Fires: Microgravity vs. Earth

- Non-convecting purely diffusive environment
- No bouyant flow---heated gases don’t rise
 - Example: Candle Experiment
 - O_2 supply dependent on STS/ISS ventilation fans
 - CO orders of magnitude higher---more toxic
 - Flammable material still present after fire is extinguished
 - Hemispherical flames
STS/ISS Detection Designs

- **CURRENT (STS)**
 - Ionization detection, Freon-1301 bottles, and hand-held Halon-1301 extinguishers
 - NASA requirements: Each payload must monitor SOH-- multiple sensors

- **FUTURE (STS/ISS)**
 - SECOND GENERATION HALON REPLACEMENTS: Flame-Ex & Halon 1211
 - FIRESCAPE: Images invisible flames of alcohol & hydrogen fires-- sees through smoke
 - SOLID-SOLID HYBRID GAS GENERATOR
Concluding Remarks

- Need more data on microgravity combustion
- Ground-based scientists will have to adopt new approaches to space combustion phenomena
- Each component will continuously need to be monitored for overheat conditions
- Combination of new technologies utilized
 - Portable extinguishers will continue to be used in manned area so 2nd generation Halon replacements are a given
 - Solid-solid hybrid gas generators likely since the pros far outweighed the cons
 - FIRESCAPE will possibly be an asset on the launch pad but not relevant to STS or ISS
References

- http://quest.arc.nasa.gov/shuttle/ask/living
- http://science.msfc.nasa.gov/newhome/headlines/msad12jul97_1.htm
- http://science.msfc.nasa.gov/newhome/headlines/msad08jul97_1.htm
- http://www.ksc.nasa.gov/shuttle/technology/sts-newsref/sts-caws.html#sts-fire
- http://www.mainstream-engr.com/chemical.html
Fire Detection in Microgravity

ASEN 5519
Prepared by: Lt Paul Konyha & Lt Jennifer Schutzenhofer
Overview

• Background
• NASA Requirements
• Current STS Fire Detection System
• Micro-gravity Fire Experiments
• Future Designs/ISS
• Conclusion
Fires: Microgravity vs. Earth

- No bouyant flow-- heated gases don’t rise
 - Example: Candle wax consumed 5 times more slowly

- Entire candles melt in 2 min due to increased downward heat conduction
- Surface tension of liquid wax prevents fire extinction
Fires in Microgravity

- Non-convecting, purely diffusive environment
 - \(O_2\) supply dependent on STS/ISS ventilation fans
 - CO orders of magnitude higher—more toxic
- Flammable material still present after fire is extinguished
- Hemispherical flames
Air Flow Dependency in Space

- Quiescent (no airflow) environment
 - Materials burn more slowly than on Earth
- Low-speed airflow (2-8 inches/sec)
 - Materials more flammable than on Earth
 - Flame front which propagates into wind stronger due to increased O₂ supply & no convection
- Lesson: Turn off ventilation to suppress fires
Fire Detection & Suppression Methods

- Detection Methods: IR, UV, ion, particle
- Detection Approach: centralized, distributed, or a combination
- Suppression Methods: CO₂, N₂, H₂O, halon
 - Water & foam not suitable for space habitats
- Suppression Approach: centralized, distributed, portable, or a combination
- Bottom Line: remove oxidizer or fuel or else remove heat req’d for combustion to occur
- Cleanup Options: sorption, conversion, vent to space
NASA Requirements

- All payloads shall output SOH data at 1 Hz continuously
- Must identify fire potential while reducing possibility of false alarms
- Multiple sensors of more than one type
 - 2 temperature and 2 current sensors
- Fire potential defined: 2 or more sensors of any type have out-of-tolerance conditions
Current STS Fire Detection/Suppression

- Ionization detection: sense levels of smoke concentrations and trigger alarms
- Avionics bays fire suppression
 - Freon 1301 (bromotrifluoromethane) extinguisher bottle
- Crew cabin fire suppression
 - Hand-held fire extinguishers with Halon-1301 (monobromotrifluoromethane)
Microgravity Combustion Experiments

- Droplet Combustion Experiment (STS-94)
 - Researches the dynamics of burning drop of fuel in space
 - Scientists compare the effects that a supporting fiber has on a droplet with a free-floating droplet
 - Following image shows ignition of vapor cloud around the droplet and the outline of the fiber
Droplet Combustion Experiment
• Comparative Soot Diagnostics Experiment
 – Designed to compare the effectiveness of an ionization detector vs. an infrared light-scattering detector in micro-gravity
 – Light-scattering detector more sensitive to smoke particulate samples than the ionization detector
Microgravity Combustion Experiments

- The Structure of Flameballs
 - Why fires keep burning and what makes them go out?

- The Laminar Soot Experiment
 - Soot re-radiates fire’s heat as visible light & infrared warmth--formed faster in space

- Candle Flames in Microgravity
 - Studies candle flame behavior in space
2.2 second droptower experiment. 2 cm/s wind blows from bottom to top. 30% oxygen concentration. Pictures are 0.25 s apart. Notice strong blue flame front propagating into the wind (upstream), while yellow sooty flame front (downstream) dies out.
Future Design Possibilities

• Solid-solid hybrid gas generator
 – Pros:
 • Replaces ozone depleting Halon 1301
 • Agents drastically cooler than conventional gas generators
 • Significantly smaller and lighter
 • Single storage vessel as a solid
 • Acceptable atmosperhic & toxicological properties
 – Cons:
 • Clean-up can be problem in space/contained environment
Future Design Possibilities

• Second-generation Halon replacements
 – Flame-Ex, trifluoriodomethane, Halon 1211, & perfluorohexane
 – Pros:
 • Increased application density for comparable agent amounts
 • More effective than most chemicals as total flooding agent
 – Cons:
 • Less effective than Halon 1301 as total flooding agent
 • Toxicity info and atmospheric impact studies incomplete
 • High manufacturing costs
 • Has not yet received EPA SNAP approval
Future Design Possibilities

- **FIRESCAPE**
 - Images invisible flames of alcohol & hydrogen fires
 - Sees through smoke & finds origin of visible fires

- **Pros:**
 - First affordable commercial product for fire imaging
 - Used like binoculars-- no moving parts/easy to operate
 - Firefighters can remain at safe distance while finding invisible fires
 - Low purchase cost-- $5,000 per unit

- **Cons:**
 - More useful on launch pad than on STS or ISS since most space fires are electrical, not gas-related
Concluding Remarks

• Need more data on micro-gravity combustion
 – Can’t fight/prevent space fires w/o understanding their characteristics

• Ground-based scientists will have to adopt new approaches to space combustion phenomena
 – Things burn differently in micro-gravity

• Each component will continuously need to be monitored for overheat conditions
 – Only way to isolate/determine source in forced air environment
Concluding Remarks

- Combination of new technologies most-likely incorporated
 - Portable extinguishers will continue to be used in manned area so 2nd generation Halon replacements are a given
 - Solid-solid hybrid gas generators likely since the pros far outweighed the cons
 - FIRESCAPE will possibly be an asset on the launch pad but not relevant to STS or ISS
References

- http://quest.arc.nasa.gov/shuttle/ask/living
- http://science.msfc.nasa.gov/newhome/headlines/msad12jul97_1.htm
- http://science.msfc.nasa.gov/newhome/headlines/msad08jul97_1.htm
- http://www.ksc.nasa.gov/shuttle/technology/sts-newsref/sts-caws.html#sts-fire
- http://www.mainstream-engr.com/chemical.html