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Wilson-Cowan Model
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Definition

The Wilson-Cowan model describes the evolution of excitatory and inhibitory activity in
a synaptically coupled neuronal network. As opposed to being a detailed biophysical model, the
system is a coarse-grained description of the overall activity of a large-scale neuronal network,
employing just two differential equations. Key parameters in the model are the strength of
connectivity between each subtype of population (excitatory and inhibitory) and the strength of
input to each subpopulation. Varying these generates a diversity of dynamical behaviors that are
representative of observed activity in the brain, like multistability, oscillations, traveling waves,
and spatial patterns.

Detailed Description

Many regions of the brain process large-scale spatiotemporally structured inputs (Wang 2010).
Understanding the resulting neural activity requires macroscopic models that can track the average
firing rate across many areas of a neuronal network (Ermentrout 1998). This was the approach in
the seminal work of Wilson and Cowan (1972, 1973), who derived effective equations for the
macroscopic behavior of a large network of neurons. The approach is analogous to using statistical
thermodynamics to relate the Brownian motion of particles to a mean ensemble motion of a whole
fluid or gas (Reichl and Prigogine 1980). Thus, Wilson and Cowan (1972, 1973) derive an effective
system for the mean field of an underlying statistical process.

Space-Clamped Model

Starting with a large population of densely coupled neurons, Wilson and Cowan (1972) derived
effective equations for the proportion of cells in a population that are active per unit time. Crucially,
the effective behavior of the population relies on interactions between excitatory and inhibitory
cells, where a,(f) and a,(t) are the proportion of excitatory and inhibitory cells firing per unit time at
instant 7. Thus, a, () = 0 corresponds to a low-activity resting state. Excitatory (inhibitory)
neurons make their neighbors more (less) likely to become active, and activation is a nonlinear
function F, (F;) of the presently active proportion of cells. These assumptions yield the system

Te d;e = —a,(t) + [1 = rea,(t)|F o (Weeao (1) — weiai(t) + 1,(1)), (1)
’Ci% = —a;(t) + [1 — riai(0)|Fi(wieao(t) — wiai(t) + 1;(1)). (1b)
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Thus, the activity variables a, ;(f) obey first-order kinetics with timescales 7, ;, tracking the
response of each subpopulation. The nonlinearities are typically chosen to be sigmoidal

1

Fi(x) = ——F—+,
! 1+ e_yj(x_(}j)

J=e,l, (2)

where the gain y; and threshold 0; can depend on the population type j = e,i. The argument x is
a weighted sum of the proportion of active excitatory and inhibitory cells, where wj, > 0 describes
the strength of connection from cell type k to j. The system Eq. (1) also captures the refractory
dynamics of both populations, defined by the pre-factors [1 — rja,(r)], tracking the period of time
during which cells are incapable of stimulation following an activation. This term has often been
neglected in subsequent considerations of the model, and Pinto et al. (1996) showed that it
effectively rescales the parameters of the nonlinearities F, ;. The inputs /; (¢) represent the sum of
currents arriving to population j from external sources (e.g., other brain areas or an implanted
electrode). The derivation of Eq. (1) also presumes important characteristics of time-dependent
rates a, ; for large-scale computation that are captured by temporally coarse-grained traces (Wilson
and Cowan 1972).

By performing a phase plane analysis on Eq. (1), to find the stability of fixed points (a.(),
a(t)) = (a,, a;), Wilson and Cowan (1972) observed two typical modes of behavior. First, when the
strength of synapses between excitatory cells is sufficiently strong, multiple stable fixed points can
exist: a high excitation and a low excitation state. Alternatively, when the strength of connections
between inhibitory subpopulation is sufficiently weak, the system Eq. (1) supports limit cycle
solutions. In these limit cycles, a small proportion of active excitatory cells kindle other cells’
activation, eventually recruiting inhibitory cells that turn all cells off, starting the cycle over. Thus,
Wilson and Cowan (1972) presented a simple mechanism for oscillations in firing rate activity, an
ubiquitous neural phenomenon (Wang 2010). Notably, mutually inhibitory models were adapted
from Eq. (1) by considering an arbitrary number N of neural populations coupled together solely by
inhibition. Each population is then conceived of as representing a separate stimulus or percept,
making such models ideal for studying the neural mechanisms of decision making (Usher and
McClelland 2001; Bogacz et al. 2006) and perceptual rivalry (Laing and Chow 2002; Wilson
2003).

