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Introduction 

 

In educational research, a constant methodological challenge is finding ways 

properly evaluate changes in student achievement, and to distinguish the influence of 

teacher and schools on such changes.  Two related statistical models have garnered 

increasing attention for these purposes: Growth models and value-added models.  The 

key feature of all growth models is the availability of longitudinal data such that changes 

in student achievement can be parameterized over time. Given the availability of teacher 

or school-level variables, most growth models can also be conceptualized as value-added 

models.  However, the converse is not necessarily true.  In most value-added models, 

growth is not formally parameterized, and the only purpose served by student 

achievement data is to estimate residualized contributions attributable to teachers and/or 

schools.   

The November 2005 announcement of the Growth Model Pilot Program (GMPP) 

(Spellings, 2005) opened the door to fundamental changes to the No Child Left Behind 

Act of 2001 (NCLB).  Under the GMPP, ten states are being selected to implement 

proposed growth models on a trial basis, allowing individual student growth trajectories 

to factor into accountability calculations for the first time (U.S. Department of Education, 

2005). The incorporation of student growth into accountability—while not opening the 

door to the use of value-added modeling techniques as part of NCLB—places increasing 

emphasis on the change in student achievement over the status of that achievement at any 

single point in time (Carlson, 2006; Hill, et al., 2005, Goldschmidt, et al., 2005).   
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A central assumption underlying growth models is that test scores have been 

vertically scaled such that they have a consistent interpretation over time.  To create a 

vertical scale, scores from two or more tests are linked statistically so that scores from the 

tests can be expressed on a common scale.  This linking process is known as calibration
1
.  

The importance of the assumption that test scores have a consistent vertical scale is well 

understood by most psychometricians, but seems to be taken for granted by statisticians 

in many applications of growth models and their value-added extensions.  For example, 

Martineau (2006) has demonstrated mathematically how violations of the vertical scale 

assumption of unidimensionality can lead to dramatic distortions in value-added 

estimates.  In addition, the sensitivity of vertical scales to different linking designs and 

calibration approaches has also begun to receive greater attention in recent years (c.f., 

Tong & Kolen, 2005; Keller, Skorupski, Swaminathan, & Jodoin, 2004; Karkee, Lewis, 

Hoskens, Yao & Haug, 2003; Hanson & Beguin, 2002; Kim & Cohen, 1998).  A key 

issue then, is whether vertical scaling is stable enough as a measurement enterprise to 

support consistent and reasonably precise longitudinal interpretations when subsequently 

applied in the context of a growth model.   

The purpose of this paper is to evaluate the sensitivity of growth modeling results 

to the way an underlying vertical scale has been established.  We accomplish this by 

analyzing longitudinal item-level data with both student and school-level identifiers over 

time in the state of Colorado.  We use this data to address two principal research 

questions: 

                                                 
1
 Calibration is distinct from equating.  As developed by Mislevy (1992) and Linn (1993), the term 

equating refers to linking scores on alternate forms of an assessment that are built to common content and 

statistical specifications, while the term calibration is used when scores are linked on test that are intended 

to measure the same construct but with different levels of reliability or difficulty (Kolen, 2004). 
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1. What is the sensitivity of a longitudinal score scale to the way the test scores have 

been vertically scaled? 

2. What impact do different IRT-based vertical scaling approaches have on 

projections of growth in student achievement? 

The basic strategy taken here is to create different vertical scales on the basis of choices 

made for three key variables: IRT modeling approach, calibration approach  and student 

proficiency estimation approach.  Combinations of among these three variables leads to 

eight different vertical scales. Each scale represents a methodological approach that is in 

some sense defensible.  Of interest at this stage are potential differences in means and 

standard deviations among the different vertical scales from year to year. We next use the 

longitudinal values of each scale as the outcome variable in a relatively simple value-

added growth model.  Of interest at this stage are comparisons among the different fixed 

effect estimates of growth, and empirical Bayes estimates of student and school-level 

growth parameters.  Our findings suggest that growth projections may in fact be quite 

sensitive to choices made in the development of a vertical scale.   

