the College of Engineering and Applied Science as a degree student.
2. A minimum cumulative grade point average of 2.000 for all courses attempted and for all courses that count toward graduation requirements, excluding “P” grades for courses taken Pass/Fail.
3. A minimum cumulative major grade point average of 2.000. This major grade point average includes only course work in EVEN, CHEN, CVEN and MCEN courses.
5. Submission of copies of independent study or thesis final product, if applicable toward degree requirements.
6. Completion of the Fundamentals of Engineering (FE) examination during the final academic year.
7. Notification to the EVEN program coordinator of intent to graduate.
8. Submission of a completed Diploma Card (available in the EVEN or dean’s office) to the dean’s office.

Graduation will be postponed by failure to complete these requirements. Any exceptions to these requirements will require approval of the Environmental Engineering Program Director and the Dean’s office by petition.

To be sure that all requirements are met, students can consult with the Environmental Engineering Program Coordinator, Director, and their faculty advisors. Students must be aware that meeting graduation requirements is ultimately their own responsibility.

5.1.2. Grading Policy

Students are evaluated by their performances in the courses that make up the Environmental Engineering curriculum following the standard procedures implemented by the College of Engineering and Applied Science (http://engineering.colorado.edu/Advising_Guides/Grading_Policies.pdf). Student performance is determined by course instructors. Instructors award grades following the University of Colorado standardized grading system (Table 1).

Grade point averages of students are determined only for “quality credit hours.” Quality credit hours are those earned in courses taken for standard grades at the University of Colorado. “Earned credit hours” include quality credit hours plus credit hours earned in courses taken pass/fail and credit hours transferred from other institutions; thus, grades in pass/fail courses and courses from other institutions do not count in the University of Colorado grade point average.

Other grades appearing on student transcripts include Incomplete (I), No Credit (NC), and Pass (P). A grade of I indicates that course requirements were not completed owing to documented reasons beyond the control of the student. Grades of I require completion of an “Incomplete Grade Record Form” by the instructor and student stating the work that must be completed to award a final grade. All work required for the final grade must be completed within one year or the I grade is changed to F. A grade of NC indicates that the course taken cannot be used to fulfill graduation requirements and cannot be repeated for a standard grade. A grade of P in a course taken pass/fail indicates that the student achieved the minimum passing grade of D- or better.

5.1.3. Pass/Fail Grading

Pass/fail grading is permitted only for courses used as H&S electives or for courses above and beyond degree requirements. The primary purpose for offering the opportunity for students to enroll in a course for a grade of P or F instead of a standard letter grade is to encourage students to broaden their educational experience by selecting challenging courses without serious risk to the

<table>
<thead>
<tr>
<th>letter grade</th>
<th>credit points</th>
<th>quality of performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.0</td>
<td>superior/excellent</td>
</tr>
<tr>
<td>A-</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>B+</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3.0</td>
<td>good/better than average</td>
</tr>
<tr>
<td>B-</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>C+</td>
<td>2.3</td>
<td>competent/average</td>
</tr>
<tr>
<td>C</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>C-</td>
<td>1.7</td>
<td>(minimum passing grade in prerequisite course)</td>
</tr>
<tr>
<td>D+</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>D-</td>
<td>0.7</td>
<td>(minimum passing grade in non-prerequisite course)</td>
</tr>
<tr>
<td>F</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>incomplete</td>
</tr>
<tr>
<td>NC</td>
<td></td>
<td>no credit</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>pass in a pass/fail course</td>
</tr>
</tbody>
</table>

Table 5.1. Standardized grading system of the University of Colorado at Boulder.
cumulative grade point average. Students on academic probation may not elect the P/F grade option.

The College allows a maximum of six pass/fail credit hours per semester. Pass/fail hours counting toward graduation shall not exceed a cumulative total of 16 (Study Abroad pass/fail grades do not count toward this limit). Transfer students are allowed one credit hour pass/fail for every nine credit hours completed under the Standard Grading System.

Students are required to submit a petition requesting approval to register for a course with the pass/fail option.

5.2. Fundamentals of Engineering Exam

One of the requirements for graduation with the EVEN BS degree is that students must take the Fundamentals of Engineering (FE) Exam. This test serves two purposes: (1) it provides students with the opportunity to complete the first step toward Professional Engineer (PE) status and (2) it provides the Environmental Engineering Program with a useful assessment of engineering proficiency attained by EVEN graduates. Students must be within 32 credits of graduation to take the FE exam.

The Fundamentals of Engineering Examination is the first step toward achieving licensure as a Professional Engineer (PE), a particularly important credential for engineers working as consultants. The FE Exam is administered by the National Council of Examiners for Engineering and Surveying (NCEES; http://www.ncees.org) and is offered in April and October. Registration notices will be distributed by the EVEN Program Coordinator, and students must coordinate their registrations with the EVEN office.

The exam consists of two parts, the morning and afternoon “specifications.” The morning specification covers engineering, science, and mathematics fundamentals. The afternoon specification is discipline-specific. Environmental engineering is offered as an afternoon specification. Students may also take one of the other specifications, such as chemical, civil or general engineering. The NCEES offers general information, study materials, and sample questions for the FE Exam, and a copy of the current FE Reference Handbook can be downloaded from the NCEES website. Numerous review books for the FE Exam are also readily available at web booksellers. Check with the program coordinator about possible review sessions held by engineering departments.

5.3. Requirements for Dual Degrees

Students may choose to pursue a second Bachelor of Science or Bachelor of Arts degree simultaneously with the EVEN BS degree in a College or School at the University of Colorado at Boulder. To do this, they must satisfy the requirements of both degree curricula and may be required to take credit hours beyond the 128 required for the EVEN BS degree. To complete a dual degree, the student should find an academic advisor in the other program to ensure that its course requirements are satisfied.

6. Society of Environmental Engineers (SEVEN)

The Society of Environmental Engineers (SEVEN) is a student society which engages in a combination of educational, service and social activities. It is open to students in all majors who are interested in environmental issues and sustainable solutions. See http://www.colorado.edu/engineering/EnvEng/SEVEN.htm for more information about meetings and activities, and to contact the current officers.

Sabre Duren, an EVEN 2002 graduate, measuring stream flow with a pygmy meter for an independent study project.
More than twenty College of Engineering and Applied Science faculty members are affiliated with the Environmental Engineering Program. These faculty members are rostered in the Aerospace Engineering Sciences, Chemical and Biological Engineering, Civil, Environmental, and Architectural Engineering, and Mechanical Engineering departments.

