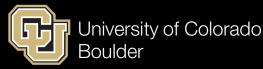
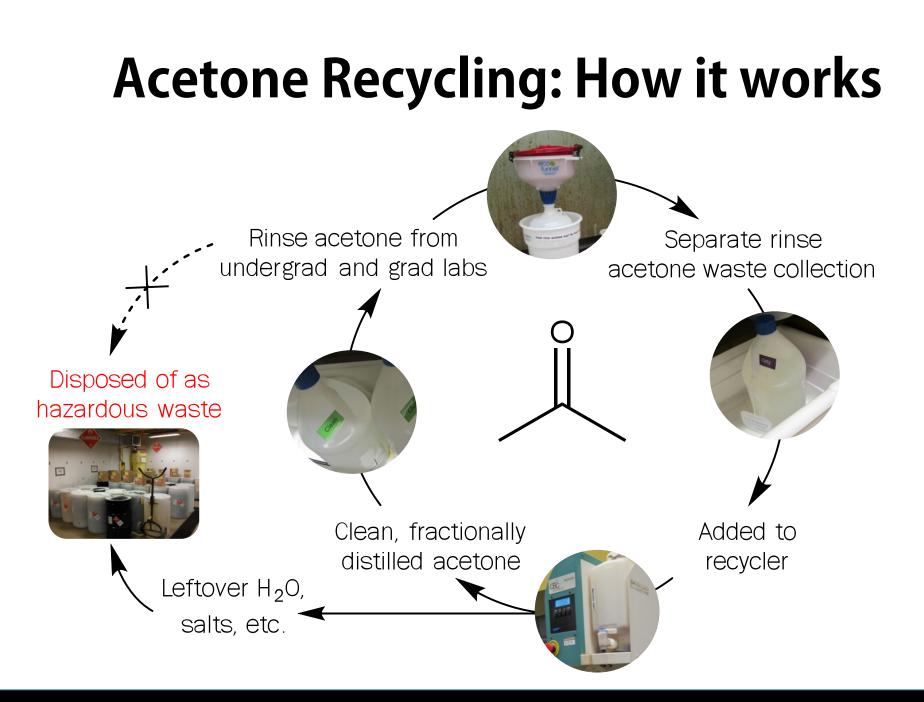
Implementation of Green Chemistry and Sustainable Lab Practices in the CU-Boulder Chemistry Department

Lily A. Robertson Graduate Student; Green Labs Team Lead Department of Chemistry & Biochemistry University of Colorado Boulder

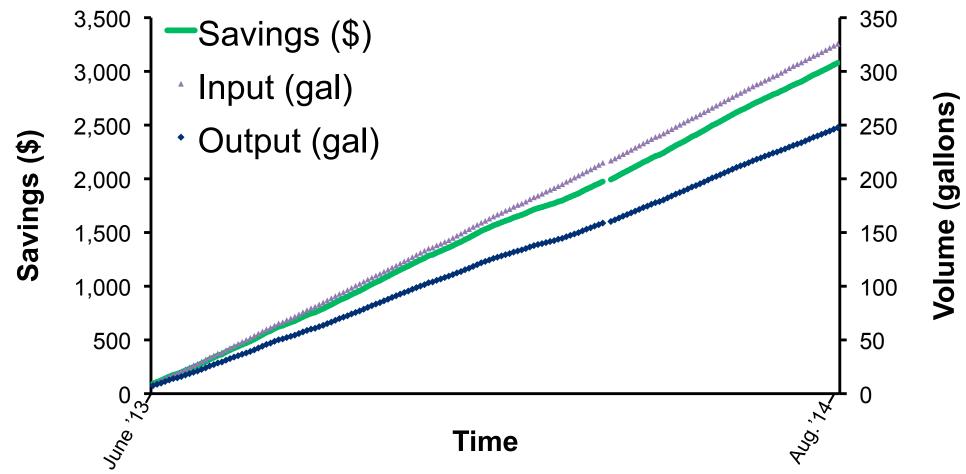
Learning Objectives


- Learn about green chemistry projects implemented at CU.
- Learn about the hazardous waste diversion and dollar savings resulting from those projects.
- Learn about impact those projects are having on raising awareness about green chemistry at CU.



