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Abstract 

 

This paper describes the results from empirical investigation as to the persistence of 

value-added estimates of school effects.  We apply specify six different versions of the 

variable persistence model as implemented by Lockwood, McCaffrey, Mariano & Setodji 

(2007) to five years of longitudinal test score data. Our sample consists of 17,839 

students in a single state who were enrolled in grades 4 through 8 during the years of 

2001 through 2005.  Our different specifications of the models varied as a function of (1) 

constraints placed upon parameters that represent the persistence of school effects over 

time, and (2) assumptions made about the independence of school effects over time.  We 

find that subsequent inferences about school effectiveness are quite sensitive to choices 

made in the parameterization of persistence.  The correlations of school effects across 

models is positive, but tends to be only moderate in magnitude.  Subsequent inferences 

are also sensitive to assumptions made about the independence of school effects because 

there is an interaction between estimates of persistence parameters and the covariance 

matrix associated with school effects. 
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Introduction 

 

In a special issue of the Journal of Educational and Behavioral Statistics devoted 

to the topic of value-added modeling of student achievement, McCaffrey, Lockwood, 

Koretz, Louis, and Hamilton (2004) introduced what is now known as the “variable 

persistence model” for longitudinal student outcomes. McCaffrey and colleagues 

demonstrated that other value-added models used to estimate teacher effects, school 

effects, or both, could be expressed as restricted versions of the variable persistence 

model.  The variable persistence model relaxes an implicit assumption made by most 

value-added models—that the effect of a teacher or school on a student’s achievement 

persists undiminished over time.  Intuitively, this assumption will often be implausible, 

and in a more recently published study, Lockwood, McCaffrey, Mariano & Setodji 

(2007) provide empirical evidence that the contribution of a teacher two or more years 

removed from a student’s current level of achievement does not, in fact, persist with 

undiminished magnitude. The two practical upshots to this finding are that both the size 

and precision of estimated teacher effects are sensitive to the way that persistence is 

parameterized longitudinally.  Because the precision of estimated effects appears to be 

much greater under the variable persistence model relative to models that assume 

complete persistence
1
, highly effective or ineffective teachers are more likely to be 

distinguished from the “average” teacher.   

                                                 
1
 This assumption is made most prominently by what is known as the “layered model” (Sanders, Saxton & 

Horn, 1996). 
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To our knowledge, there have been no published applications of the variable 

persistence model to longitudinal data in which schools, rather than teachers, are the unit 

of analysis.  The motivation for our present study was to fill this void, and we started by 

posing the following research question: To what extent do conclusions about school 

effectiveness change when a variable persistence value-added model is used to estimate 

longitudinal school effects relative to a value-added model that assumes complete 

persistence? 

In the process of addressing this question, we have made two interesting 

discoveries. First, in the context of data where schools constitute the adjacent level in 

which students are nested, the variable persistence model must be specified and estimated 

in a constrained form because the fully parameterized version is not (in principal at least), 

identifiable.  However, the best way to constrain the model is unclear, and this choice can 

have a big impact on subsequent inferences about estimated school effects.  Second, 

whether the unit of analysis is teachers or schools, and whether effects are assumed to 

persist completely or vary with (or without) constraints, it is typically assumed that such 

effects are independent across time.  We have found an apparent interaction between this 

assumption and the magnitude of the school persistence parameter, and this interaction 

raises some questions about how the latter parameter should be interpreted.  The purpose 

of this presentation is to demonstrate how the answer to our motivating research question 

varies in the context of these two discoveries. 
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Methods 

 

The Variable Persistence Model 

 

A variable persistence model for a single longitudinal test score outcome can be 

written as 

 

* *
*

it t tt t it
t t

Y µ α ε
≤

= + Σ +θ .      (1) 

 

In equation 1, itY  represents the test score of student i in year t, t = 1, …, T, and the 

parameter tµ  denotes the test score mean for a given year.  The vector tθ  represents the 

collection of school effects
2
 for each year, and the parameter *ttα  captures the persistence 

of the school effects *tθ  in year t (given that *t t≤ ).  Finally, itε  represents the test score 

residual associated with student i in year t.  Under the variable persistence model both tθ  

and itε  are assumed to be independent latent random variables, where ~ ( , )it Nε 0 Σ and 

~ ( , )t Nθ τ0 .  We note the following to motivate our subsequent analyses: 

 

1. The model above can be extended to allow for multivariate test outcomes, 

background covariates, and a term that links school effects to specific students in 

the event that students attend more than one school in a given year (c.f., 

Lockwood et al., 2007, p. 127-128).  We have chosen this simpler specification 

                                                 
2
 The term “residual” is actually more appropriate characterization of tθ  than the term “effect,” but we use 

the latter to be consistent with the literature. 
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here in order to focus attention on the relationship between the persistence 

parameters and schools effects. 

