Agenda

- Rationale
- Non-Linear Pricing
- Multi-part Tariffs
- Peak-Load Pricing

Rationale

- Efficient Prices

Rationale

- Efficient Prices
 - Welfare Highest
 - Sum of PS & CS

Rationale

- Efficient Prices
- Winners Compensate Losers

Rationale

- Efficient Prices
- Winners Compensate Losers
- Break-even Constraint Lowers Welfare
Rationale

- Efficient Prices
- Winners Compensate Losers
- Break-even Constraint Lowers Welfare
- Peak-load pricing example

Two-Part Pricing

- Economic Profits = 0
- Uniform Price

Price

\[P \]

\[Q_1 \]

Quantity

Two-Part Pricing

- Entrance Fee + Usage Charge

Price

\[P \]

\[Q_1 \]

Quantity

Two-Part Pricing

- Entrance Fee + Usage Charge
- Declining Block Tariff

Price

\[P \]

\[Q_1 \]

Quantity
Declining-Block Pricing

Demand
Quantity
Price
MC
P
P
P
Q₁

Two-Part Pricing
- Entrance Fee + Usage Charge
- Declining Block Tariff
- Volume Discount Tariff

Volume Discount Pricing

Demand
Quantity
Price
Discount
MC
P
P
Q₁

Two-Part Pricing
- Entrance Fee + Usage Charge
- Declining Block Tariff
- Volume Discount Tariff

Two-Part Pricing

Revenues
P₁
P₂
E
Q₁
Quantity

Self Selecting Two-Part Pricing

Revenues
P₁
P₂
E₁
E₂
Q₁
Quantity
Two-part Tariffs

- Self-selecting Two-part Prices
- Pareto Dominating
- Equivalent to Declining Block Prices

Rationale

- Efficient Prices are the highest level of welfare -- the sum of PS & CS.
- Moving from one set of prices to another, allows winner to compensate losers.
- When a regulated firm has to break-even, in general, the welfare is lower.
- Peak load-pricing example.

Peak-Load Pricing

<table>
<thead>
<tr>
<th>Price</th>
<th>Demand</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Economic Profits = 0

Uniform Price: MCop

Peak-Load Pricing

<table>
<thead>
<tr>
<th>Price</th>
<th>Demand</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Economic Profit

MCp + MCop

Uniform Price: MCop

Peak-Load Pricing

<table>
<thead>
<tr>
<th>Price</th>
<th>Demand</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Economic Loss

AC = MCp

Uniform Price: AC = MCop

Peak-Load Pricing

<table>
<thead>
<tr>
<th>Price</th>
<th>Demand</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Economic Loss = Economic Profit

AC = MCp

Uniform Price: AC = MCop

Peak-Load Pricing

<table>
<thead>
<tr>
<th>Price</th>
<th>Demand</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AC = MCop

Demand
Peak-Load Pricing

Demand

\[AC = MC_{op} \]

Total Economic Profits = 0

or Economic Loss = Economic Profit

Peak-Load Pricing

- Cost on the Cost Causers
- Peak Users Cover Peak Investments
- Valid even if Peak Demand not repressed

Multi-part Tariffs

- Non-linear
- Entrance Fee & Usage Charge
- Improve Efficiency
- Big/Little Example
Multi-part Tariffs

- Mr. Little Excluded
- Mr. Big Covers "Fixed" Costs
- Can Improve Welfare?
- Yes! -- with a Two Part Tariff

Multi-part Tariffs

- Charge Mr. Big the "Fixed" Costs & the Marginal Costs
- Mr. Little the Marginal Costs
- No Profit Change, but Welfare increase for both

Telecommunications Economics

Non-Linear Pricing

James Alleman Copyright 1995