 

Methods 

 

Data 

 

 We obtained longitudinal item responses from the Colorado Department of 

Education for four cohorts of students on the Colorado Students Assessment Program 

(CSAP) tests of math and reading.  The structure of this data is shown in Figure 1 below. 



5 

 

Figure 1. Cohort Files Obtained from CDE for all Students in State of Colorado 

 
      Year   

 Grade Cohorts  2003 2004 2005 2006 2007 

 

 Grade 3 Reading    3  

 Grade 4 Reading    4   4       

 Grade 5 Reading     5   5    

 Grade 6 Reading      6   6  

 Grade 7 Reading       7   7 

 Grade 8 Reading        8 

 

      Year   

 Grade Cohorts  2003 2004 2005 2006 2007 

 

 Grade 5 Math    5 

 Grade 6 Math    6   6       

 Grade 7 Math     7   7     

 Grade 8 Math      8   8    

 Grade 9 Math       9   9 

 Grade 10 Math        10 

 

 

It was necessary to obtain two longitudinal cohorts for each test subject because 

the vertical linking design employed by CTB includes no common items between the 

tests given to students in the same cohort in adjacent years.  As a result, we can only 

create a vertical scale by first linking tests for adjacent grades in the same year, and then 

linking tests for the same grade in adjacent years.  An additional and unexpected 

complication was the fact that CTB does not always include common items across 

adjacent grades in the same year, or across the same grade in adjacent years.  By luck, 

there were common items in adjacent grades and years for our two student cohorts taking 

the reading tests in grades 3 through 8 from 2003 to 2007.  Unfortunately, this was not 

the case for the two student cohorts taking the math tests in grades 5 through 10 from 

2003 to 2007.  As a result, at this point (until we can get data for another longitudinal 
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cohort of students who took the CSAP math test in different grades from 2003 to 2007) 

we can only report the results from the vertical scaling of the CSAP reading test. 

The CSAP reading tests used to establish different vertical scales contained a mix 

of multiple-choice (MC) and constrained-response (CR) items.  In grade 3 the test 

consisted of 41 MC items and 7 CR; in grades 4-7 the respective numbers were about 70 

MC items and 14 CR items.  The number of common MC and CR items across adjacent 

grades or years ranged from 9 to 20 and 0 to 4.  The linking design for the CSAP reading 

test is summarized in Table 1 below. 

 

Table 1.  Unique and Common Items on CSAP Reading Test by Grade and Year 

3 4 5 6 7

(34, 7) (13, 3) (56, 14)

(56, 14) (9, 3) (56, 14)

(58, 14) (11, 4) (57, 14)

(57, 14) (10, 4) (58, 14)

Year
Grade

(15, 3)

(20, 2)

(15, 0)

2003

2004

2005

2006

 

Note: First value in parenthesis represents number of MC items, second value represents number of CR 

items.  Values in bold represent common items. 

 

For each of the nine grade by year combinations used to establish a vertical scale 

in what follows (from grades 3 to 7), there were on average roughly 55,681 students 

enrolled in 1,379 unique public schools (this number includes charter schools, but 

excludes private schools).  Roughly 64% of the students self-identified as white, 26% as 

Hispanic, 6.2% as black, 3% as Asian/Pacific Islander, and 1.3% as Native American. 
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Vertical Scaling 

 

The testing structure presented in Table 1 represents what is known as a common 

item non-equivalent group linking design (c.f., Kolen & Brennan, 2004).  The 

development of a vertical score scale from this design requires a psychometric model for 

placing test scores onto a common scale, and a calibration and proficiency estimation 

approach to be used in conjunction with the psychometric model.  We describe the 

different choices we have made with respect to these three variables below.  Table 2 

provides an overview of the eight different vertical scales that were created in this study, 

represented by the cells 1-8. 