Rajagopalan Balaji. Associate Professor, Civil, Environmental and Architectural Engineering, http://colorado.edu/ceae/pg.shtml?nid18
Teaching: CVEN 4333/5333 Engineering Hydrology
Research: Stochastic Hydrology and Hydroclimatology, Nonparametric functional estimation techniques
Email: Rajagopalan.Balaji@Colorado.EDU, phone: 303 492-5968, office: ECOT 541

Angela Bielefeldt. Associate Professor, Civil, Environmental, and Architectural Engineering; former EVEN Director, http://colorado.edu/ceae/pg.shtml?nid13
Teaching: EVEN 1000 Intro to Environmental Engineering, CVEN 4434 Environmental Engineering Design, CVEN 4474 Hazardous Waste Management
Research: Biological Treatment of Hazardous Organic Compounds, Subsurface Bioremediation, Sustainable water and wastewater treatment for developing communities
Email: angela.bielefeldt@colorado.edu, phone: 303 492 8433, office: ECOT 516

Education: B.S., Princeton U. (1966), M.S., Ph.D., University of California at Berkeley (1968, 1971)
Research: Combustion-Generated Air Pollution, Hazardous Waste Destruction, Combustion Chemistry
Email: melvyn.branch@colorado.edu, phone: 303 442-8538; office: ECME 210

David Clough. Professor, Chemical and Biological Engineering, http://www.colorado.edu/che/faculty/clough.html
Education: B.S., Case Institute of Technology (1968), M.S., Ph.D., University of Colorado at Boulder (1969, 1975)
Teaching: GEEN 1300 Introduction to Engineering Computing, CHEN 3010 Applied Data Analysis, CHEN 4838 Energy Fundamentals
Research: Improved Control of Industrial Processes, Optimization and Control of Natural Resources Distribution
Email: david.clough@colorado.edu, phone: 303 492 6638, office: ECCH 126

John Crimaldi. Associate Professor, Civil, Environmental, and Architectural Engineering, http://colorado.edu/ceae/pg.shtml?nid15
Teaching: CVEN 3313 Theoretical Fluid Mechanics, CVEN 5313 Environmental Fluid Mechanics, CVEN 5343 Transport and Dispersion in Surface Water, CVEN 6833 Advanced Environmental Fluid Mechanics
Research: Interaction of fluid mechanics with biological or ecological systems, Scalar transport; Structure of passive chemical plumes, Turbulent processes in benthic boundary layers
Email: john.crimaldi@colorado.edu, phone: 303 735 2162, office: ECOT 511

Teaching: EVEN 4830 Environmental Satellite Remote Sensing, ASEN 4337 Remote Sensing Data Analysis, ASEN 4215 Oceanography
Research: Satellite Remote Sensing of Oceans, Vegetation and Urban Studies
Email: william.emery@colorado.edu, phone: 303 492 8591, office: ECME 220

Michael Hannigan. Assistant Professor, Mechanical Engineering, http://www.colorado.edu/MCEN/people/faculty/hannigan.html
Education: B.S., Southern Methodist University (1990), M.S., Ph.D., California Institute of Technology (1991, 1997)
Teaching: MCEN 4228 Sustainable Energy
Research: Characterization and Abatement of Air Pollution, Impact of air quality on health, Energy links to air quality
Email: michael.hannigan@colorado.edu, phone: 303 735 5045, office: ECME 218

Daven Henze. Assistant Professor, Mechanical Engineering http://www.colorado.edu/MCEN/people/faculty/henze.html
Teaching: MCEN 4131 Air Pollution Control
Research: Aerosols and Air Quality, Climatology and atmospheric chemistry, Adjoint sensitivity analysis, Data assimilation and remote sensing & modeling tools
Email: daven.henze@colorado.edu, phone: 303 735 5045, office: ECME 265

Mark Hernandez. Associate Professor, Civil, Environmental, and Architectural Engineering, http://colorado.edu/ceae/pg.shtml?nid29
Education: B.S., M.S., Ph.D., University of California at Berkeley (1986, 1988, 1994)
Teaching: CVEN 4484 Introduction to Environmental Microbiology, AREN 2110 Thermodynamics
Research: Biological Waste Treatment Processes, Microbiology of Aerosols, Microbially induced corrosion
Email: mark.hernandez@colorado.edu, phone: 303 492 5991, office: ECOT 515

Jean Hertzberg. Associate Professor, Mechanical Engineering, http://www.colorado.edu/MCEN/people/faculty/hertzberg.html
Teaching: MCEN 3012 Thermodynamics, MCEN 3021 Fluid Mechanics, MCEN 4030 Computational Methods, MCEN 4228 Perception of Design
Research: Flow Visualization, Fluids Education, Experimental Vortex Dominated Fluid Dynamics, Applications in Combustion and Biomechanics, Combustion Fluid Mechanics, Hazardous Waste Destruction
Email: jean.hertzberg@colorado.edu, phone: 303 492 5092; office: ECME 220

Karl Linden. Professor, Liebman Faculty Fellow, Civil, Environmental, and Architectural Engineering, http://colorado.edu/ceae/pg.shtml?nid72
Teaching: CVEN 5834 Special Topics: UV treatment; CVEN 3414 Fundamentals of Environmental Engineering
Research: Water Treatment, Wastewater Treatment, Disinfection, Advanced Oxidation
Email: karl.linden@colorado.edu, phone: 303 492 4798, office: ECOT 542

Diane McKnight. Professor, Civil, Environmental, and Architectural Engineering, http://colorado.edu/ceae/pg.shtml?nid35
Education: B.S., M.S., Ph.D., Massachusetts Institute of Technology (1975, 1978, 1979)
Teaching: CVEN 3424 Applied Ecology
Research: Aquatic Ecology, Limnology, Reactive transport of metals and organic material in streams and rivers
Email: diane.mcknight@colorado.edu, phone: 303 492 4687 or 492 7573, office: ECOT 543 or RL-1, 118
Jana Milford. Professor, Mechanical Engineering; EVEN Director, http://www.colorado.edu/MCEN/people/faculty/milford.html
Teaching: MCEN 4131 Air Pollution Control, MCEN 3208 Honors Thermodynamics, MCEN 4228 Env. Modeling, MCEN 4228 Env. Law for Engineers
Research: Air Quality Modeling, Atmospheric Chemistry, Air pollution source apportionment, Environmental law and management
Email: jana.milford@colorado.edu, phone: 303 492 5542, office: ECME 214

Shelly Miller. Associate Professor, Mechanical Engineering, http://www.colorado.edu/MCEN/people/faculty/miller.html
Teaching: MCEN 4131 Air Pollution Control, MCEN 4141 Indoor Air Pollution, GEEN 1400 Engineering Projects, MCEN 3122 Thermodynamics 2.
Research: Indoor Air Quality, Bioaerosols, Air pollutant control technologies including ultraviolet irradiation and filtration
Email: shelly.miller@colorado.edu, phone: 303 492 0587; office: ECME 222

Lupita Montoya. Assistant Professor, Civil, Environmental, and Architectural Engineering, http://ceae.colorado.edu/dept/?nid=82
Education: BS, California State University, Northridge; MS, PhD Stanford University
Teaching: CVEN 4834/5834 Fundamentals of Air Quality Science and Engineering
Research: Health effects of aerosols, indoor air quality and exposure, sustainability
Email: lupita.montoya@colorado.edu, phone: 303 492 7137; office: ECOT 514

Roseanna Neupauer. Assistant Professor, Civil, Environmental and Architectural Engineering, http://colorado.edu/ceae/pg.shtml?nid=38
Education: B.S., Carnegie Mellon University (1989); S.M., Massachusetts Institute of Technology (1991); M.S., PhD, New Mexico Tech (1999, 2000)
Teaching: CVEN 4353/5353 Groundwater Engineering; CVEN 3323 Fluid Mechanics
Research: groundwater flow and transport modeling, porous media heterogeneity, contaminant source characterization
Email: Roseanna.Neupauer@colorado.edu; phone: 303 492 6274; office: ECOT 513

