
APPM 5440: Applied Analysis I

Solutions to Problem Set One

1. (i) d1 a metric ⇒ d1(x1, y1) ≥ 0 and d1(x2, y2) ≥ 0 which implies that

d(x, y) = d1(x1, y1)
︸ ︷︷ ︸

≥0

+ d1(x2, y2)
︸ ︷︷ ︸

≥0

≥ 0
√

Also, d1 a metric ⇒ d1 ≥ 0 ⇒ d(x, y) = 0 if and only if both d1(x1, y1) = d1(x2, y2) = 0
and d1 a metric ⇒ d1(x1, y1) = 0 and d1(x2, y2) = 0 if and only if x1 = y1 and x2 = y2
which happens if and only if (x1, y1) = (x2, y2). Thus

d(x, y) = 0 ⇔ x = y.
√

(ii)

d(y, x) = d1(y1, x1) + d1(y2, x2)
d1 metric

= d1(x1, y1) + d1(x2, y2) = d(x, y)
√

(iii) For z = (z1, z2),

d(x, y) = d1(x1, y1)
︸ ︷︷ ︸

≤d1(x1,z1)+d1(z1,y1)

+ d2(x2, y2)
︸ ︷︷ ︸

≤d1(x2,z2)+d1(z2,y2)

≤ [d1(x1, z1) + d1(x2, z2)] + [d1(z1, y1) + d1(z2, y2)]

= d(x, z) + d(z, y)
√

2. (i)
||x||max = max{|x1|, |x2|, . . . , |xn|} ≥ 0

since |xi| ≥ 0 for all i = 1, 2, . . ..

Furthermore, the only way for max{|x1|, |x2|, . . . , |xn|} = 0 is to have x1 = x2 =
· · · , xn = 0, or, equivalently, x = (0, 0, . . . , 0).

√

(ii) For λ ∈ R, x = (x1, x2, . . . , xn) ⇒ λx = (λx1, λx2, . . . , λxn). Thus,

||λx||max = max{|λx1|, |λx2|, . . . , |λxn|}

= max{|λ| · |x1|, |λ| · |x2|, . . . , ·|λ||xn|}

= |λ|max{|x1|, |x2|, . . . , |xn|}

= |λ| · ||x||max

√



(iii) x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) imply that

x+ y = (x1 + y1, x2 + y2, . . . , xn + yn).

So,
||x+ y||max = max{|x1 + y1|, |x2 + y2|, . . . , |xn + yn|}

≤ max{|x1|+ |y1|, |x2|+ |y2|, . . . , |xn|+ |yn|}

= max{|x1|, |x2|, . . . , |xn|}+max{|y1|, |y2|, . . . , |yn|}

= ||x||max + ||y||max

√

3. By the triangle inequality,
d(x, z) ≤ d(x, y) + d(y, z).

Thus,
d(x, z) − d(y, z) ≤ d(x, y). (1)

On the other hand,
d(y, z) ≤ d(y, x) + d(x, z) = d(x, y) + d(x, z)

implies that
−d(x, y) ≤ d(x, z)− d(y, z) (2)

(1) and (2) together imply that

|d(x, z) − d(y, z)| ≤ d(x, y),

as desired.

4. First note that

•
1 = |1| = |1− x+ x| ≤ |1− x|+ |x| ⇒ 1− |x| ≤ |1− x|.

and

•
n∑

k=0

xk =
1− xk+1

1− x.

So, ∣
∣
∣
∣
∣

1− xn+1

1− x
− 1

1− x

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

xn+1

1− x

∣
∣
∣
∣
∣
=

|xn+1|
|1− x| =

|x|n+1

|1− x| ≤
|x|n+1

1− |x|
want
< ε.

That is, we want
|x|n+1 < ε(1− |x|)



for large enough n.

Since |x| < 1, we know that |x|n+1 goes to 0 as n → ∞. Therefore, ∃ N ∈ N s.t.

|x|n+1 < ε(1− |x|) ∀ n ≥ N,

as desired.

5. Since the sequence (d(xn, yn)) lives in the reals, we only need to show that it is a Cauchy
sequence. Then, by completeness of R we are done!

Let ε > 0.

To show that (d(xn, yn)) is Cauchy sequence, we want to show that ∃ N ∈ N s.t.

|d(xn, yn)− d(xm, ym)| < ε

whenever m,n ≥ N .

Since (xn) and (yn) are Cauchy sequences, we know that we can get d(xn, xm) and d(yn, ym)
as small as we want for large enough m and n.

