Problem Statement

• Design a System That Can Successfully Excavate Martian Regolith
 – Self-Healing
 – Efficient
 – Low-Cost
Background

• Regolith: Unconsolidated Layers of Soils, Sediments, and Rock Fragments That Overlie Bedrock

• Bulk Excavation Required for In-Situ Resource Utilization (ISRU) Unit Processing
 – Required for Extended Missions
 – Required for Manned Missions
Background (cont.)

- Martian Soil
 - Uncleared, Some Obstacles
 - Hard Crust, Moderate Soil
 - Decreasing Porosity at Increased Depths
 - Dry
 - Slopes < 10 deg
 - Average Density = 1500 g/m3
 - Dry Sand (Earth) = 1.45×10^6 g/m3
Background (cont.)

- Water
 - Estimated Content at Equator
 Approx. 1%
 - Stable Crust Level
 Concentrations Increase With Latitude

- Rover
 - Technical Requirements
 - Mass/Volume Efficiency
 - Travel Capability
 - All-Season Survival
 - Self-Healing
 - Planetary Protection

- Design Parameters
 - Mobility
 - Navigation and Control
 - Autonomy
 - Environmental Stress
 Resistance/Robustness
Basic Assumptions

• Planetary Protection Requirements Fulfilled With Thermal Vacuum Cycling
 – No Return Mission
 – No Life Support on-Board

• Flight Vehicle Requirements
 – Operational Life of 16 Months
 – Maintain Water Supply Cache of 10 Tons (1016 kg)
Block Diagrams

• Outpost Based Operations
Block Diagrams (cont.)
• Remote Operations - Excavator
Block Diagrams (cont.)

- Remote Operations - Transporter
Vehicle Capability

Agents act autonomously to accomplish objectives.
- Goal-Directed
- Knowledgeable
- Persistent
- Proactive & Reactive

Agents adapt to their environment.
- Dynamic Interaction
- Alternate Methods
- Machine Learning

Note: Agents can be either static or mobile, depending on bandwidth requirements, data vs. program size, communication latency, and network stability.

Agents cooperate to achieve common goals.
- Communication Protocols
- Knowledge-Sharing
- Coordination Strategies
- Negotiation Protocols
Design Descriptions
Outpost Operations

• Arm Method
 – Arm Divided Into Various Segments, Used to Section Land for Excavation

• Bucket and Reel Method
 – Arm With a Winch System and Attached Bucket

ASEN 5519
Fall 1999
Design Descriptions
Remote Operations

– Once at the Desired Site, the Excavator Breaks Into Two Parts: Excavator and Transporter.

• Remote Excavator - Scraper

• Remote Excavator - Rototiller
Trade Studies, Evaluations

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>soft ground crossing</th>
<th>hard ground crossing</th>
<th>obstacles</th>
<th>steering</th>
<th>agility</th>
<th>stability</th>
<th>power</th>
<th>productivity</th>
<th>versatility</th>
<th>complexity</th>
<th>weight/cost</th>
<th>travel speed</th>
<th>autonomous difficulty</th>
<th>necessary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm</td>
<td>N/A</td>
<td>N/A</td>
<td>O</td>
<td>N/A</td>
<td>O</td>
<td>O</td>
<td>+</td>
<td>O</td>
<td></td>
<td>+</td>
<td>+</td>
<td>N/A</td>
<td>+</td>
<td>O</td>
</tr>
<tr>
<td>Bucket</td>
<td>N/A</td>
<td>N/A</td>
<td>O</td>
<td>N/A</td>
<td>O</td>
<td>O</td>
<td>+</td>
<td>O</td>
<td></td>
<td>+</td>
<td>+</td>
<td>N/A</td>
<td>+</td>
<td>O</td>
</tr>
<tr>
<td>Scraper</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>O</td>
<td>O</td>
<td>+</td>
<td>O</td>
<td>-</td>
<td>O</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

| O comparable | + advantageous | - wheels vs tracks dependent |

ASEN 5519
Fall 1999
Cuplin
Conclusion

• **Best Solution: Remote Excavator - Rototiller**
 – Maneuverability
 • Obstacle Avoidance
 • Differing Locals
 – Adaptability
 • Self-Healing
 • Environment
 – Productivity
 • Higher Productivity With Fewer Repetitions

ASEN 5519
Fall 1999
Cuplin
References

- Website: http://humbabe.arc.nasa.gov/mgcm/faw/liguid.html : Mars climate
- Website: http://www.marsnews.com : planetology

ASEN 5519
Fall 1999

Cuplin