 

Table 2.  IRT-Based Vertical Scaling Models 

 

Linking Approach 

Item Response Model Separate 

Calibration 

Hybrid 

Calibration 

Different item weights
i
 1 2 EAP Scale 

Scores Equal item weights
ii
 3 4 

Different item weights
i
 5 6 MLE Scale 

Scores Equal item weights
ii
 7 8 

i
 Represented by application and extension of the Three Parameter Logistic Model 
(3PLM) and Generalized Partial Credit Model (GPCM). 
ii
 Represented by application and extension of the One Parameter Logistic Model 
(1PLM) and Partial Credit Model (PCM). 
 

 

Psychometric Models 

The CSAP reading tests items are scaled by the state of Colorado’s test contractor 

CTB using a combination of the three parameter logistic model (3PLM) for dichotomous 

items, and the generalized partial credit model for polytomous items (GPCM).  However, 
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it would also be conceivable to scale these items using a combination of the one 

parameter logistic model (1PLM) for dichotomous items, and the partial credit model for 

polytomous items (PCM).  One important distinction between these two different IRT 

model combinations comes in the role played by test items in the subsequent estimation 

of student scale score.  In the 3PLM/GPCM combination items are weighted by their 

discriminating power; in the 1PLM/PCM combination they are unweighted because items 

are constrained to discriminate equally.   

 

Calibration Approaches 

Two of the most widely used approaches to create a vertical scale across two or 

more different tests involve separate or concurrent calibration. Under separate calibration, 

parameters for items in adjacent grades are estimated separately, and then a single 

vertical scale is established in a subsequent step using the common items between grades.  

That is, given two different proficiency scales corresponding to, for example, grades 5 

and 6, scores for student n {n = 1, …, N} in grade 6 can be placed onto the scale of scores 

for grade 5 using the linear transformation *

n nA Bθ θ= + .   Estimates for the linking 

parameters A and B can be obtained using and the Stocking and Lord (1983) algorithm, 

which minimizes the difference in test characteristic curves represented by the common 

items between grades.  Another defensible vertical scaling approach would be to use 

concurrent calibration.  In concurrent calibration, all item parameters for all grades are 

estimated in one step with a multigroup IRT model and placed on a single vertical scale.  

With respect to summary measures of grade to grade growth and variability in 2002 
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CSAP math and reading test scores, Karkee et. al. (2003) found no substantial difference 

between the separate and concurrent approaches in the aggregate.   

In this study we are comparing a separate calibration approach to an approach that 

is essentially a hybrid of the separate and concurrent approaches.  Under the separate 

approach, item parameters for each grade were first estimated independently, and then 

placed onto the grade 3 scale in a chained manner using the Stocking and Lord algorithm 

to estimate the appropriate linear transformation parameters from grade to grade.  These 

parameters were also used to transform estimates of latent proficiency, θ , onto the same 

vertical scale from grades 3 through 8.  For the separate calibration, item parameters were 

estimated for each grade separately using IRT Command Language (ICL; Hanson, 2002), 

and then linked together using the R package plink (Weeks, 2007).  

The procedure through which separate calibration establishes a vertical scale is 

illustrated in Figure 2, where each oval represents a separate calibration of tests across 

grades in the same year (vertical direction), or across years in the same grade (horizontal 

direction). Under the hybrid approach illustrated in Figure 3, separate calibrations are 

performed for tests across grades in the same year (ovals), but in between each separate 

calibration a concurrent calibration is performed for tests across two years in the same 

grade (rectangles).   
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Figure 2. Separate Calibration Approach 

 
      Year   

 Grade Cohorts  2003 2004 2005 2006 2007 

 

 Grade 3 Reading    3  

 Grade 4 Reading    4   4       

 Grade 5 Reading     5   5    

 Grade 6 Reading      6   6  

 Grade 7 Reading       7   7 

 

Figure 3. Hybrid Calibration Approach 

 
      Year   

 Grade Cohorts  2003 2004 2005 2006 2007 

 

 Grade 3 Reading    3  

 Grade 4 Reading    4   4       

 Grade 5 Reading     5   5    

 Grade 6 Reading      6   6  

 Grade 7 Reading       7   7 

 

Estimating Student Scale Scores 

An important decision in either the separate or hybrid calibration approaches is 

the choice of method for the estimation of student scale scores after (or concurrent with) 

the estimation of item parameters.  Two typical choices are maximum likelihood (ML) 

and expected a posteriori (EAP) estimates.  There is a well-known bias-efficiency 

tradeoff between ML and EAP estimates of students scale scores.  Because EAP 

estimates result from the weighted combination for each respondent of an empirical 

likelihood function and a prior distribution, they will be shrunken toward the population 

mean relative to ML estimates and thereby minimize measurement error.  This implies 

greater variability in vertical scales comprised of ML estimates relative to EAP estimates.  

