APPM 5440: Applied Analysis I Solutions to Problem Set One

1. (i) d_1 a metric $\Rightarrow d_1(x_1, y_1) \ge 0$ and $d_1(x_2, y_2) \ge 0$ which implies that

$$d(x,y) = \underbrace{d_1(x_1,y_1)}_{\ge 0} + \underbrace{d_1(x_2,y_2)}_{\ge 0} \ge 0 \quad \checkmark$$

Also, d_1 a metric $\Rightarrow d_1 \ge 0 \Rightarrow d(x, y) = 0$ if and only if both $d_1(x_1, y_1) = d_1(x_2, y_2) = 0$ and d_1 a metric $\Rightarrow d_1(x_1, y_1) = 0$ and $d_1(x_2, y_2) = 0$ if and only if $x_1 = y_1$ and $x_2 = y_2$ which happens if and only if $(x_1, y_1) = (x_2, y_2)$. Thus

$$d(x,y) = 0 \qquad \Leftrightarrow \qquad x = y. \ \sqrt{}$$

(ii)

$$d(y,x) = d_1(y_1,x_1) + d_1(y_2,x_2) \stackrel{d_1 \text{ metric}}{=} d_1(x_1,y_1) + d_1(x_2,y_2) = d(x,y) \quad \checkmark$$

(iii) For $z = (z_1, z_2)$,

$$d(x,y) = \underbrace{d_1(x_1,y_1)}_{\leq d_1(x_1,z_1)+d_1(z_1,y_1)} + \underbrace{d_2(x_2,y_2)}_{\leq d_1(x_2,z_2)+d_1(z_2,y_2)}$$

$$\leq [d_1(x_1,z_1) + d_1(x_2,z_2)] + [d_1(z_1,y_1) + d_1(z_2,y_2)]$$

$$= d(x,z) + d(z,y) \checkmark$$

2. (i)

$$||x||_{max} = \max\{|x_1|, |x_2|, \dots, |x_n|\} \ge 0$$

since $|x_i| \ge 0$ for all i = 1, 2, ...Furthermore, the only way for $\max\{|x_1|, |x_2|, ..., |x_n|\} = 0$ is to have $x_1 = x_2 = ..., x_n = 0$, or, equivalently, x = (0, 0, ..., 0).

(ii) For
$$\lambda \in \mathbb{R}$$
, $x = (x_1, x_2, \dots, x_n) \Rightarrow \lambda x = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$. Thus,

$$||\lambda x||_{max} = \max\{|\lambda x_1|, |\lambda x_2|, \dots, |\lambda x_n|\}$$
$$= \max\{|\lambda| \cdot |x_1|, |\lambda| \cdot |x_2|, \dots, |\lambda| ||x_n|\}$$
$$= |\lambda| \max\{|x_1|, |x_2|, \dots, |x_n|\}$$
$$= |\lambda| \cdot ||x||_{max} \checkmark$$

(iii) $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$ imply that $x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n).$ So, $||x + y||_{max} = \max\{|x_1 + y_1|, |x_2 + y_2|, \dots, |x_n + y_n|\}$ $\leq \max\{|x_1| + |y_1|, |x_2| + |y_2|, \dots, |x_n| + |y_n|\}$ $= \max\{|x_1|, |x_2|, \dots, |x_n|\} + \max\{|y_1|, |y_2|, \dots, |y_n|\}$ $= ||x||_{max} + ||y||_{max} \sqrt{$

3. By the triangle inequality,

$$d(x, z) \le d(x, y) + d(y, z).$$

$$d(x, z) - d(y, z) \le d(x, y).$$
 (1)

On the other hand,

$$d(y,z) \le d(y,x) + d(x,z) = d(x,y) + d(x,z)$$

implies that

Thus,

$$-d(x,y) \le d(x,z) - d(y,z) \tag{2}$$

(1) and (2) together imply that

$$|d(x,z) - d(y,z)| \le d(x,y),$$

as desired.

