1. Suppose that U is a continuous random variable that is uniformly distributed on the interval $(-1, 1)$. That is, $U \sim \text{unif}(-1, 1)$.

Let $\alpha > 0$ and let

$$Y = \left(\frac{2}{1-U} \right)^\alpha - 1.$$

Find the distribution of Y. (Name it!)

2. Suppose that $X_1, X_2 \overset{iid}{\sim} \mathcal{N}(0, 1)$.

Show that $Y_1 := X_1 + X_2$ and $Y_2 := X_1 - X_2$ are independent.

3. Suppose that $X_1 \sim \Gamma(\alpha, \beta)$ and $X_2 \sim \text{exp}(\text{rate} = \beta)$ are independent random variables.

Find the distribution of $Y = 1 - X_1/(X_1 + X_2)$. (Name it!)

4. Suppose that X_1, X_2, \ldots, X_n is a random sample from the uniform distribution over the interval $(0, 1)$.

 (a) Find the distribution of $X_{(1)} = \min(X_1, X_2, \ldots, X_n)$. (Name it!)

 (b) Find the distribution of $X_{(n)} = \max(X_1, X_2, \ldots, X_n)$. (Name it!)

5. Let $a > 0$. Suppose that X_1, X_2, \ldots, X_n is a random sample from the $\text{Beta}(a, 1)$ distribution and that Y_1, Y_2, \ldots, Y_n is a random sample from the $\text{Beta}(1, a)$ distribution.

Find $E[X_{(n)} + Y_{(1)}]$.

(Here we are using the usual notation: $X_{(n)} = \max(X_1, X_2, \ldots, X_n)$ and $Y_{(1)} = \min(Y_1, Y_2, \ldots, Y_n)$.)

6. Let $X \sim \text{geom}_0(p)$. (This is the geometric distribution that starts from 0.) Find (from scratch) the moment generating function for X. Be sure to give and justify the domain of your mgf.

7. Let $X_1, X_2, \ldots, X_n \overset{iid}{\sim} \text{geom}_0(p)$.

 (a) Find the distribution of $Y = \sum_{i=1}^n X_i$. (Name it!)

 (b) Consider m independent random samples, each of size n, from the $\text{geom}_0(p)$ distribution. Let Y_j be the sum of the n values in the jth sample.

 Find the distribution of $Z = \sum_{j=1}^m Y_j$. (Name it!)

8. [Required for 5520 Students Only]

 (a) Find the moment generating function for the $\text{binomial}(n, p)$ distribution.

 (b) Show that the moment generating function for the $\text{binomial}(n, \lambda/n)$ converges, as $n \to \infty$ to that of the $\text{Poisson}(\lambda)$ distribution.

9. [Required for 5520 Students Only] Suppose that X_1, X_2, \ldots, X_n is a random sample from a distribution with pdf f and cdf F. Derive a formula for the joint density of $X_{(1)}$ and $X_{(n)}$ (the min and max) in terms of f and F.