Solvent Recycling

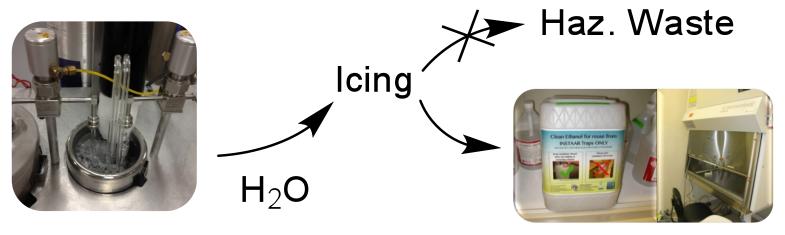
- Fractional distillation unit purchased in June 2013 (CBG Biotech).
- Main target for solvent recycling is acetone, but other commonly used solvents may be addressed in the future



Acetone Recycling: Savings

Overall efficiency = 76.0%; overall savings = \$3,079.*

* Not including previous disposal costs


Other Possible Solvents

- Common mixtures from column chromatography
 - Hexanes/ethyl acetate
 - Testing in progress
 - Dichloromethane/hexanes
 - Azeotrope formation could be problematic,
 i.e., resultant product could remain a mixture
- Other rinse solvent streams that are mixtures, i.e., acetone, methanol, and water

Ethanol Reuse Program

- 120 gallons/year of used ethanol from cold traps was being disposed of as hazardous waste
- This volume is equivalent to a purchase price of \$1,560!
- Now this ethanol is being diluted and reused to wipe down biosafety cabinets in Biochemistry!

Ethanol Cold Trap

Biosafety Cabinet Sterilization

Green Chemistry

Green Organic Chemistr

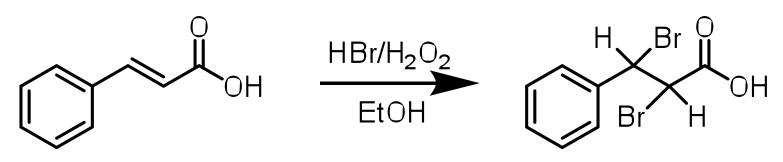
Green Chemistry & Engineering: Innovation for a Sustainable Future

SE Hundhis

The Green Chemistry Commitment

RANSFORMING CHEMISTRY EDUCATION

mazon.com/Green-Organic-Chemistry-Strategies-Experiments/dp/0534388515/ref=sr 1 1?s=books&ie=UTF8&gid http:// keniversityeofvGaleraden+organic+chemistry; http://www.chem.utoronto.ca/green/_shared/images/2014Group ttBouldergreenchemistrycommitment.org/wp-content/themes/gcc/assets/img/logo.png; http://www.acs.org/content/ Picture. acs/en/greenchemistry/ jcr content/mainContent/image.img.jpg/1391009610770.jpg


Green Chemistry in Teaching Labs

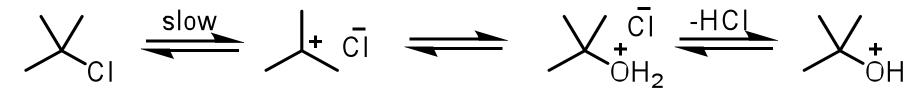
Endeavors

- Scaling down of reactions
- Replacement of hazardous procedures
- Substitution for less hazardous reagents
- Undergraduate education about hazards, acetone recycling, etc.
- A handful of reactions have been replaced and/or implemented
- Impacting up to 900 students/year

"A Greener Bromination of Stilbene"

trans-Cinnamic acid

Previously:

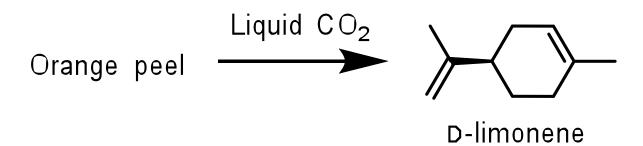

- Bromine solution, dichloromethane as solvent
- Large volumes of aq. sodium thiosulfate neutralized Br₂

Now:

 Br₂ generated in situ with H₂O₂ and HBr, ethanol used as solvent, and no aq. sodium thiosulfate needed