Now, by two applications of the traingle inequality, we get

d(xn, yn) ≤ d(xn, xm) + d(xm, yn)

≤ d(xn, xm) + d(xm, ym) + d(ym, yn)

so
d(xn, yn)− d(xm, ym) ≤ d(xn, xm) + d(ym, yn). (3)

On the other hand,

d(xm, ym) ≤ d(xm, xn) + d(xn, ym)

≤ d(xm, xn) + d(xn, yn) + d(yn, ym)

so
d(xm, ym)− d(xn, yn) ≤ d(xm, xn) + d(yn, ym)

which is equivalent to

d(xn, yn)− d(xm, ym) ≥ −[d(xm, xn) + d(yn, ym)]. (4)

Now (3) and (4)) imply that

|d(xn, yn)− d(xm, ym)| ≤ d(xn, xm) + d(yn, ym)

(xn) Cauchy implies ∃ N1 ∈ N such that d(xn, xm) < ε/2 for all m,n ≥ N1.

(yn) Cauchy implies ∃ N2 ∈ N such that d(yn, ym) < ε/2 for all m,n ≥ Ny.

Take N = max{N1, N2}. Then both d(xn, xm) < ε/2 and d(yn, ym) < ε/2 will hold for all
m,n ≥ N and thus

|d(xn, yn)− d(xm, ym)| ≤ d(xn, xm) + d(yn, ym) < ε/2 + ε/2 = ε

for all m,n ≥ N .

Therefore, (d(xn, yn)) is a Cauchy sequence.



6. (Note: I’m going to change R
n to R

k so i can use the usual m’s and n’s for our Cauchy
sequences.) As mentioned in class, you do not need to verify that R

k is a linear space and
that the given norms are proper norms. All you need to do is verify, for each norm || · ||, that
the space is complete with respect to the induced metric d(x, y) = ||x− y||.
Let (xn) be a sequence in R

k. That is, each xn is a vector xn = (xn1, xn2, . . . , xnk).

(a) Suppose that (xn) is any Cauchy sequence with respect to the metric d(x, y) induced by
the Euclidean norm, || · ||.
Then for any ε > 0, ∃ N ∈ N s.t.

d(xn, xm) < ε ∀ m,n ≥ N.

But,

d(xn, xm) = ||xn − xm|| =
√

(xn1 − xm1)2 + (xn2 − xm2)2 + · · · , (xnk − xmk)2

≤
√

(xn1 − xm1)2 +
√

(xn2 − xm2)2 + · · · +
√

(xnk − xmk)2 (∆-ineq)

= |xn1 − xm1|+ |xn2 − xm2|+ · · ·+ |xnk − xmk|

So
|xn1 − xm1|+ |xn2 − xm2|+ · · · + |xnk − xmk| < ε ∀ m,n ≥ N.

This implies that each |xni − xmi| < ε for all m,n ≥ N for i = 1, 2, . . . , k.

Thus, the k components of (xn) form k one-dimensional Cauchy sequences in R. By
completeness of R, each of these component sequences converge, say limn→∞ xni = xi ∈
R for i = 1, 2, . . . , k.

Thus, (xn) converges in R
ksince

lim
n→∞

xn = lim
n→∞

(xn1, xn2, . . . , xnk) = (x1, x2, . . . , xk) =: x ∈ R.

Therefore R
k is complete with respect to the metric induced by || · || and is a Banach

space.

(b) Suppose that (xn) is any Cauchy sequence with respect to the metric d(x, y) induced by
the 1-norm, || · ||1.
Then for any ε > 0, ∃ N ∈ N s.t.

d(xn, xm) < ε ∀ m,n ≥ N.

But,

d(xn, xm) = ||xn − xm||1 = |xn1 − xm1|+ |xn2 − xm2|+ · · · , |xnk − xmk|

so
|xn1 − xm1|+ |xn2 − xm2|+ · · · , |xnk − xmk| < ε ∀ m,n ≥ N.

The remainder of the problem is identical to part (a).



(c) Finally, suppose that (xn) is any Cauchy sequence with respect to the metric d(x, y)
induced by the max norm, || · ||max. Then for any ε > 0, ∃ N ∈ N s.t.

d(xn, xm) < ε ∀ m,n ≥ N.

But,

d(xn, xm) = ||xn − xm||max = max{|xn1 − xm1|, |xn2 − xm2|, · · · , |xnk − xmk|}

so
max{|xn1 − xm1|, |xn2 − xm2|, · · · , |xnk − xmk|} < ε∀ m,n ≥ N

which implies that each of |xni − xmi| < ε ∀ m,n ≥ N for each of i = 1, 2, . . . , k.

Again, the remainder of the problem is identical to part (a).