John Pellegrino. Research Professor; Mechanical Engineering, http://www.colorado.edu/MCEN/people/faculty/pellegrino.html
Education: B.ChE. City College of New York (1973), M.S., Ph.D., (ChE) University of Colorado at Boulder (1979, 1983)
Teaching: Fluid Mechanics, Membranes, Energy, Separations, Engineering Economics
Research: Modification, formation, characterization, and performance of membranes, Electrokinetic processes, Water treatment and supply, Biomass-to-fuels process development
Email: john.pellegrino@colorado.edu, phone: 303 735 2631, office: ECST 205

Teaching: CVEN 4353 Groundwater Engineering; CVEN 3313 Fluid Mechanics
Research: Groundwater and Contaminant Hydrology, Stochastic Modeling of Transport Processes
Email: harihar.rajaram@colorado.edu, phone: 303 492 6604, office: ECOT 514

Fernando Rosario-Ortiz. Assistant Professor, Civil, Environmental, and Architectural Engineering, http://colorado.edu/ceae/pg.shtml?nid=44
Teaching: CVEN 4424 Environmental Organic Chemistry
Research: Wastewater reuse, Advanced oxidation processes for water treatment, Natural organic matter
Email: Fernando.Rosario@colorado.edu, phone: 303 492 7607, office: ECOT 512

Joseph Ryan. Professor, Civil, Environmental, and Architectural Engineering; former EVEN Director, http://colorado.edu/ceae/pg.shtml?nid=46
Research: Contaminant Fate and Transport in Natural Waters, Surface and Colloid Chemistry, Sources and transport of metals in watersheds affected by acid mine drainage
Email: joseph.ryan@colorado.edu, phone: 303 492 0772, office: ECOT 517

JoAnn Silverstein. Professor and Chair, Civil, Environmental, and Architectural Engineering, http://colorado.edu/ceae/pg.shtml?nid=48
Education: B.S., M.S., Ph.D., University of California at Davis (1978, 1980, 1982)
Teaching: AREN 2110 Thermodynamics; CVEN 4830 Senior Design Projects
Research: Biological Treatment of Contaminants in Water and Wastes, Water Reuse
Email: joann.silverstein@colorado.edu, phone: 303 492 7211, office: ECOT 444

Education: B.S., M.S., University of Cincinnati (1980, 1982), Ph.D., Stanford University (1986)
Teaching: CVEN 3424 Water and Wastewater Treatment, CVEN 4444 Env. Engineering Processes, GEEN 1400 Engineering Projects
Research: Drinking Water Quality and Treatment, Disinfection By-Products, Natural Organic Matter
Email: r.summers@colorado.edu, phone: 303 492 6644, office: ECOT 540
Forms and Appendices

These forms can be found on the College of Engineering and Applied Science’s Advising website at http://engineering.colorado.edu/students/advising.htm:
- Change of Major (including adding additional major or minor)
- Course Schedule Approval (for students on academic probation)
- Incomplete Grade
- Independent Study
- Minor Completion (for engineering minors)
- Petition

In addition to the forms listed above, the following forms may be obtained from the Program Coordinator:
- Advising Evaluation Form
- Degree Requirements Worksheet (see also following pages)
- Diploma card
- Senior Thesis Proposal Forms
- Special Action Form
- Special Option Selection Proposal
- Transfer Credit Appeal

These appendices are included here in the following pages:
- Technical Elective Suggestions
- Table of prerequisites and co-requisite courses for required courses in the EVEN BS curriculum
- Useful Websites

A settling pond for the treatment of acid mine drainage.
Degree Requirements Worksheet - EVEN BS Degree 2010-2011

Student Name: ___ **Student#:** ____________________
Faculty Advisor: __ **Catalog year:**________ **Major year:** ______

Required Courses

<table>
<thead>
<tr>
<th>course no.</th>
<th>course name</th>
<th>credits</th>
<th>course taken (if different)</th>
<th>grade</th>
<th>term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering (53 hours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVEN 1000</td>
<td>Intro to Environmental Engineering</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEEN 1300</td>
<td>Intro to Engineering Computing</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEEN 1400</td>
<td>Engineering Projects</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 3414</td>
<td>Fundamentals of Environmental Engr</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEN 2120</td>
<td>Chem Engr Matl Energy Balances</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 4404</td>
<td>Solid Mechanics</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 4414</td>
<td>Water Chemistry Lab</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Engineering Economics</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fluid Mechanics</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Thermodynamics</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 4424</td>
<td>Environmental Organic Chemistry</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 4444</td>
<td>Environmental Engineering Processes</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 4434</td>
<td>Environmental Engineering Design</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Engineering Total (53)

Mathematics (16 hours)					
APPM 1350	Calculus 1 for Engineers	4			
APPM 1360	Calculus 2 for Engineers	4			
APPM 2350	Calculus 3 for Engineers	4			
APPM 2360	Intro Diff Eqns w Linear Algebra	4			

Mathematics Total (16)

Sciences (17 hours)					
CHEN 1211	General Chemistry	3			
CHEM 1221	General Chemistry Laboratory	2			
PHYS 1110	General Physics 1	4			
PHYS 1120	General Physics 2	4			
PHYS 1140	Experimental Physics 1	1			
CHEM 4521	Physical Chemistry for Engineers	3			

Sciences Total (17)

4. Thermodynamics options: AREN 2110 Thermodynamics, CHEN 3320 Chemical Engineering Thermodynamics, GEEN 3852 Thermodynamics for Engineers, MCEN 3012 or 3208 Thermodynamics.
Humanities & Social Sciences Electives (18 hours, 9 hours upper division)

<table>
<thead>
<tr>
<th>course no.</th>
<th>course name</th>
<th>credits</th>
<th>course taken</th>
<th>grade</th>
<th>term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H&S (lower or upper division)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H&S (lower or upper division)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H&S (lower or upper division)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H&S (upper division)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H&S (upper division)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Required Communication Course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H&S Total (18)

Option Courses (9 hours)

<table>
<thead>
<tr>
<th>course no.</th>
<th>course name</th>
<th>credits</th>
<th>course taken</th>
<th>grade</th>
<th>term</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Option 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Option 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Option 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Option Total (9)

Technical Electives (9 hours, 6 hours upper division, 3 Earth Science)

<table>
<thead>
<tr>
<th>course no.</th>
<th>course name</th>
<th>credits</th>
<th>course taken</th>
<th>grade</th>
<th>term</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Tech (lower or upper division)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Tech (upper division)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Tech (upper division)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Air/Earth Lab/Field Course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free Elective (3 hours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(12)
(3)

Credit hour Total:
(128)

Grade Point Average:

<table>
<thead>
<tr>
<th>course no.</th>
<th>course name</th>
<th>credits</th>
<th>course taken</th>
<th>grade</th>
<th>term</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPS Complete:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FE Exam:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Check:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 Communications course: HUEN 3100 Humanities for Engineers, WRTG 3030 Writing on Science and Society, WRTG 3035 Technical Communication and Design, or PHYS 3050 Writing in Physics.

