Fires: Microgravity vs. Earth

- Non-convecting purely diffusive environment
- No bouyant flow-- heated gases don’t rise
 - Example: Candle Experiment
 - O_2 supply dependent on STS/ISS ventilation fans
 - CO orders of magnitude higher-- more toxic
 - Flammable material still present after fire is extinguished
 - Hemispherical flames
STS/ISS Detection Designs

- **CURRENT (STS)**
 - Ionization detection, Freon-1301 bottles, and handheld Halon-1301 extinguishers
 - NASA requirements: Each payload must monitor SOH--multiple sensors

- **FUTURE (STS/ISS)**
 - SECOND GENERATION HALON REPLACEMENTS: Flame-Ex & Halon 1211
 - FIRESCAPE: Images invisible flames of alcohol & hydrogen fires--sees through smoke
 - SOLID-SOLID HYBRID GAS GENERATOR
Concluding Remarks

- Need more data on microgravity combustion
- Ground-based scientists will have to adopt new approaches to space combustion phenomena
- Each component will continuously need to be monitored for overheat conditions
- Combination of new technologies utilized
 - Portable extinguishers will continue to be used in manned area so 2nd generation Halon replacements are a given
 - Solid-solid hybrid gas generators likely since the pros far outweighed the cons
 - FIRESCAPE will possibly be an asset on the launch pad but not relevant to STS or ISS
References

- http://quest.arc.nasa.gov/shuttle/ask/living
- http://science.msfc.nasa.gov/newhome/headlines/msad12jul97_1.htm
- http://science.msfc.nasa.gov/newhome/headlines/msad08jul97_1.htm
- http://www.ksc.nasa.gov/shuttle/technology/sts-newsref/sts-caws.html#sts-fire
- http://www.mainstream-engr.com/chemical.html