2. When a complete persistence model is being specified, all persistence parameters 

are set equal to 1 ( * 1ttα ≡  for all *t t≤ ).  When Lockwood et al. used the variable 

persistence model to estimate teacher effects, the only constraint placed on the 

persistence parameters was that there is no decay in the current effect of a teacher 

on student achievement ( 1ttα ≡ ).  In the context of applying the model to estimate 

school effects, because cohorts of students only mix substantially in the transition 

from elementary to middle school, constraints in addition to 1ttα ≡  must be 

imposed in order to identify the persistence parameters.  Two reasonable 

possibilities, which we explore in our analysis, include (a) constraining *ttα α≡  

for all *t t< , or (b) constraining 1 1tα ≡  along with *ttα α≡  for all (1 * )t t< < .  

The second of these constraints distinguishes between base year school 

differences ( 1θ ) and value-added school effects ( 2 3, ,..., tθ θ θ ) because we should 

expect that the persistence of the former will be considerably larger than the latter. 

3. In previous empirical applications of the variable persistence model, while itε  is 

given a completely unstructured covariance matrix ( )Σ , the variance components 

for tθ  have been assumed to be independent across time, hence only the diagonal 

of the associated covariance matrix ( )τ  is estimated.  This assumption, whether 

made in the context of estimating teacher or school effects, seems tenuous.  For 

example, one might suspect that a school that has a positive effect on the reading 
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achievement of its students in grade 6 is also likely to have positive effect on the 

same students the next year when they are in grade 7.   

4. The parameters of the variable persistence model have been estimated using 

maximum likelihood based methods by McCaffrey et al. (2004), and using 

Bayesian methods with MCMC estimation by Lockwood et al. (2007).  In our 

analysis we take a Bayesian approach using MCMC estimation with the package 

“openbugs” in the R statistical environment.   

 

Data Sources 

 

The longitudinal data for this study come from a convenience sample of roughly 

37 school districts in a mid-sized state.  The students enrolled in the schools within these 

districts represent about 45% of the state’s student population.  The longitudinal cohort 

under analysis includes those students who were in the 4
th
 grade as of 2001 and in the 8

th
 

grade as of 2005.  We restricted this sample to those students who were enrolled in 

elementary schools with a grade K-5 configuration and middle schools with a grade 6-8 

configuration.  This left us with a sample of 17,839 students who attended 191 different 

elementary schools and 65 different middle schools from 2001 to 2005.  Demographic 

variables were available to characterize each student, along with scale scores from the 

annual administration of the state’s standardized reading assessment
3
.  Summary statistics 

for demographic and test score information for the full population of students was taken 

from the relevant annual reports from this state’s assessment program, data which is 

                                                 
3
 No school level variables were available, and all district identifiers were removed from the data we were 

provided, making it impossible to take into account the clustering of schools within common districts. 
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made publicly available each year. A comparison of these descriptive statistics with those 

for our longitudinal sample suggests that our sample is generally representative of 

students in the state as a whole over the same time period.  For example, on average 28% 

of students in the longitudinal sample were black and Hispanic, and 28% were eligible 

for free or reduced lunches.  The respective numbers for the state population were 31% 

and 32%. 

The test scores that serve as the outcome measures in our analyses are derived 

from responses to a mixture of multiple-choice and constructed-response items. These 

scores are calibrated onto a vertical scale by the state’s test developer with the 

assumption that the resulting scale has a consistent interpretation over time
4
.  For ease of 

interpretation in the analysis that follows, test scores have been standardized to have a 

grand mean across all five years of 0 and a standard deviation of 1. 

 

Assumptions about School Effects  

Independent Correlated 

Complete Persistence 

* 1ttα ≡  for all *t t≤  
Model 1: cp.i Model 4: cp.c 

Constrained Variable 

Persistence 1 

* 1ttα ≡  for all *t t=  

*ttα α≡  for all *t t<  

Model 2: cvp.i1 Model 5: cvp.c1 
Constraints on 

Persistence 

Parameters Constrained Variable 

Persistence 2 

* 1ttα ≡  for all *t t=  

*ttα α≡  for all (1 * )t t< <  

1 1tα ≡  

Model 3: cvp.i2 Model 6: cp.c2 

 

Table 1.  Model Specifications Applied to Longitudinal Data 

                                                 
4
 The assumption that this can be accomplished using typical vertical scaling approaches is itself somewhat 

open to question.  We address the sensitivity of this assumption as part of a related study in Briggs, Weeks 