On the other hand, EAP estimates are biased; ML estimates are asymptotically consistent.  
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Growth Modeling 

 

Growth was projected for students in the longitudinal cohort in grade 3 as of 2003 

and in grade 7 as of 2007 were made on the basis of their performance on CSAP reading 

tests in grades 3-5 during elementary school.  This reflects the type of “growth to 

standard” NCLB projection model that has been proposed (though not approved) by both 

the states of Hawaii and Oregon. Let , s

ijtY  represent the test score Y for student i in school 

j at time t ( {0,1, 2}t = ) on vertical scale s. We then specified the following mixed-effects 

model, also known as a hierarchical linear model.  

00 00 00 01 01 01( )
ijt

s

i j i j t ijtY Timeβ ζ θ β ζ θ ε= + + + + + +  

where 

00β = fixed effect intercept (grand mean), 

01β = fixed effect slope (average growth trajectory across all students and schools), 

i00ζ = random effect on the intercept for student i, 

i01ζ = random effect on the slope for student i, 

j00θ = random effect on the intercept for school j, 

j01θ = random effect on the slope for school j, and 

ijtε = residual for student i in school j at time t. 

The random effect parameters are assumed to take on the following distributions: 

),0(~ 2σε Nijt  
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Note that an implicit assumption typical of such models is that each random effect 

parameter is independent across levels. We specified the model above for s = {1, 2, … , 

8}, and obtained parameter estimates using the software HLM 6.05 (Raudenbush, Bryk & 

Congdon, 2008).  In estimating these three level hierarchical models, we restricted the 

sample to only those students who were present in the same school in grades 3, 4 or 5 for 

two out three years between 2003 and 2005.  This reduced the available student sample 

for our analysis from 65,599 to 40,690.  The students that were excluded represent those 

that either switched schools, moved to a private school, or left the state.  The sample of 

included students attended a total of 992 unique schools.  

 

Results 

 

Comparing Vertical Scales  

 

There are two important statistics for summarizing a vertical score scale for any 

given grade and year: the mean and standard deviation (SD) of the scale.  A third statistic, 

the effect size, is computed as a function of the mean and SD and is useful for comparing 

differences in the scale for any two adjacent years of grades. In the vertical scaling 

context, an effect size (Yen, 1986), is defined as 

Effect Size = 

  

θ
upper

−θ
lower

σ
upper

2 + σ
lower

2

2

, 
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where upperθ  and lowerθ  represent the mean scale score for the higher and lower grades or 

years in the scale, and 2

upperσ  and 2

lowerσ  represent the respective SDs for the scores in 

each grade or year. 

 

Table 3: CSAP Reading Vertical Scale Descriptive Statistics 

 

