San Pablo Water Management Team

David DiGiacomo
Chris Fahlin
Brian Marsh

Introduction

- Potable Water for San Pablo
 - Assessment
 - Preliminary Design
- Outline

Outline

- Background
- Future conditions
- Criteria and Constraints
- Range of Options
- Assessment
- Selection
- Preliminary Design
- Implementation Strategies
- Acknowledgements
- Questions
- Trivia

Background

- Location
- Current Situation
- Water Source
- Water Quality

Current Situation

- Cistern
 - 2600 Gallon
- Pump
 - Centrifugal Pump
 - Gas powered
Water Source

- Swasey River
 - Perennial River
 - Fluctuating Flow
- Ruled out
 - Groundwater
 - Rainwater catchments

Water Quality

- Tested by Jon Stoddard – Sept. 2001
- Fecal Contamination
 - High levels
 - Exceeds Drinking water standards
 - Exceeds Wastewater Effluent standards
- Unknowns
 - TOC, ALK, pH, Temp, Turbidity, etc.

Future Conditions

- Procurement Graph
- Projected Domestic Water Demand
- Treatment Goals

Projected Domestic Water Demand

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2006</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>250</td>
<td>319</td>
<td>407</td>
</tr>
<tr>
<td>Domestic Water per Villager (GPD)</td>
<td>14.5</td>
<td>14.5</td>
<td>14.5</td>
</tr>
<tr>
<td>Total Domestic (GPD)</td>
<td>4005</td>
<td>5066</td>
<td>6414</td>
</tr>
</tbody>
</table>

Treatment Goals

1: Reduce incidence of cholera and other causes of diarrhea and dehydration; reduce overall public health risk of current drinking water.
2: Provide a system that can be managed and owned successfully by the people of San Pablo.
3: Maintain taste, color, and texture of drinking water in its present form in San Pablo to the best of our ability.
4: Do not compromise the culture of San Pablo and the history of its people.
5: Minimize economic costs and impacts on the village.

Criteria and Constraints

- Sustainability
 - Economic
 - Environmental
 - Social
 - Disaster
- Performance
 - Pathogen Removal
 - Design Life
 - Operation
 - Pesticide Removal
- Weighted Score
- Design Matrix
Range of Options
- Settling – Sedimentation Basis
- Filtration
 - Standard and Deep-bed
 - Pulse-bed
 - Multi-media
 - Declining rate
 - Bank filtration
 - Membrane processes
- Disinfection
 - Ozone
 - UV Disinfection
 - UV Pasteurization
 - Iodine
 - At-Home Chlorine Disinfection

Assessment
- Centralized Chlorine Disinfection
 - Centralized
 - Home
- Slow Sand Filtration
 - Centralized
 - Home
- Ceramic Filtration lined with Bacteriostatic
 - Filtrón

Centralized Chlorine Disinfection
- Pros
 - Superior Pathogen Removal
 - Inexpensive
 - Relatively Simple
 - Residual
 - Easy to Monitor
- Cons
 - Rejection - Change in Taste
 - Handling/Education concerns
 - Susceptible to Downtime and Damage
 - DBP’s

Slow Sand Filtration
- Centralized
 - Local Materials
 - Quality of treated water
 - Ease of operation
 - Gravity Driven
 - No change in taste or odor
 - Cons
 - Unfamiliar Responsibility
 - Initial Capital
 - Home
 - Pros
 - Gravity driven
 - Ownership
 - No change in taste or odor
 - Cons
 - Cannot meet daily demand
 - Dependant on individual usage
 - Non-local materials

Filtrón
- Pros
 - Simple
 - Socially Acceptable
 - Low Cost
 - Micro-enterprise
 - Many backups
 - No electricity dependence
 - Performance
- Cons
 - Clay
 - Market?
 - CS solution

Design Matrix by Train

<table>
<thead>
<tr>
<th>Train</th>
<th>No. Interv.</th>
<th>SSF Central</th>
<th>SSF Home</th>
<th>Chlorine (Central)</th>
<th>Filtrón</th>
<th>SSF Central & Chlorine</th>
<th>SSF Home & Filtrón</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scores</td>
<td>3.21</td>
<td>7.51</td>
<td>7.45</td>
<td>5.87</td>
<td>7.66</td>
<td>5.72</td>
<td>7.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.23</td>
</tr>
</tbody>
</table>
Recommendation

- Centralized SSF in combination with Home Filtrón
 - Together can meet demand
 - No residual
 - Backup
 - Increase performance
 - Increase design life for Filtrón
 - Less Cleaning time for Filtrón

Preliminary Design: SSF

- Scope
 - Sizing
 - Materials & Quantities
 - Cost Estimates
- Proposed Schematics
- Basis for Design: Design Manuals

Scope

- Sizing

<table>
<thead>
<tr>
<th>Item</th>
<th>meters</th>
<th>feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeboard</td>
<td>0.25</td>
<td>0.82</td>
</tr>
<tr>
<td>Head water</td>
<td>1.00</td>
<td>3.28</td>
</tr>
<tr>
<td>Filter media (sand)</td>
<td>1.1</td>
<td>3.61</td>
</tr>
<tr>
<td>Support gravel</td>
<td>0.4</td>
<td>1.31</td>
</tr>
<tr>
<td>Minimum depth (sand)</td>
<td>0.5</td>
<td>1.64</td>
</tr>
</tbody>
</table>

Schematic 1

Cost, Materials, and Quantities

- Concrete – 52 cu. yd - $162/cu. yd
- PVC Plumbing - $600
- Total Cost = $11,000
Recommended Implementation

Strategy: SSF

Filtrón Cost

- Immediate relief
 - $1000

- Workshop Establishment
 - $15,000 - $20,000 (all inclusive)

Acknowledgements

- Dr. Angela Bielefeldt
- Dr. Joy Barrett
- EWB/Dr. Amadei
- Water For People
- UROP
- Alexandra Gabrieloff
- PFP
- Daniele Lantagne, MIT Lecturer and Alethia Environmental
- Richard Kraiser – photos

¿Preguntas?