8 Consult Environmental Engineering (EVEN) Degree Guidelines for lists of Option courses.

9 Technical Electives: Three technical elective credits may be lower division (1000-, 2000-level). Three technical elective credits must be in the earth sciences, either lower or upper division (eligible departments and programs include ATOC, CVEN, GEOL, and GEOG). Independent studies or senior thesis may be completed as technical electives for up to 6 credits total, 3 credits per semester.

10 Air/Earth Lab/Field course: a 3(+) credit course with a significant laboratory or field component focusing on air quality or earth science. If less than 3 credits, the difference is required as an upper division technical elective. Options: ATOC 1070 Weather and the Atmosphere Lab (1), CVEN 3708 Geotechnical Engineering, EVEN 4100 Environmental Sampling, GEOG 4411 Methods of Soil Analysis, GEOL 1030 Intro to Geology Lab, GEOL 2700 Intro to Field Geology (2), GEOL 3010 Intro to Mineralogy, GEOL 4716 Environmental Field Geochemistry (2)
Technical Elective Suggestions

Any of the courses listed in the options (p. 7) are good technical electives. Other example Technical Elective Courses for EVEN are listed below. If a course is not on this list, you may request approval on a petition form. Honors sections of the courses listed below will also be accepted.

Check for prerequisites in the catalog: http://www.colorado.edu/catalog/catalog09-10.

Some graduate-level classes (5000+) can also be taken as technical electives -- check with your advisor. Note, however, that prerequisites are not listed in the catalog for graduate courses; instructor’s permission may be required.

Courses marked with an asterisk (*) fulfill the earth sciences technical elective requirement (geology, meteorology or soil science). Courses marked with † will fulfill the air/earth sciences lab/field requirement.

Arts & Sciences

- **APPM 2750 (4)** Java: Training and Mathematical Algorithms.
- **APPM 3010 (3)** An Introduction to Nonlinear Systems: Chaos
- **APPM 3050 (3)** Scientific Computing in Matlab
- **APPM 3170 (3)** Discrete Applied Mathematics
- **APPM 3310 (3)** Matrix Methods and Applications
- **APPM 3570 (3)** Applied Probability
- **APPM 4120 (3)** Introduction to Operations Research
- **APPM 4350 (3)** Methods in Appl Math: Fourier Series/Boundary Value Prob

Chemistry

- **CHEM 3311 (4)** Organic Chemistry 1
- **CHEM 3321 (1)** Lab in Organic Chemistry 1
- **CHEM 3331 (4)** Organic Chemistry 2
- **CHEM 3341 (1)** Lab in Organic Chemistry 2
- **CHEM 4011 (3)** Modern Inorganic Chemistry
- **CHEM 4021 (3)** Inorganic Laboratory
- **CHEM 4171 (3)** Instrumental Analysis
- **CHEM 4181 (4)** Instrumental Analysis Lab with Environ Emphasis
- **CHEM 4431 (3)** Physical Chemistry w/ Biochemistry Applications 2
- **CHEM 4531 (5)** Physical Chemistry 2

Environmental Sciences

- **ENVS 1000 (4)** Introduction to Environmental Studies
- **ENVS 3001 (3)** The Campus and the Biosphere
- **ENVS/PHYS 3070 (3)** Energy and the Environment
- **ENVS/CVEN 3434** Introduction to Applied Ecology

Earth Sciences

- **ATOC 1050 (3)** Weather and the Atmosphere *
- **ATOC 1060 (3)** Our Changing Environment: El Nino, Ozone and Climate *
- **ATOC 1070 (1)** Weather and the Atmosphere Lab *
- **ATOC/GEOL 3070 (3)** Introduction to Oceanography
- **ATOC/GEOL 4160** Intro to Biogeochemistry*

Biology

- **EBIO 1050 (3)** Biological Diversity: Vertebrates
- **EBIO 1070 (3)** Evolutionary Biology
- **EBIO 1210 (3)** General Biology 2
- **EBIO 1220 (3)** General Biology 3
- **EBIO 1230 (1)** General Biology Laboratory 1
- **EBIO 1240 (1)** General Biology Laboratory 2
- **EBIO 1300 (1)** Introduction to Biotechnology
- **EBIO 2010 (1)** Environmental Issues and Biology
- **EBIO 2040 (4)** Principles of Ecology
- **EBIO 2070 (4)** Genetics: Molecules to Populations
- **EBIO 2500 (4)** Introduction to Agriculture
- **EBIO 2590 (2)** Plants and Society
- **EBIO 3010 (1)** Teaching Biology
- **EBIO 3040 (4)** Conservation Biology
- **EBIO 3080 (4)** Evolutionary Biology
- **EBIO 3110 (3)** Population and Community Ecology
- **EBIO 3170 (3)** Arctic and Alpine Ecology
- **EBIO 3175 (1)** Arctic and Alpine Ecology Lab
- **EBIO 3180 (3)** Global Ecology
- **EBIO 3190 (3)** Tropical Marine Ecology
- **EBIO 3240 (4)** Animal Behavior
- **EBIO 3270 (3)** Ecosystem Ecology
- **EBIO 3470 (3)** History of Biology
- **EBIO 3520 (4)** Plant Systematics
- **EBIO 3530 (4)** Functional Plant Biology
- **EBIO 3630 (4)** Parasitology
- **EBIO 4350 (1)** Population and Community Ecology
- **EBIO 4360 (3)** Methods in Appl Math: Complex Variables & Applications
- **EBIO 4380 (3)** Modeling in Applied Mathematics
- **EBIO 4540 (3)** Introduction to Time Series
- **EBIO 4560 (3)** Markov Processes, Monte Carlo Sims
- **EBIO 4580 (3)** Statistical Applications: Software & Math
- **EBIO 4650 (3)** Intermediate Numerical Analysis 1
- **EBIO 4660 (3)** Intermediate Numerical Analysis 2
- **EBIO 4720 (3)** Open Topics in Applied Mathematics

Geology

- **ENVS/GEOG 4201 Biometeorology
- **ENVS/GEOL 3520 Environmental Issues in the Geosciences*"
ENVS 4630 (2-6) Field Techniques in Environmental Science

GEOL 1001 (4) Environ'l Systems 1 - Climate & Vegetation *
GEOL 1011 (4) Environ'l Systems 2 - Landscapes and Water *
GEOL 2053 (4) Mapping a Changing World
GEOL 3053 (3) Cartography: Visualization and Information Design
GEOL 3093 (3) Geographic Interpretation of Aerial Photographs
GEOL 3251 (3) Mountain Geography *
GEOL 3301 (3) Analysis of Climate and Weather Observation *
GEOL 3351 (3) Biogeography
GEOL 3402 (3) Natural Hazards
GEOL 3412 (3) Conservation Practice and Resource Management
GEOL 3511 (4) Introduction to Hydrology
GEOL 3601 (3) Principles of Climate *
GEOL 4023 (3) Introduction to Quantitative Methods in Human Geography
GEOL 4033 (2) Quantitative Methods in Geography Laboratory
GEOL 4043 (3) Cartography 2: Interactive & Multimedia Mapping
GEOL 4083 (4) Mapping from Remotely Sensed Imagery
GEOL 4093 (4) Remote Sensing of the Environment