Grade Year EAP MLE EAP MLE EAP MLE EAP MLE

3 2003 -0.003 0.038 -0.001 0.075 0.013 0.069 -0.035 0.034

4 2003 0.314 0.320 0.473 0.483 0.323 0.333 0.332 0.338

4 2004 0.367 0.371 0.547 0.555 0.381 0.390 0.434 0.436

5 2004 0.604 0.607 0.927 0.926 0.610 0.618 0.741 0.739

5 2005 0.567 0.572 0.885 0.890 0.573 0.582 0.714 0.715

6 2005 0.718 0.720 1.088 1.078 0.712 0.717 0.878 0.862

6 2006 0.713 0.717 1.083 1.089 0.771 0.779 0.965 0.964

7 2006 0.769 0.773 1.161 1.156 0.848 0.855 1.103 1.096

3 2003 0.743 0.939 0.931 1.204 0.699 0.925 0.838 1.103

4 2003 0.698 0.767 0.933 1.038 0.659 0.738 0.773 0.887

4 2004 0.674 0.732 0.937 1.045 0.632 0.699 0.794 0.902

5 2004 0.598 0.651 0.873 0.988 0.581 0.647 0.762 0.871

5 2005 0.585 0.644 0.916 1.021 0.569 0.639 0.890 1.009

6 2005 0.642 0.700 0.984 1.109 0.630 0.700 0.941 1.084

6 2006 0.620 0.675 1.021 1.130 0.593 0.656 0.953 1.073

7 2006 0.590 0.641 1.004 1.134 0.578 0.640 0.970 1.100

3-4 2003 0.439 0.329 0.508 0.363 0.456 0.315 0.456 0.305

4-4 2003-04 0.077 0.068 0.079 0.069 0.091 0.079 0.130 0.109

4-5 2004 0.372 0.341 0.420 0.365 0.377 0.338 0.395 0.342

5-5 2004-05 -0.062 -0.054 -0.047 -0.036 -0.065 -0.056 -0.032 -0.026

5-6 2005 0.245 0.220 0.213 0.176 0.232 0.201 0.178 0.141

6-6 2005-06 -0.008 -0.004 -0.005 0.010 0.097 0.092 0.093 0.095

6-7 2006 0.092 0.084 0.076 0.059 0.130 0.117 0.143 0.121

SD

3PLM

Effect Size

Separate Calibration Concurrent Calibration

1PLM 3PLM

Mean

1PLM

 
Note: Means and SDs are expressed in logit units. 

 

 

The means, SDs and effect size estimates for each of the eight vertical scales we created 

are summarized by grade and year combination in Table 3.  For each statistic, there are 

three comparisons of interest (where each comparison is made while holding other two 

constant): (1) The difference between IRT models applied to estimate item parameters 

(1PLM/PCM vs. 3PLM/GPCM) (2) The difference between approaches used to calibrate 

the vertical scale (separate vs. hybrid).. (3) The difference between approaches used to 

estimate student-level scale scores (EAP vs. MLE). On the basis of the results above, we 

reach the following three general conclusions: 
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1. In an absolute sense, average growth as represented by differences in means 

appears larger when the 3PLM/GPCM is used to estimate item parameters instead 

of the 1PLM/PCM.  This difference is accompanied by more variability in scale 

scores for the 3PLM/GPCM combination.  However, when differences in means 

are standardized as effect sizes, differences along the scale as a function of IRT 

model, while still present, are less dramatic. 

2. The means and SDs from separate and hybrid calibrations are generally quite 

similar when the underlying IRT model is the 1PLM/PCM.  When the underlying 

model is the 3PLM/GPCM, the means and SDs under the hybrid approach are 

consistently smaller than those under the separate approach.  When compared on 

the effect size metric, the two approaches never differ by more than 1/10 of an 

SD. 

3. As one would expect, there is no difference in the means as a function of scale 

score estimation method, but the variability of scale scores estimated using EAPs 

is considerably smaller than the variability estimated using MLEs.  As a 

consequence, effect sizes for scales based on EAP estimation are consistently 

bigger than effect sizes based on MLE estimation. 

 

Comparing Growth Trajectories 

 

The key results from applying our three-level hierarchical model to the scores 

from each vertical scale are presented in Table 4.   
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Table 4.  Results from Application of Growth Model to Vertical Scales 

EAP ML EAP ML EAP ML EAP ML

Fixed Effects

    β00 -0.0144 0.0147 -0.0194 0.0343 0.0053 0.0471** -0.0504*** -0.0033

    β01 0.2940*** 0.2804*** 0.4524*** 0.4241*** 0.2876*** 0.2688*** 0.3807*** 0.3532***

