Published: Jan. 29, 2015 By

CU-Boulder Student Team Wins Silver at Premiere Biology CompetitionThe 2013 iGEM Buffs took home a regional award for their work, now published in ACS Synthetic Biology. The 2014 competed at the international level and took home a Silver Award.

The International Genetically Engineered Machine (iGEM) event is the top synthetic biology competition in the world and the CU-Boulder team wanted to make an impact at this year’s competition in Boston.  Last year’s 2013 Buffs iGEM team was successful, winning a North American Regional award for best new BioBrick and publishing their research in ACS Synthetic Biology. The 2014 Buffs iGEM team was confident they could compete at the international level. Unlike previous years, this year the iGEM competition (called a Jamboree) had no regional qualifying round, creating formidable competition: 2,500 undergraduate and graduate synthetic biology researchers from 245 universities across 32 countries. In the end, the CU scientists came home with a Silver medal and an interlab study distinction.

“Hard to believe I had never heard of iGEM until earlier this year,” says Leighla Tayefeh, a CU senior with a double major in MCD biology and neuroscience. “But the idea of synthetic biology’s vast potential to benefit society enticed me to join the team. We wanted to stand out and work with new technology, so this led us straight to the endogenous CRISPR-Cas9 system and the clinical need for an alternative to antibiotics.”

BuffThe CU iGEM team wanted to tackle the serious problem of antibiotic-resistant bacterial infections, like MRSA and tuberculosis, in a way that didn’t damage the body’s healthful bacteria colonies at the same time. They focused on phage therapy, which is a virus that uses bacteria’s cellular resources to reproduce until the host bacteria’s cell is eventually destroyed. CRISPR-Cas9 is a phage system that is able to more specifically target the DNA of a bacterial infection, resulting in cell death. What made the CU-Boulder team’s efforts even more valuable was their development of a delivery system for the phage therapy. The result is that the CRISPR-Cas9 phage binds to part of the DNA in the cell and cuts the DNA strand, killing the bacteria cell.

iGEM promotes educational outreach as part of their team projects. The CU team used the opportunity over the summer to host a camp from Heritage High School in Littleton, Colo. to teach them DNA basics. The high school students extracted their own DNA from saliva and examined differences between pathogenic and healthy DNA fragments. The CU team also collaborated with Colorado State University’s iGEM team to validate some of their findings during the project.

“The 2014 CU iGEM team was successful at making progress on a difficult scientific problem, namely alternatives to fight antibiotic resistance, but also at impacting the local community.  The high school students who came to visit have written raving about their experiences,” says Assistant Professor of Molecular, Cellular and Developmental Biology and BioFrontiers faculty member, Robin Dowell who served as the CU iGEM mentor for the last two years.

iGEM, which began in 2003, provides each team with a kit of biological parts -- like promoters that respond to particular stimuli, genes, or regulators -- at the beginning of each summer. Students then use these parts, or parts of their own design, in their projects. The iGEM Giant Jamboree was held at the Hynes Convention Center in Boston, October 30 through November 3.

Related content

CU at the World iGEM Jamboree

CU Boulder to go to iGEM

CU is heading to Boston for the iGEM Jamboree