GEOL 1010 (3) Introduction to Geology 1 *
GEOL 1020 (3) Introduction to Geology 2 *
GEOL 1030 (1) Introduction to Geology Laboratory 1 *
GEOL 1040 (3) Geology of Colorado *
GEOL 1060 (3) Global Change An Earth Science Perspective *
GEOL 2300 (3) Environmental Geology *
GEOL 2110 (4) Physical Science of the Earth System *
GEOL 2700 (2) Introduction to Field Geology †
GEOL 3010 (3) Introduction to Mineralogy †
GEOL 3020 (3) Petrology*
GEOL 3030 (3) Introduction to Hydrogeology *
GEOL 3040 (3) Global Change: The Recent Geological Record *
GEOL 3050 (2) GIS for Geologists *
GEOL/ATOC 3070 (3) Introduction to Oceanography
GEOL 3120 (4) Structural Geology *
GEOL 3300 (3) Extraterrestrial Life
GEOL 3320 (3) Introduction to Geochemistry *
GEOL 3410 (3) Paleobiology *
GEOL 3430 (4) Sedimentology and Stratigraphy *
GEOL 3520 (3) Environmental Issues in Geosciences *
GEOL 3540 (3) Introduction to Hydrocarbon Geology *

IPHY 3060 (4) Cell Physiology
IPHY 3130 (3) Environmental Animal Physiology
IPHY 3410 (3) Introduction to Human Anatomy
IPHY 3415 (2) Human Anatomy Laboratory
IPHY 3420 (3) Nutrition, Health and Performance
IPHY 3430 (3) Introduction to Human Physiology
IPHY 3435 (2) Human Physiology Laboratory
IPHY 3450 (5) Comparative Animal Physiology
IPHY 3460 (5) Comparative Vertebrate Anatomy
IPHY 3470 (3) Human Physiology 1
IPHY 3480 (3) Human Physiology 2
IPHY 3500 (2) Applied Clinical Research
IPHY 3660 (3) Dynamics of Motor Learning
IPHY 3730 (3) Brain and Behavior

MATH 2520 (3) Introduction to Biometry
MATH 3000 (3) Introduction to Abstract Mathematics
MATH 3110 (3) Introduction to Theory of Numbers
MATH 3140 (3) Abstract Algebra 1
MATH 3170 (3) Combinatorics 1
MATH 3200 (3) Intro to Abstract Mathematics through Topology
MATH 3210 (3) Euclidean and Non-Euclidean Geometries
MATH 4000 (3) Foundations of Mathematics
MATH 4120 (3) Introduction to Operations Research
MATH 4140 (3) Abstract Algebra 2
MATH 4230 (3) Geometry of Curves and Surfaces
MATH 4310 (3) Introduction to Analysis

MCDB 1041 (3) Fundamentals of Human Genetics
MCDB 1042 (3) Biological Basis of Human Disease
MCDB 1111 (4) Biofundamentals: Evol, Molec, Cellular Basis of Life
MCDB 1150 (3) Introduction to Cellular and Molecular Biology
MCDB 1151 (1) Introduction to Cell and Molecular Biology Lab
MCDB 2150 (3) Principles of Genetics
MCDB 2151 (1) Principles of Genetics Laboratory
MCDB 3100 (3) Methods in Developmental Genetics
MCDB 3120 (3) Cell Biology
MCDB 3140 (2) Cell Biology Laboratory
MCDB 3150 (3) Biology of the Cancer Cell
MCDB 3280 (3) Molecular Cell Physiology
MCDB 3350 (3) Fertility, Sterility, and Early Mammalian Development
MCDB 3500 (3) Molecular Biology
MCDB 3650 (3) The Brain - From Molecules to Behavior
MCDB 4111 (3) Experimental Design & Research in Cell & Molec Bio

GEOL 3720 (3) Evolution of Life: The Geological Record *
GEOL 3950 (3) Natural Catastrophes & Geologic Hazards *
GEOL 4060 (4) Oceanography
GEOL 4093 (4) Remote Sensing of the Environment
GEOL 4130 (3) Principals of Geophysics *
GEOL 4160 (3) Introduction to Biogeochemy *
GEOL 4200 (3) Advanced Mineralogy *
GEOL 4241 (4) Principles of Geomorphology *
GEOL 4270 (3) Marine Chemistry and Geochemistry
GEOL 4291 (3-4) Mountain Geomorphology *
GEOL 4360 (3) Glacial Geology *
GEOL 4474 (4) Vertebrate Paleontology
GEOL 4550 (3) Petroleum Reservoir Characterization & Modeling
GEOL 4640 (3) Glaciology *
GEOL 4670 (3) Isotope Geology *
GEOL 4711 (2) Igneous and Metamorphic Field Geology *
GEOL 4712 (2) Structural Field Geology *
GEOL 4714 (2) Field Geophysics *
GEOL 4715 (2) Field Tech in Surficial Geol & Geohydrol *
GEOL 4716 (2) Environmental Field Geochemistry * †
GEOL 4717 (2) Field Seminar in Geology and Tectonics *

IPHY 3800 (3) Forensic Biology
IPHY 3810 (1) Forensic Biology Laboratory
IPHY 4200 (3) Physiological Genetics and Genomics
IPHY 4440 (3) Endocrinology
IPHY 4470 (3) Biology of Human Reproduction
IPHY 4480 (3) Comparative Reproduction
IPHY 4500 (4) Histology: Cells and Tissues
IPHY 4540 (5) Biomechanics
IPHY 4600 (4) Immunology
IPHY 4650 (5) Exercise Physiology
IPHY 4720 (4) Neurophysiology
IPHY 4730 (3) Motor Control
IPHY 4740 (3) Theory of Motor Skills Learning
IPHY 4770 (3-4) Mind-Body Health

MATH 4320 (3) Multivariable Analysis
MATH 4330 (3) Fourier Analysis
MATH 4440 (3) Mathematics of Coding and Cryptography
MATH 4450 (3) Introduction to Complex Variables
MATH 4470 (3) Partial Differential Equations 1
MATH 4510 (3) Introduction to Probability Theory
MATH 4520 (3) Introduction to Mathematical Statistics
MATH 4540 (3) Introduction to Time Series
MATH 4650 (3) Intermediate Numerical Analysis 1
MATH 4660 (3) Intermediate Numerical Analysis 2
MATH 4730 (3) Set Theory

MCDB 3120 (3) Cell Biology
MCDB 3140 (2) Cell Biology Laboratory
MCDB 3150 (3) Biology of the Cancer Cell
MCDB 3280 (3) Molecular Cell Physiology
MCDB 3350 (3) Fertility, Sterility, and Early Mammalian Development
MCDB 3500 (3) Molecular Biology
MCDB 3650 (3) The Brain - From Molecules to Behavior
MCDB 4111 (3) Experimental Design & Research in Cell & Molec Bio
MCDB 4130 (3) Biological Electron Microscopy: Prins/Recent Advances
MCDB 4140 (3) Plant Molecular Biology and Biotechnology
MCDB 4300 (3) Immunology
MCDB 4330 (3) Bacterial Disease Mechanisms
MCDB 4350 (3) Microbial Diversity and the Biosphere
MCDB 4410 (3) Human Molecular Genetics
MCDB 4426 (3) Cell Signaling and Developmental Regulation
MCDB 4444 (3) Cellular Basis of Disease
MCDB 4471 (3) Mechanisms of Gene Regulation in Eukaryotes
MCDB 4520 (3) Bioinformatics and Genomics
MCDB 4550 (3) Cellular and Molecular Motion, A Biophysical Approach