Random Effects

    σ
2

0.0708 0.1079 0.1238 0.1923 0.0615 0.1023 0.09183 0.1618

    τ00 0.3866 0.6051 0.6093 1.0083 0.3388 0.5771 0.47485 0.8152

    τ11 0.0091 0.0416 0.0091 0.0504 0.0077 0.0419 0.01539 0.0513

    τ01 -0.0499 -0.1325 -0.0159 -0.1355 -0.0390 -0.1272 0.00313 -0.0933

    ψ00 0.1180 0.1548 0.1880 0.2674 0.1036 0.1459 0.14178 0.2069

    ψ11 0.0051 0.0072 0.0066 0.0093 0.0043 0.0068 0.00563 0.0072

    ψ01 -0.0165 -0.0252 -0.0090 -0.0236 -0.0132 -0.0232 -0.00132 -0.0108

*** p < 0.0001, ** p < 0.001, * p < 0.01, ~ p < 0.05

Separate Calibration Hybrid Calibration

1PLM/PCM 3PLM/GPCM 1PLM/PCM 3PLM/GPCM

 

 

We begin by focusing upon differences in the estimates of fixed effects.  The intercept 

term ( 00β̂ ) in each model is very close to 0, the expected mean scale score for third grade 

students in all eight scales.  There are considerable differences in the average growth 

trajectory ( 01β̂ ) across models.  In an absolute sense, growth appears much larger for 

scales in which calibration was based upon a combination of 3PLM/GPCM instead of 

1PLM/PCM.  This is consistent with the results we observed in Table 3—use of the 

3PLM/GPCM will tend to stretch the range of the vertical score scale relative to the use 

of the 1PLM/PCM.  Growth trajectories are always just slightly larger when scale scores 

are estimated using EAPs instead of MLEs.  An important difference can be seen when 

comparing the scales created using the separate or hybrid approaches in conjunction with 

the 3PLM/GPCM.  Whether scale scores are estimated using EAPs or MLEs, the growth 

trajectory under the separate approach is roughly .07 logits higher than under the hybrid 

approach. 
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Table 5.  Decomposition of Variance and Correlations between Random Effects by Scale 

EAP ML EAP ML EAP ML EAP ML

Total Variance 0.5895 0.9166 0.9367 1.5276 0.5158 0.8740 0.7295 1.2423

Variance Decomposition (Percentage of Total)

   Level 1  σ
2 

12.0% 11.8% 13.2% 12.6% 11.9% 11.7% 12.6% 13.0%

   Level 2  τ00 65.6% 66.0% 65.0% 66.0% 65.7% 66.0% 65.1% 65.6%

   Level 2   τ11 1.5% 7.1% 1.6% 8.5% 1.3% 7.1% 2.6% 8.7%

   Level 3   ψ00 20.0% 16.9% 20.1% 17.5% 20.1% 16.7% 19.4% 16.7%

   Level 3  ψ11 0.9% 0.8% 0.7% 0.6% 0.8% 0.8% 0.8% 0.6%

Correlations (Within Levels)

Student-level

(τ00, τ11) -0.84 -0.84 -0.21 -0.60 -0.76 -0.82 0.04 -0.46

School-level

(ψ00, ψ11) -0.67 -0.75 -0.26 -0.47 -0.63 -0.74 -0.05 -0.28

Separate Calibration Hybrid Calibration

1PLM/PCM 3PLM/GPCM 1PLM/PCM 3PLM/GPCM

 

 

We can gain some insights into these differences by looking more closely at the 

estimates for the random effect variance components across models.  A first point to note 

is that, not surprisingly, the models with the smallest average growth trajectories are the 

ones with the smallest amount of total variability, where total variability is the sum of 

level 1, 2 and 3 variance components.  In Table 5 the variance component(s) at each level 

of the model is/are expressed as a percentage of the total.  As a percentage of variance, 

there are really only two that show much movement across models: the student-level 

growth trajectory ( 11τ̂ ), and the school-level intercept ( 00ψ̂ ).  Interestingly, these terms 

move in opposite directions as a function of scale score estimation method, which has a 

substantial impact on the percentage of total variance due to differences in student 

growth.  Another noticeable difference across models is the estimated correlation 

between student and school-level random effects.  Under the 1PLM/PCM combination, 

this correlation is relatively strong and negative, regardless of whether EAPs or MLEs 

have been employed for the underlying scale.  In contrast, under the 3PLM/GPCM 
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combination, when EAPs are the basis for the underlying scale, the correlations drop 

dramatically. 