& Wiley, 2008.  Also see Martineau & Reckase, 2006. 
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We specified six different versions of the model characterized by equation 1 to 

estimate school effects from our longitudinal data.  The different specifications of the 

model, summarized in Table 1, varied with respect to the way that the persistence of 

school effects was parameterized (i.e., rows), and assumptions made about the 

independence of school effects across time (i.e., columns).  Non-informative prior 

distributions were specified for all model parameters, and initial values were either 

generated randomly, or chosen on the basis of our theoretical understanding of plausible 

parameter values.  In each model students with missing test score values in any given 

year were assumed to be missing at random, and linked to a “pseudo-school” for that 

grade, an approach consistent with the “M3” procedure taken by Lockwood et al (p. 135-

136) in the context of estimating teacher effects.  All models in which school effects are 

assumed to be independent where estimated on the basis of a sample burn-in of 2,500 

followed by 5,000 iterations of 3 different MCMC chains.  For models in which school 

effects are allowed to be correlated, a burn-in of 5,000 iterations was needed to ensure 

convergence to a stationary distribution.   

 

Results 

 

The full results from specifying the different models described above are provided in the 

appendix in Tables A1 and A2. Below we focus on noteworthy aspects of these results. 
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Impact of Constraints on Persistence Parameters 

 

Under the complete persistence model (model 1), it is assumed that * 1ttα ≡ .  In 

contrast, when a single value for α  is estimated under the constrained variable 

persistence model (model 2), this value is considerably smaller that 1 at α = 0.53.  This 

result, at first glance, appears consistent with the findings presented by Lockwood et al. 

(2007).  However, in the present context it appears that this is largely an artifact of the 

decision to constrain the persistence parameters for both base year school differences and 

value-added school effects to be equal.  When the persistence parameter associated with 

1θ  is constrained to equal 1 (model 3), the estimate for α  drops to 0.  This pattern for the 

relative change in the estimates for α  is also observed when models 5 and 6 are 

compared to model 4 (conditions where the assumption of independent school effects has 

been relaxed).  The impact of these different estimates for α  on conclusions about school 

effectiveness can be seen in Table 2.   

Independent School Effects   

Grade cor(cp.i, cvp.i1) cor(cp.i ,cvp.i2) cor(cvp.i1, cvp.i2) 

5 0.58 0.60 0.84 

6 0.67 0.65 0.91 

7 0.85 0.61 0.89 

8 0.95 0.73 0.88 

    

Correlated School Effects    

Grade cor(cp.c, cvp.c1) cor(cp.c ,cvp.c2) cor(cvp.c1, cvp.c2) 

5 0.45 0.51 0.91 

6 0.47 0.47 0.92 

7 0.62 0.35 0.89 

8 0.85 0.41 0.77 

Note: “cp” = complete persistence, “cvp” = constrained variable persistence  
 

Table 2.  Correlations of Estimated School Effects by Model 
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While in most cases there is a moderate to strong positive correlation of estimated 

school effects across models, it is clear that the choice of model will have a strong impact 

on conclusions about school effectiveness—some schools that appear effective under one 

model may not appear effective under another.  This point is demonstrated visually in 

Figure 1.  The y-axes of the three panels within Figure 1 represents the scale of the grade 

5 value-added school effects estimated for models 1 to 3 respectively. (The full collection 

of these plots for each grade and model are provided in the appendix).  Along each x-axis 

the 191 individual schools in the grade 5 sample are ranked from lowest to highest on the 

basis of their value-added effects.  Each point on the plot represents the posterior mean of 

a specific school, and the vertical bars above and below these points represent the 95% 

credibility interval for these estimates.  Schools for which these intervals do not cross the 

horizontal line referencing the sample average effect of 0 are ones that could be “safely” 

classified as above or below average in their effectiveness.  Under the complete 

persistence model (model 1), 23% (44 out 191 schools) can be classified as above or 

below average.  Our first specification of a constrained variable persistence model (model 

2), leads to a dramatic increase in our ability to distinguish effective and ineffective 

schools: 50% of the schools can now be classified as above or below average. Yet this 

advantage largely disappears with our second specification, where only 29% are 

classified as above or below average.  The differences in school classifications as a 

function of models 1 and 2 are summarized in Table 3. 
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Figure 1.  Caterpillar plots of Estimated School Effects for Complete Persistence and 

Constrained Variable Persistence Models, Grade 5. 