PHYS 1230 (3) Light and Color for Nonscientists
PHYS 1240 (3) Sound and Music
PHYS 1300 (3) Experiment in Physics
PHYS 2130 (3) General Physics 3
PHYS 2170 (3) Foundations of Modern Physics
PHYS 2210 (3) Classical Mechanics and Math Methods 1
PHYS/ENVS 3070 (3) Energy and the Environment
PHYS 3210 (3) Classical Mechanics and Mathematical Methods 2
PHYS 3220 (3) Quantum Mechanics and Atomic Physics 1
PHYS 3310 (3) Principles of Electricity and Magnetism 1

College of Engineering and Applied Science
AREN 1027 (2) Engineering Drawing (formerly AREN 1017)
AREN 1027 (2) Descriptive Geometry
AREN 2050 (3) Engineering Systems for Buildings
AREN 3010 (3) Mechanical Systems for Buildings
AREN 3050 (3) Environmental Systems for Buildings 1
AREN 3060 (3) Environmental Systems for Buildings 2
AREN 3130 (3) Building Energy Laboratory
AREN 3140 (3) Illumination Laboratory
AREN 3406 (3) Introduction to Building Construction
AREN 3540 (3) Illumination 1
AREN 4035 (3) Architectural Structures 1
AREN 4045 (3) Architectural Structures 2

ASEN 2500 (3) Gateway to Space
ASEN 3111 (4) Aerodynamics
ASEN 3112 (4) Structures
ASEN 3116 (3) Introduction to Biomedical Engineering
ASEN 3128 (4) Aircraft Dynamics
ASEN 3200 (4) Orbital Mechanics/Attitude Dynamics & Control
ASEN 3300 (4) Aerospace Electronics and Communications
ASEN 4010 (3) Introduction to Space Dynamics
ASEN 4012 (3) Aerospace Materials
ASEN 4013 (3) Foundations of Propulsion
ASEN 4090 (3) Global Positioning Systems Applications
ASEN 4114 (3) Automatic Control Systems
ASEN 4138 (3) Aircraft Design

CHEN 2810 (3) Biology for Engineers
CHEN 2820 (3) Foundations of Bioengineering
CHEN 3130 (2) Chemical Engineering Lab 1
CHEN 3220 (3) Separations and Mass Transfer
CHEN 4130 (2) Chemical Engineering Lab 2
CHEN 4330 (3) Reaction Kinetics
CHEN 4440 (3) Chemical Engineering Materials
CHEN 4450 (3) Polymer Chemistry
CHEN 4460 (3) Polymer Engineering
CHEN 4520 (3) Chemical Process Synthesis.
CHEN 4570 (4) Instrumentation and Process Control

CVEN 2012 (3) Introduction to Geomatics
CVEN 3022 (3) Construction Surveying
CVEN 3032 (3) Photogrammetry
CVEN 3111 (3) Analytical Mechanics 2
CVEN 3161 (3) Mechanics of Materials 1
CVEN 3246 (3) Introduction to Construction
CVEN 3256 (3) Construction Equipment and Methods
CVEN 3323 (3) Hydraulic Engineering
CVEN 3424 (3) Water and Wastewater Treatment
CVEN 3434 (3) Introduction to Applied Ecology
CVEN 3525 (3) Structural Analysis
CVEN 3602 (3) Transportation Systems
CVEN 3698 (3) Engineering Geology *
CVEN 3708 (3) Geotechnical Engineering 1 *
CVEN 3718 (3) Geotechnical Engineering 2 *

MCDB 4600 (3) Molecular Approaches to Human Diseases
MCDB 4615 (3) Biology of Stem Cells
MCDB 4621 (3) Genome Databases: Mining and Management
MCDB 4650 (3) Developmental Biology
MCDB 4660 (2) Developmental Biology Laboratory
MCDB 4680 (3) Mechanisms of Aging
MCDB 4750 (3) Animal Virology
MCDB 4777 (3) Molecular Neurobiology
MCDB 4790 (3) Experimental Embryology
MCBD 4810 (3) Insane in the Membrane: Bio/Biophysics of Membrane
MCBD 4970 (3) Seminar on Physical Methods in Biology

