Real Options: Overview

James Alleman

University of Colorado & PHB Hagler Bailly, Inc.

Agenda

- Investment Theory
- Real Options Approach
- Uncertainties
- Implications for Economics
- Conclusions

Overview

"The new view of investment opportunities as options has shown that the traditional "net present value" rule can give very wrong answers."

Dixit & Pindyck

Investment under Uncertainty, page ix

Investment Theory: Olde Tyme View

- Investment Valuation:
 - Net Discounted Present Value
 - Jorgenson's User cost of capital
 - Tobin's q

Dixit & Pindyck

Investment under Uncertainty, Chapters 1 & 2

Investment Theory: Olde Tyme View

- Traditional DCF
 - Management's flexibility not captured
 - Adapt
 - Revise decisions
Investment Theory: Olde Tyme View

- **Traditional DCF**
 - Management’s flexibility **not** captured
 - adapt
 - revise decisions
- **DCF**
 - Static operating strategy
 - Cash flows are projected with certainty
 - Discount rate accounts for uncertainty

Investment Theory

- **Traditional DCF**
- **Real world**
 - Change
 - Uncertainty
 - Competitive interactions

Investment Theory

- **Traditional DCF**
- **Real world**
 - New information
 - Flexibility to alter strategy
 - Flexibility similar to financial options
 - Modelled with financial option tools

Investment Theory: Olde Tyme View

- **Traditional**
- **Discounted Present Value**
 - DPV > 0, invest
 - Also called NDPV or DPV or PV
 - \[DPV = \sum_{t=0}^{T} \frac{CF_t}{(1 + r)^t} \]

Olde Tyme: Discounted Value

- **Discounted Present Value**
 - \[DPV = \sum_{t=0}^{T} \frac{CF_t}{(1 + r)^t} \]
- "r" **Constant**
 - Constant discount rate over time
 - Opportunity cost of capital

Investment Theory: DCF

What is the appropriate risk-adjusted discount rate?

One based on a comparable security.
Investment Theory: DTA

- Investment Theory
 - Olde Tyme View
 - Decision-tree Analysis (DTA)

Ex Ante Decision
- Expected Value of DTA
- Risk-adjusted Rate?

\[
\begin{align*}
\text{Expected Value} = & \sum_{t=1}^{\infty} \frac{(CF_t)}{(1+r)^t} \\
\text{Risk-adjusted Rate} = & \sum_{t=1}^{\infty} \frac{(CF_t)}{(1+r_a)^t}
\end{align*}
\]

Investment Theory: DTA, example

- \(I_0 = $104 \)
- \(r_i = 8\% \)
- \(r_a = 20\% \)
- \(q_i = 0.5 \)
Investment Theory: DTA

\[q_t = 0.5 \]

\[\sum_{t=1}^{T=1} \frac{\$180}{(1 + 0.2)^t} \]

\[\sum_{t=1}^{T=1} \frac{\$60}{(1 + 0.2)^t} \]

Investment Theory: DTA, example

DCF =

\[- \$104 + 0.5(\$240)/(1 + 0.2) = \]

\[= \$100 - \$104 = \$4 \]

Opportunity Cost of Capital

- Divine Discount Rate!?
- Options Pricing Model
 - Security of equivalent risk
 - Calculate implied rate

Real Options Approach

- Investment Theory
- Real Options Approach
 - Definition
 - Characteristics
 - Investment characteristics

Real Options Approach

- Option definition
 - The "right" to purchase an asset in the future but not the obligation
 - Uncertainty of future
 - Asymmetry of returns
Real Options Approach

- Options characteristic
 - Time limited
 - "Killed" or exercised terminates

Non-linear

- Uncertainty
- Contingent Decision

Call Option v. Real Options

- Value of stock
- Exercise price
- Expiration
- Uncertainty of value
- Riskless interest
- PV of E(CF)
- Investment costs
- Opportunity goes
- Project value uncertainty
- Riskless interest

Trigeorgis (1996), p.125

Call Options v. Investment

- Stock price
- Exercise price
- Expiration
- Variance of return
- Risk-free RoR
- PV of assets
- Expenditure
- Deferral
- Riskiness
- Time value of money

Financial v. Real Options

- Specified in contract
- Off the shelf software
- Output: $’s
- Search for
- Tailored solutions
- Way of thinking

Types of Real Options

- **Natural**
 - Option to defer a capital investment
 - Option to abandon
- **Planned for and created**
 - Research & development
 - New services/products
 - Alter investment levels
 - As state of nature revealed

Investment Theory: DTA

What is the appropriate risk-adjusted discount rate?

Enter Real Options!

