Radiative processes of use in analytical spectroscopy

- Absorption
- Photoluminescence
- Scattering

September 18, 2008
CHEM 5161
Multiplicity of an electronic state

- Multiplicity = 2s + 1 (s = Σms)
- S = Singlet State
 - Paired spins: ↑↓ ⇔ s = 0 ⇔ multiplicity = 1
- T = Triplett
 - Unpaired spins: ↑↑ ⇔ s = 1 ⇔ multiplicity = 3
Radiative processes #1

FIGURE 12-7 Deactivation processes for an excited molecule. a, absorption; b, vibrational relaxation; c, internal conversion; d, fluorescence; e, external conversion; f, intersystem crossing; g, phosphorescence.
Associated time scales

timescale [s] Selection Rule

A) **Absorption**: $>10^{-15}$ same multiplicity
B) Vibrational relax.: $10^{-10} - 10^{-12}$ $\Delta v = 1$
C) Internal conversion: 10^{-12} same multiplicity
D) **Fluorescence**: $10^{-6} - 10^{-10}$ same multiplicity
E) External conversion (quenching)
F) Intersystem crossing: $10^{-4} - 10^{-12}$ spin forbidden
G) **Phosphorescence**: $10^{-4} - 10$ spin forbidden
H) **Scattering**: $<10^{-15}$ (instantaneous)

Photoluminescence: any radiative process that **produces a photon**!
Example

• Assume an internal conversion process from S2 \rightarrow S1, that produces the third overtone of S1.
• Assume further a vibrational constant of 2100 cm$^{-1}$
• What is the corresponding shift expected in the fluorescence spectrum?
Absorption vs Luminescence

FIGURE 12-8 Relationship between absorption and fluorescence. The absorption and fluorescence emission spectra are represented by the solid and dashed lines, respectively. The fluorescence transitions occur generally at longer wavelengths because the energy differences are less. In solution the vibronic detail is often not present and only a broad band is observed.
Radiative processes #2

- Scattering
 - Rayleigh scattering: $I \sim \lambda^4$
 - Debye scattering
 - Mie scattering

- Raman Effect
 - Inelastic scattering
 - Polarizability of electron cloud