PHYS 3230 (3) Principles of Electricity and Magnetism 2
PHYS 3330 (2) Electronics for the Physical Sciences
PHYS 3340 (3) Introductory Research in Optical Physics
PHYS 4130 (2) Biological Electron Microscopy
PHYS 4150 (3) Plasma Physics
PHYS 4230 (3) Thermodynamics and Statistical Mechanics
PHYS 4340 (3) Introduction to Solid State Physics
PHYS 4410 (3) Quantum Mechanics and Atomic Physics 2
PHYS 4510 (3) Optics
PHYS 4970 (3) Seminar on Physical Methods in Biology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCI 4133</td>
<td>UNIX System Administration</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4000</td>
<td>Entrepreneurship in Computing</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 3753</td>
<td>Operating Systems</td>
<td>4</td>
</tr>
<tr>
<td>CSCI 3308</td>
<td>Software Engineering Methods and Tools</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 3434</td>
<td>Theory of Computation</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 3702</td>
<td>Cognitive Science</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 3753</td>
<td>Operating Systems</td>
<td>4</td>
</tr>
<tr>
<td>CSCI 4000</td>
<td>Entrepreneurship in Computing</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4113</td>
<td>UNIX System Administration</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4123</td>
<td>Network Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CSCI 4133</td>
<td>Security Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>ECEN 1200</td>
<td>Telecommunications</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 1400</td>
<td>Introduction to Digital and Analog Electronics</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 2060</td>
<td>Sp Top: Renewable Energy</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 2120</td>
<td>Computers as Components</td>
<td>5</td>
</tr>
<tr>
<td>ECEN 2250</td>
<td>Circuits/Electronics 1</td>
<td>5</td>
</tr>
<tr>
<td>ECEN 2260</td>
<td>Circuits/Electronics 2</td>
<td>5</td>
</tr>
<tr>
<td>ECEN 3010</td>
<td>Circuits and Electronics for Mechanical Engineers</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 3030</td>
<td>Electrical/Electronic Circuits Non-Major</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 3070</td>
<td>Edges of Science</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 3100</td>
<td>Digital Logic</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 3170</td>
<td>Energy Conservation 1</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 3250</td>
<td>Circuits/Electronics 3</td>
<td>5</td>
</tr>
<tr>
<td>ECEN 3300</td>
<td>Linear Systems</td>
<td>5</td>
</tr>
<tr>
<td>ECEN 3320</td>
<td>Semiconductor Devices</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 3400</td>
<td>Electromagnetic Fields and Waves</td>
<td>5</td>
</tr>
<tr>
<td>ECEN 3410</td>
<td>Electromagnetic Waves and transmission</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 3703</td>
<td>Discrete Mathematics for Computer Engineers</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 3810</td>
<td>Introduction to Probability Theory</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 4021</td>
<td>Sp Top: Design Med Device</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 4106</td>
<td>Photonics</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 4109</td>
<td>Very Large Scale Integrated System Design</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 4116</td>
<td>Introduction to Optical Communications</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 4120</td>
<td>Neural Network Design</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 4138</td>
<td>Control Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 4167</td>
<td>Energy Conservation 2</td>
<td>3</td>
</tr>
<tr>
<td>EMEN 4030</td>
<td>Project Management System</td>
<td>3</td>
</tr>
<tr>
<td>EMEN 4050</td>
<td>Leadership</td>
<td>3</td>
</tr>
<tr>
<td>EMEN 4800</td>
<td>Entrepreneurial Marketing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>EMEN 4825</td>
<td>Entrepreneurial Business Plan Preparation</td>
<td>3</td>
</tr>
<tr>
<td>EMEN4830</td>
<td>Entrepreneurial Management and Leadership</td>
<td>3</td>
</tr>
<tr>
<td>EMEN 4875</td>
<td>Entrepreneurial Finance for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>GEEN 3400</td>
<td>Invention and Innovation</td>
<td>3</td>
</tr>
<tr>
<td>GEEN 3854</td>
<td>Circuits for Non-majors</td>
<td>3</td>
</tr>
<tr>
<td>GEEN 3855</td>
<td>Business Systems for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 1025</td>
<td>Computer-Aided Design and Fabrication</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 1208</td>
<td>Sp Top: Sustainable Energy</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 2024</td>
<td>Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 2063</td>
<td>Mechanics of Solids</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 3017</td>
<td>Circuits and Electronics</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 3025</td>
<td>Component Design</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 3027</td>
<td>Measurements Lab</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 3030</td>
<td>Computational Methods</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 3043</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 4026</td>
<td>Manufacturing Processes and Systems</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 4027</td>
<td>Mechanical Engineering Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 4042</td>
<td>Thermal Systems Design</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 4043</td>
<td>System Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 4115</td>
<td>Mechantronics and Robotics I</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 4117</td>
<td>Anatomy and Physiology for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 4120</td>
<td>Engineering Statistics</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 4822</td>
<td>GIS for Civil and Environmental Systems</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 4838</td>
<td>Sp Top: Sustainable Community Development 1</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4202</td>
<td>Artificial Intelligence 2</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4229</td>
<td>Graphics</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4273</td>
<td>Network Systems</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4308</td>
<td>Software Engineering Project 1</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4312</td>
<td>Medical Informatics</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4317</td>
<td>Genome Databases: Mining and Management</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4318</td>
<td>Software Engineering Project 2</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4342</td>
<td>Groupware and Workflow Systems</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4412</td>
<td>Design, Creativity, and New Media</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4446</td>
<td>Chaotic Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4448</td>
<td>Object Oriented Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4473</td>
<td>Network Security</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4555</td>
<td>Introduction to Compiler Construction</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4576</td>
<td>High Performance Scientific Computing 1</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4586</td>
<td>High Performance Scientific Computing 2</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4593</td>
<td>Computer Organization</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4753</td>
<td>Computer Performance Modeling</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4809</td>
<td>Computer Animation</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4810</td>
<td>Seminar in Computational Biology/Health Informatics</td>
<td>3</td>
</tr>
<tr>
<td>course no.</td>
<td>course name</td>
<td>prerequisites (min. C- unless otherwise noted)</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>APPM 1350</td>
<td>Calculus 1 for Engineers</td>
<td>2 yrs HS algebra, 1 yr geometry, ½ yr trigonometry</td>
</tr>
<tr>
<td>APPM 1360</td>
<td>Calculus 2 for Engineers</td>
<td>APPM 1350 or MATH 1300</td>
</tr>
<tr>
<td>APPM 2350</td>
<td>Calculus 3 for Engineers</td>
<td>APPM 1360 or MATH 2300</td>
</tr>
<tr>
<td>APPM 2360</td>
<td>Intro Diff Eqns with Linear Algebra</td>
<td>APPM 1360 or MATH 2300 (min. grade C)</td>
</tr>
<tr>
<td>APPM 4570</td>
<td>Statistical Methods</td>
<td>APPM 1360 or equiv</td>
</tr>
<tr>
<td>AREN 2110</td>
<td>Thermodynamics</td>
<td>PHYS 1110</td>
</tr>
<tr>
<td>ATOC 1070</td>
<td>Weather and the Atmosphere Laboratory</td>
<td>ATOC 1050 or instr consent</td>
</tr>
<tr>
<td>CHEM 1221</td>
<td>General Chemistry Laboratory</td>
<td>high school chemistry & algebra or CHEM 1001 or 1021</td>
</tr>
<tr>
<td>CHEM 4521</td>
<td>Physical Chemistry for Engineers</td>
<td>CHEN 1211/CHEM 1221 or CHEM 1113–1133; APPM2350;</td>
</tr>
<tr>
<td>CHEM 1211</td>
<td>General Chemistry for Engineers</td>
<td>high school chemistry & algebra or CHEM 1001 or 1021</td>
</tr>
<tr>
<td>CHEN 2120</td>
<td>Chem Engr Mat Energy Balances</td>
<td>CHEN 1211, GEEN 1300</td>
</tr>
<tr>
<td>CHEN 3010</td>
<td>Applied Data Analysis</td>
<td>GEEN 1300, APPM 2360</td>
</tr>
<tr>
<td>CHEN 3200</td>
<td>Chem Engr Fluid Mechanics</td>
<td>APPM 2350, CHEN 2120 or MCEN 2023</td>
</tr>
<tr>
<td>CHEN 3210</td>
<td>Chem Engr Heat Transfer</td>
<td>CHEN 2120, GEEN 1300, CHEN 3200 or MCEN 3021</td>
</tr>
<tr>
<td>CHEN 3320</td>
<td>Chem Engr Thermodynamics</td>
<td>CHEN 2120, CHEM 4521 or 4511</td>
</tr>
<tr>
<td>CVEN 2121</td>
<td>Analytical Mechanics 1</td>
<td>PHYS 1110</td>
</tr>
<tr>
<td>CVEN 3227</td>
<td>Probability, Statistics & Decisions</td>
<td>JR/SR standing</td>
</tr>
<tr>
<td>CVEN 3313</td>
<td>Theoretical Fluid Mechanics</td>
<td>CVEN 2121</td>
</tr>
<tr>
<td>CVEN 3414</td>
<td>Fundamentals of Environmental Engr</td>
<td>CHEN 1211, APPM1360</td>
</tr>
<tr>
<td>CVEN 4404-4414</td>
<td>Water Chemistry</td>
<td>CHEN 1211 or CHEM 1111-1131, CVEN 3414</td>
</tr>
<tr>
<td>CVEN 3708</td>
<td>Geotechnical Engineering</td>
<td>CVEN 3161</td>
</tr>
<tr>
<td>CVEN 4147</td>
<td>Engineering Economy and System Design</td>
<td>SR (or JR) standing</td>
</tr>
<tr>
<td>CVEN 4333</td>
<td>Engineering Hydrology</td>
<td>CVEN 3227 (or equiv), CVEN 3323 (or fluid mechanics)</td>
</tr>
<tr>
<td>CVEN 4424</td>
<td>Environmental Organic Chemistry</td>
<td>CHEN1211 or CHEM 1113/1114-1133/1134</td>
</tr>
<tr>
<td>CVEN 4434</td>
<td>Environmental Engineering Design</td>
<td>CVEN 3414, SR standing</td>
</tr>
<tr>
<td>CVEN 4444</td>
<td>Environmental Engineering Processes</td>
<td>CVEN 3414</td>
</tr>
<tr>
<td>CVEN 4484</td>
<td>Intro to Environmental Microbiology</td>
<td>CHEM 1211, CHEN 1221, APPM 2350</td>
</tr>
<tr>
<td>EMEN 4100</td>
<td>Business Methods and Economics for Engr</td>
<td>JR/SR standing</td>
</tr>
<tr>
<td>EVEN 1000</td>
<td>Intro to Environmental Engineering</td>
<td>none</td>
</tr>
<tr>
<td>EVEN 4100</td>
<td>Environmental Sampling and Analysis</td>
<td>CVEN 4404-4414 & 4424 or equiv.</td>
</tr>
<tr>
<td>EVEN 4830</td>
<td>Technoeconomics Analysis for Engr</td>
<td>CHEN 1211, APPM 2360, PHYS 1120 or equivalents</td>
</tr>
<tr>
<td>GEEN 1300</td>
<td>Intro to Engineering Computing</td>
<td>CHEN 1211, APPM 2360, PHYS 1120 or equivalents</td>
</tr>
<tr>
<td>GEEN 1400</td>
<td>Engineering Projects</td>
<td>none</td>
</tr>
<tr>
<td>GEEN 3851</td>
<td>Statics for Engineers</td>
<td>PHYS 1110, recom APPM 2350</td>
</tr>
<tr>
<td>GEEN 3852</td>
<td>Thermodynamics for Engineers</td>
<td>APPM 2350</td>
</tr>
<tr>
<td>GEEN 3853</td>
<td>Fluid Mechanics for Engineers</td>
<td>APPM 2350 or 2360, GEEN 1300 or CSCI 1300</td>
</tr>
<tr>
<td>GEOG 4411</td>
<td>Methods of Soil Analysis</td>
<td>GEOG 1001 or 1011</td>
</tr>
<tr>
<td>GEOL 2700</td>
<td>Intro to Field Geology</td>
<td>GEOL 1010-1020, or GEOL 1060-1070 or GEOG 1001-1011</td>
</tr>
<tr>
<td>GEOL 3010</td>
<td>Intro to Mineralogy</td>
<td>CHEM 1111, MATH 1300 (or CHEN 1211, APPM 1350)</td>
</tr>
<tr>
<td>GEOL 4716</td>
<td>Environmental Field Geochemistry</td>
<td>GEOL 2700, chemistry sequence</td>
</tr>
<tr>
<td>MCEN 2023</td>
<td>Statics and Structures</td>
<td>APPM 1360</td>
</tr>
<tr>
<td>MCEN 3012</td>
<td>Thermodynamics</td>
<td>APPM 2350</td>
</tr>
<tr>
<td>MCEN 3021</td>
<td>Fluid Mechanics</td>
<td>APPM 2360, Solid Mechanics</td>
</tr>
<tr>
<td>MCEN 3022</td>
<td>Heat Transfer</td>
<td>MCEN 3012 & 3021 (or fluid mechanics & thermodynamics)</td>
</tr>
<tr>
<td>MCEN 4131</td>
<td>Air Pollution Control</td>
<td>fluid mechanics</td>
</tr>
<tr>
<td>PHYS 1110</td>
<td>General Physics 1</td>
<td>none</td>
</tr>
<tr>
<td>PHYS 1120</td>
<td>General Physics 2</td>
<td>PHYS 1110</td>
</tr>
<tr>
<td>PHYS 1140</td>
<td>Experimental Physics 1</td>
<td>PHYS 1110</td>
</tr>
</tbody>
</table>