 

 

 Complete Persistence Not Assumed  

Effect − 0 + 

− 13 6 1 

0 34 82 31 

Complete 

Persistence 

Assumed + 0 8 16 

Note: − indicates that the estimated school effect would be flagged as likely to be 

negative, 0 indicates the estimated school effect could not be reasonably 

distinguished from zero, and + indicates that the estimated school effect would be 

flagged as likely to be positive. 

 

Table 3. Cross-Tabulation of School Effects on Students in Grade 5. 

  

 

α = 1 α = .5 α = 0 
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Impact of Relaxing the Assumption of Independent School Effects 

 

The results from our analyses indicate that there is an apparent interaction 

between the parameterization of *ttα  and the covariance matrix of school effects.  One 

symptom of this is the fact that estimates for α  under models 5 and 6 are .11 and .27 

lower than the estimates found for models 2 and 3 respectively, where the only difference 

between the models is the assumption of independence for tθ  across time.  A second 

symptom is the pattern of estimated values for the correlations of tθ  across time.  Under 

the constrained persistence model these values tend to be small and negative.  Under the 

two specifications of the constrained persistence models these values tend to be 

moderately strong and positive. 

One possible explanation for these results may be found through analogy to 

multidimensional item response theory (MIRT), where the persistence parameter α  may 

be analogous to the multidimensional item discrimination parameter.  The latter can only 

be estimated in MIRT applications after placing constraints on the covariance matrix for 

person ability (c.f., Yao & Schwartz, 2006 ). 

 

Discussion 

 

Value-added modeling is becoming increasingly popular as a tool to be used 

within educational accountability systems.  In the context of modeling teacher effects, 

recent research has suggested that decisions about how to parameterize the persistence of 

effects over time can have a substantial impact on classification decisions.  This study is 
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the first to examine this issue within the context of modeling school effects, and suggests 

that subsequent classification results are particularly sensitive to key decisions made 

about the specification of the underlying statistical model. 
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Grade 4 cp.i cp.c cvp.i1 cvp.c1 cvp.i2 cvp.c2 

cp.i 1 1 0.96 0.95 0.99 0.99 

cp.c 1 1 0.97 0.95 0.99 0.99 

cvp.i1 0.96 0.97 1 0.99 0.94 0.94 

cvp.c1 0.95 0.95 0.99 1 0.93 0.94 

cvp.i2 0.99 0.99 0.94 0.93 1 1 

cvp.c2 0.99 0.99 0.94 0.94 1 1 

       

Grade 5 cp.i cp.c cvp.i1 cvp.c1 cvp.i2 cvp.c2 

cp.i 1 1 0.58 0.42 0.6 0.48 

cp.c 1 1 0.6 0.45 0.61 0.51 

cvp.i1 0.58 0.6 1 0.98 0.84 0.91 

cvp.c1 0.42 0.45 0.98 1 0.8 0.91 

cvp.i2 0.6 0.61 0.84 0.8 1 0.96 

cvp.c2 0.48 0.51 0.91 0.91 0.96 1 

       

Grade 6 cp.i cp.c cvp.i1 cvp.c1 cvp.i2 cvp.c2 

cp.i 1 1 0.67 0.46 0.65 0.46 

cp.c 1 1 0.68 0.47 0.66 0.47 

cvp.i1 0.67 0.68 1 0.96 0.91 0.91 

cvp.c1 0.46 0.47 0.96 1 0.85 0.92 

cvp.i2 0.65 0.66 0.91 0.85 1 0.95 

cvp.c2 0.46 0.47 0.91 0.92 0.95 1 

       

Grade 7 cp.i cp.c cvp.i1 cvp.c1 cvp.i2 cvp.c2 

cp.i 1 0.99 0.85 0.64 0.61 0.37 

cp.c 0.99 1 0.83 0.62 0.59 0.35 

cvp.i1 0.85 0.83 1 0.94 0.89 0.77 

cvp.c1 0.64 0.62 0.94 1 0.89 0.89 

cvp.i2 0.61 0.59 0.89 0.89 1 0.92 

cvp.c2 0.37 0.35 0.77 0.89 0.92 1 

       

Grade 8 cp.i cp.c cvp.i1 cvp.c1 cvp.i2 cvp.c2 

cp.i 1 1 0.95 0.86 0.73 0.43 

cp.c 1 1 0.94 0.85 0.71 0.41 

cvp.i1 0.95 0.94 1 0.97 0.88 0.63 

cvp.c1 0.86 0.85 0.97 1 0.92 0.77 

cvp.i2 0.73 0.71 0.88 0.92 1 0.89 

cvp.c2 0.43 0.41 0.63 0.77 0.89 1 

 

Table A-2.  Correlations of School Effects by Grade Across Models 
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