
Padé approximation

An asymptotic expansion (or a Taylor expansion) can often be accelerated quite dramatically (or turned from

divergent to convergent) by being rearranged into a ratio of two such expansions.

A Padé approximation 

(1)PM
N (x) =

�n=0
N an x n

�n=0
M bn x n

(normalized by b0 = 1) generalizes the Taylor expansion with equally many degrees of freedom

(2)TM+N(x) = �n=0
M+N cn xn

(the two being the same in case M = 0). The Padé coefficients are normally best found from a Taylor

expansion:

.c0 + c1x + c2x2 + ... =
a0 + a1x + a2x2 + ...
1 + b1x + b2x2 + ...

Multiplying up the denominator gives the following equivalent set of coefficient relations

 a0   =   c0

a1   =   c1 + c0 b1

a2   =   c2 + c1 b1 + c0 b2 (3)

a3   =   c3 + c2 b1 + c1 b2 + c0 b3 

...        ...

With the ci given, each new line introduces two new unknowns, ai and bi. The system would appear to be

severely underdetermined. However, if we specify the degree of the numerator to be N, of the denominator to

be M, and of the truncated Taylor expansion to be M+N, there will be just as many equations as unknowns

(ignoring all terms that are O(xM+N+1)). We can then solve for all the unknown coefficients, as the following

example shows:



Example 1: Given T5(x), determine .P3
2(x)

In this case of M = 2, N = 3, M+N = 5, the system (3) becomes 'cut off' as follows

past limit O(x2+3+1)

= c5 + c4 b1 + c3 b2  + c2 b3  0

= c4 + c3 b1 + c2 b2  + c1 b3  0

no

more

b's avail.

= c3 + c2 b1 + c1 b2  + c0 b3  0no more a's       ⇒

available

= c2 + c1 b1 + c0 b2 a2

= c1  + c0 b1 a1

= c0 a0

The bottom three equations can be solved for  b1, b2, b3 , after which the top three explicitly give  a1,

a2, a3 .  This same idea carries through for any values of M and N. 

◊

 

A key usage of Padé approximations is to extract the information from power series expansions with only a

few known terms. Transformation to Padé form usually accelerates convergence, and often allows good

approximations to be found even outside a power series expansion's radius of convergence (which, in case of

divergent asymptotic expansions, may be zero).

Example 2: Find the increasing order  Padé approximations for  f (x) = 1 - x + x2 - x3 + -... .

The Padé table based on the truncated Taylor sums becomes:

TABLE 3

    Beginning of Padé table for   f (x) = 1 - x + x2 - x3 +-... 

........

....1
1 + x

3

....1
1 + x

1
1 + x

2

....1
1 + x

1
1 + x

1
1 + x

1

1 - x + x2 - x31 - x + x21 - x10

M -

order of

denomi-

nator

....3210

N  -  order of numerator

The  main diagonal (and the diagonal below it) usually gives the best results. This example is trivial

in that every entry with M > 0 happens to recover the exact result.

◊



Application 1: Evaluating Taylor expansions outside their radius of convergence.

Example 3: Approximate  f(2) when we only know the first few terms in the expansion 

f (x) = 1 −
1
2 x +

1
3 x2 −

1
4 x3 +

1
5 x4 − +... =

ln (1+x)
x , but only if x < 1 .

The Padé table below is laid out like Table 3, but shows only the numerical values for x = 2 and, in

parenthesis, the errors in these compared to   .
1
2 ln 3 l 0.5493

TABLE 4

Truncated power series expansion compared to values from main Padé diagonal

........

 0.5493

(0.0000)
4

 0.5494

(0.0001)
3

 0.5507

(0.0014)
2

 0.5714

(0.0221)
1

 2.5333

(1.9840)

 -0.6667

(-1.2160)

 1.3333

(0.7840)

0

(-0.5493)

1

(0.4507)
0

M - 

order of

denomi-

nator

....43210

N - order of numerator

 

◊

Example 4: Comparison of Taylor- and Padé approximations for  f (z) = ¶
0

∞ e− t

1 + z t
dt.

The Stieltjes' function  f (x)  is singular for z < 0, but well defined for other values of z - including

values in the complex plane away from the negative real axis. Figure 1 shows Im(f(z))  for z  =  x + i y

 in the domain  [-3,3]×[-3,3] - the jump along x < 0 is obvious. 

We can try to Taylor expand f (z) around z = 0. Several approaches lead to the same expansion, e.g.

(i) Repeated integration by parts,

(ii) Noting that f (z) satisfies  z2 f '(z) + (1+z) f (z) - 1 = 0, f (0) = 1, leading to recursion relations

for the Taylor coefficients,

(iii) Expanding   and then utilizing that  .1
1 + z t

= 1 − (zt) + (zt)2 − (zt)3 + −¢ ¶
0

∞
tk e− t dt = k!

With all of the approaches, the result becomes the same:

 ,f (z) i �
k=0

∞

(−z)k k!

which diverges for all values of  z ≠ 0. Truncation after the sixth power gives

T6(z) ~ 1 - z + 2 z
2 - 6 z3 + 24 z4 - 120 z5 + 720 z6  .