*or by instructor’s consent as arranged by the Environmental Engineering Program

For prerequisites for option courses, see p. 7.
Useful Websites

Environmental Engineering Program: http://www.colorado.edu/engineering/even/

College of Engineering and Applied Science: http://engineering.colorado.edu/

Academic Support Programs: http://engineering.colorado.edu/academics/support.htm

Active Learning Program: http://engineering.colorado.edu/activelearning/index.htm
 Co-op Program: http://engineering.colorado.edu/activelearning/co-op.htm
 Discovery Learning (includes Discovery Learning Apprenticeship Program, Undergraduate Research Opportunities Program (UROP), Bioscience Undergraduate Research Skills and Training (BURST), Research Experience for Undergraduate (REU)): http://engineering.colorado.edu/activelearning/aboutdiscovery.htm
 Service Learning (includes Earn-Learn Apprenticeship Program, Engineering for Developing Communities, Engineers Without Borders, etc): http://engineering.colorado.edu/activelearning/service.htm
 Professional Learning (includes internships and co-ops): http://engineering.colorado.edu/activelearning/professional.htm

Advising Guides (College): http://engineering.colorado.edu/students/advising.htm

BOLD Center, Academic Support: http://engineering.colorado.edu/bold/

Career Services: http://careerservices.colorado.edu

Catalog, University of Colorado at Boulder: http://www.colorado.edu/catalog/catalog10-11/

Engineering Honors Program: http://www.cuhonorsengineering.com

 State of Colorado Board of Licensure: http://www.dora.state.co.us/aes/index.htm

Forms (College): Petition form, Change of Major Form, etc): http://engineering.colorado.edu/students/advising.htm

Humanities and Social Sciences Requirements:
 (Fall 2007 and later): http://engineering.colorado.edu/homer/Fall2007.htm
 (Pre-summer 2007): http://engineering.colorado.edu/homer/Prefall2006.htm
 Herbst Program: http://engineering.colorado.edu/herbst/
 Odyssey course search: http://engineering.colorado.edu/odyssey/

International Engineering Certificates: http://engineering.colorado.edu/academics/international.htm

Minors: http://www.colorado.edu/ArtsSciences/students/undergraduate/academics/minors.html and http://engineering.colorado.edu/Advising_Guides/Minor_Programs.pdf

Office of the Registrar: http://registrar.colorado.edu/

Schedule of Courses: http://mycuinfo.colorado.edu
 Course listings in .pdf format at http://conted.colorado.edu/programs/access/

Student Society for Environmental Engineering: http://www.colorado.edu/engineering/EnvEng/SEVEN.htm

Study Abroad: http://studyabroad.colorado.edu

Transfer students, information for: http://engineering.colorado.edu/prospective/transfer_students.htm
 Transfer Credits: http://engineering.colorado.edu/prospective/transfer_credits.htm
 GTPathways curriculum: http://highered.colorado.gov/Academics/Transfers/gtPathways/curriculum.html

Undergraduate Student Services: http://ecadw.colorado.edu/engineering/students/undergraduate.htm