Agenda

- Traditional Pricing
- Ramsey Pricing
- Capacity Considerations
- Internet Market Structure
- Interconnect Issues
- Conclusion/Summary

Traditional Pricing

- Allocation Mechanisms
 - Rationing
 - Pricing
 - Why the concern?
- Monopoly Pricing
 - de facto
 - de jure
 - Requirements

Monopoly
Traditional Pricing

- Allocation Mechanisms
- Monopoly Pricing
- **Competitive Pricing**
 - Price equals marginal cost
 - Pareto Optimal
 - Consumer surplus maximized

Competition

![Competition Diagram]

Traditional Pricing

- Allocation Mechanisms
- Monopoly Pricing
- **Marginal Cost Pricing**
 - Efficiency
 - Pareto Optimality (efficient/output)
 - Cannot improve CS + PS

Role of Competition

- Allocation of Resources
- Incentive for Efficiency
- Threat of Entry Discipline

Role of Competition

- Incentive for Efficiency
 - Prices => costs
 - Pressure to reduce costs
 - Selection of more efficient firms
 - Promote innovation
 - Diminish regulatory imperfections
Price
P_u
P_c
Demand
Q_u
Q_c
Quantity

Competition:
lower price;
increased quantity;
increased CS

Net change
in CS + PS

AC = MC

Traditional Pricing

- Allocation Mechanisms
- Monopoly Pricing
- Marginal Cost Pricing
- Average Cost Pricing

Rationale: Efficient Prices

- Welfare highest: PS + CS

Rationale: Efficient Prices

- Welfare highest: PS + CS
- Compensation of losers
- Regulated firm: break-even

Examples:
- Usage-Sensitive Pricing
- Peak Load-pricing
Traditional Pricing

- Allocation Mechanisms
- Monopoly Pricing
- Marginal Cost Pricing
- Average Cost Pricing
- Usage Sensitive Pricing

Examples: Usage Sensitive Pricing

- Usage Sensitive Pricing
 - Without measurement costs

Usage Sensitive Pricing

\[P = \frac{AC - MC}{D} \]

Usage Sensitive Pricing

\[P = \frac{AC - MC}{D} \]

Usage Sensitive Pricing

\[P = \frac{AC - MC}{D} \]

Usage Sensitive Pricing

\[P = \frac{AC - MC}{D} \]
Usage Sensitive Pricing

\[AC = MC \]

Price
\[P \]

Demand

Quantity

Usage Sensitive Pricing

\[AC = MC \]

Price
\[P \]

Demand

Quantity

Usage Sensitive Pricing

\[AC = MC \]

Price
\[P \]

Demand

Quantity

Usage Sensitive Pricing

\[AC = MC \]

Price
\[P \]

Demand

Quantity

Usage Sensitive Pricing

\[AC = MC \]

Price
\[P \]

Demand

Quantity

Economic Profits = 0

Gain of PS

25-30

Usage Sensitive Pricing

- If \(P > MC \), flat rate.
- Loss of CS with measurement costs
- AC = MC
- Net gain of surplus w/o measurement costs
- Economic Profits = 0

Example: Peak-load Pricing

- **Usage Sensitive Pricing**
 - Without measurement costs
 - With measurement costs
- **Peak-load Pricing**

Capacity Considerations

- **Rationale**
 - Improve efficiency
 - Less distortion
 - Break-even possibility
Peak Load Pricing

Economic Profits = 0

Price

AC = MCp
Uniform Price

AC = MCop
Demand

Quantity

Peak Load Pricing

Net change in CS + PS

Price

AC = MCp
Uniform Price

AC = MCop
Demand

Economic Profits = 0

Quantity

Traditional Pricing

- Allocation Mechanisms
- Monopoly Pricing
- Marginal Cost Pricing
- Average Cost Pricing
- Usage Sensitive Pricing
- Capacity Considerations

Capacity Considerations

- Rationale
- Method
- Peak-load Pricing
- Ramsey Pricing

Ramsey Pricing

- A Case of AC Pricing
- Multiproduct Case
- Ensures Cost Coverage
- Telephony Does Not Use