"Measuring solvent effects: kinetics of hydrolysis of tert-butyl chloride"

Previously:


 Replaces an old kinetics lab, which generated less volume of waste, but students used more hazardous reagents (KOH pellets, volatile alkylhalides)

Now:

- Milder reagents:
 - Uses recycled acetone and tap water as solvents
 - Prepared 0.04 M NaOH aqueous solution

"CO₂ liquid extraction of limonene"

Previously:

- Energy intensive steam distillation extraction procedure
- Required about 1 orange/student—high volume of discarded oranges

Now:

 Liquid CO₂ is more efficient, new digital polarimeter allows lower detection of limonene → ~1 orange/5 students!

McKenzie, L. C. et al., Green Chem. 2004, 6, 355-358.

Green Chemistry in Research Labs

Endeavors

- Solvent substitutions
- Findensers—water-free condensers
- Use of solvents from bio-based feedstocks as opposed to petroleum-based
- Green Chemistry Fund

Solvent Substitutions

A number of solvent selection guides are available

Preferred

Water

Acetone

Ethanol

2-Propanol

1-Propanol

Methanol

1-Butanol

t-Butanol

MEK

esk

Ethyl Acetate

Glaxo-Smith Kline

	Few issues (bp°C)	Some iss	ues (bp°C)	Majorissues
Chlorinated	before using chlorinated solvents, have you considered TBME, isopropyl acetate, ethyl acetate, 2-Methyl THF or Dimethyl Carbonate?			Dichloromethane ** Carbon tetrachloride ** Chloroform ** 1.2-Dichloroethane **
Greenest Option	Water (100°C)			
Alcohols	1-Butanol (118°C) 2-Butanol (100°C)	Ethanol/IMS (78*C) t-Butanol (82*C) Methan	1-Propanol (97°C) 2-Propanol (82°C) 101 (65°C)	2-Methoxyethanol **
Esters	t-Butyl acetate (96°c) Isopropyl acetate (89°c) Propyl acetate (102°c) Dimethyl Carbonate (91°c)	Ethyl acetate (77°C) Methyl acetate (57°C)		
Ketones		Methyl isobutyl ketone (117°C) Acetone (56°C)		Methyl ethyl ketone
Aromatics		p-Xylene (138°C) Toluene ** (111°C)		Benzene **
Hydrocarbons		Isooctane (ଖ୭°୦) Cyclohexane (ଖ°୦) Heptane (ଖ°୦)		Petroleum spirit ** 2-Methylpentane Hexane
Ethers		t-Butyl methyl ether (65°C) 2-Methyl THF (78°C) Cyclopentyl methyl ether (165°C)		1,4-Dioxane ** 1,2-Dimethoxyethane ** Tetrahydrofuran Diethyl ether Diisopropyl ether **
Dipolar aprotics		Dimethyl sulfoxide (189°C)		Dimethyl formamide ** N-Methyl pyrrolidone ** N-Methyl formamide ** Dimethyl acetamide ** Acetonitrile

** = EHS Regulatory Alerts: please consult the detailed solvent guide and the GSK Chemicals Legislation Guide for more information http://solventguide.gsk.com/ GSV \$50-MC-02 Sec.

Green Chem. 2011, 13, 854-862.

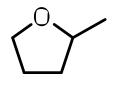
Pfizer Usable **Cyclohexane**

Heptane Toluene **Methylcyclohexane** TBME Isooctane **Isopropyl** acetate Acetonitrile 2-MeTHF THE **Xylenes** DMSO **Acetic Acid Ethylene Glycol**

Undesirable

Pentane Hexane(s) **Di-isopropyl ether Diethyl ether** Dichloromethane Dichloroethane Chloroform **NMP** DMF **Pyridine DMAc** Dioxane **Dimethoxyethane** Benzene Carbon tetrachloride

Green Chem. 2008, 10, 31–36.