Spatially Structured Model

The model Eq. (1) ignores potential spatial structure in the network of synaptic connections or the
external inputs to the network. Upon considering a spatially organized network of neurons, Wilson
and Cowan (1973) described the connectivity between different regions of the network using
functions that depend on the position of the origin y and target x of a synaptic connection. In doing
so, this yields a set of partial integral equations

Oa,(x,1)

Te . —ao(x, 1) + [1 = reac(x, 0)|[Fe(Wee" ae — wie a; + I.(x, 1)) (3a)
T; aaig:’ ) = —aij(x,t) + [1 — ria;(x,0)|Fi(wei*ac — wii*a; + I;(x, 1)) (3b)
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where wj; * a; is a convolution operator
Wi ay = / wik(x — y)a(y, 1)dy “4)
Q

representing the effective drive to population j at location x received from population k. Writing the
network of synaptic interactions as a spatial convolution gives a more general definition of the
geometry of the network than discrete neural network models that use matrices to describe
connectivity (McCulloch and Pitts 1943; Hopfield 1984). Typical weight functions are the
Gaussians

/e
wit(x — y) = ke )/ : )

which represent a distance-dependent decay in cortical connectivity. The spatial domain €2 can be
of arbitrary dimension and size, but it is usually taken to be one or two dimensional as we describe
below. The nonlinearities F, ; are often sigmoids Eq. (2), and refractoriness is modeled by the term
[1-rja;] as before. We note that in Eq. (3), it is possible to track the spatiotemporal evolution of
inputs, not just the temporal evolution. A key assumption in deriving Eq. (3) is that the intricacies in
firing rate variation that occur on very fine spatiotemporal scales can be coarse-grained (Wilson and
Cowan 1973). This results in a system of partial integrodifferential equations that are amenable to
mathematical analysis (Bressloff 2012).

Applications and Extensions

Originally, Wilson and Cowan (1973) developed the spatial model Eq. (3) to analyze neural
hysteresis phenomena related to binocular vision. Since then, the system Eq. (3) has been used
as a canonical model of visual cortical activity, since higher mammals’ visual systems possess
spatially organized feature maps (Hubel and Wiesel 1977). For instance, a mathematical theory of
geometric visual hallucination patterns was developed by using symmetric bifurcation theory to
analyze the emergence of Turing patterns when Eq. (3) evolved in Q@ = R? (Ermentrout and Cowan
1979; Bressloff et al. 2001). Aside from spontaneous visual experience, the model Eq. (3) was also
modified with an additional equation for Hebbian plasticity in the weights wj. to understand the
spontaneous organization of the cortical feature maps that underlie the processing of spatiotem-
porally structured inputs (Kohonen 1982). All the periodically ordered maps for certain features
like ocular dominance and orientation selectivity can be incorporated into Eq. (3) by employing the
appropriate spatial domain € (Ben-Yishai et al. 1995; Bressloff and Cowan 2003).

Since its inception, the system Eq. (3) has also been used to model a variety of other sensory,
memory, and motor processes. Early on, work in a related model to Eq. (3) showed the combination
of short-range excitation and long-range inhibition (¢, < &; in Eq. (5)) could stabilize persistent
activity into the shape of a bump (Amari 1977). Thus, even in the absence of inputs /;(x,t), the
system Eq. (3) can support a nontrivial profile of spatiotemporal activity due to the activity
sustained by recurrent excitation w,,. This mechanism has now been used extensively as a model
of visuospatial working memory (Camperi and Wang 1998), since the spatial position of a transient
stimulus is known to be stored in cortex as persistent activity that can last for up to several seconds
(Durstewitz et al. 2000). Related to this, lateral inhibitory networks have also been employed as
idealized models of spatial navigation (Samsonovich and McNaughton 1997) and movement
preparation (Erlhagen and Schoner 2002), whose neural correlates are also known to be spatially
localized, tuned, persistent activity.
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The Wilson-Cowan model Eq. (3) has been extended in many ways to account for the rich
diversity of currents, synaptic processes, and fluctuations present in the brain. Spike rate adaptation
was considered by Hansel and Sompolinsky (1998), who showed that this resulted in traveling
waves of neural activity. Similar phenomena arise upon considering the effects of short-term
plasticity (Kilpatrick and Bressloff 2010), which dynamically modulates the strength of the
synaptic weight functions wj,. Finally, there has been a lot of interest recently in capturing the
effects of fluctuations on spatially extended rate models like Eq. (3). Early efforts have simply
considered additive spatiotemporal noise processes (Hutt et al. 2008), but a great deal of progress
has been made in deriving effective Langevin equations from stochastic neural networks using path
integral methods (Buice and Cowan 2007) or a system size expansion (Bressloff 2012).
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