Predictably, this gives nonsense when evaluated over [-1,1]×[-1,1]  (imaginary part shown in Figure 1

b). However, when T6(z) is converted to the  Padé approximation

(4)P3
3(z) =

1 + 11 z + 26 z2 + 6 z3

1 + 12 z + 36 z2 + 24 z3

we recover a quite respectable approximation of the original function (Figure 1 c; the rational

approximation   has even arranged for singularities along the negative real axis in an automaticP3
3(z)

attempt to mimic the line of discontinuity there). Finally, Figure 1 d compares, on the positive real

axis x > 0, the original function (dashed) with T6(z) and ). Somehow, the everywhere divergentP3
3(z)

power series expansion did still contain information about the function, and rearranging this into Padé

form has recovered it.

Figures  1 a-d. Stieltjes' function and its Taylor- and Padé approximations.

a. Imaginary part of  ,f(z) = ¶
0

∞ e− t

1 + z t
dt

b. ,Im(T6(z))

c. ,Im(P3
3(z))

d. Comparison for  z > 0  between f (z) (dashed curve),  (solid curve - just above it),P3
3(z)

and   (solid curve, rapidly growing).T6(z)

◊



Application 2: Determining weights in FD formulas and Linear Multistep Methods

(LMM) for solving ODEs.

Finite Differences  (FD) approximate derivatives by combining nearby function values using a set of weights.

An extremely simple FD formula for approximating    can be obtained can be obtained directly from thef ∏(x)

definition of a derivative, as illustrated in Figure 2.

-

f ∏(x) l
f (x + h) − f (x)

h

Figure 2.  Illustration of  the approximation , increasingly accurate as .f ∏(x) l
rise
run =

f (x+h)−f (x)

h h d 0

Taylor expansion of  givesf (x + h)

f (x + h) − f (x)

h
= f ∏(x) +

hf ∏∏(x)

2!
+

h2f ∏∏∏(x)

3!
+¢ = f ∏(x) +O(h1)

and verifies that the approximation is accurate to first order. The FD weights at the nodes   and   are inx x + h

this case   The FD stencil can graphically be illustrated as[−1 1]/h.

○ ← entry for value {1}f ∏

■ ■ ← entries for values (5)f {−
1
h ,

1
h }

`   `

 ← spatial locationsx x + h

In this and subsequent stencil illustrations, the open circle indicates a typically unknown derivative value,

and the filled squares typically known function values. The stencil shape in (5) can be greatly generalized:

We can ask what the optimal weights are in a FD formula that relates values of   at some locations withf (m)(x)

values of   at other locations, as illustrated in (6):f (x)

y

x x+h

y = f(x)

rise

run



 |< s >|<−  d  − >| ← s (real), d (integer ≥ 0); in figure taking values 3/2 and 3 resp.

      ○ ○ ○ ○ ← entries for (6)f (m)

■ ■ ■ ■ ■ ■ ■ ← entries for f

 |< −       n          −   >| ← n (integer > 0), in figure taking value 6.

Here, the three numbers s, d, and n completely describe the stencil shape. It transpires (first discovered in

1998 [1]) that the optimal weights in this stencil can be calculated in just two lines of symbolic algebra code,

with a Padé approximation as its key ingredient. In Mathematica 7 and higher, these two lines are:

t = PadeApproximant[x^s*(Log[x]/h)^m,{x,1,{n,d}}];

CoefficientList[{Denominator[t],Numerator[t]},x]

The next two examples below illustrate typical applications of this algorithm:

Example 5: The choice  s=0, d=2, n=2, m=2 describes a stencil of the shape

○ ○ ○

■ ■ ■
for approximating  the second derivative (since m = 2). The algorithm produces the output

,
h2

12
,
5h2

6
,

h2

12
, {1,−2, 1}

corresponding to the implicit 4th order accurate formula for the second derivative:

 
1
12 f ∏∏(x − h) +

5
6 f ∏∏(x) +

1
12 f ∏∏(x + h) l

1

h2 {f (x − h) − 2f (x) + f (x + h)}

◊

Example 6: The choice  s=-2, d=2, n=1, m=1 describes a stencil of the shape

○ ○ ○

           ■ ■
for approximating  the first derivative. The output

5h
12

,−
4h
3
,
23h
12

, −1, 1

is readily rearranged as

 ,f (x + h) = f (x) +
h
12
(23f ∏(x) − 16f ∏(x − h) + 5f ∏(x − 2h))

which we recognize as the third order Adams-Bashforth method for solving ODEs.

◊



We can further note that the all the main classes of LMM methods (Adams-Bashforth, Adams-Moulton, and

Backward Differentiation) arise all as special cases of (6), with m = 1 and for different choices for s, d, and n.

This algorithm provides the weights for all these cases. With m = 1 and accuracy of order p : 

Adams-Bashforth (p m 1) s = 1 − p, d = p − 1, n = 1.

Adams-Moulton (p m 2) s = 2 − p, d = p − 1, n = 1.

Backward Differentiation (p m 1) s = −p, d = p, n = 0.

We have already illustrated the FD stencil shape associated with the AB3 scheme (and written down its

coefficients explicitly). Thinking again of the t-axis as going to the right, the stencil shapes for the fourth

order accurate  AB4, AM4 and BD4 schemes become as follows:

   ○ ○ ○ ○ , ○ ○ ○ ○ ,              ○

    AB4:                              ■ ■                AM4:        ■ ■       BD4:       ■ ■       ■ ■       ■ 

Reference:                                                                                                                                  

[1] Fornberg, B., Calculation of weights in finite difference formulas, SIAM Rev. 40:685-691, 1998.