4. First note that

•

•

$$1 = |1| = |1 - x + x| \le |1 - x| + |x| \qquad \Rightarrow \qquad 1 - |x| \le |1 - x|$$

and

$$\sum_{k=0}^{n} x^{k} = \frac{1 - x^{k+1}}{1 - x}.$$

So,

$$\left|\frac{1-x^{n+1}}{1-x} - \frac{1}{1-x}\right| = \left|\frac{x^{n+1}}{1-x}\right| = \frac{|x^{n+1}|}{|1-x|} = \frac{|x|^{n+1}}{|1-x|} \le \frac{|x|^{n+1}}{1-|x|} \overset{\text{want}}{<} \varepsilon.$$

That is, we want

$$|x|^{n+1} < \varepsilon(1-|x|)$$

for large enough n.

Since |x| < 1, we know that $|x|^{n+1}$ goes to 0 as $n \to \infty$. Therefore, $\exists N \in \mathbb{N}$ s.t.

$$|x|^{n+1} < \varepsilon(1-|x|) \qquad \forall \ n \ge N,$$

as desired.

5. Since the sequence $(d(x_n, y_n))$ lives in the reals, we only need to show that it is a Cauchy sequence. Then, by completeness of \mathbb{R} we are done!

Let $\varepsilon > 0$.

To show that $(d(x_n, y_n))$ is Cauchy sequence, we want to show that $\exists N \in \mathbb{N}$ s.t.

$$|d(x_n, y_n) - d(x_m, y_m)| < \varepsilon$$

whenever $m, n \geq N$.

Since (x_n) and (y_n) are Cauchy sequences, we know that we can get $d(x_n, x_m)$ and $d(y_n, y_m)$ as small as we want for large enough m and n.

`

Now, by two applications of the traingle inequality, we get

$$d(x_n, y_n) \leq d(x_n, x_m) + d(x_m, y_n)$$

$$\leq d(x_n, x_m) + d(x_m, y_m) + d(y_m, y_n)$$

 \mathbf{SO}

$$d(x_n, y_n) - d(x_m, y_m) \le d(x_n, x_m) + d(y_m, y_n).$$
(3)

On the other hand,

$$d(x_m, y_m) \leq d(x_m, x_n) + d(x_n, y_m)$$
$$\leq d(x_m, x_n) + d(x_n, y_n) + d(y_n, y_m)$$

 \mathbf{SO}

$$d(x_m, y_m) - d(x_n, y_n) \le d(x_m, x_n) + d(y_n, y_m)$$

which is equivalent to

$$d(x_n, y_n) - d(x_m, y_m) \ge -[d(x_m, x_n) + d(y_n, y_m)].$$
(4)

Now (3) and (4) imply that

$$|d(x_n, y_n) - d(x_m, y_m)| \le d(x_n, x_m) + d(y_n, y_m)$$

 (x_n) Cauchy implies $\exists N_1 \in \mathbb{N}$ such that $d(x_n, x_m) < \varepsilon/2$ for all $m, n \geq N_1$.

 (y_n) Cauchy implies $\exists N_2 \in \mathbb{N}$ such that $d(y_n, y_m) < \varepsilon/2$ for all $m, n \geq N_y$.

Take $N = \max\{N_1, N_2\}$. Then both $d(x_n, x_m) < \varepsilon/2$ and $d(y_n, y_m) < \varepsilon/2$ will hold for all $m, n \geq N$ and thus

$$|d(x_n, y_n) - d(x_m, y_m)| \le d(x_n, x_m) + d(y_n, y_m) < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

for all $m, n \geq N$.

Therefore, $(d(x_n, y_n))$ is a Cauchy sequence.

6. (Note: I'm going to change \mathbb{R}^n to \mathbb{R}^k so i can use the usual *m*'s and *n*'s for our Cauchy sequences.) As mentioned in class, you do not need to verify that \mathbb{R}^k is a linear space and that the given norms are proper norms. All you need to do is verify, for each norm $|| \cdot ||$, that the space is complete with respect to the induced metric d(x, y) = ||x - y||.