A last comparison to consider is the empirical Bayes (EB) estimates of student 

and school random effects.  These are often extracted from growth models as value-added 

estimates with a normative interpretation.  To what extent to these estimates lead to 

similar conclusion about students and schools as a function of the underlying score scale?  

Table 6 provides the correlation matrix of student and school-level EB slope estimates.   

 

Table 6.  Correlations of Empirical Bayes Slope Estimates: Student and School-level 

sep1.eap sep1.mle sep3.eap sep3.mle hyb1.eap hyb1.mle hyb3.eap hyb3.mle

sep1.eap 0.962 0.843 0.917 0.995 0.963 0.661 0.789

sep1.mle 0.959 0.732 0.901 0.936 0.999 0.525 0.756

sep3.eap 0.851 0.733 0.921 0.877 0.747 0.955 0.934

sep3.mle 0.923 0.904 0.922 0.917 0.912 0.806 0.953

hyb1.eap 0.995 0.932 0.884 0.921 0.715 0.807

hyb1.mle 0.961 0.999 0.748 0.914 0.936 0.548 0.775

hyb3.eap 0.685 0.538 0.960 0.811 0.736 0.560 0.903

hyb3.mle 0.809 0.767 0.939 0.957 0.824 0.785 0.905

Note: Value above diagonal = EB slopes student-level; values below = EB slopes school-level  

 

While all the random effect estimates are positively correlated across score scales, the 

strength of the correlation ranges considerably.  The weakest correlations are found when 

scales calibrated under a hybrid approach using the 3PLM/GPCM combination with EAP 

estimation (“hyb3.eap”) are compared with scales calibrated under a separate approach 

using the 1PLM/PCM combination with MLE estimation (“sep1.mle”).  All else held 

constant, the “main effect” choice of calibration approach, IRT model, and score 

estimation methodology seem to have little impact when the outcome of interest consists 
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solely normative comparisons of student or school-level random effects.  It is the 

interaction of these choices that have the greatest impact. 

 

Discussion 

 

Using longitudinal growth in student achievement as the basis for extracting 

information about school performance in an accountability system is a methodological 

approach that is gaining steam.  Due to the simple fact that growth models use students as 

their own controls, such an approach would appear to address the well-understood 

“Beverly Hills” problem that confounds accountability decisions associated with NCLB 

that are based solely on school-level status: the schools making adequate yearly progress 

tend to be located in wealthy communities.  The recent proliferation in growth and value-

added modeling approaches provides an appealing alternative, but often at the cost of 

great statistical complexity and misguided causal inferences (Braun, 2005; Briggs & 

Wiley, in press; Raudenbush, 2004; Rubin, Stuart & Zanatto, 2004)  One key assumption 

that has been often overlooked rests upon the way that student achievement is being 

measured and vertically scaled. 

The state of Colorado currently places students scores on its CSAP tests onto a 

vertical scale.  This scale is based upon a common-item nonequivalent groups design and 

makes use of a combination of 3PLM/GPCM IRT models, separate calibration and EAP 

estimation.  The findings in this study suggest that had Colorado decided, for example, to 

instead use the entirely defensible combination of 1PLM/PCM models with hybrid 

calibration and ML estimation, the use of their vertical scale could lead to strikingly 
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different educational accountability conclusions.  In particular, the variability of scores 

along a vertical scale is very sensitive to the way the scale has been created.  This can be 

problematic when change along the scale is given an absolute or criterion-based 

interpretation.  Hence it would seem that states considering the application of growth to 

standard models should be especially cognizant of psychometric decisions being made in 

establishing their vertical scales.  These seemingly esoteric decisions appear to have 

potentially substantial impacts on students and schools. 
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