Solvent Substitutions

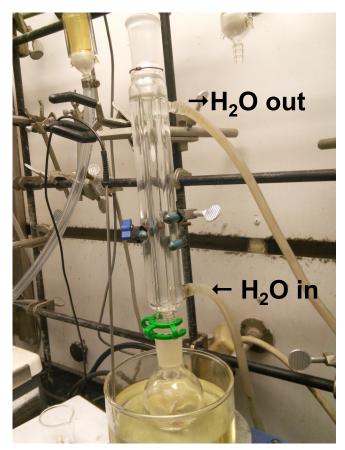
- Solvent substitutions are also available for chromatography, which uses high volumes of solvents, often chlorinated solvents and hexanes or ethyl acetate and hexanes.
- References:
 - Green Chem. **2012**, *14*, 3016–3019.
 - Green Chem. **2012**, *14*, 3020–3025.
- Also, alternative types of chromatography have been tested that use less solvent:
 - Synthesis 2001, 25, 2431–2434; Syn. Lett. 2014, 25, 0058–0063.

Bio-based solvents

2-Methytetrahydrofuran (2-MeTHF)

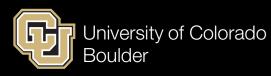
Advantages

- Substitute for petrol-based tetrahydrofuran (THF)
- Immiscible with water
- Reactions may proceed better


Cons

- Much more expensive
- Not enough demand

Water-free Condensers


• Save water, eliminate flooding

Normal condenser

Water-free "Findenser"

FY '14 - '15 Green Chemistry Fund

- \$5,000 fund to cover cost of materials for lab members to try their ideas
- Committee of grad students, EH&S, & CU Green Labs to review requests
- Successes will be publically shared with campus
- Grow the green chemistry culture on campus and get labs involved in coming up with ideas
- Ideas that committee could also promote:
 - Replace EtBr with less toxic products for DNA viewing
 - Safer & greener alternatives to Piranha acid baths
 - Mercury free efforts

Other Recycling

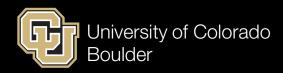
Current recycling

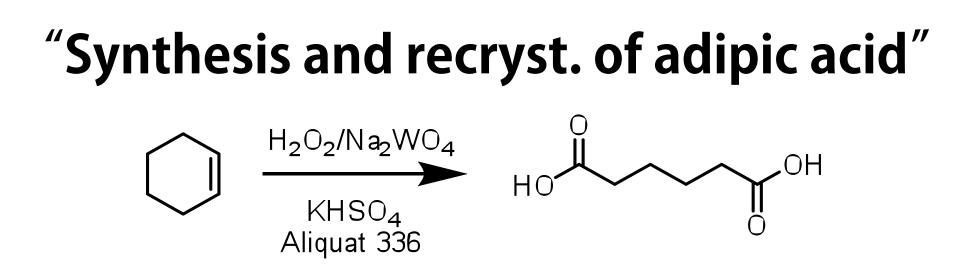
- Carboy, plastic film, pipette tip box, Styrofoam In progress
- Metal, select brown glass bottles

Carboys

Metal Reagent Cans & Solvent Drums

Brown Glass

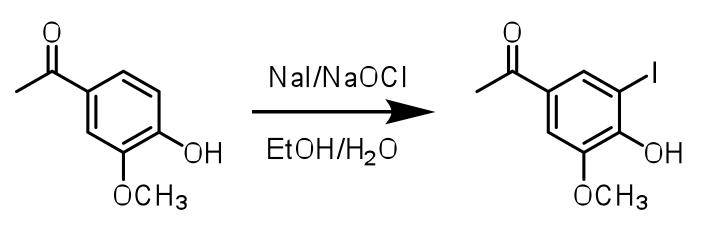



Questions?

Contact info

Lily A. Robertson Graduate Student; Green Labs Team Lead Department of Chemistry & Biochemistry University of Colorado-Boulder lily.robertson@colorado.edu

larobertson9@gmail.com



"Synthesis and recryst. of adipic acid"

- Not a direct replacement for any particular lab at CU
- Affects: Majors OChem I students (~ 40 people/yr).

"Electrophilic Aromatic Iodination"

- Not a direct replacement for any particular lab at CU
- Affects: Majors OChem II students (30-40 people/yr)
- Very successful

"Palladium-catalyzed alkyne coupling"

- Uses product from electrophilic aromatic iodination
- Will be introduced in spring 2015
- Affects: Majors OChem II students (30-40 people/yr)