Let (x_n) be a sequence in \mathbb{R}^k . That is, each x_n is a vector $x_n = (x_{n1}, x_{n2}, \dots, x_{nk})$.

(a) Suppose that (x_n) is any Cauchy sequence with respect to the metric d(x, y) induced by the Euclidean norm, $|| \cdot ||$.

Then for any $\varepsilon > 0, \exists N \in \mathbb{N}$ s.t.

$$d(x_n, x_m) < \varepsilon \qquad \forall \ m, n \ge N.$$

But,

$$d(x_n, x_m) = ||x_n - x_m|| = \sqrt{(x_{n1} - x_{m1})^2 + (x_{n2} - x_{m2})^2 + \dots + (x_{nk} - x_{mk})^2}$$

$$\leq \sqrt{(x_{n1} - x_{m1})^2} + \sqrt{(x_{n2} - x_{m2})^2} + \dots + \sqrt{(x_{nk} - x_{mk})^2} \qquad (\Delta\text{-ineq})$$

$$= |x_{n1} - x_{m1}| + |x_{n2} - x_{m2}| + \dots + |x_{nk} - x_{mk}|$$

So

$$|x_{n1} - x_{m1}| + |x_{n2} - x_{m2}| + \dots + |x_{nk} - x_{mk}| < \varepsilon \qquad \forall \ m, n \ge N.$$

This implies that each $|x_{ni} - x_{mi}| < \varepsilon$ for all $m, n \ge N$ for i = 1, 2, ..., k. Thus, the k components of (x_n) form k one-dimensional Cauchy sequences in \mathbb{R} . By completeness of \mathbb{R} , each of these component sequences converge, say $\lim_{n\to\infty} x_{ni} = x_i \in \mathbb{R}$ for i = 1, 2, ..., k.

Thus, (x_n) converges in \mathbb{R}^k since

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} (x_{n1}, x_{n2}, \dots, x_{nk}) = (x_1, x_2, \dots, x_k) =: x \in \mathbb{R}.$$

Therefore \mathbb{R}^k is complete with respect to the metric induced by $|| \cdot ||$ and is a Banach space.

(b) Suppose that (x_n) is any Cauchy sequence with respect to the metric d(x, y) induced by the 1-norm, $|| \cdot ||_1$.

Then for any $\varepsilon > 0, \exists N \in \mathbb{N}$ s.t.

$$d(x_n, x_m) < \varepsilon \qquad \forall \ m, n \ge N.$$

But,

$$d(x_n, x_m) = ||x_n - x_m||_1 = |x_{n1} - x_{m1}| + |x_{n2} - x_{m2}| + \cdots , |x_{nk} - x_{mk}|$$

 \mathbf{SO}

$$|x_{n1} - x_{m1}| + |x_{n2} - x_{m2}| + \cdots, |x_{nk} - x_{mk}| < \varepsilon \quad \forall \ m, n \ge N.$$

The remainder of the problem is identical to part (a).

(c) Finally, suppose that (x_n) is any Cauchy sequence with respect to the metric d(x, y) induced by the max norm, $|| \cdot ||_{max}$. Then for any $\varepsilon > 0$, $\exists N \in \mathbb{N}$ s.t.

$$d(x_n, x_m) < \varepsilon \qquad \forall \ m, n \ge N.$$

But,

$$d(x_n, x_m) = ||x_n - x_m||_{max} = \max\{|x_{n1} - x_{m1}|, |x_{n2} - x_{m2}|, \cdots, |x_{nk} - x_{mk}|\}$$

 \mathbf{so}

$$\max\{|x_{n1} - x_{m1}|, |x_{n2} - x_{m2}|, \cdots, |x_{nk} - x_{mk}|\} < \varepsilon \forall \ m, n \ge N$$

which implies that each of $|x_{ni} - x_{mi}| < \varepsilon \forall m, n \ge N$ for each of i = 1, 2, ..., k. Again, the remainder of the problem is identical to part (a).