Investment Theory: RO

Comparable Security

\[uS = 1.8 \times (20) = 36 \]

\[S = 20 \]

\[dS = 0.6 \times (20) = 12 \]

\[1 - q_1 = 0.5 \]

\[q_1 = 0.5 \]

\[S = 20 \]

\[uS = 1.8 \times (20) = 36 \]

\[1 - q_1 = 0.5 \]

\[dS = 0.6 \times (20) = 12 \]
Investment Theory: RO

DCF = \sum \left[\left(q_{it} \right) \frac{CF_{it}}{(1 + r)^t} \right] = \left[\frac{0.5(180) + 0.5(60)}{(1 + 0.20)} \right] - 104

Investment Theory: RO

$180 \text{ max } [V, 0] = 180 - 104(1.08) = 67.68$

$60 \text{ max } [V, 0] = 60 - 104(1.08) = 0$

Twin Portfolio

\[m(uS) - (1 + r_f)B = 67.68 \]
\[m(dS) - (1 + r_f)B = 0.00 \]

\[uS = 36, dS = 12, \text{ and } r = 8\% \]
\[B = 31.33 \text{ and } m = 2.82 \text{ shares} \]
Twin Portfolio

\[m(uS) - (1 + r)B = 67.68 \]
\[m(uS) - (1 + r)B = 0.00 \]

\[uS = 36, dS = 12, \text{ and } r = 8\% \]

\[B = 31.33 \text{ and } m = 2.82 \text{ shares} \]
\[mS - B = 25.07 \]

Investment Theory: DTA, example

Value of Option to Delay =

Expanded - static DCF

Twin Portfolio

\[m(uS) - (1 + r)B = 67.68 \]
\[m(uS) - (1 + r)B = 0.00 \]

\[B = 31.33 \text{ and } m = 2.82 \text{ shares} \]

\[\text{Option Value} = mS - B - \text{DCF} \]
\[= 25.07 - (-4) \]
\[= 29.07 > 28.20 \]

Investment Theory: RO

\[\text{max} [V, 0] = 180 - 104(1.08) \]
\[= 67.68 \]
\[\text{max} [P, 0] = [60 - 104(1.08), 0] \]
\[= 0 \]
\[q_1 = .5 \]
\[\text{DCF} = \sum \left(\frac{(q_1)CF_i}{(1 + r)} \right) \]
\[= \left(0.5 \cdot 67.68 + 0.5 \cdot 0 \right) / 1.20 \]
\[= 28.20 \]

Benefits of Option

- Total Risk Addressed
- Avoids Mis-valuation
- Market Disciple
- Compatible Evaluation

Real Options Approach: Flexibility

- Defer
- Expand
- Abandon
- Start up (Shut down)
Real Options Approach: Defer

- **Investment Characteristics**
 - Irreversibility
 - Uncertainty
 - Timing

Dixit & Pindyck
Investment under Uncertainty, Chapters 1 & 2

Real Options Approach

- **Irreversibility**
 Investments become sunk cost (irreversible) when:
 - Firm or Industry specific
 - Regulations/laws
 - Partially irreversible, "lemons"

Real Options Approach

- **Opportunity cost of option**
 - Include in valuation
 - i.e. if the DCF plus the Option Value > 0, invest

Real Options Approach

- Irreversibility
- Waiting
 - Preempt investments preclude
 - Cost of delay
 - Competitive entry
 - Foregone revenues

Real Options Approach

Agenda

- Investment Theory
- Real Options Approach
- Uncertainties

Uncertainties

- Regulation/Legislative
- Competition
- Technologies
- Costs
- Market
Uncertainties

- Regulation/Legislative
 - Courts: Suspension of FCC Orders
 - Regulation: Decisions on RBOC LD
 - Legislative: Re-regulation of Cable
 - etc.

- Competition
 - Traditional: ATT/MFS/TPG
 - Incumbent’s reaction(s)
 - Cable’s Strategies
 - Entry into exchange market
 - Broadband modems

- Technologies
 - Wireless impact
 - WinStar
 - Wireless local loop
 - ISP(Packet Network versus circuit

- Costs
 - Spectrum costs
 - Unbundled Network Elements
 - Right of way
 - Leases

- Market
 - Product acceptance
 - Price and cross-elasticities
 - Size
 - Growth

Agenda

- Investment Theory
- Real Options Approach
- Uncertainties
- Implications for Estimation
Implications for Estimation

Investment Function
- Most obvious impact
- Interest Rates
 - High hurdle rates (3-4 times expectation)
 - Limited stimulation effect
- Shutdown point invalid
 - Price below AVC, not exit
 - Price substantially above LRAC, Invest

Implications for Estimation

Specification
- Desirable Properties
- Economic Theory

Implications for Estimation

Specification
- Based on theory
- Available information

Implications for Estimation

Economic Theory
- Basis for estimation
- Not data mining

Implications for Estimation

Lagged Variables
- Stock Adjustment Models
 - Koyck
 - Nerlove’s Partial Adjustment
 - Adaptive Expectations
Agenda

- Investment Theory
- Real Options Approach
- Uncertainties
- Implications for Estimation
- Conclusions

Conclusions

- DPV & DTA Inadequate
- Economic Models Redefined
- Implications for Estimation

Summary/Conclusions

- DPV & DTA Inadequate
 - No dynamics
 - Risk adjusted rate?
 - No Uncertainties
 - No Options Valuation

Summary/Conclusions

- DPV & DTA Inadequate
- Economic Models Redefined
 - Inadequate Specifications
 - Alternative view of dynamics
 - Implications for models
 - Rethink models

Conclusions

- DPV & DTA Inadequate
- Economic Models Redefined
- Implications for Estimation
 - Inadequate Specifications
 - Investment estimations
 - Lagged models
 - Others?